INA116UA-TR [BB]

Instrumentation Amplifier, 1 Func, 10000uV Offset-Max, 0.8MHz Band Width, PDSO16,;
INA116UA-TR
型号: INA116UA-TR
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

Instrumentation Amplifier, 1 Func, 10000uV Offset-Max, 0.8MHz Band Width, PDSO16,

仪表放大器
文件: 总9页 (文件大小:248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
INA116  
INA116  
INA116  
Ultra Low Input Bias Current  
INSTRUMENTATION AMPLIFIER  
DESCRIPTION  
FEATURES  
The INA116 is a complete monolithic FET-input instru-  
mentation amplifier with extremely low input bias  
current. Difet® inputs and special guarding techniques  
yield input bias currents of 3fA at 25°C, and only 25fA  
at 85°C. Its 3-op amp topology allows gains to be set  
from 1 to 1000 by connecting a single external resistor.  
LOW INPUT BIAS CURRENT: 3fA typ  
BUFFERED GUARD DRIVE PINS  
LOW OFFSET VOLTAGE: 2mV max  
HIGH COMMON-MODE REJECTION:  
84dB (G = 10)  
LOW QUIESCENT CURRENT: 1mA  
Guard pins adjacent to both input connections can be  
used to drive circuit board and input cable guards to  
maintain extremely low input bias current.  
INPUT OVER-VOLTAGE PROTECTION: ±40V  
The INA116 is available in 16-pin plastic DIP and SOL-16  
surface-mount packages, specified for the –40°C to +85°C  
temperature range.  
APPLICATIONS  
LABORATORY INSTRUMENTATION  
pH MEASUREMENT  
ION–SPECIFIC PROBES  
LEAKAGE CURRENT MEASUREMENT  
V+  
13  
2
Guard  
INA116  
VIN  
3
Over-Voltage  
Protection  
+1  
A1  
50kΩ  
RG  
4
1
G = 1 +  
Guard  
60kΩ  
60kΩ  
25kΩ  
25kΩ  
A3  
VO  
RG  
11  
9
16  
5
Guard  
A2  
Ref  
+
VIN  
6
7
Over-Voltage  
Protection  
60kΩ  
60kΩ  
+1  
Guard  
8
V–  
Difet®; Burr-Brown Corporation  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
FAXLine: (800) 548-6133 (US/Canada Only)  
• Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111  
Internet: http://www.burr-brown.com/  
Cable: BBRCORP  
Telex: 066-6491  
FAX: (520) 889-1510  
Immediate Product Info: (800) 548-6132  
©1994 Burr-Brown Corporation  
PDS-1242B  
Printed in U.S.A. May, 1995  
SPECIFICATIONS  
AT TA = +25°C, VS = ±15V, RL = 10kΩ, unless otherwise noted.  
INA116P, U  
TYP  
INA116PA, UA  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
INPUT  
Offset Voltage, RTI  
Initial  
vs Temperature  
vs Power Supply  
Long-Term Stability  
Bias Current  
vs Temperature  
Offset Current  
vs Temperature  
Impedance, Differential  
Common-Mode  
Common-Mode Voltage Range  
T
A = +25°C  
±0.5 ±0.5/G  
See Typical Curve  
±10 ±15/G  
±1 ±5/G  
±2 ±2/G  
±50 ±100/G  
±25  
±5 ±5/G  
±100 ±200/G  
±100  
mV  
TA = TMIN to TMAX  
VS = ±4.5V to ±18V  
µV/V  
µV/mo  
fA  
±3  
See Typical Curve  
±1  
See Typical Curve  
>1015/0.2  
±25  
±100  
fA  
Ω/pF  
/pF  
V
V
V
>1015/7  
(V+)–2  
(V–)+2.4  
(V+)–4  
(V–)+4  
±40  
Safe Input Voltage  
Common-Mode Rejection  
VCM = ±11V, RS = 1kΩ  
G = 1  
G = 10  
G = 100  
CM = ±5V, G = 1000  
80  
84  
86  
86  
89  
92  
94  
94  
73  
78  
80  
80  
dB  
dB  
dB  
dB  
V
NOISE  
Voltage Noise, RTI  
f = 1kHz  
G = 1000, RS = 0Ω  
28  
2
nV/Hz  
µVp-p  
fB = 0.1Hz to 10Hz  
Current Noise  
f = 1kHz  
0.1  
fA/Hz  
GAIN  
Gain Equation  
Range of Gain  
Gain Error  
1+(50k/RG)  
V/V  
V/V  
%
%
%
1
1000  
±0.05  
±0.4  
0.1  
±0.5  
±0.7  
G = 1  
G = 10  
G = 100  
G = 1000  
G = 1  
±0.01  
±0.25  
±0.35  
±1.25  
±5  
±0.5  
%
Gain vs Temperature(1)  
50kResistance(1)(2)  
Nonlinearity  
±10  
±100  
±0.005  
±0.005  
±0.005  
±20  
ppm/°C  
ppm/°C  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
±25  
±100  
±0.01  
±0.01  
±0.01  
G = 1  
G = 10  
G = 100  
G = 1000  
±0.0005  
±0.001  
±0.001  
±0.005  
GUARD OUTPUTS  
Offset Voltage  
Output Impedance  
Current Drive  
±15  
650  
+2/–0.05  
±50  
mV  
mA  
OUTPUT  
Voltage Positive  
Negative  
Load Capacitance Stability  
Short-Circuit Current  
RL = 10kΩ  
RL = 10kΩ  
(V+) –1  
(V–) +0.35  
(V+) –0.7  
(V–) +0.2  
1000  
V
V
pF  
mA  
+5/–12  
FREQUENCY RESPONSE  
Bandwidth, –3dB  
G = 1  
G = 10  
G = 100  
800  
500  
70  
7
0.8  
22  
kHz  
kHz  
kHz  
kHz  
V/µs  
µs  
µs  
µs  
µs  
µs  
G = 1000  
Slew Rate  
Settling Time, 0.01%  
G = 10 to 200  
10V Step, G = 1  
G = 10  
G = 100  
G = 1000  
50% Overdrive  
25  
145  
400  
20  
Output Overload Recovery  
POWER SUPPLY  
Voltage Range  
Current  
±4.5  
±15  
±1  
±18  
±1.4  
V
mA  
VIN = 0V  
TEMPERATURE RANGE  
Specification  
Operating  
–40  
–40  
85  
125  
°C  
°C  
θJA  
80  
°C/W  
Specification same as INA116P  
NOTE: (1) Guaranteed by wafer test. (2) Temperature coefficient of the “50k” term in the gain equation.  
®
2
INA116  
PIN CONFIGURATION  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
Top View  
DIP  
SOL-16  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
RG  
Guard –  
VIN  
1
2
3
4
5
6
7
8
16 RG  
15 NC  
14 NC  
13 V+  
12 NC  
11 VO  
10 NC  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
Guard –  
Guard +  
VI+N  
Guard +  
V–  
PACKAGE INFORMATION  
9
Ref  
PACKAGE DRAWING  
PRODUCT  
PACKAGE  
NUMBER(1)  
NC: No Internal Connection.  
INA116PA  
INA116P  
INA116UA  
INA116U  
16-Pin Plastic DIP  
16-Pin Plastic DIP  
SOL-16 Surface-Mount  
SOL-16 Surface-Mount  
180  
180  
211  
211  
ABSOLUTE MAXIMUM RATINGS  
NOTE: (1) For detailed drawing and dimension table, please see end of data  
sheet, or Appendix C of Burr-Brown IC Data Book.  
Supply Voltage .................................................................................. ±18V  
Input Voltage Range .......................................................................... ±40V  
Output Short-Circuit (to ground) .............................................. Continuous  
Operating Temperature ................................................. –40°C to +125°C  
Storage Temperature..................................................... –40°C to +125°C  
Junction Temperature .................................................................... +150°C  
Lead Temperature (soldering, 10s) ............................................... +300°C  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
3
INA116  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, VS = ±15V, RL = 10kΩ, unless otherwise noted.  
COMMON-MODE REJECTION vs FREQUENCY  
G = 1000V/V  
GAIN vs FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
G = 1000  
50  
G = 100V/V  
40  
G = 100  
30  
G = 10V/V  
G = 1V/V  
20  
G = 10  
10  
0
G = 1  
–10  
–20  
10  
100  
1k  
10k  
100k  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
NEGATIVE POWER SUPPLY REJECTION  
vs FREQUENCY  
POSITIVE POWER SUPPLY REJECTION  
vs FREQUENCY  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
G = 1k  
G = 1000V/V  
G = 100V/V  
G = 10 < 100  
G = 1  
G = 10V/V  
G = 1V/V  
1k  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
Frequency (Hz)  
10k  
100k  
Frequency (Hz)  
INPUT BIAS CURRENT vs INPUT VOLTAGE  
INPUT BIAS CURRENT vs TEMPERATURE  
15  
10  
5
1000  
100  
10  
0
IOS  
IB  
–5  
–10  
–15  
Measurement Limit  
75 100  
1
–15  
–10  
–5  
0
5
10  
15  
–75  
–50  
–25  
0
25  
50  
125  
Input Voltage (V)  
®
4
INA116  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, VS = ±15V, RL = 10kΩ, unless otherwise noted.  
INPUT COMMON-MODE RANGE  
vs OUTPUT VOLTAGE  
INPUT REFERRED NOISE vs FREQUENCY  
15  
10  
5
10k  
1k  
G 10  
G 10  
G = 1  
VD/2  
G = 1  
G = 1V/V  
+15V  
VO  
+
INA116  
0
VD/2  
Ref  
+
G = 1  
VCM  
–5  
–10  
–15  
100  
10  
–15V  
G = 1  
G = 1000V/V  
G = 10V/V  
Bandwidth Limit  
1k  
–15  
–10  
–5  
0
5
10  
15  
1
10  
100  
Frequency (Hz)  
10k  
Output Voltage (V)  
INPUT OVER-VOLTAGE V/I CHARACTERISTICS  
OFFSET VOLTAGE WARM-UP  
4
3
15  
10  
5
G 10  
2
G = 1  
G = 1000V/V  
G = 1V/V  
1
0
0
–1  
–2  
–3  
–4  
G = 1V/V  
–5  
–10  
–15  
G = 1000V/V  
G = 1  
G 10  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
0
5
10  
15  
20  
25  
Input Voltage (V)  
Time After Power Supply Turn-On (s)  
INPUT OFFSET VOLTAGE DRIFT  
PRODUCTION DISTRIBUTION  
QUIESCENT CURRENT AND SLEW RATE  
vs TEMPERATURE  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
40  
26  
G = 100  
19  
1.4  
0.5  
7
9
6
5
IQ  
0.5  
1.2  
1.0  
0.8  
0.6  
0.4  
38  
24  
15  
20  
18  
G = 10  
G = 1  
2
9
1
4
1
SR  
17  
0
14  
20  
12  
0.5  
4
3
2
0.5  
–80 –60 –40 –20  
40  
60  
80  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Offset Voltage Drift (µV/°C)  
Temperature (°C)  
®
5
INA116  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, VS = ±15V, RL = 10kΩ, unless otherwise noted.  
VOLTAGE NOISE, 0.1 TO 10Hz  
INPUT-REFERRED, G 100  
MAXIMUM OUTPUT VOLTAGE vs FREQUENCY  
32  
G = 10, 100  
28  
G = 1  
24  
20  
16  
G = 1000  
12  
8
4
0
100  
1k  
10k  
100k  
1M  
1s/div  
Frequency (Hz)  
SMALL SIGNAL RESPONSE  
SMALL SIGNAL RESPONSE  
G=1  
G=100  
20mV/div  
20mV/div  
G=10  
G=1000  
10µs/div  
100µs/div  
LARGE SIGNAL RESPONSE  
LARGE SIGNAL RESPONSE  
G=1  
G=100  
5V/div  
5V/div  
G=10  
G=1000  
100µs/div  
100µs/div  
®
6
INA116  
The 50kterm in equation 1 is the sum of the two feedback  
resistors of A1 and A2. These on-chip metal film resistors are  
laser trimmed to accurate absolute values. The accuracy and  
temperature coefficient of these resistors are included in the  
gain accuracy and drift specifications of the INA116.  
APPLICATIONS INFORMATION  
Figure 1 shows the connections required for basic operation  
of the INA116. Applications with noisy or high impedance  
power supplies may require decoupling capacitors close to  
the supply pins as shown.  
The stability and temperature drift of RG also affect gain.  
RG’s contribution to gain accuracy and drift can be directly  
inferred from the gain equation (1). Low resistor values  
required for high gain make wiring resistance important.  
Sockets add to the wiring resistance that will contribute  
additional gain error in gains of approximately 100 or  
greater.  
The output is referred to the output reference (Ref) terminal  
which is normally grounded. This must be a low impedance  
connection to assure good common-mode rejection. A resis-  
tance of 30in series with this connection will cause a  
typical device to degrade to approximately 72dB CMR at  
G = 1.  
SETTING THE GAIN  
OFFSET TRIMMING  
Gain of the INA116 is set by connecting a single external  
resistor, RG, as shown. The gain is—  
The INA116 is laser trimmed for low offset voltage and  
offset voltage drift; most applications require no external  
offset adjustment. Figure 2 shows an optional circuit for  
trimming the output offset voltage. A voltage applied to the  
Ref terminal is summed at the output. Op amp A1 provides  
a low source impedance for the Ref terminal, assuring good  
common-mode rejection.  
50kΩ  
G = 1+  
(1)  
RG  
Commonly used gains and resistor values are shown in  
Figure 1.  
V+  
0.1µF  
13  
4
INA116  
3
Over-Voltage  
Protection  
VIN  
+1  
A1  
50kΩ  
RG  
2
1
G = 1 +  
R1  
60kΩ  
R2  
60kΩ  
RFB  
25kΩ  
Input Guards  
See Text.  
A3  
VO  
RG  
11  
16  
5
RFB  
25kΩ  
Ref  
A2  
6
7
Over-Voltage  
Protection  
9
VI+N  
R3  
60kΩ  
R4  
60kΩ  
+1  
8
0.1µF  
DESIRED  
GAIN  
RG  
()  
NEAREST 1% RG  
V–  
()  
1
2
5
10  
20  
50  
100  
200  
500  
1000  
2000  
5000  
10000  
NC  
NC  
49.9k  
12.4k  
5.62k  
2.61k  
1.02k  
511  
249  
100  
49.9  
24.9  
10  
50.00k  
12.50k  
5.556k  
2.632k  
1.02k  
505.1  
251.3  
100.2  
50.05  
25.01  
10.00  
5.001  
Also drawn in simplified form:  
VIN  
INA116  
Ref  
VO  
RG  
+
VIN  
4.99  
NC: No Connection.  
FIGURE 1. Basic Connections.  
®
7
INA116  
CIRCUIT BOARD LAYOUT AND ASSEMBLY  
Careful circuit board layout and assembly techniques are  
required to achieve the exceptionally low input bias current  
performance of the INA116. Guard terminals adjacent to  
both inputs make it easy to properly guard the critical input  
terminal layout. Since traces are not required to run between  
device pins, this layout is easily accomplished, even with the  
surface mount package. The guards should completely en-  
circle their respective input connections—see Figure 4. Both  
sides of the circuit board should be guarded, even if only one  
side has an input terminal conductor. Route any time-  
varying signals away from the input terminals. Solder mask  
should not cover the input and guard traces since this can  
increase leakage.  
VIN  
V+  
VO  
INA116  
RG  
100µA  
1/2 REF200  
+
Ref  
VIN  
100(1)  
100(1)  
OPA131  
±10mV  
Adjustment Range  
10k(1)  
100µA  
1/2 REF200  
NOTE: (1) For wider trim range required  
in high gains, scale resistor values larger  
V–  
FIGURE 2. Optional Trimming of Output Offset Voltage.  
INPUT BIAS CURRENT RETURN PATH  
Input circuitry must provide an input bias current path for  
proper operation. Figure 3 shows resistors R1 and R2 to  
provide an input current path. Without these resistors, the  
inputs would eventually float to a potential that exceeds the  
common-mode range of the INA116 and the input amplifiers  
would saturate. Because of its exceedingly low input bias  
current, improperly biased inputs may operate normally for  
a period of time after power is first applied, or operate  
intermittently.  
Guard Top and  
Bottom of Circuit Board.  
FIGURE 4. Circuit Board Guard Layout.  
After assembly, the circuit board should be cleaned. Com-  
mercial solvents should be chosen according to the soldering  
method and flux used. Solvents should be cleaned and  
replaced often. Solvent cleaning should be followed by a de-  
ionized water rinse and 85°C bake out.  
Crystal or  
Ceramic  
Transducer  
INA116  
VO  
Sockets can be used, but select and evaluate them carefully  
for best results. Use caution when installing the INA116 in  
a socket. Careless handling can contaminate the plastic near  
the input pins, dramatically increasing leakage current.  
100MΩ  
R1  
100MΩ  
R2  
A proven low leakage current assembly method is to bend  
the input pins outward so they do not contact the circuit  
board. Input connections are made in air and soldered  
directly to the input pin. This technique is often not practical  
or production-worthy. It is, however, a useful technique for  
evaluation and testing and provides a benchmark with which  
to compare other wiring techniques. The circuit board guard-  
ing techniques discussed normally reduce leakage to accept-  
able levels.  
Polarizing  
Voltage  
100MΩ  
Capacitive  
Sensor  
INA116  
A solid mechanical assembly is required for good results.  
Nearby plastic parts can be especially troublesome since a  
static charge can develop and the slightest motion or vibra-  
tion will couple charge to the inputs. Place a Faraday shield  
around the whole amplifier and input connection assembly  
to eliminate stray fields.  
VO  
100MΩ  
R1  
100MΩ  
R2  
100MΩ  
FIGURE 3. Providing An Input Bias Current Path.  
®
8
INA116  
INPUT CONNECTIONS  
potential and ground the outer shield. Two separate guarded  
lines are required if both the inverting and non-inverting  
inputs are brought to the source.  
Some applications must make high impedance input connec-  
tions to external sensors or input connectors. To assure low  
leakage, the input should be guarded all the way to the signal  
source—see Figure 5. Coaxial cable can be used with the  
shield driven by the guard. A separate connection is required  
to provide a ground reference at the signal source. Triaxial  
cable may reduce noise pickup and provides the ground  
reference at the source. Drive the inner shield at guard  
The guard drive output current is limited to approximately  
+2mA/–50µA. For slow input signals the internal guard  
output can directly drive a cable shield. With fast input  
signals, however, the guard may not provide sufficient  
output current to rapidly charge the cable capacitance. An op  
amp buffer may be required as shown in Figure 6.  
High-Z  
Source  
Two coaxial cables and ground  
VIN  
VI+N  
V
1MΩ  
High-Z  
Source  
Two triaxial cables  
VIN  
VI+N  
V
1MΩ  
FIGURE 5. Input Cable Guarding Circuits.  
+15  
Circuit Board  
Guard  
Cable  
13  
3
1
VIN  
G = 10  
11  
150Ω  
INA116  
VO  
5.62kΩ  
16  
6
9
Op amp buffer helps  
OPA131  
8
guard cables with  
fast input signals—  
see text.  
–15  
FIGURE 6. Buffered Guard Drive.  
Solution  
Ground  
Sample  
Electrode  
Reference  
Electrode  
FIGURE 7. pH or Ion Measurement System.  
®
9
INA116  

相关型号:

INA117

High Common-Mode Voltage DIFFERENCE AMPLIFIER
BB

INA117

高共模电压差分放大器
TI

INA117AM

High Common-Mode Voltage DIFFERENCE AMPLIFIER
BB

INA117AM

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI

INA117AM-BI

Buffer Amplifier, 1 Func, BIPolar, MBCY8,
BB

INA117AM4

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI

INA117BM

High Common-Mode Voltage DIFFERENCE AMPLIFIER
BB

INA117BM

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI

INA117BM-22

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI

INA117BM-3

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI

INA117BM-33

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI

INA117BM1

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI