INA145 [BB]

Programmable Gain DIFFERENCE AMPLIFIER; 可编程增益差动放大器器
INA145
型号: INA145
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

Programmable Gain DIFFERENCE AMPLIFIER
可编程增益差动放大器器

放大器
文件: 总11页 (文件大小:129K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
INA145  
INA145  
For most current data sheet and other product  
information, visit www.burr-brown.com  
Programmable Gain  
DIFFERENCE AMPLIFIER  
FEATURES  
DESCRIPTION  
DIFFERENTIAL GAIN = 1V/V TO 1000V/V:  
The INA145 is a precision, unity-gain difference  
amplifier consisting of a precision op amp and on-  
chip precision resistor network. Two external resistors  
set the gain from 1V/V to 1000V/V. The input com-  
mon-mode voltage range extends beyond the positive  
and negative rails.  
Set with External Resistors  
LOW QUIESCENT CURRENT: 570µA  
WIDE SUPPLY RANGE:  
Single Supply: 4.5V to 36V  
Dual Supplies: ±2.25V to ±18V  
On-chip precision resistors are laser-trimmed to achieve  
accurate gain and high common-mode rejection. Ex-  
cellent TCR tracking of these resistors assures contin-  
ued high precision over temperature.  
HIGH COMMON-MODE VOLTAGE:  
+8V at VS = +5V  
±28V at VS = ±15V  
LOW GAIN ERROR: 0.01%  
HIGH CMR: 86dB  
The INA145 is available in the SO-8 surface-mount  
package specified for the extended industrial tempera-  
ture range, –40°C to +85°C.  
SO-8 PACKAGE  
APPLICATIONS  
CURRENT SHUNT MEASUREMENTS  
SENSOR AMPLIFIER  
DIFFERENTIAL LINE RECEIVER  
BATTERY POWERED SYSTEMS  
RG1  
RG2  
V+  
RG  
7
5
R1  
R2  
40kΩ  
40kΩ  
2
VIN–  
R5  
10kΩ  
A2  
(1%)  
VO  
6
G = 1  
R3  
A1  
V
O = (VI+N – VIN)(1 + RG2/RG1  
)
R4  
40kΩ  
40kΩ  
3
VIN+  
INA145  
4
1
8
V–  
Ref  
V01  
International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111  
Twx: 910-952-1111 • Internet: http://www.burr-brown.com/ • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132  
©1999 Burr-Brown Corporation  
PDS-1567B  
Printed in U.S.A. March, 2000  
SPECIFICATIONS: VS = ±2.25V to ±18V  
Boldface limits apply over the specified temperature range, TA = –40°C to +85°C  
At TA = +25°C, G = 1, RL = 10kconnected to ground and ref pin connected to ground unless otherwise noted.  
INA145UA  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
OFFSET VOLTAGE, VO  
Input Offset Voltage  
vs Temperature  
vs Power Supply  
vs Time  
RTI(1, 2)  
VCM = VO = 0V  
VOS  
VOS /T  
PSRR  
±0.2  
±1  
mV  
See Typical Curve  
VS = ±1.35V to ±18V  
±20  
±0.3  
±0.4  
±60  
µV/V  
µV/mo  
mV  
Offset Voltage, V01  
RTI(1, 2)  
INPUT VOLTAGE RANGE  
Common-Mode Voltage Range  
Common-Mode Rejection  
Over Temperature  
VCM  
CMRR  
(VIN+) – (VIN–) = 0V, VO = 0V  
VCM = 2(V–) to 2(V+) – 2V, RS = 0Ω  
VS = ±15V  
2(V–)  
76  
70  
2(V+) –2  
V
dB  
dB  
86  
80  
INPUT BIAS CURRENT(2)  
Bias Current  
Offset Current  
VCM = VS/2  
IB  
IOS  
±50  
±5  
nA  
nA  
INPUT IMPEDANCE  
Differential (non-inverting input)  
Differential (inverting input)  
Common-Mode  
80  
27  
40  
kΩ  
kΩ  
kΩ  
NOISE  
RTI(1, 3)  
Voltage Noise, f = 0.1Hz to 10Hz  
Voltage Noise Density, f = 1kHz  
2
90  
µVp-p  
nV/Hz  
en  
GAIN  
G = 1 to 1000  
Gain Equation  
Initial(1)  
Gain Error  
vs Temperature  
G = 1 + RG2 /RG1  
V/V  
V/V  
%
ppm/°C  
%
ppm/°C  
% of FS  
1
±0.01  
±2  
±0.01  
±2  
RL = 100k, VO = (V–)+0.15 to (V+)–1, G = 1  
RL = 100k, VO = (V–)+0.25 to (V+)–1, G = 1  
RL = 10k, VO = (V–)+0.3 to (V+)–1.25, G = 1  
RL = 10k, VO = (V–)+0.5 to (V+)–1.25, G = 1  
RL = 10k, VO = (V–)+0.3 to (V+)–1.25, G = 1  
±0.1  
±10  
±0.1  
±10  
±0.005  
vs Temperature  
Nonlinearity  
±0.0002  
FREQUENCY RESPONSE  
Small Signal Bandwidth  
G = 1  
G = 10  
500  
50  
0.45  
40  
kHz  
kHz  
V/µs  
µs  
Slew Rate  
Settling Time, 0.1%  
0.01%  
G = 1, 10V Step  
G = 1, 10V Step  
90  
µs  
Overload Recovery  
50% Input Overload  
40  
µs  
OUTPUT, VO  
Voltage Output  
Over Temperature  
RL = 100k, G = 1  
RL = 100k, G = 1  
RL = 10k, G = 1  
RL = 10k, G = 1  
Continuous to Common  
Stable Operation  
(V–) + 0.15  
(V–) + 0.25  
(V–) + 0.3  
(V–) + 0.5  
(V+) – 1  
(V+) – 1  
(V+) – 1.25  
(V+) – 1.25  
V
V
V
V
mA  
pF  
Over Temperature  
Short-Circuit Current  
Capacitive Load  
±15  
1000  
POWER SUPPLY  
Specified Voltage Range, Dual Supplies  
Operating Voltage Range  
Quiescent Current  
±2.25  
±1.35  
±18  
±18  
±700  
±800  
V
V
µA  
µA  
VIN = 0, IO = 0  
±570  
Over Temperature  
TEMPERATURE RANGE  
Specified Range  
Operating Range  
Storage Range  
–40  
–55  
–55  
+85  
+125  
+125  
°C  
°C  
°C  
Thermal Resistance  
θJA  
150  
°C/W  
NOTES: (1) Referred to input pins (VIN+ and VIN–), Gain = 1V/V. Specified with 10kin feedback of A2. (2) Input offset voltage specification includes effects of amplifier’s  
input bias and offset currents. (3) Includes effects of input bias current noise and thermal noise contribution of resistor network.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
2
INA145  
SPECIFICATIONS: VS = +5V Single Supply  
Boldface limits apply over the specified temperature range, TA = –40°C to +85°C  
At TA = +25°C, G = 1, RL = 10kconnected to ground and ref pin connected to 2.5V unless otherwise noted.  
INA145UA  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
OFFSET VOLTAGE, VO  
Input Offset Voltage  
vs Temperature  
vs Power Supply Rejection Ratio  
vs Time  
RTI(1, 2)  
VCM = VO = 2.5V  
VOS  
VOS /T  
PSRR  
±0.35  
See Typical Curve  
±1  
mV  
VS = ±1.35V to ±18V  
±20  
±0.3  
±0.55  
±60  
µV/°C  
µV/mo  
mV  
Offset Voltage, V01  
RTI(1, 2)  
INPUT VOLTAGE RANGE  
Common-Mode Voltage Range(3)  
Common-Mode Rejection Ratio  
Over Temperature  
VCM  
CMRR  
VIN+ – VIN– = 0V, VO = 2.5V  
VCM = –2.5V to +5.5V, RS = 0Ω  
–2.5  
76  
5.5  
V
dB  
dB  
86  
80  
INPUT BIAS CURRENT(2)  
Bias Current  
Offset Current  
IB  
IOS  
±50  
±5  
nA  
nA  
INPUT IMPEDANCE  
Differential (non-inverting input)  
Differential (inverting input)  
Common-Mode  
80  
27  
40  
kΩ  
kΩ  
kΩ  
NOISE  
RTI(1, 4)  
Voltage Noise, f = 0.1Hz to 10Hz  
Voltage Noise Density, f = 1kHz  
2
90  
µVp-p  
nV/Hz  
en  
GAIN  
Gain Equation  
Initial(1)  
G = 1 to 1000  
G = 1 + RG2 /RG1  
V/V  
V/V  
V/V  
1
Gain Error  
vs Temperature  
RL = 100k, VO = 0.15V to 4V, G = 1  
RL = 100k, VO = 0.25V to 4V, G = 1  
RL = 10k, VO = 0.3V to 3.75V, G = 1  
RL = 10k, VO = 0.5V to 3.75V, G = 1  
RL = 10k, VO = +0.3 to +3.75, G = 1  
±0.01  
±2  
±0.01  
±2  
±0.001  
±0.1  
±10  
±0.1  
±10  
±0.005  
%
ppm/°C  
%
ppm/°C  
% of FS  
vs Temperature  
Nonlinearity  
FREQUENCY RESPONSE  
Small Signal Bandwidth  
G = 0.1  
G = 1  
500  
50  
0.45  
40  
kHz  
kHz  
V/µs  
µs  
Slew Rate  
Settling Time, 0.1%  
0.01%  
G = 1, 10V Step  
G = 1, 10V Step  
90  
µs  
Overload Recovery  
50% Input Overload  
40  
µs  
OUTPUT, VO  
Voltage Output  
Over Temperature  
RL = 100k, G = 1  
RL = 100k, G = 1  
RL = 10k, G = 1  
RL = 10k, G = 1  
Continuous to Common  
Stable Operation  
0.15  
0.25  
0.3  
4
4
3.75  
3.75  
V
V
V
V
mA  
pF  
Over Temperature  
Short-Circuit Current  
Capacitive Load  
0.5  
±15  
1000  
POWER SUPPLY  
Specified Voltage Range, Single Supply  
Operating Voltage Range  
Quiescent Current  
+4.5  
+2.7  
+36  
+36  
700  
800  
V
V
µA  
µA  
VIN = 0, IO = 0  
550  
Over Temperature  
TEMPERATURE RANGE  
Specified Range  
Operating Range  
Storage Range  
–40  
–55  
–55  
+85  
+125  
+125  
°C  
°C  
°C  
Thermal Resistance  
θJA  
150  
°C/W  
NOTES: (1) Referred to input pins (VIN+ and VIN–), Gain = 1V/V. Specified with 10kin feedback of A2. (2) Input offset voltage specification includes effects of  
amplifier’s input bias and offset currents. (3) Common-mode voltage range with single supply is 2(V+) – 2V – VREF to –VREF. (4) Includes effects of input current  
noise and thermal noise contribution of resistor network.  
®
3
INA145  
AMPLIFIER A1, A2 PERFORMANCE  
Boldface limits apply over the specified temperature range, TA = –40°C to +85°C  
At TA = +25°C, G = 1, RL = 10kconnected to ground and ref pin connected to ground unless otherwise noted.  
INA145UA  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
OFFSET VOLTAGE, VO  
Input Offset Voltage  
vs Temperature  
RTI(1, 2)  
VS = ±15V, VCM = VO = 0V  
VOS  
VOS /T  
±0.5  
±1  
mV  
µV/°C  
INPUT VOLTAGE RANGE  
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
VCM  
CMRR  
VIN+ – VIN– = 0V, VO = 0V  
VCM = (V–) to (V+) –1  
(V–) to (V+) –1  
90  
V
dB  
OPEN-LOOP GAIN  
Open Loop Gain  
AOL  
110  
dB  
INPUT BIAS CURRENT(2)  
Bias Current  
Offset Current  
IB  
IOS  
±50  
±5  
nA  
nA  
RESISTOR AT A1 OUTPUT, VO1  
Initial  
Error  
10  
±0.2  
±50  
kΩ  
%
ppm/°C  
Temperature Drift Coefficient  
PIN CONFIGURATION  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
Top View  
SO-8  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Ref  
VIN  
VI+N  
V–  
1
2
3
4
8
7
6
5
VO1  
V+  
VO  
RG  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
ABSOLUTE MAXIMUM RATINGS(1)  
Supply Voltage, V+ to V– .................................................................... 36V  
Signal Input Terminals, Voltage ........................................................ ±80V  
Current ....................................................... ±1mA  
Output Short Circuit (to ground).............................................. Continuous  
Operating Temperature .................................................. –55°C to +125°C  
Storage Temperature .....................................................55°C to +150°C  
Junction Temperature .................................................................... +150°C  
Lead Temperature (soldering, 10s)............................................... +240°C  
NOTE: (1) Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods may degrade  
device reliability.  
PACKAGE/ORDERING INFORMATION  
PACKAGE  
SPECIFIED  
DRAWING  
NUMBER  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER(1)  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
INA145UA  
SO-8  
182  
–40°C to +85°C  
INA145UA  
INA145UA  
Rails  
"
"
"
"
"
INA145UA/2K5  
Tape and Reel  
NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces  
of “INA145UA/2K5” will get a single 2500-piece Tape and Reel.  
®
4
INA145  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, VS = ±15V, G = 1, RL = 10kconnected to ground and Ref pin connected to ground, unless otherwise noted.  
GAIN vs FREQUENCY  
G = 100  
GAIN vs FREQUENCY  
60  
40  
20  
0
60  
40  
20  
0
VS = ±15V  
L = 1000pF  
VS = ±15V  
C
CL = 200pF 10kΩ  
G = 100  
G = 10  
G = 10  
G = 1  
G = 1  
–20  
–20  
100  
1K  
10K  
100K  
1M  
10M  
10M  
100k  
100  
1K  
10K  
100K  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
POWER SUPPLY REJECTION vs FREQUENCY  
COMMON-MODE REJECTION vs FREQUENCY  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
PSR+  
(VS = ±15V)  
PSR+  
(VS = +5V)  
PSR–  
(VS = ±15V)  
1
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
0.1Hz to 10Hz VOLTAGE NOISE (RTI)  
INPUT VOLTAGE NOISE DENSITY  
1k  
100  
10  
G = 1  
G = 100  
G = 10  
0.1  
1
10  
100  
1k  
10k  
500ms/div  
Frequency (Hz)  
®
5
INA145  
TYPICAL PERFORMANCE CURVES (Cont.)  
At TA = +25°C, VS = ±15V, G = 1, RL = 10kconnected to ground and Ref pin connected to ground, unless otherwise noted.  
QUIESCENT CURRENT AND  
SHORT-CIRCUIT CURRENT vs TEMPERATURE  
SLEW RATE vs TEMPERATURE  
670  
650  
630  
610  
590  
570  
550  
530  
510  
490  
470  
20  
18  
16  
14  
12  
10  
8
0.6  
0.55  
0.5  
G = 1  
G = 1  
ISC  
0.45  
0.4  
IQ  
0.35  
0.3  
6
4
0.25  
0.2  
2
0
–60 –40 –20  
0
20  
40  
60 80 100  
140  
120  
–60 –40 –20  
0
20  
40  
60 80 100  
140  
120  
Temperature (°C)  
Temperature (°C)  
GAIN AND PHASE vs FREQUENCY  
Op Amp A1 and A2  
SETTLING TIME vs LOAD CAPACITANCE  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
G
RL = 10k|| 200pF  
G = 1  
0.01%  
G = 10  
0.01%  
Φ
–90  
RL = 1nF  
G = 10  
0.1%  
G = 1  
0.1%  
60  
–135  
–180  
40  
20  
–10  
0
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
1
10  
100  
Load Capacitance (nF)  
MAXIMUM OUTPUT VOLTAGE SWING  
vs OUTPUT CURRENT  
OFFSET VOLTAGE  
PRODUCTION DISTRIBUTION  
15  
10  
5
Typical Production  
Distribution of  
Packaged Units.  
VS = ±2.25V  
–25°C  
+25°C  
+125°C  
+85°C  
–55°C  
0
–55°C  
+125°C  
–5  
–10  
–15  
+25°C  
–25°C  
+85°C  
0
2
4
6
8
10  
12  
14  
16  
Output Current (mA)  
Offset Voltage, RTI (mV)  
®
6
INA145  
TYPICAL PERFORMANCE CURVES (Cont.)  
At TA = +25°C, VS = ±15V, G = 1, RL = 10kconnected to ground and Ref pin connected to ground, unless otherwise noted.  
OFFSET VOLTAGE DRIFT  
OFFSET VOLTAGE  
PRODUCTION DISTRIBUTION  
PRODUCTION DISTRIBUTION  
20  
15  
10  
5
Typical Production  
Distribution of  
Packaged Devices  
VS = ±15V  
VS = ±15V  
0
Offset Voltage Drift, RTI (µV/°C)  
Offset Voltage, RTI (mV)  
SMALL-SIGNAL STEP RESPONSE  
SMALL-SIGNAL STEP RESPONSE  
(G = 1, CL = 1000pF)  
(G = 1, RL = 10k, CL = 200pF)  
5µs/div  
5µs/div  
LARGE-SIGNAL STEP RESPONSE  
SMALL-SIGNAL STEP RESPONSE  
(G = 10, CL = 1000pF)  
(G = 10, RL = 10k, CL = 200pF)  
50µs/div  
5µs/div  
®
7
INA145  
SETTING THE GAIN  
APPLICATION INFORMATION  
The gain of the INA145 is set by using two external  
resistors, RG1 and RG2, according to the equation:  
The INA145 is a programmable gain difference amplifier  
consisting of a gain of 1 difference amplifier and a program-  
mable-gain output buffer stage. Basic circuit connections are  
shown in Figure 1. Power supply bypass capacitors should  
be connected close to pins 4 and 7, as shown. The amplifier  
is programmable in the range of G = 1 to G = 1000 with two  
external resistors.  
G = 1 + RG2 /RG1  
For a total gain of 1, A2 is connected as a buffer amplifier  
with no RG1. A feedback resistor, RG2 = 10k, should be  
used in the buffer connection. This provides bias current  
cancellation (in combination with internal R5) to assure  
specified offset voltage performance. Commonly used val-  
ues are shown in the table of Figure 1. Resistor values for  
other gains should be chosen to provide a 10kparallel  
resistance.  
The output of A1 is connected to the noninverting input of  
A2 through a 10kresistor which is trimmed to ±1%  
absolute accuracy. The A2 input is available for applications  
such as a filter or a precision current source. See application  
figures for examples.  
COMMON-MODE RANGE  
OPERATING VOLTAGE  
The input resistors of the INA145 provides an input com-  
mon-mode range that extends well beyond the power supply  
rails. Exact range depends on the power supply voltage and  
the voltage applied to the Ref terminal (pin 1). To assure  
proper operation, the voltage at the non-inverting input of  
A1 (an internal node) must be within its linear operating  
range. Its voltage is determined by the simple 1:1 voltage  
divider between pin 3 and pin 1. This voltage must be  
between V– and (V+) – 1V.  
The INA145 is fully specified for supply voltages from  
±2.25V to ±18V, with key parameters guaranteed over the  
temperature range –40°C to +85°C. The INA145 can be  
operated with single or dual supplies, with excellent perfor-  
mance. Parameters that vary significantly with operating  
voltage, load conditions, or temperature are shown in the  
typical performance curves.  
+VS  
RG1  
RG2  
0.1µF  
RB  
7
5
R1  
R2  
40kΩ  
40kΩ  
VIN–  
VO = (VI+N – VIN)(1 + RG2/RG1  
)
R5  
2
10kΩ  
(1%)  
A2  
VO  
6
A1  
STANDARD 1% RESISTORS  
R3  
40kΩ  
R4  
40kΩ  
TOTAL GAIN A2 GAIN  
RG1  
(W)  
RG2  
(W)  
RB  
(W)  
(V/V)  
(V/V)  
VI+N  
INA145  
1
2
5
10  
20  
1
2
5
10  
20  
(None)  
20k  
10k  
20k  
9.53k  
10k  
10k  
3
4
1
8
12.4k  
11.0k  
10.5k  
10.2k  
10.2k  
499  
49.9k  
100k  
200k  
499k  
1M  
100k  
49.9k  
100k  
0.1µF  
V01  
50  
50  
–VS  
100  
200  
500  
1000  
100  
200  
500  
1000  
100  
100  
FIGURE 1. Basic Circuit Connections.  
®
8
INA145  
OFFSET TRIM  
INPUT IMPEDANCE  
The INA145 is laser-trimmed for low offset voltage and  
drift. Most applications require no external offset adjust-  
ment. Figure 2 shows an optional circuit for trimming the  
offset voltage. A voltage applied to the Ref terminal will  
be summed with the output signal. This can be used to null  
offset voltage. To maintain good common-mode rejection,  
the source impedance of a signal applied to the Ref  
terminal should be less than 10and a resistor added to  
the positive input terminal should be 10 times that, or  
100. Alternatively, the trim voltage can be buffered with  
an op amp such as the OPA277.  
The input impedance of the INA145 is determined by the  
input resistor network and is approximately 40k. The  
source impedance at the two input terminals must be nearly  
equal to maintain good common-mode rejection. A 5Ω  
mismatch in impedance between the two inputs will cause  
the typical common-mode rejection to be degraded to ap-  
proximately 72dB. Figure 7 shows a common application  
measuring power supply current through a shunt resistor.  
The source impedance of the shunt resistor, RS, is balanced  
by an equal compensation resistor, RC.  
Source impedances greater than 300are not recommended,  
even if they are perfectly matched. Internal resistors are laser  
trimmed for accurate ratios, not to absolute values. Adding  
equal resistors greater than 300can cause a mismatch in  
the total resistor ratios, degrading CMR.  
10kΩ  
5
40kΩ  
40kΩ  
40kΩ  
VIN  
10kΩ  
A2  
VO  
6
A1  
10Ω  
VI+N  
40kΩ  
INA145  
1
+15V  
Offset Adjustment Range = ±15mV, RTI  
(±1.5mV at pin 1)  
VO1  
RT  
100kΩ  
100kΩ  
10Ω  
NOTE: Increasing the trim resistor  
T will decrease the trim range  
–15V  
R
FIGURE 2. Optional Offset Trim Circuit.  
RG1  
10.2kΩ  
RG2  
1MΩ  
V+  
+5V  
5
7
RS  
1  
2
G = 100  
IL  
VB  
10kΩ  
VO = 100 ILRS  
6
Load  
3
INA145  
V+  
Max VB  
+5V  
+7V  
8V  
4
1
8
12V  
18V  
28V  
+10V  
+15V  
FIGURE 3. Measuring Current with Shunt Resistor.  
®
9
INA145  
10kΩ  
Pole at  
106Hz  
G = 1  
1500pF  
5
RG2  
1MΩ  
RG1  
10kΩ  
VIN  
2
6
5
VO  
2
VIN  
3
VI+N  
10kΩ  
VO  
INA145  
6
1
8
R4  
R3  
VI+N  
3
R3  
INA145  
G =  
R3 + R4  
1
8
G 1  
22nF  
Pole at  
720Hz  
FIGURE 5. Creating Gains Less Than Unity.  
FIGURE 4. Noise Filtering.  
RG2  
10kΩ  
5
R1  
R2  
VIN  
2
0V VO 5V  
Alternate  
Soft Clamp  
10kΩ  
VO  
6
To Pin 8  
R3  
R4  
3
VI+N  
INA145  
8
1
1N4684  
(3.3V)  
1N914  
1N914  
(1)  
5.0V  
or Analog-to-Digital VS  
Voltage  
Reference  
1N914  
(1)  
NOTE: (1) 1/2 OPA2342 with VS connected to +5V and GND.  
FIGURE 6. Clamp Circuits.  
®
10  
INA145  
RG2  
RG1  
100kΩ  
11kΩ  
Power  
Supply  
5
2
For sense resistors (RS)  
greater than 5, use  
G = 10  
VO  
RC  
10Ω  
series  
compensation  
resistor (RC) for good  
common-mode rejection.  
Sense resistors greater  
than 200are not  
recommended.  
6
RS  
10Ω  
3
INA145  
1
8
Load  
VO1  
FIGURE 7. Current Monitor, G = 1.  
+5V  
24V  
8.4kΩ  
Feedback  
7
5
2
8kΩ  
1V  
VO  
10kΩ  
2kΩ  
6
SHUNT  
R-I Lamp/10  
e.g., 0.1for 1A  
1V – 50mV  
3
INA145  
10MΩ  
4
1
8
Lamp  
FIGURE 8. Comparator Output with Optional Hysteresis Application to Sense Lamp Burn-Out.  
RG2  
RG1  
100kΩ  
11kΩ  
RG2  
10kΩ  
5
VIN  
2
5
VIN  
2
6
VO  
6
10kΩ  
VO  
R1  
1MΩ  
3
VI+N  
INA145  
1
8
3
VI+N  
C1  
0.1µF  
INA145  
1
8
Pole at  
1
IOUT = (VI+N – VIN)/10kΩ  
f =  
= 1.6Hz  
OPA277  
2πR1RC  
FIGURE 9. AC Coupling (DC Restoration).  
FIGURE 10. Precision Current Source.  
®
11  
INA145  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY