INA201AIDGKRG4 [BB]

High-Side Measurement Current-Shunt Monitor with Comparator and Reference; 高侧测量电流并联监视器与比较器和参考
INA201AIDGKRG4
型号: INA201AIDGKRG4
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

High-Side Measurement Current-Shunt Monitor with Comparator and Reference
高侧测量电流并联监视器与比较器和参考

比较器 监视器
文件: 总19页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INA200  
INA201  
IN  
A
2
0
0
INA202  
SBOS374 − NOVEMBER 2006  
High-Side Measurement Current-Shunt Monitor  
with Comparator and Reference  
FD EATURES  
DESCRIPTION  
The INA200, INA201, and INA202 are high-side  
current-shunt monitors with voltage output. The  
INA200−INA202 can sense drops across shunts at  
common-mode voltages from −16V to 80V. The  
INA200−INA202 are available with three output voltage  
scales: 20V/V, 50V/V, and 100V/V, with up to 500kHz  
bandwidth.  
COMPLETE CURRENT SENSE SOLUTION  
0.6V INTERNAL VOLTAGE REFERENCE  
INTERNAL OPEN-DRAIN COMPARATOR  
LATCHING CAPABILITY ON COMPARATOR  
COMMON-MODE RANGE: −16V to +80V  
D
D
D
D
D
HIGH ACCURACY: 3.5% MAX ERROR OVER  
TEMPERATURE  
The INA200, INA201, and INA202 also incorporate an  
open-drain comparator and internal reference providing a  
0.6V threshold. External dividers are used to set the  
current trip point. The comparator includes a latching  
capability, which can be made transparent by grounding  
(or leaving open) the RESET pin.  
D
D
D
BANDWIDTH: 500kHz (INA200)  
QUIESCENT CURRENT: 1800µA (max)  
PACKAGES: SO-8, MSOP-8  
AD PPLICATIONS  
The INA200, INA201, and INA202 operate from a single  
+2.7V to +18V supply, drawing a maximum of 1800µA of  
supply current. Package options include the very small  
MSOP-8 and the SO-8. All versions are specified over the  
extended operating temperature range of −40°C to  
+125°C.  
NOTEBOOK COMPUTERS  
D
D
D
D
D
D
CELL PHONES  
TELECOM EQUIPMENT  
AUTOMOTIVE  
POWER MANAGEMENT  
BATTERY CHARGERS  
WELDING EQUIPMENT  
INA200 (G = 20)  
INA201 (G = 50)  
INA202 (G = 100)  
1
2
V+  
VIN+  
8
7
OUT  
G
VIN  
0.6V  
Reference  
CMPOUT  
6
5
CMPIN  
3
4
Comparator  
GND  
RESET  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆꢇ ꢂꢈ ꢃ ꢉꢆꢉ ꢊꢋ ꢌꢍ ꢎ ꢏꢐ ꢑꢊꢍꢋ ꢊꢒ ꢓꢔ ꢎ ꢎ ꢕꢋꢑ ꢐꢒ ꢍꢌ ꢖꢔꢗ ꢘꢊꢓ ꢐꢑꢊ ꢍꢋ ꢙꢐ ꢑꢕꢚ ꢀꢎ ꢍꢙꢔ ꢓꢑꢒ  
ꢓ ꢍꢋ ꢌꢍꢎ ꢏ ꢑꢍ ꢒ ꢖꢕ ꢓ ꢊ ꢌꢊ ꢓ ꢐ ꢑꢊ ꢍꢋꢒ ꢖ ꢕꢎ ꢑꢛꢕ ꢑꢕ ꢎ ꢏꢒ ꢍꢌ ꢆꢕꢜ ꢐꢒ ꢇꢋꢒ ꢑꢎ ꢔꢏ ꢕꢋꢑ ꢒ ꢒꢑ ꢐꢋꢙ ꢐꢎ ꢙ ꢝ ꢐꢎ ꢎ ꢐ ꢋꢑꢞꢚ  
ꢀꢎ ꢍ ꢙꢔꢓ ꢑ ꢊꢍ ꢋ ꢖꢎ ꢍ ꢓ ꢕ ꢒ ꢒ ꢊꢋ ꢟ ꢙꢍ ꢕ ꢒ ꢋꢍꢑ ꢋꢕ ꢓꢕ ꢒꢒ ꢐꢎ ꢊꢘ ꢞ ꢊꢋꢓ ꢘꢔꢙ ꢕ ꢑꢕ ꢒꢑꢊ ꢋꢟ ꢍꢌ ꢐꢘ ꢘ ꢖꢐ ꢎ ꢐꢏ ꢕꢑꢕ ꢎ ꢒꢚ  
Copyright 2006, Texas Instruments Incorporated  
www.ti.com  
ꢠꢡ  
ꢠꢡ  
ꢠꢡ  
www.ti.com  
SBOS374 − NOVEMBER 2006  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be  
(1)  
ABSOLUTE MAXIMUM RATINGS  
handledwith appropriate precautions. Failure to observe  
proper handling and installation procedures can cause damage.  
Supply Voltage, V+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18V  
Current-Shunt Monitor Analog Inputs, V , V  
IN+ IN−  
Differential (V ) − (V ) . . . . . . . . . . . . . . . . . . −18V to +18V  
IN+  
(2)  
IN−  
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
Common Mode  
Comparator Analog Input and Reset Pins  
. . . . . . . . . . . . . . . . . . . . . . . . −16V to +80V  
(2)  
. . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND − 0.3V to (V+) + 0.3V  
(2)  
Analog Output, Out  
Comparator Output, Out Pin  
Input Current Into Any Pin  
. . . . . . . . . . . . . GND − 0.3V to (V+) + 0.3V  
(2)  
. . . . . . . . . . . . . GND − 0.3V to 18V  
. . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
(2)  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . −55°C to +150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . −65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
ESD Ratings:  
Human Body Model (HBM) . . . . . . . . . . . . . . . . . . . . . . . 4000V  
Charged Device Model (CDM) . . . . . . . . . . . . . . . . . . . . 1000V  
(1)  
(2)  
Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods  
may degrade device reliability. These are stress ratings only, and  
functional operation of the device at these or any other conditions  
beyond those specified is not supported.  
This voltage may exceed the ratings shown if the current at that  
pin is limited to 5mA.  
(1)  
ORDERING INFORMATION  
PRODUCT  
GAIN  
PACKAGE-LEAD  
PACKAGE DESIGNATOR PACKAGE MARKING  
MSOP-8  
DGK  
D
BQH  
INA200A  
BQJ  
INA200  
20V/V  
50V/V  
(2)  
SO-8  
MSOP-8  
DGK  
D
INA201  
INA202  
(2)  
SO-8  
INA201A  
BQL  
MSOP-8  
DGK  
D
100V/V  
(2)  
SO-8  
INA202A  
(1)  
(2)  
For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site  
at www.ti.com.  
Available Q1, 2007.  
PIN CONFIGURATIONS  
TOP VIEW  
INA200−INA202  
VIN+  
V+  
OUT  
1
2
3
4
8
7
6
5
VIN  
CMPOUT  
RESET  
CMPIN  
GND  
MSOP−8 (DGK)  
SO−8 (D)  
2
ꢈꢉ  
ꢈꢉ  
ꢈꢉ  
www.ti.com  
SBOS374 − NOVEMBER 2006  
ELECTRICAL CHARACTERISTICS: CURRENT-SHUNT MONITOR  
Boldface limits apply over the specified temperature range: T = −40°C to +125°C.  
A
At T = +25°C, V = +12V, V  
= +12V, V  
= 100mV, R = 10kto GND, R  
= 5.1kconnected from CMP  
to V , and CMP = GND,  
A
S
CM  
SENSE  
L
PULL-UP  
OUT  
S
IN  
unless otherwise noted.  
INA200, INA201, INA202  
TYP  
CURRENT-SHUNT MONITOR  
PARAMETERS  
CONDITIONS  
MIN  
MAX  
UNITS  
INPUT  
Full-Scale Sense Input Voltage  
V
V
= V  
− V  
IN−  
0.15  
(V − 0.25)/Gain  
S
V
V
SENSE  
SENSE  
IN+  
Common-Mode Input Range  
Common-Mode Rejection  
Over Temperature  
V
CM  
−16  
80  
80  
CMR  
V
= −16V to +80V  
100  
123  
0.5  
dB  
IN+  
V
= +12V to +80V  
100  
dB  
IN+  
(1)  
Offset Voltage, RTI  
V
OS  
2.5  
3
mV  
mV  
mV  
µV/°C  
µV/V  
µA  
+25°C to +125°C  
−40°C to +25°C  
vs Temperature  
vs Power Supply  
3.5  
dV /dT  
OS  
T
to T  
5
2.5  
9
MIN  
MAX  
= +18V, 2.7V  
PSR  
V
= 2V, V  
100  
16  
OUT  
IN+  
Input Bias Current, V  
Pin  
I
B
IN−  
OUTPUT (V  
Gain:  
20mV)  
SENSE  
G
INA200  
20  
50  
V/V  
V/V  
V/V  
%
INA201  
INA202  
100  
0.2  
Gain Error  
V
= 20mV to 100mV  
1
SENSE  
Over Temperature  
V
= 20mV to 100mV  
2
%
SENSE  
(2)  
Total Output Error  
V
= 120mV, V = +16V  
0.75  
2.2  
3.5  
%
SENSE  
S
Over Temperature  
V
= 120mV, V = +16V  
%
SENSE  
S
(3)  
Nonlinearity Error  
V
= 20mV to 100mV  
0.002  
1.5  
%
SENSE  
Output Impedance  
R
O
Maximum Capacitive Load  
No Sustained Oscillation  
10  
nF  
(4)  
< 20mV)  
OUTPUT (V  
SENSE  
INA200, INA201, INA202  
INA200  
−16V V  
< 0V  
300  
mV  
V
CM  
0V V  
0V V  
0V V  
V , V = 5V  
V , V = 5V  
V , V = 5V  
0.4  
1
CM  
CM  
S
S
INA201  
V
S
S
INA202  
2
V
CM  
S
S
INA200, INA201, INA202  
V
S
< V  
80V  
300  
mV  
CM  
(5)  
VOLTAGE OUTPUT  
Output Swing to the Positive Rail  
V
= 11V, V  
= 12V  
(V+) − 0.15  
(V+) − 0.25  
V
V
IN−  
IN+  
(6)  
Output Swing to GND  
V
IN−  
= 0V, V  
= −0.5V  
(V ) + 0.004  
GND  
(V ) + 0.05  
GND  
IN+  
FREQUENCY RESPONSE  
Bandwidth:  
INA200  
BW  
SR  
C
C
C
= 5pF  
= 5pF  
= 5pF  
< 10nF  
500  
300  
200  
40  
kHz  
kHz  
LOAD  
LOAD  
LOAD  
INA201  
INA202  
kHz  
Phase Margin  
Slew Rate  
C
LOAD  
Degrees  
V/µs  
1
V
= 10mV to 100mV  
,
SENSE  
PP  
PP  
Settling Time (1%)  
2
µs  
C
LOAD  
= 5pF  
NOISE, RTI  
Voltage Noise Density  
40  
nV/Hz  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
Offset is extrapolated from measurements of the output at 20mV and 100mV V  
.
SENSE  
Total output error includes effects of gain error and V  
Linearity is best fit to a straight line.  
.
OS  
For details on this region of operation, see the Accuracy Variations as a Result of V  
See Typical Characteristic curve Output Swing vs Output Current.  
Specified by design.  
and Common-Mode Voltage section in the Applications Information.  
SENSE  
3
ꢠꢡ  
ꢠꢡ  
ꢠꢡ  
www.ti.com  
SBOS374 − NOVEMBER 2006  
ELECTRICAL CHARACTERISTICS: COMPARATOR  
Boldface limits apply over the specified temperature range: T = −40°C to +125°C.  
A
At T = +25°C, V = +12V, V  
= +12V, V  
= 100mV, R = 10kto GND, and R  
= 5.1kconnected from CMP  
to V , unless otherwise  
S
A
S
CM  
SENSE  
L
PULL-UP  
OUT  
noted.  
INA200, INA201, INA202  
COMPARATOR PARAMETERS  
OFFSET VOLTAGE  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Threshold  
T
= +25°C  
590  
600  
−8  
610  
mV  
mV  
mV  
A
Over Temperature  
586  
614  
(1)  
Hysteresis  
T = −40°C to +85°C  
A
(2)  
INPUT BIAS CURRENT  
CMP Pin  
IN  
0.005  
10  
nA  
vs Temperature  
15  
nA  
INPUT VOLTAGE RANGE  
CMP Pin  
IN  
0V to V − 1.5V  
S
V
OUTPUT (OPEN-DRAIN)  
Large-Signal Differential Voltage Gain  
CMP V  
1V to 4V, R 15kConnected to 5V  
200  
0.0001  
220  
V/mV  
µA  
mV  
OUT  
L
(3)(4)  
High-Level Leakage Current  
I
V
ID  
= 0.4V, V  
= V  
1
LKG  
OH  
S
(3)  
Low-Level Output Voltage  
V
V
ID  
= −0.6V, I = 2.35mA  
300  
OL  
OL  
RESPONSE TIME  
(5)  
Response Time  
R
L
to 5V, C = 15pF, 100mV Input Step with 5mV Overdrive  
1.3  
µs  
L
RESET  
(6)  
RESET Threshold  
1.1  
2
V
MΩ  
µs  
Logic Input Impedance  
Minimum RESET Pulse Width  
RESET Propagation Delay  
1.5  
3
µs  
(1)  
Hysteresis refers to the threshold (the threshold specification applies to a rising edge of a noninverting input) of a falling edge on the noninverting input of the  
comparator; refer to Figure 1.  
Specified by design.  
(2)  
(3)  
(4)  
(5)  
(6)  
V
refers to the differential voltage at the comparator inputs.  
ID  
Open-drain output can be pulled to the range of +2.7V to +18V, regardless of V .  
S
The comparator response time specified is the interval between the input step function and the instant when the output crosses 1.4V.  
The RESET input has an internal 2M(typical) pull-down. Leaving RESET open results in a LOW state, with transparent comparator operation.  
VTHRESHOLD  
0.592V 0.6V  
Input Voltage  
Hysteresis = VTHRESHOLD 8mV  
Figure 1. Typical Comparator Hysteresis  
4
ꢈꢉ  
ꢈꢉ  
ꢈꢉ  
www.ti.com  
SBOS374 − NOVEMBER 2006  
ELECTRICAL CHARACTERISTICS: GENERAL  
Boldface limits apply over the specified temperature range: T = −40°C to +125°C.  
A
At T = +25°C, V = +12V, V  
= +12V, V  
= 100mV, R = 10kto GND, R  
= 5.1kconnected from CMP  
to V , and CMP = 1V,  
A
S
CM  
SENSE  
L
PULL-UP  
OUT  
S
IN  
unless otherwise noted.  
INA200, INA201, INA202  
GENERAL PARAMETERS  
POWER SUPPLY  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Power Supply  
Quiescent Current  
V
+2.7  
+18  
1800  
1850  
V
µA  
µA  
V
S
I
Q
V
= 2V  
1350  
1.5  
OUT  
Over Temperature  
V
= 0mV  
SENSE  
(1)  
Comparator Power-On Reset Threshold  
TEMPERATURE  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Resistance  
MSOP-8 Surface-Mount  
SO-8  
−40  
−55  
−65  
+125  
+150  
+150  
°C  
°C  
°C  
q
JA  
200  
150  
°C/W  
°C/W  
(1)  
The INA200, INA201, and INA202 are designed to power-up with the comparator in a defined reset state as long as RESET is open or grounded. The comparator  
is in reset as long as the power supply is below the voltage shown here. The comparator assumes a state based on the comparator input above this supply voltage.  
If RESET is high at power-up, the comparator output comes up high and requires a reset to assume a low state, if appropriate.  
5
ꢠꢡ  
ꢠꢡ  
ꢠꢡ  
www.ti.com  
SBOS374 − NOVEMBER 2006  
TYPICAL CHARACTERISTICS  
At T = +25°C, V = +12V, V  
= 12V, and V = 100mV, unless otherwise noted.  
SENSE  
A
S
IN+  
GAIN vs FREQUENCY  
GAIN vs FREQUENCY  
45  
45  
40  
35  
30  
25  
20  
15  
10  
5
CLOAD = 1000pF  
G = 100  
G = 50  
G = 100  
G = 50  
40  
35  
30  
25  
20  
15  
10  
5
G = 20  
G = 20  
10k  
1M  
100k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
COMMON−MODE AND POWER−SUPPLY REJECTION  
vs FREQUENCY  
GAIN PLOT  
20  
18  
16  
14  
12  
10  
8
140  
130  
120  
110  
100  
90  
100V/V  
CMR  
50V/V  
PSR  
80  
20V/V  
70  
6
60  
4
50  
2
40  
0
100  
20  
200 300 400 500 600 700 800 900  
VDIFFERENTIAL (mV)  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
OUTPUT ERROR vs VSENSE  
OUTPUT ERROR vs COMMON−MODE VOLTAGE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
8
50 100  
350  
12  
16 20  
0
150 200 250 300  
VSENSE (mV)  
400 450 500  
16  
4
0
4
8
12  
...  
76 80  
Common−Mode Voltage (V)  
6
ꢈꢉ  
ꢈꢉ  
ꢈꢉ  
www.ti.com  
SBOS374 − NOVEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C, V = +12V, V  
= 12V, and V  
= 100mV, unless otherwise noted.  
A
S
IN+  
SENSE  
POSITIVE OUTPUT VOLTAGE SWING  
vs OUTPUT CURRENT  
QUIESCENT CURRENT vs OUTPUT VOLTAGE  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
12  
11  
10  
9
VS = 12V  
Sourcing Current  
_
+25 C  
8
_
40 C  
_
+125 C  
7
6
VS = 3V  
5
Sourcing Current  
4
_
40 C  
_
+25 C  
Output stage is designed  
to source current. Current  
capability  
approximately 400 A.  
3
2
sinking  
is  
µ
1
_
+125 C  
0
0
5
10  
20  
25  
15  
30  
0
1
2
3
4
5
6
7
8
9
10  
Output Current (mA)  
Output Voltage (V)  
QUIESCENT CURRENT  
vs COMMON−MODE VOLTAGE  
OUTPUT SHORT−CIRCUIT CURRENT  
vs SUPPLY VOLTAGE  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
34  
30  
26  
22  
18  
14  
10  
6
_
40 C  
VSENSE = 100mV  
+
_
25 C  
VS = 2.7V  
VS = 12V  
_
+125 C  
VS = 12V  
VS = 2.7V  
VSENSE = 0mV  
8 4  
16 12  
0
4
20 24 28 32  
36  
8
12 16  
3.5  
10.5  
11.5 17  
2.5  
4.5 5.5 6.5 7.5 8.5 9.5  
Supply Voltage (V)  
18  
VCM (V)  
STEP RESPONSE  
STEP RESPONSE  
G = 20  
G = 20  
VSENSE = 10mV to 100mV  
Time (2 s/div)  
VSENSE = 10mV to 20mV  
Time (2 s/div)  
µ
µ
7
ꢠꢡ  
ꢠꢡ  
ꢠꢡ  
www.ti.com  
SBOS374 − NOVEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C, V = +12V, V  
= 12V, and V  
= 100mV, unless otherwise noted.  
A
S
IN+  
SENSE  
STEP RESPONSE  
STEP RESPONSE  
G = 50  
G = 20  
VSENSE = 10mV to 20mV  
VSENSE = 90mV to 100mV  
µ
Time (5 s/div)  
µ
Time (2 s/div)  
STEP RESPONSE  
STEP RESPONSE  
G = 50  
G = 50  
VSENSE = 10mV to 100mV  
VSENSE = 90mV to 100mV  
µ
Time (5 s/div)  
µ
Time (5 s/div)  
COMPARATOR VOL vs ISINK  
STEP RESPONSE  
600  
G = 100  
500  
400  
300  
200  
100  
VSENSE = 10mV to 100mV  
Time (10 s/div)  
0
0
1
2
3
4
5
6
µ
ISINK (mA)  
8
ꢈꢉ  
ꢈꢉ  
ꢈꢉ  
www.ti.com  
SBOS374 − NOVEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C, V = +12V, V  
= 12V, and V  
= 100mV, unless otherwise noted.  
A
S
IN+  
SENSE  
COMPARATOR TRIP POINT vs TEMPERATURE  
COMPARATOR TRIP POINT vs SUPPLY VOLTAGE  
602  
601  
600  
599  
598  
597  
596  
600  
599  
598  
597  
596  
595  
594  
593  
592  
591  
590  
25  
50  
0
25  
50  
75  
100  
4
125  
2
6
8
10  
12  
14  
16  
18  
_
Temperature ( C)  
Supply Voltage (V)  
COMPARATOR RESET VOLTAGE vs  
SUPPLY VOLTAGE  
COMPARATOR PROPAGATION DELAY  
vs OVERDRIVE VOLTAGE  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
200  
175  
150  
125  
100  
75  
50  
4
20  
2
6
8
10  
12  
14  
16  
0
40  
60  
80 100 120 140 160 180  
18  
200  
Supply Voltage (V)  
Overdrive Voltage (mV)  
COMPARATOR PROPAGATION DELAY vs  
TEMPERATURE  
COMPARATOR PROPAGATION DELAY  
300  
275  
250  
225  
200  
175  
150  
125  
Input  
200mV/div  
Output  
2V/div  
µ
2 s/div  
25  
50  
0
25  
50  
75  
100  
125  
_
Temperature ( C)  
9
ꢠꢡ  
ꢠꢡ  
ꢠꢡ  
www.ti.com  
SBOS374 − NOVEMBER 2006  
the supply voltage, VS. VCM is expressed as (VIN+ + VIN−)/2;  
however, in practice, VCM is seen as the voltage at VIN+  
because the voltage drop across VSENSE is usually small.  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
This section addresses the accuracy of these specific  
operating regions:  
Figure 2 shows the basic connections of the INA200,  
INA201, and INA202. The input pins, VIN+ and VIN−, should  
be connected as closely as possible to the shunt resistor  
to minimize any resistance in series with the shunt  
resistance.  
Normal Case 1: VSENSE 20mV, VCM VS  
Normal Case 2: VSENSE 20mV, VCM < VS  
Low VSENSE Case 1: VSENSE < 20mV, 16V VCM < 0  
Low VSENSE Case 2: VSENSE < 20mV, 0V VCM VS  
Low VSENSE Case 3: VSENSE < 20mV, VS < VCM 80V  
Power-supply bypass capacitors are required for stability.  
Applications with noisy or high-impedance power supplies  
may require additional decoupling capacitors to reject  
power-supply noise. Connect bypass capacitors close to  
the device pins.  
Normal Case 1: V  
20mV, V  
V  
CM S  
SENSE  
This region of operation provides the highest accuracy.  
Here, the input offset voltage is characterized and  
measured using a two-step method. First, the gain is  
determined by Equation 1.  
POWER SUPPLY  
The input circuitry of the INA200, INA201, and INA202 can  
accurately measure beyond the power-supply voltage, V+.  
For example, the V+ power supply can be 5V, whereas the  
load power-supply voltage is up to +80V. The output  
voltage range of the OUT terminal, however, is limited by  
the voltages on the power-supply pin.  
VOUT1 * VOUT2  
G +  
100mV * 20mV  
(1)  
where:  
OUT1 = Output Voltage with VSENSE = 100mV  
VOUT2 = Output Voltage with VSENSE = 20mV  
V
Then the offset voltage is measured at VSENSE = 100mV  
and referred to the input (RTI) of the current shunt monitor,  
as shown in Equation 2.  
ACCURACY VARIATIONS AS A RESULT OF  
SENSE  
V
AND COMMON-MODE VOLTAGE  
The accuracy of the INA200, INA201, and INA202 current  
shunt monitors is a function of two main variables: VSENSE  
(VIN+ − VIN−) and common-mode voltage, VCM, relative to  
VOUT1  
(
)
RTI Referred−To−Input + ǒ Ǔ* 100mV  
VOS  
G
(2)  
RSHUNT  
3m  
Load Supply  
Load  
18V to +80V  
5V Supply  
INA200  
(G = 20)  
1
2
V+  
RPULL−UP  
VIN+  
8
7
4.7k  
OUT  
G
VIN  
CBYPASS  
0.6V  
Reference  
R1  
µ
0.01 F  
CMPIN  
GND  
3
CMPOUT  
RESET  
6
5
Comparator  
R2  
4
Latch  
Transparent/Reset  
Figure 2. INA200 Basic Connections  
10  
ꢈꢉ  
ꢈꢉ  
ꢈꢉ  
www.ti.com  
SBOS374 − NOVEMBER 2006  
In the Typical Characteristics, the Output Error vs  
Common-Mode Voltage curve shows the highest  
accuracy for the this region of operation. In this plot,  
VS = 12V; for VCM 12V, the output error is at its minimum.  
This case is also used to create the VSENSE 20mV output  
specifications in the Electrical Characteristics table.  
parallel. One op amp front end operates in the positive  
input common-mode voltage range, and the other in the  
negative input region. For this case, neither of these two  
internal amplifiers dominates and overall loop gain is very  
low. Within this region, VOUT approaches voltages close to  
linear operation levels for Normal Case 2. This deviation  
from linear operation becomes greatest the closer VSENSE  
approaches 0V. Within this region, as VSENSE approaches  
20mV, device operation is closer to that described by  
Normal Case 2. Figure 4 illustrates this behavior for the  
INA202. The VOUT maximum peak for this case is tested  
by maintaining a constant VS, setting VSENSE = 0mV and  
sweeping VCM from 0V to VS. The exact VCM at which VOUT  
peaks during this test varies from part to part, but the VOUT  
maximum peak is tested to be less than the specified VOUT  
tested limit.  
Normal Case 2: V  
20mV, V  
< V  
CM S  
SENSE  
This region of operation has slightly less accuracy than  
Normal Case 1 as a result of the common-mode operating  
area in which the part functions, as seen in the Output Error  
vs Common-Mode Voltage curve. As noted, for this graph  
VS = 12V; for VCM < 12V, the Output Error increases as VCM  
becomes less than 12V, with a typical maximum error of  
0.005% at the most negative VCM = −16V.  
Low V  
Case 1:  
SENSE  
V
< 20mV, 16V V  
< 0; and  
CM  
SENSE  
Low V  
Case 3:  
2.4  
SENSE  
INA202 VOUT Tested Limit(1)  
V
< 20mV, V < V  
80V  
CM  
2.2  
SENSE  
S
VCM1  
2.0  
Although the INA200 family of devices are not designed for  
accurate operation in either of these regions, some  
applications are exposed to these conditions. For  
example, when monitoring power supplies that are  
switched on and off while VS is still applied to the INA200,  
INA201, or INA202, it is important to know what the  
behavior of the devices will be in these regions.  
Ideal  
1.8  
VCM2  
1.6  
1.4  
VCM3  
1.2  
1.0  
V
OUT tested limit at  
0.8  
0.6  
0.4  
0.2  
0
VCM4  
VSENSE = 0mV, 0 VCM1 VS.  
VCM2, VCM3, and VCM4 illustrate the variance  
from part to part of the VCM that can cause  
maximum VOUT with VSENSE < 20mV.  
As VSENSE approaches 0mV, in these VCM regions, the  
device output accuracy degrades. A larger-than-normal  
offset can appear at the current shunt monitor output with  
a typical maximum value of VOUT = 300mV for  
VSENSE = 0mV. As VSENSE approaches 20mV, VOUT  
returns to the expected output value with accuracy as  
specified in the Electrical Characteristics. Figure 3  
illustrates this effect using the INA202 (Gain = 100).  
0
2
4
6
8
10 12 14 16 18 20 22  
VSENSE (mV)  
24  
NOTE: (1) INA200 VOUT Tested Limit = 0.4V. INA201 VOUT Tested Limit = 1V.  
Figure 4. Example for Low V  
Case 2  
SENSE  
(INA202, Gain = 100)  
SELECTING R  
S
2.0  
1.8  
1.6  
1.4  
The value chosen for the shunt resistor, RS, depends on  
the application and is a compromise between small-signal  
accuracy and maximum permissible voltage loss in the  
measurement line. High values of RS provide better  
accuracy at lower currents by minimizing the effects of  
offset, while low values of RS minimize voltage loss in the  
supply line. For most applications, best performance is  
attained with an RS value that provides a full-scale shunt  
voltage range of 50mV to 100mV. Maximum input voltage  
for accurate measurements is 500mV.  
1.2  
Actual  
1.0  
0.8  
Ideal  
0.6  
0.4  
0.2  
0
2
TRANSIENT PROTECTION  
0
4
6
8
10  
12  
14  
16  
18  
20  
The −16V to +80V common-mode range of the INA200,  
INA201, and INA202 is ideal for withstanding automotive  
fault conditions ranging from 12V battery reversal up to  
+80V transients, since no additional protective  
components are needed up to those levels. In the event  
that the INA200, INA201, and INA202 are exposed to  
transients on the inputs in excess of their ratings, then  
external transient absorption with semiconductor transient  
absorbers (such as zeners) will be necessary. Use of  
VSENSE (mV)  
Figure 3. Example for Low V  
Cases 1 and 3  
SENSE  
(INA202, Gain = 100)  
Low V  
Case 2: V < 20mV, 0V V  
V  
S
SENSE  
SENSE  
CM  
This region of operation is the least accurate for the  
INA200 family. To achieve the wide input common-mode  
voltage range, these devices use two op amp front ends in  
11  
ꢠꢡ  
ꢠꢡ  
ꢠꢡ  
www.ti.com  
SBOS374 − NOVEMBER 2006  
MOVs or VDRs is not recommended except when they are  
used in addition to a semiconductor transient absorber.  
Select the transient absorber such that it will never allow  
the INA200, INA201, and INA202 to be exposed to  
transients greater than +80V (that is, allow for transient  
absorber tolerance, as well as additional voltage due to  
transient absorber dynamic impedance). Despite the use  
of internal zener-type ESD protection, the INA200,  
INA201, and INA202 do not lend themselves to using  
external resistors in series with the inputs since the internal  
gain resistors can vary up to 30%. (If gain accuracy is not  
important, then resistors can be added in series with the  
INA200, INA201, and INA202 inputs with two equal  
resistors on each input.)  
INA201, and INA202, which is complicated by the internal  
5k+ 30% input impedance; this is shown in Figure 5.  
Using the lowest possible resistor values minimizes both  
the initial shift in gain and effects of tolerance. The effect  
on initial gain is given by Equation 3:  
5kW  
5kW ) RFILT  
Gain Error % + 100 * ǒ100   
Ǔ
(3)  
Total effect on gain error can be calculated by replacing the  
5kterm with 5k− 30%, (or 3.5k) or 5k+ 30% (or  
6.5k). The tolerance extremes of RFILT can also be  
inserted into the equation. If a pair of 100. 1% resistors are  
used on the inputs, the initial gain error will be 1.96%.  
Worst-case tolerance conditions will always occur at the  
lower excursion of the internal 5kresistor (3.5k), and  
the higher excursion of RFILT − 3% in this case.  
OUTPUT VOLTAGE RANGE  
The output of the INA200, INA201, and INA202 is accurate  
within the output voltage swing range set by the power  
supply pin, V+. This performance is best illustrated when  
using the INA202 (a gain of 100 version), where a 100mV  
full-scale input from the shunt resistor requires an output  
voltage swing of +10V, and a power-supply voltage  
sufficient to achieve +10V on the output.  
Note that the specified accuracy of the INA200, INA201,  
and INA202 must then be combined in addition to these  
tolerances. While this discussion treated accuracy  
worst-case conditions by combining the extremes of the  
resistor values, it is appropriate to use geometric mean or  
root sum square calculations to total the effects of  
accuracy variations.  
COMPARATOR  
INPUT FILTERING  
An obvious and straightforward location for filtering is at  
the output of the INA200, INA201, and INA202 series;  
however, this location negates the advantage of the low  
output impedance of the internal buffer. The only other  
option for filtering is at the input pins of the INA200,  
The INA200, INA201, and INA202 devices incorporate an  
open-drain comparator. This comparator typically has  
2mV of offset and a 1.3µs (typical) response time. The  
output of the comparator latches and is reset through the  
RESET pin, see Figure 6.  
RSHUNT << RFILTER  
3m  
VSUPPLY  
Load  
RFILTER <100  
RFILTER < 100  
INA200 INA202  
CFILTER  
VIN+  
V+  
OUT  
1
2
3
4
8
7
6
5
VIN−  
G
0.6V  
Reference  
f3dB  
CMPOUT  
RESET  
CMPIN  
GND  
1
2 (2RFILTER)CFILTER  
f−  
=
3dB  
π
Comparator  
SO−14, TSSOP−14  
Figure 5. Input Filter (Gain Error — 1.5% to −2.2%)  
12  
ꢈꢉ  
ꢈꢉ  
ꢈꢉ  
www.ti.com  
SBOS374 − NOVEMBER 2006  
0.6V  
VIN  
0V  
CMPOUT  
RESET  
Figure 6. Comparator Latching Capability  
Shunt  
Shunt  
Option 1  
Option 2  
Supply  
R3  
To VIN+  
To VIN−  
To VIN+  
To VIN−  
4.5V to 5.5V  
R4  
Q1  
2N3904  
Load  
INA200 (G = 20)  
1
2
INA201 (G = 50)  
INA202 (G = 100)  
V+  
To VIN+  
Shunt  
Option 3  
VIN+  
VIN  
8
7
From  
Shunt Option  
1, 2, or 3  
OUT  
G
To VIN  
0.6V  
Reference  
R1  
3
CMPIN  
GND  
CMPOUT  
RESET  
6
5
Comparator  
R2  
4
RESET  
NOTE: Q1 cascodes the comparator output to drive a highside FET (the 2N3904 shown is good up to 60V). The shunt could be located in  
any one of the three locations shown. The latching capability should be used in shutdown applications to prevent oscillation at the trip point.  
Figure 7. High-Side Switch Over-Current Shutdown  
13  
ꢠꢡ  
ꢠꢡ  
ꢠꢡ  
www.ti.com  
SBOS374 − NOVEMBER 2006  
Shunt  
Option 1  
Supply  
To VIN+  
To VIN  
4.5V to 5.5V  
Load  
To VIN+  
To VIN−  
Shunt  
Option 2  
INA200 (G = 20)  
INA201 (G = 50)  
INA202 (G = 100)  
R4  
2.2k  
1
V+  
VIN+  
VIN−  
8
7
R1  
22k  
From  
Shunt Option  
1, 2, or 3  
2
OUT  
G
0.6V  
Reference  
To VIN+  
R1  
Shunt  
Option 3  
3
CMPIN  
GND  
To VIN  
CMPOUT  
RESET  
6
5
Q1  
2N3904  
Comparator  
R2  
4
RESET  
NOTE: In this case, Q1 is used to invert the comparator output.  
Figure 8. Low-Side Switch Over-Current Shutdown  
14  
ꢈꢉ  
ꢈꢉ  
ꢈꢉ  
www.ti.com  
SBOS374 − NOVEMBER 2006  
RSHUNT  
Supply  
4.5V to 5.5V  
INA200 (G = 20)  
INA201 (G = 50)  
INA202 (G = 100)  
1
2
V+  
R5  
2.2k  
VIN+  
VIN−  
8
7
OUT  
G
0.6V  
Reference  
R1  
R2  
CMPIN  
GND  
3
CMPOUT  
RESET  
6
5
Comparator  
4
RESET  
INA200 (G = 20)  
INA201 (G = 50)  
INA202 (G = 100)  
1
2
R6  
2.2k  
V+  
VIN+  
VIN−  
8
7
OUT  
G
0.6V  
R3  
R4  
Reference  
CMPIN  
GND  
3
CMPOUT  
RESET  
6
5
Comparator  
CMPOUT  
R7  
4
RESET  
200k  
NOTE: It is possible to set different limits for each direction.  
Figure 9. Bidirectional Over-Current Comparator  
15  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Dec-2006  
PACKAGING INFORMATION  
Orderable Device  
INA200AIDGKR  
INA200AIDGKRG4  
INA200AIDGKT  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
MSOP  
DGK  
8
8
8
8
8
8
8
8
8
8
8
8
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
INA200AIDGKTG4  
INA201AIDGKR  
INA201AIDGKRG4  
INA201AIDGKT  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
INA201AIDGKTG4  
INA202AIDGKR  
INA202AIDGKRG4  
INA202AIDGKT  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
INA202AIDGKTG4  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Dec-2006  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Low Power Wireless www.ti.com/lpw  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY