DAC7528U [BB]

CMOS Dual 8-Bit Buffered Multiplying DIGITAL-TO-ANALOG CONVERTER; CMOS双8位缓冲乘法数位类比转换器
DAC7528U
型号: DAC7528U
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

CMOS Dual 8-Bit Buffered Multiplying DIGITAL-TO-ANALOG CONVERTER
CMOS双8位缓冲乘法数位类比转换器

转换器
文件: 总8页 (文件大小:78K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
DAC7528  
CMOS Dual 8-Bit Buffered Multiplying  
DIGITAL-TO-ANALOG CONVERTER  
FEATURES  
DESCRIPTION  
DOUBLE BUFFERED DATA LATCHES  
SINGLE 5V SUPPLY OPERATION  
±1/2 LSB LINEARITY  
The DAC7528 contains two, 8-bit multiplying digital-  
to-analog converters (DACs). Separate on-chip latches  
hold the input data for each DAC to allow easy  
interface to microprocessors.  
FOUR-QUADRANT MULTIPLICATION  
DACs MATCHED TO 1%  
Each DAC operates independently with separate refer-  
ence input pins and internal feedback resistors. Excel-  
lent converter-to-converter matching is maintained.  
The DAC7528 operates from a single +5V power  
supply. The inputs are TTL-compatible. Package  
options include 20-pin plastic DIP and SOIC.  
APPLICATIONS  
DIGITALLY CONTROLLED FILTERS  
DISK DRIVES  
AUTO CALIBRATION  
MOTOR CONTROL SYSTEMS  
PROGRAMMABLE GAIN/ATTENUATION  
X-Y GRAPHICS  
VREF A  
4
VDD  
RFB  
A
17  
14  
3
2
Data  
Inputs  
DB0 (LSB)  
OUT A  
Input  
Buffer  
Latch  
DAC A  
DB7 (MSB)  
7
AGND  
1
DAC7528  
DAC A/  
DAC B  
19 RFB B  
6
CS 15  
WR 16  
Control  
Logic  
OUT B  
20  
DAC B  
Latch  
DGND  
5
18  
VREF B  
International Airport Industrial Park  
Mailing Address: PO Box 11400  
Tucson, AZ 85734  
Street Address: 6730 S. Tucson Blvd.  
Tucson, AZ 85706  
Tel: (520) 746-1111  
Twx: 910-952-1111  
Cable: BBRCORP  
Telex: 066-6491  
FAX: (520) 889-1510  
Immediate Product Info: (800) 548-6132  
©1993 Burr-Brown Corporation  
PDS-1219A  
Printed in U.S.A. June, 1994  
SPECIFICATIONS  
ELECTRICAL  
At VDD = +5V; VREFA, B = + 10V; IOUT = GND = 0V: T = Full Temperature Range specification under Absolute Maximum Ratings unless otherwise noted.  
DAC7528P, U  
DAC7528PB, UB  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (1)  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
FS Gain Error (2)  
N
INL  
DNL  
8
8
Bits  
LSB  
LSB  
LSB  
LSB  
ppm/°C  
%FSR/%  
%FSR/%  
nA  
nA  
nA  
±1  
±1  
±2  
±1/2  
±1/2  
±1  
±2  
Guaranteed Monolithic Over Temp  
TA = +25°C  
T
A = TMIN to TMAX  
±4  
Gain Tempco (2)(3)  
Supply Rejection  
±2  
0.001  
0.001  
±35  
0.01  
0.01  
±50  
±200  
±50  
±200  
PSR  
VDD = ±5%, TA = +25°C  
A = TMIN to TMAX  
DACA = 0016, TA = +25°C  
A = TMIN to TMAX  
DACB = 0016, TA = +25°C  
A = TMIN to TMAX  
T
Output Leakage Current (OUTA)  
Output Leakage Current (OUTB)  
T
T
nA  
REFERENCE INPUT  
Input Resistance  
Input Resistance Match  
(VREFA, VREFB  
)
8
10  
15  
±1  
kΩ  
%
(VREFA, VREFB  
)
DYNAMIC PERFORMANCE (4)  
Output Current Settling Time to 1/2 LSB  
Enable Pins Low TA = +25°C  
Load = 100/13pF, TA = TMIN to TMAX  
Enable Pins Low TA= +25°C  
180  
200  
80  
ns  
ns  
ns  
Digital-to-Analog Propagation Delay  
to 90% of Output  
Digital-to-Analog Impulse  
AC Feedthrough  
(VREFA to OUTA)  
AC Feedthrough  
(VREFB to OUTB)  
Channel-to-Channel Isolation  
(VREFA to OUTB)  
Channel-to-Channel Isolation  
(VREFB to OUTA)  
Load = 100/13pF, TA  
=
TMIN to TMAX  
100  
ns  
125  
nVs  
dB  
dB  
dB  
dB  
dB  
V
REFA = 20Vpp Sinewave, TA = +25°C  
100kHz,VREFB = 0V, TA = TMIN to TMAX  
REFA = 20Vpp Sinewave, TA = +25°C  
100kHz, VREFB = 0V, TA = TMIN to TMAX  
REFA = 20Vpp Sinewave, 100kHz,  
VREFB = 0V, Both DACs = FF16  
VREFB = 20Vpp Sinewave 100kHz,  
VREFA = 0V, Both DACs = FF16  
–70  
–65  
–70  
–65  
V
V
–90  
–90  
dB  
Digital Crosstalk  
Harmonic Distortion  
Measured With Code Transition 0016 to FF16  
VIN = 6Vrms at 1kHz  
30  
–85  
nVs  
dB  
THD  
ANALOG OUTPUTS (4)  
OUTA capacitance  
COUTA  
COUTB  
DAC = 0016  
DAC = FF16  
DAC = 0016  
DAC = FF16  
50  
120  
50  
pF  
pF  
pF  
pF  
OUTB capacitance  
120  
DIGITAL INPUTS  
Input High Voltage  
Input Low Voltage  
Input Current  
VIH  
VIL  
IIN  
2.4  
V
V
µA  
µA  
pF  
0.8  
±1  
±10  
10  
TA = +25°C  
A = TMIN to TMAX  
All Digital Inputs  
T
Input Capacitance (4)  
CIN  
POWER REQUIREMENTS  
Supply Current  
IDD  
Digital Inputs = VIH or VIL, TA = +25°C  
1
1
100  
500  
mA  
mA  
µA  
µA  
T
A = TMIN to TMAX  
Digital Inputs = 0V or VDD, TA = +25°C  
A = TMIN to TMAX  
T
SWITCHING CHARACTERISTICS (100% tested) See Timing Diagram  
Chip Select To Write Setup Time  
Chip Select To Write Hold Time  
DAC Select To Write Setup Time  
DAC Select To Write Hold Time  
Write Pulse Width  
tCS  
tCH  
tAS  
tAH  
tWR  
tDS  
tDH  
TA = +25°C  
A = TMIN to TMAX  
TA = +25°C  
A = TMIN to TMAX  
TA = +25°C  
A = TMIN to TMAX  
TA = +25°C  
A = TMIN to TMAX  
TA = +25°C  
A = TMIN to TMAX  
TA = +25°C  
A = TMIN to TMAX  
TA = +25°C  
200  
230  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
T
T
T
T
T
T
30  
200  
230  
20  
30  
180  
200  
110  
130  
0
Data Setup Time  
Data Hold Time  
NOTES: (1) Specifications apply to both DACs. (2) Gain error is measured using internal feedback resistor. Full Scale Range (FSR) = VREF. (3) Guaranteed, but  
not tested. (4) These characteristics are for design guidance only and are not subject to test.  
®
2
DAC7528  
DICE INFORMATION  
8
7
6
5
4
3
PAD FUNCTION PAD FUNCTION PAD FUNCTION  
1
2
3
4
5
6
7
VDD  
8
9
RFB A  
15  
16  
17  
18  
19  
20  
21  
DB4  
DB3  
DB2  
DB1  
DB0  
CS  
VREF B  
RFB B  
VREF B  
DGND  
10  
9
2
OUTB  
AGNDB  
AGNDA  
OUTA  
11 DAC A/DAC B  
12  
13  
14  
DB7  
DB6  
DB5  
WR  
10  
1
21  
20  
MECHANICAL INFORMATION  
MILS (0.001")  
MILLIMETERS  
11  
12  
Die Size  
Die Thickness  
Min. Pad Size  
104 x 124  
20 ±3  
4 x 4  
2.6 x 3.1  
0.51 ±0.08  
0.10 x 0.10  
19  
13  
14  
15  
16  
17  
18  
DAC7528 TOPOGRAPHY  
ELECTRICAL, (DICE)  
At VDD = +5V; VREFA, B = +10V; IOUT = GND = 0V: T = Full Temperature Range specification under Absolute Maximum Ratings unless otherwise noted.  
DAC7528AD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (1)  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
FS Gain Error (2)  
N
INL  
DNL  
8
Bits  
LSB  
LSB  
±1  
±1  
±2  
Guaranteed Monolithic Over Temp  
TA = +25°C  
LSB  
T
A = TMIN to TMAX  
±4  
LSB  
Gain Tempco (2, 3)  
Supply Rejection  
±2  
0.001  
0.001  
±35  
0.01  
0.01  
±50  
±200  
±50  
±200  
ppm/°C  
%FSR/%  
%FSR/%  
nA  
nA  
nA  
PSR  
VDD = ±5%, TA = +25°C  
A = TMIN to TMAX  
DACA = 0016 TA = +25°C  
A = TMIN to TMAX  
DACB = 0016 TA = +25°C  
A = TMIN to TMAX  
T
Output Leakage Current (OUTA)  
Output Leakage Current (OUTB)  
T
T
nA  
REFERENCE INPUT  
Input Resistance  
Input Resistance Match  
(VREF A, VREF B  
(VREF A, VREF B  
)
)
8
10  
15  
±1  
kΩ  
%
NOTES: (1) Specifications apply to both DACs. (2) Gain error is measured using internal feedback resistor. Full Scale Range (FSR) = VREF. (3) Guaranteed, but not  
tested. (4) These characteristics are for design guidance only and are not subject to test.  
PACKAGE INFORMATION  
PIN CONFIGURATION  
PACKAGE DRAWING  
NUMBER(1)  
Top View  
DIP/SOIC  
MODEL  
PACKAGE  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
AGND  
OUT A  
OUT B  
RFB B  
VREF B  
VDD  
DAC7528P  
DAC7528PB  
DAC7528U  
DAC7528UB  
20-Pin Plastic DIP  
20-Pin Plastic DIP  
20-Pin SOIC  
222  
222  
221  
221  
3
RFB A  
20-Pin SOIC  
4
NOTE: (1) For detailed drawing and dimension table, please see end of data  
sheet, or Appendix D of Burr-Brown IC Data Book.  
VREF A  
5
DGND  
WR  
DAC7528  
6
DAC A/DAC B  
(MSB) DB7  
DB6  
CS  
ORDERING INFORMATION  
7
DB0 (LSB)  
DB1  
MODEL  
INL  
PACKAGE  
TEMPERATURE RANGE  
8
DAC7528P  
±1LSB  
20-Pin Plastic DIP  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
9
DAC7528PB ±1/2LSB 20-Pin Plastic DIP  
DAC7528U  
DAC7528UB ±1/2LSB  
DB5  
DB2  
±1LSB  
20-Pin SOIC  
20-Pin SOIC  
10  
DB4  
DB3  
®
3
DAC7528  
ABSOLUTE MAXIMUM RATINGS  
WRITE CYCLE TIMING DIAGRAM  
VDD to GND ................................................................................. 0V, +7V  
tCS  
tCH  
CS  
VDD  
0
VREFA, B to GND ................................................................................ ±25V  
R
FA,B to GND ................................................................................... ±25V  
Digital Input Voltage Range ................................................ –0.3V to VDD  
Output Voltage (pins 2, 20) ................................................ –0.3V to VDD  
Operating Temperature Range U,P ................................40°C to +85°C  
DICE ............................... 0°C to +70°C  
Junction Temperature .................................................................. +150°C  
Storage Temperature..................................................... –60°C to +150°C  
Lead Temperature (soldering, 10s) ............................................. +300°C  
θJA U package ........................................................................ 105°C/W  
P package........................................................................... 85°C/W  
θJC U package ......................................................................... 60°C/W  
P package.......................................................................... 35°C/W  
tAS  
tAH  
DAC A/DAC B  
VDD  
0
tWR  
WR  
VDD  
0
tDS  
tDH  
VDD  
0
Data In  
(DB0-DB7)  
VIH  
VIL  
Data  
In Stable  
NOTES: θJA is specified for worst case mounting conditions, i.e., θJA is  
specified for device in socket for PDIP package.  
NOTE: All input signal rise and fall times are measured from 10% to 90%  
of VDD. VDD = +5V, tr = tf = 20ns; VDD = +15V, tr = tf = 40ns. Timing  
measurement reference level is (VIH + VIL)/2.  
CAUTION: (1) Do not apply voltages higher than VDD or less than GND  
potential on any terminal except VREFA, B (pins 4 and 18) and RFBA, B (pins  
3 and 19). (2) The digital control inputs are zener-protected: however,  
permanent damage may occur on unprotected units from high-energy  
electrostatic fields. Keep units in conductive foam at all times until ready  
to use. (3) Use proper antistatic handling procedures. (4) Absolute  
Maximum Ratings apply to both packaged devices and DICE. Stresses  
above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device.  
MODE SELECTION TABLE  
DAC A/DAC B  
CS  
WR  
DAC A  
DAC B  
L
L
L
H
X
L
L
X
H
WRITE  
HOLD  
HOLD  
HOLD  
HOLD  
WRITE  
HOLD  
HOLD  
H
X
X
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
Any integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Digital Inputs: All digital inputs of the DAC7528 incorpo-  
rate on-chip ESD protection circuitry. This protection is  
designed and has been tested to withstand five 2500V  
positive and negative discharges (100pF in series with 1500)  
applied to each digital input.  
ESD damage can range from subtle performance degrada-  
tion to complete device failure. Precision integrated circuits  
may be more susceptible to damage because very small  
parametric changes could cause the device not to meet  
published specifications.  
Analog Pins: Each analog pin has been tested to Burr-  
Brown's analog ESD test consisting of five 1000V positive  
and negative discharges (100pF in series with 1500) ap-  
plied to each pin. RFB A, VREF A, RFB B, and VREF B show  
some sensitivity.  
TYPICAL PERFORMANCE CURVES  
At VDD = +5V; VREFA,B = +10V; IOUT = GND = 0V: T = Full Temperature Range Specification under Absolute Maximum Ratings unless otherwise noted.  
SUPPLY CURRENT vs DIGITAL INPUT VOLTAGE  
DAC7528 GAIN TC  
5
4
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
3
2
1
0
–1  
–2  
–3  
–4  
–5  
VDD = +5V  
0
1.0  
2.0  
3.0  
4.0  
–40  
–20  
0
20  
40  
60  
80  
100  
VIN (V)  
Temperature (°C)  
®
4
DAC7528  
CIRCUIT DESCRIPTION  
DISCUSSION OF  
SPECIFICATIONS  
RELATIVE ACCURACY  
This term, also known as end point linearity or integral  
linearity, describes the transfer function of analog output to  
digital input code. Relative accuracy describes the deviation  
from a straight line, after zero and full scale errors have been  
adjusted to zero.  
Figure 1 shows a simplified schematic of one half of a  
DAC7528. The current from the VREF pin is switched  
A
between IOUT A and AGND by 8 single-pole double-throw  
CMOS switches. This maintains a constant current in each  
leg of the ladder regardless of the input code. The input  
resistance at VREF A is therefore constant and can be driven  
by either a voltage or current, AC or DC, positive or  
negative polarity, and have a voltage range up to ±20V.  
DIFFERENTIAL NONLINEARITY  
VREF A  
R
R
R
Differential nonlinearity is the deviation from an ideal 1LSB  
change in the output when the input code changes by 1LSB.  
A differential nonlinearity specification of 1LSB maximum  
guarantees monotonicity.  
RFB A  
R
2R  
2R  
2R  
2R  
2R  
IOUT A  
GAIN ERROR  
AGND  
Gain error is the difference between the full-scale DAC  
output and the ideal value. The ideal full scale output value  
for the DAC7528 is –(255/256)VREF. Gain error may be  
adjusted to zero using external trims as shown in Figure 4.  
DB7  
(MSB)  
DB6  
DB5  
DB0  
(LSB)  
FIGURE 1. Equivalent Circuit for DAC A.  
A CMOS switch transistor, included in series with the ladder  
terminating resistor and in series with the feedback resistor,  
RFB A, compensates for the temperature drift of the ON  
resistance of the ladder switches.  
OUTPUT LEAKAGE CURRENT  
The current which appears at IOUT A and IOUT B with the  
DAC loaded with all zeros.  
Figure 2 shows an equivalent circuit for DAC A. COUT is the  
output capacitance due to the N-channel switches and varies  
from about 30pF to 70pF with digital input code. The current  
source ILKG is the combination of surface and junction  
leakages to the substrate. ILKG approximately doubles every  
10°C. RO is the equivalent output resistance of the D/A and  
it varies with input code.  
OUTPUT CAPACITANCE  
The parasitic capacitance measured from IOUT A or IOUT B to  
AGND.  
CHANNEL-TO-CHANNEL ISOLATION  
The AC output error due to capacitive coupling from DAC  
A to DAC B or DAC B to DAC A.  
R
RFB A  
IOUT A  
VREF A  
AC FEEDTHROUGH ERROR  
The AC output error due to capacitive coupling from VREF  
to IOUT with the DAC loaded with all zeros.  
ILKG  
DIN VREF  
COUT  
RO  
x
R
256  
R
AGND  
OUTPUT CURRENT SETTLING TIME  
FIGURE 2. Simplified Circuit Diagram for DAC A.  
The time required for the output current to settle to within  
±0.195% of final value for a full scale step.  
INSTALLATION  
DIGITAL-TO-ANALOG IMPULSE  
ESD PROTECTION  
The integrated area of the glitch pulse measured in nanovolt-  
seconds. The key contributor to digital-to-analog glitch is  
charge injected by digital logic switching transients.  
All digital inputs of the DAC7528 incorporate on-chip ESD  
protection circuitry. This protection is designed to withstand  
2.5kV (using the Human Body Model, 100pF and 1500).  
However, industry standard ESD protection methods should  
be used when handling or storing these components. When  
not in use, devices should be stored in conductive foam or  
rails. The foam or rails should be discharged to the destina-  
tion socket potential before devices are removed.  
DIGITAL CROSSTALK  
Glitch impulse measured at the output of one DAC but  
caused by a full scale transition on the other DAC. The  
integrated area of the glitch pulse is measured in nanovolt-  
seconds.  
®
5
DAC7528  
POWER SUPPLY CONNECTIONS  
VDDVREF A  
+5V  
DIN  
VOUT = –  
VREF  
The DAC7528 is designed to operate on VDD = +5V +10%.  
For optimum performance and noise rejection, power supply  
decoupling capacitors CD should be added as shown in the  
application circuits. These capacitors (1µF tantalum recom-  
mended) should be located close to the D/A. AGND and  
DGND should be connected together at one point only, pre-  
ferably at the power supply ground point. Separate returns  
minimize current flow in low-level signal paths if properly  
connected. Output op amp analog common (+ input) should  
be connected as near to the AGND pin of the DAC7528 as  
possible.  
256  
+
CD  
1µF  
RFB A  
C1  
IOUT A  
10pF  
DAC A  
A1  
+
VOUT A  
DAC7528  
RFB B  
IOUT B  
C2  
10pF  
DAC B  
A2  
+
VOUT B  
AGND  
WIRING PRECAUTIONS  
To minimize AC feedthrough when designing a PC board,  
care should be taken to minimize capacitive coupling be-  
tween the VREF lines and the IOUT lines. Similarly, capacitive  
coupling between DACs may compromise the channel-to-  
channel isolation. Coupling from any of the digital control or  
data lines might degrade the glitch and digital crosstalk  
performance. Solder the DAC7528 directly into the PC  
board without a socket. Sockets add parasitic capacitance  
(which can degrade AC performance).  
A1, A2 OPA602 or 1/2 OPA2107.  
DGND  
VREF B  
FIGURE 3. Unipolar Configuration 2 Quadrant Multiplica-  
tion.  
amplifier.  
If an application requires the D/A to have zero gain error, the  
circuit shown in Figure 4 may be used. Resistors R2 and R4  
induce a positive gain error greater than worst-case initial  
negative gain error. Trim resistors R1 and R3 provide a  
variable negative gain error and have sufficient trim range to  
correct for the worst-case initial positive gain error plus the  
error produced by R2 and R4.  
AMPLIFIER OFFSET VOLTAGE  
The output amplifier used with the DAC7528 should have  
low input offset voltage to preserve the transfer function  
linearity. The voltage output of the amplifier has an error  
component which is the offset voltage of the op amp multi-  
plied by the “noise gain” of the circuit. This “noise gain” is  
equal to (RF/RO + 1) where RO is the output impedance of  
the D/A IOUT terminal and RF is the feedback network  
impedance. The nonlinearity occurs due to the output im-  
pedance varying with code. If the 0 code case is excluded  
(where RO = infinity), the RO will vary from R to 3R  
providing a “noise gain” variation between 4/3 and 2. In  
addition, the variation of RO is nonlinear with code, and the  
largest steps in RO occur at major code transitions where the  
worst differential nonlinearity is also likely to be experi-  
enced. The nonlinearity seen at the amplifier output is  
2VOS – 4VOS/3 = 2VOS/3. Thus, to maintain good  
nonlinearity the op amp offset should be much less than  
1/2LSB.  
BIPOLAR CONFIGURATION  
Figure 5 shows the DAC7528 in a typical bipolar (four-  
quadrant) multiplying configuration. The analog output val-  
ues versus digital input code are listed in Table II.  
The operational amplifiers used in this circuit can be single  
amplifiers such as the OPA602, a dual amplifier such as the  
OPA2107, or a quad amplifier like the OPA404. C1 and C2  
provide phase compensation to minimize settling time and  
overshoot when using a high speed operational amplifier.  
The bipolar offset resistors R1–R3 and R4–R6 should be  
ratio-matched to 0.195% to ensure the specified gain error  
performance.  
UNIPOLAR CONFIGURATION  
Figure 3 shows DAC7528 in a typical unipolar (two-quad-  
rant) multiplying configuration. The analog output values  
versus digital input code are listed in Table I. The opera-  
tional amplifiers used in this circuit can be single amplifiers  
such as the OPA602, or a dual amplifier such as the OPA2107.  
C1 and C2 provide phase compensation to minimize settling  
time and overshoot when using a high speed operational  
®
6
DAC7528  
APPLICATION INFORMATION  
VDD  
+5V  
VIN A  
DATA INPUT  
MSB  
ANALOG OUTPUT  
R1  
100  
VREF A  
LSB  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
–VREF (255/256)  
–VREF (255/256) = –1/2VREF  
–VREF (1/256)  
+
CD  
1µF  
R2  
RFB A  
0V  
C1 10pF  
47Ω  
TABLE I. Unipolar Output Code.  
IOUT A  
DAC A  
A1  
+
VOUT A  
DATA INPUT  
ANALOG OUTPUT  
R4  
DAC7528  
RFB B  
MSB  
LSB  
1111 1111  
1000 0001  
1000 0000  
0111 1111  
0000 0000  
+VREF (127/128)  
+VREF (1/128)  
0V  
–VREF (1/128)  
–VREF (127/128)  
C2 10pF  
A2  
+
47Ω  
IOUT B  
DAC B  
AGND  
VOUT B  
TABLE II. Bipolar Output Code.  
VREF B  
A1, A2 OPA602 or 1/2 OPA2107.  
R3  
100Ω  
DGND  
VIN B  
FIGURE 4.Unipolar Configuration with Gain Trim.  
+5V  
R1  
VDD  
20k  
VREF A  
R2  
20kΩ  
+
CD  
1µF  
VOUT A  
A2  
R3  
+
10kΩ  
RFB A  
IOUT A  
C1  
10pF  
+
A1  
DAC A  
A1–A4, OPA602 or 1/2 OPA2107.  
DAC7528  
RFB B  
IOUT B  
AGND  
C2  
10pF  
A3  
+
DAC B  
R4  
20kΩ  
R5  
10kΩ  
R6  
20kΩ  
DGND  
VOUT B  
A4  
+
VREF B  
FIGURE 5. Bipolar Configuration 4 Quadrant Multiplication.  
®
7
DAC7528  
APPLICATIONS CIRCUIT: 8-BIT PLUS SIGN DAC  
+15V  
2
+10V  
The DACs are loaded with same 8-bit word,  
except that one code is inverted first.  
If sign bit = 1; invert DAC B’s data.  
If sign bit = 0; invert DAC A’s data.  
6
REF102  
+5V  
VDD  
4
CD  
1µF  
VREF A  
RFB A  
C1  
10pF  
IOUT A  
R
DAC A  
A1  
R
R
2
3
±10V  
9 Bits  
DAC7528  
6
RFB B  
C2  
10pF  
IOUT B  
R
INA105  
DAC B  
A2  
AGND  
1
VREF B  
A1 OPA602 or 1/2 OPA2107.  
DGND  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
8
DAC7528  

相关型号:

DAC7528UB

CMOS Dual 8-Bit Buffered Multiplying DIGITAL-TO-ANALOG CONVERTER
BB

DAC7541

Low Cost 12-Bit CMOS Four-Quadrant Multiplying DIGITAL-TO-ANALOG CONVERTER
BB

DAC7541A

Low Cost 12-Bit CMOS Four-Quadrant Multiplying DIGITAL-TO-ANALOG CONVERTER
BB

DAC7541A

PARALLEL, WORD INPUT LOADING, 0.6us SETTLING TIME, 12-BIT DAC, UUC18
TI

DAC7541AAH/QM

D/A Converter, 12-Bit, 1 Func, CMOS, CDIP18,
BB

DAC7541AJP

Low Cost 12-Bit CMOS Four-Quadrant Multiplying DIGITAL-TO-ANALOG CONVERTER
BB

DAC7541AJP

Low Cost 12-Bit CMOS Four-Quadrant Multiplying D/A Converter 18-PDIP 0 to 70
TI

DAC7541AJP-BI

Low Cost 12-Bit CMOS Four-Quadrant Multiplying DIGITAL-TO-ANALOG CONVERTER
BB

DAC7541AJPG4

Low Cost 12-Bit CMOS Four-Quadrant Multiplying DIGITAL-TO-ANALOG CONVERTER
BB

DAC7541AJPG4

PARALLEL, WORD INPUT LOADING, 0.6us SETTLING TIME, 12-BIT DAC, PDIP18, GREEN, PLASTIC, DIP-18
TI

DAC7541AJU

Low Cost 12-Bit CMOS Four-Quadrant Multiplying DIGITAL-TO-ANALOG CONVERTER
BB

DAC7541AJU

Low Cost 12-Bit CMOS Four-Quadrant Multiplying D/A Converter 18-SOP 0 to 70
TI