OPA2111SM [BB]

Dual Low Noise Precision Difet OPERATIONAL AMPLIFIER; 双路低噪声精密差动运算放大器
OPA2111SM
型号: OPA2111SM
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

Dual Low Noise Precision Difet OPERATIONAL AMPLIFIER
双路低噪声精密差动运算放大器

运算放大器
文件: 总13页 (文件大小:233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
OPA2111  
Dual Low Noise Precision  
Difet ® OPERATIONAL AMPLIFIER  
FEATURES  
APPLICATIONS  
LOW NOISE: 100% Tested, 8nV/Hz max at  
PRECISION INSTRUMENTATION  
10kHz  
DATA ACQUISITION  
LOW BIAS CURRENT: 4pA max  
LOW OFFSET: 500µV max  
LOW DRIFT: 2.8µV/°C  
TEST EQUIPMENT  
PROFESSIONAL AUDIO EQUIPMENT  
MEDICAL EQUIPMENT  
HIGH OPEN-LOOP GAIN: 114dB min  
DETECTOR ARRAYS  
HIGH COMMON-MODE REJECTION:  
96dB min  
DESCRIPTION  
The OPA2111 is a high precision monolithic  
dielectrically isolated FET (Difet) operational ampli-  
fier. Outstanding performance characteristics allow its  
use in the most critical instrumentation applications.  
+VCC  
8
Noise, bias current, voltage offset, drift, open-loop  
gain, common-mode rejection, and power supply re-  
jection are superior to BIFET® amplifiers.  
–In  
+In  
Very low bias current is obtained by dielectric isola-  
tion with on-chip guarding.  
Noise-Free  
Cascode*  
Laser trimming of thin-film resistors gives very low  
offset and drift. Extremely low noise is achieved with  
patented circuit design techniques. A cascode design  
allows high precision input specifications and reduced  
susceptibility to flicker noise.  
Output  
–VCC  
4
Standard dual op amp pin configuration allows up-  
grading of existing designs to higher performance  
levels.  
*Patented  
OPA2111 Simplified Circuit  
(Each Amplifier)  
BIFET® National Semiconductor Corp., Difet® Burr-Brown Corp.  
International Airport Industrial Park  
Mailing Address: PO Box 11400  
Cable: BBRCORP  
Tucson, AZ 85734  
Street Address: 6730 S. Tucson Blvd.  
Tucson, AZ 85706  
Tel: (520) 746-1111 Twx: 910-952-1111  
Telex: 066-6491  
FAX: (520) 889-1510  
Immediate Product Info: (800) 548-6132  
© 1984 Burr-Brown Corporation  
PDS-540E  
Printed in U.S.A. October, 1993  
SPECIFICATIONS  
ELECTRICAL  
At VCC = ±15VDC and TA = +25°C unless otherwise noted  
.
OPA2111AM  
OPA2111BM  
MIN TYP MAX  
OPA2111SM  
MIN TYP MAX  
OPA2111KM, KP  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
MIN  
TYP MAX  
UNITS  
INPUT NOISE  
Voltage, fO = 10Hz  
fO = 100Hz  
100% Tested  
100% Tested  
40  
15  
8
80  
40  
15  
8
1.2  
3.3  
24  
1.3  
30  
11  
7
60  
30  
12  
8
40  
15  
8
80  
40  
15  
8
1.2  
3.3  
24  
1
40  
15  
8
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
µVrms  
µVp-p  
fO = 1kHz  
fO = 10kHz  
fB = 10Hz to 10kHz  
100% Tested  
(1)  
6
6
6
6
(1)  
(1)  
(1)  
(1)  
0.7  
1.6  
15  
0.8  
0.6  
1.2  
12  
0.6  
1
0.7  
1.6  
15  
0.8  
0.7  
1.6  
15  
0.8  
fB = 0.1Hz to 10Hz  
Current, fB = 0.1Hz to 10Hz  
fO = 0.1Hz to 20kHz  
2.5  
19  
1
fAp-p  
fA/Hz  
OFFSET VOLTAGE(2)  
Input Offset Voltage  
Average Drift  
Match  
Supply Rejection  
VCM = 0VDC  
TA = TMIN to TMAX  
±0.1  
±2  
±1  
110  
±3  
136  
±0.75  
±6  
±0.05 ±0.5  
±0.1 ±0.75  
±0.3  
±8  
2
110  
±3  
136  
±2  
±15  
mV  
µV/°C  
µV/°C  
dB  
µV/V  
dB  
±0.5  
±0.5  
110  
±3  
±2.8  
±2  
2
±6  
90  
96  
90  
110  
±3  
86  
±31  
±8  
±16  
±31  
±50  
±15  
±12  
Channel Separation  
100Hz, RL = 2kΩ  
136  
136  
BIAS CURRENT(2)  
Input Bias Current  
Match  
VCM = 0VDC  
±2  
±1  
±1.2  
±0.5  
±4  
±3  
±2  
±1  
±8  
±6  
±3  
2
pA  
pA  
OFFSET CURRENT(2)  
Input Offset Current  
VCM = 0VDC  
±1.2  
±6  
±0.6  
±1.2  
±3  
pA  
IMPEDANCE  
Differential  
Common-Mode  
1013 || 1  
1014 || 3  
1013 || 1  
1014 || 3  
1013 || 1  
1014 || 3  
1013 || 1  
1014 || 3  
|| pF  
|| pF  
VOLTAGE RANGE  
Common-Mode Input Range  
Common-Mode Rejection  
±10  
90  
±11  
110  
±10  
96  
±11  
110  
±10  
90  
±11  
110  
±10  
82  
±11  
110  
V
dB  
VIN = ±10VDC  
RL 2kΩ  
OPEN-LOOP GAIN, DC  
Open-Loop Voltage Gain  
Match  
110  
125  
3
114  
125  
2
110  
125  
3
106  
125  
3
dB  
dB  
FREQUENCY RESPONSE  
Unity Gain, Small Signal  
Full Power Response  
Slew Rate  
Settling Time, 0.1%  
0.01%  
2
32  
2
6
10  
2
32  
2
6
10  
2
32  
2
6
10  
2
32  
2
6
10  
MHz  
kHz  
V/µs  
µs  
20Vp-p, RL = 2kΩ  
VO = ±10V, RL = 2kΩ  
Gain = –1, RL = 2kΩ  
10V Step  
16  
1
16  
1
16  
1
µs  
Overload Recovery,  
50% Overdrive(3)  
Gain = –1  
5
5
5
5
µs  
RATED OUTPUT  
Voltage Output  
Current Output  
Output Resistance  
Load Capacitance Stability  
Short Circuit Current  
RL = 2kΩ  
VO = ±10VDC  
DC, Open-Loop  
Gain = +1  
±10  
±5  
±11  
±10  
100  
1000  
40  
±10  
±5  
±11  
±10  
100  
1000  
40  
±10  
±5  
±11  
±10  
100  
1000  
40  
±10  
±5  
±11  
±10  
100  
1000  
40  
V
mA  
pF  
mA  
10  
10  
10  
10  
POWER SUPPLY  
Rated Voltage  
±15  
±15  
±15  
±15  
VDC  
Voltage Range, Derated  
Performance  
Current, Quiescent  
±5  
±18  
7
±5  
±18  
7
±5  
±18  
7
±5  
±18  
9
VDC  
mA  
IO = 0mADC  
5
5
5
5
TEMPERATURE RANGE  
Specification  
Operating “M” Package  
“P” Package  
Storage “M” Package  
“P” Package  
θ Junction-Ambient  
Ambient Temp.  
Ambient Temp.  
–25  
–55  
+85  
+125  
–25  
–55  
+85  
+125  
–55  
–55  
+125  
+125  
0
+70  
+125  
+85  
+150  
+85  
°C  
°C  
°C  
°C  
°C  
–55  
–40  
–65  
–40  
Ambient Temp.  
–65  
+150  
–65  
+150  
–65  
+150  
200  
200  
200  
200(4)  
°C/W  
NOTES: (1) Sample tested—this parameter is guaranteed. (2) Offset voltage, offset current, and bias current are measured with the units fully warmed up. (3) Overload  
recovery is defined as the time required for the output to return from saturation to linear operation following the removal of a 50% input overdrive. (4) Typical θJ-A  
150°C/W for plastic DIP.  
=
®
OPA2111  
2
ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)  
At VCC = ±15VDC and TA = TMIN to TMAX unless otherwise noted.  
OPA2111AM  
OPA2111BM  
OPA2111SM  
OPA2111KM, KP  
PARAMETER  
CONDITION  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP  
MAX  
MIN  
TYP MAX  
UNITS  
TEMPERATURE RANGE  
Specification Range  
Ambient Temp.  
VCM = 0VDC  
–25  
86  
+85  
–25  
90  
+85  
–55  
86  
+125  
0
+70  
°C  
INPUT OFFSET VOLTAGE(1)  
Input Offset Voltage  
Average Drift  
Match  
Supply Rejection  
±0.22 ±1.2  
±0.08 ±0.75  
±0.3  
±2  
2
100  
±10  
±1.5  
±6  
±0.9  
±8  
2
100  
±10  
±5  
±15  
mV  
µV/°C  
µV/°C  
dB  
±2  
1
100  
±10  
±6  
±0.5  
0.5  
100  
±10  
±2.8  
82  
±50  
±32  
±50  
±80  
µV/V  
BIAS CURRENT(1)  
Input Bias Current  
Match  
VCM = 0VDC  
VCM = 0VDC  
±125 ±1nA  
60  
±75  
30  
±500  
±2nA ±16.3nA  
1nA  
±125 ±500  
pA  
pA  
OFFSET CURRENT(1)  
Input Offset Current  
±75  
±750  
±38  
±375  
±1.3nA ±12nA  
±75  
±375  
pA  
VOLTAGE RANGE  
Common-Mode Input Range  
Common-Mode Rejection  
±10  
86  
±11  
100  
±10  
90  
±11  
100  
±10  
86  
±11  
100  
±10  
80  
±11  
100  
V
dB  
V
IN = ±10VDC  
RL 2kΩ  
OPEN-LOOP GAIN, DC  
Open-Loop Voltage Gain  
Match  
106  
120  
5
110  
120  
3
106  
120  
5
100  
120  
5
dB  
dB  
RATED OUTPUT  
Voltage Output  
RL = 2kΩ  
±10.5 ±11  
±10.5 ±11  
±10.5 ±11  
±10.5 ±11  
V
Current Output  
Short Circuit Current  
V
V
O = ±10VDC  
O = 0VDC  
±5  
10  
±10  
40  
±5  
10  
±10  
40  
±5  
10  
±10  
40  
±5  
10  
±10  
40  
mA  
mA  
POWER SUPPLY  
Current, Quiescent  
IO = 0mADC  
5
8
5
8
5
8
5
10  
mA  
NOTES: (1) Offset voltage, offset current, and bias current are measured with the units fully warmed up.  
ABSOLUTE MAXIMUM RATINGS  
CONNECTION DIAGRAMS  
Supply ........................................................................................... ±18VDC  
Internal Power Dissipation (TJ +175°C) .................................... 500mW  
Differential Input Voltage ............................................................ Total VCC  
Input Voltage Range.......................................................................... ±VCC  
Storage Temperature Range: “M” Package .................. –65°C to +150°C  
“P” Package .................... –40°C to +85°C  
Operating Temperature Range: “M” Package............... –55°C to +125°C  
“P” Package ................. –40°C to +85°C  
Lead Temperature (soldering, 10s) ............................................... +300°C  
Output Short Circuit to Ground (+25°C) ................................. Continuous  
Junction Temperature .................................................................... +175°C  
Top View  
DIP  
Out A  
–In A  
+In A  
–VCC  
1
2
3
4
8
7
6
5
+VCC  
Out B  
–In B  
+In B  
A
B
PACKAGE INFORMATION  
PACKAGE DRAWING  
MODEL  
PACKAGE  
NUMBER(1)  
OPA2111AM  
OPA2111BM  
OPA2111KM  
OPA2111SM  
OPA2111KP  
TO-99  
TO-99  
TO-99  
001  
001  
001  
001  
006  
Top View  
TO-99  
+VCC and Case  
TO-99  
8
8-Pin Plastic DIP  
Out A  
Out B  
1
7
NOTE: (1) For detailed drawing and dimension table, please see end of data  
sheet, or Appendix D of Burr-Brown IC Data Book.  
A
B
2
6
–In B  
–In A  
ORDERING INFORMATION  
3
+In B  
+In A  
5
OFFSET  
4
TEMPERATURE  
RANGE  
VOLTAGE,  
max (mV)  
–VCC  
MODEL  
PACKAGE  
OPA2111AM  
OPA2111BM  
OPA2111KM  
OPA2111SM  
OPA2111KP  
TO-99  
TO-99  
TO-99  
–25°C to +85°C  
–25°C to +85°C  
0°C to +70°C  
–55°C to +125°C  
0°C to +70°C  
±0.75  
±0.5  
±2  
±0.75  
±2  
0  
TO-99  
8-Pin Plastic DIP  
®
3
OPA2111  
DICE INFORMATION  
PAD  
FUNCTION  
1
2
Out A  
–In A  
3
+In A  
4
–VS  
5
+In B  
6
–In B  
7
Out B  
8
+VS  
NC  
No Connection  
Substrate Bias: No Connection  
MECHANICAL INFORMATION  
MILS (0.001")  
MILLIMETERS  
Die Size  
Die Thickness  
Min. Pad Size  
138 x 84 ±5  
20 ±3  
3.51 x 2.13 ±0.13  
0.51 ±0.08  
0.10 x 0.10  
4 x 4  
OPA2111AD DIE TOPOGRAPHY  
Backing  
Transistor Count  
None  
102  
TYPICAL PERFORMANCE CURVES  
TA = +25°C, and VCC = ±15VDC unless otherwise noted.  
VOLTAGE AND CURRENT NOISE SPECTRAL  
DENSITY vs TEMPERATURE  
INPUT CURRENT NOISE SPECTRAL DENSITY  
100  
12  
10  
8
100  
10  
f
O = 1kHz  
10  
1
1
BM  
6
4
0.1  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
–75  
–50 –25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Temperature (°C)  
®
OPA2111  
4
TYPICAL PERFORMANCE CURVES (CONT)  
TA = +25°C, and VCC = ±15VDC unless otherwise noted.  
TOTAL(1) INPUT VOLTAGE NOISE SPECTRAL  
DENSITY vs SOURCE RESISTANCE  
INPUT OFFSET VOLTAGE WARM-UP DRIFT  
1k  
40  
20  
0
RS = 10MΩ  
RS = 1MΩ  
100  
RS = 100kΩ  
BM  
10  
1
RS = 100Ω  
–20  
–40  
NOTE: (1) Includes contribution  
from source resistance.  
0
1
2
3
4
5
6
0.1  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Time From Power Turn-On (Minutes)  
BIAS AND OFFSET CURRENT  
vs TEMPERATURE  
INPUT VOLTAGE NOISE SPECTRAL DENSITY  
1k  
100  
10  
1k  
100  
10  
1
1k  
100  
AM, SM  
BM  
1
10  
1
0.1  
0.1  
0.01  
0.01  
1
10  
100  
1k  
10k  
100k  
1M  
–50  
–25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Ambient Temperature (°C)  
TOTAL(1) INPUT VOLTAGE NOISE (PEAK-TO-PEAK)  
vs SOURCE RESISTANCE  
POWER SUPPLY REJECTION  
vs FREQUENCY  
140  
120  
100  
80  
1k  
NOTE: (1) Includes contribution  
from source resistance.  
100  
60  
BM  
10  
1
40  
fB = 0.1Hz to 10Hz  
20  
0
104  
105  
106  
107  
108  
109  
1010  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Source Resistance ()  
Frequency (Hz)  
®
5
OPA2111  
TYPICAL PERFORMANCE CURVES (CONT)  
TA = +25°C, and VCC = ±15VDC unless otherwise noted.  
COMMON-MODE REJECTION  
vs INPUT COMMON-MODE VOLTAGE  
TOTAL INPUT VOLTAGE NOISE SPECTRAL DENSITY  
AT 1kHz vs SOURCE RESISTANCE  
120  
110  
100  
90  
1k  
EO  
RS  
100  
BM  
OPA2111 +  
Resistor  
10  
1
80  
70  
Resistor Noise Only  
–15  
–10  
–5  
0
5
10  
15  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Common-Mode Voltage (V)  
Source Resistance ()  
INPUT OFFSET VOLTAGE CHANGE  
DUE TO THERMAL SHOCK  
GAIN-BANDWIDTH AND SLEW RATE  
vs TEMPERATURE  
150  
75  
0
4
3
2
1
0
4
3
2
AM  
BM  
25°C  
85°C  
TA = 25°C to TA = 85°C  
Air Environment  
–75  
1
0
–150  
–1  
0
1
2
3
4
5
–75  
–50 –25  
0
25  
50  
75  
100  
125  
Time From Thermal Shock (Minutes)  
Ambient Temperature (°C)  
BIAS AND OFFSET CURRENT  
OPEN-LOOP GAIN vs TEMPERATURE  
vs INPUT COMMON-MODE VOLTAGE  
10  
1
10  
140  
130  
120  
Bias Current  
1
Offset Current  
0.1  
0.1  
110  
100  
0.01  
0.01  
–15  
–10  
–5  
0
5
10  
15  
–75  
–50 –25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Common-Mode Voltage (V)  
®
OPA2111  
6
TYPICAL PERFORMANCE CURVES (CONT)  
TA = +25°C, VCC = ±15VDC unless otherwise noted.  
COMMON-MODE REJECTION  
vs FREQUENCY  
140  
LARGE SIGNAL TRANSIENT RESPONSE  
120  
15  
100  
80  
0
60  
40  
–15  
20  
0
0
25  
50  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Time (µs)  
Frequency (Hz)  
OPEN-LOOP FREQUENCY RESPONSE  
SETTLING TIME vs CLOSED-LOOP GAIN  
140  
120  
100  
80  
100  
80  
–45  
–90  
Gain  
φ
60  
Phase  
Margin  
65°  
0.01%  
0.1%  
60  
40  
40  
–135  
–180  
20  
0
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
Frequency (Hz)  
Closed-Loop Gain (V/V)  
GAIN-BANDWIDTH AND SLEW RATE  
vs SUPPLY VOLTAGE  
CHANNEL SEPARATION vs FREQUENCY  
150  
140  
130  
120  
3
2
3
2
RL = ∞  
RL = 2kΩ  
RL = 560Ω  
1
0
1
0
110  
100  
10  
100  
1k  
10k  
100k  
0
5
10  
15  
20  
Supply Voltage (±VCC  
)
Frequency (Hz)  
®
7
OPA2111  
TYPICAL PERFORMANCE CURVES (CONT)  
TA = +25°C, VCC = ±15VDC unless otherwise noted.  
MAXIMUM UNDISTORTED OUTPUT  
VOLTAGE vs FREQUENCY  
SUPPLY CURRENT vs TEMPERATURE  
8
6
4
30  
20  
10  
0
2
0
1k  
10k  
Frequency (Hz)  
100k  
1M  
–75  
–50 –25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
TOTAL HARMONIC DISTORTION  
vs FREQUENCY  
SMALL SIGNAL TRANSIENT RESPONSE  
1
60  
40  
10kΩ  
EO = 7V  
10kΩ  
EO  
0.1  
20  
2kΩ  
0
EO  
=
700mV  
0.01  
–20  
–40  
–60  
THD + Noise  
Residual Test Limit  
0.001  
0
1
2
3
4
5
0.1  
1
10  
100  
Frequency (Hz)  
1K  
10K  
100K  
Time (µs)  
APPLICATIONS INFORMATION  
OFFSET VOLTAGE ADJUSTMENT  
INPUT PROTECTION  
The OPA2111 offset voltage is laser-trimmed and will  
require no further trim for most applications.  
Conventional monolithic FET operational amplifiers require  
external current-limiting resistors to protect their inputs  
against destructive currents that can flow when input FET  
gate-to-substrate isolation diodes are forward-biased. Most  
Offset voltage can be trimmed by summing (see Figure 1).  
With this trim method there will be no degradation of input  
offset drift.  
BIFET amplifiers can be destroyed by the loss of –VCC  
.
Because of its dielectric isolation, no special protection is  
needed on the OPA2111. Of course, the differential and  
common-mode voltage limits should be observed. Static  
damage can cause subtle changes in amplifier input charac-  
teristics without necessarily destroying the device. In preci-  
sion operational amplifiers (both bipolar and FET types),  
this may cause a noticeable degradation of offset voltage and  
drift.  
In  
1/2 OPA2111  
Out  
–15V  
±2mV  
OffsetTrim  
150kΩ  
100kΩ  
Static protection is recommended when handling any preci-  
sion IC operational amplifier.  
20Ω  
+15V  
FIGURE 1. Offset Voltage Trim.  
®
OPA2111  
8
GUARDING AND SHIELDING  
APPLICATIONS CIRCUITS  
As in any situation where high impedances are involved,  
careful shielding is required to reduce “hum” pickup in input  
leads. If large feedback resistors are used, they should also  
be shielded along with the external input circuitry.  
Figures 5 through 13 are circuit diagrams of various appli-  
cations for the OPA2111.  
Leakage currents across printed circuit boards can easily  
exceed the bias current of the OPA2111. To avoid leakage  
problems, it is recommended that the signal input lead of the  
OPA2111 be wired to a Teflon standoff. If the OPA2111 is  
to be soldered directly into a printed circuit board, utmost  
care must be used in planning the board layout. A “guard”  
pattern should completely surround the high impedance  
input leads and should be connected to a low impedance  
point which is at the signal input potential (see Figure 2).  
1k  
OP-27 + Resistor  
EO  
OPA2111 + Resistor  
Resistor Noise Only  
100  
RS  
EO  
=
eN2 + (iNRS)2 + 4kTRS  
10  
1
OPA2111 + Resistor  
Resistor Noise Only  
OP-27 + Resistor  
BM  
1M  
NOISE: FET vs BIPOLAR  
100  
1k  
10k  
100k  
10M  
Low noise circuit design requires careful analysis of all  
noise sources. External noise sources can dominate in many  
cases, so consider the effect of source resistance on overall  
operational amplifier noise performance. At low source  
impedances, the low voltage noise of a bipolar operational  
amplifier is superior, but at higher impedances the high  
current noise of a bipolar amplifier becomes a serious  
liability. Above about 15kthe OPA2111 will have lower  
total noise than an OP-27 (see Figure 3).  
Source Resistance, RS ()  
FIGURE 3. Voltage Noise Spectral Density vs Source  
Resistance.  
80  
TA = 25°C; curves taken from  
manufacturers' published  
LF156/157  
60  
typical data  
BIAS CURRENT CHANGE  
vs COMMON-MODE VOLTAGE  
40  
The input bias currents of most popular BIFET® opera-  
tional amplifiers are affected by common-mode voltage  
(Figure 4). Higher input FET gate-to-drain voltage causes  
leakage and ionization (bias) currents to increase. Due to its  
cascode input stage, the extremely low bias current of the  
OPA2111 is not compromised by common-mode voltage.  
20  
LF155  
AD547  
OP-15/16/17 “Perfect Bias Current Cancellation”  
OPA2111  
0
–20  
–15  
–10  
–5  
0
5
10  
15  
Common-Mode Voltage (VDC)  
Non-Inverting  
Buffer  
FIGURE 4. Input Bias Currrent vs Common-Mode Voltage.  
2
2
3
Out  
Out  
1
1
1MΩ  
A
A
3
10kΩ  
Operate  
In  
In  
In  
In  
2
3
1/2  
Out  
1
OPA2111BM  
Zero  
Inverting  
TO-99 Bottom View  
100kΩ  
4
Gain = –100  
OS 5µV  
Drift 0.028µV/°C  
Zero Droop 2µV/s  
Referred to Input  
2
3
1
5
Out  
Polypropylene  
1µF  
1
V
100Ω  
A
2
6
100kΩ  
3
7
6
5
8
1/2  
7
OPA2111BM  
Board layout for input guarding: guard top and bottom of board.  
Alternate: use Teflon® standoff for sensitive input pins.  
Teflon® E. I. Du Pont de Nemours & Co.  
FIGURE 2. Connection of Input Guard.  
FIGURE 5. Auto-Zero Amplifier.  
®
9
OPA2111  
<1pF to prevent gain peaking  
100Ω  
10kΩ  
1/2 OPA2111BM  
1000MΩ  
2
3
1
+15V  
Out  
5.34M(1)  
5.34M(1)  
Pin Photodiode  
UDT Pin-040A  
Guard  
0.1µF  
1/2 OPA2111BM  
In  
2
5
6
2kΩ  
Q
1000pF  
8
Output  
1
1/2 OPA2111  
7
3
0.1µF  
4
5 x 108V/W  
2.67M(1)  
0.01µF  
1000MΩ  
500pF  
500pF  
–15V  
Circuit must be well shielded.  
NOTE: (1) For 50Hz use 3.16Mand 6.37.  
Gain = 101  
FIGURE 6. Sensitive Photodiode Amplifier.  
FIGURE 7. High Impedance 60Hz Reject Filter with Gain.  
0.03µF  
10.5kΩ  
0.01µF  
73.2Ω  
Right  
1µF  
365Ω  
2
3
365kΩ  
Output  
1
1/2 OPA2111  
L
Input  
0.01µF  
100kΩ  
RT  
CT  
0.03µF  
10.5kΩ  
0.01µF  
73.2Ω  
Left  
1µF  
365Ω  
6
5
365Ω  
Output  
7
1/2 OPA2111  
R
Input  
100kΩ  
0.01µF  
RT  
CT  
G = 26dB Midband  
FIGURE 8. RIAA Equalized Stereo Preamplifier.  
®
OPA2111  
10  
IB = ±4pA max  
Gain = 100  
1/2 OPA2111BM  
3
2
CMRR 106dB  
1
IN 1013  
–In  
R
RF  
5kΩ  
25kΩ  
25kΩ  
25kΩ  
2
5
RG  
101Ω  
RF  
5kΩ  
6
3
Output  
Burr-Brown  
1/2 OPA2111BM  
INA105  
Differential  
Amplifier  
6
5
25kΩ  
7
1
+In  
Differential Voltage Gain = 1 + 2RF/RG  
FIGURE 9. FET Input Instrumentation Amplifier.  
10kΩ  
10pF  
(1)  
1/2  
1MΩ  
OPA2111AM  
6
IN914  
1/2  
Output  
7
OPA2111AM  
2
(1)  
5
(1)  
1
3
IN914  
Droop 0.5mV/s  
2N4117A  
Input  
0.01µF  
NOTE: (1) Reverse polarity for  
negative peak detection.  
Polystyrene  
FIGURE 10. Low-Droop Positive Peak Detector.  
6.3MΩ  
944kΩ  
6.3MΩ  
7.8MΩ  
2
3
6
1.6MΩ  
1
7
1/2 OPA2111  
1/2 OPA2111  
1.6MΩ  
1.6MΩ  
1.6MΩ  
5
Out  
In  
0.01µF  
NPO  
0.01µF  
NPO  
0.01µF  
NPO  
0.01µF  
NPO  
NOTE: Lower value resistors will have lower  
thermal noise but capacitors must  
be scaled larger.  
AV = 2.6  
fO = 10Hz  
–24dB/Octave  
FIGURE 11. 10Hz Fourth-Order Butterworth Low-Pass Filter.  
®
11  
OPA2111  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
10kΩ  
2
3
10kΩ  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
1
7
1
7
1
Input  
1/2OPA2111  
10kΩ  
Since signal voltage sums directly with N  
but amplifier noise voltage sums as N,  
signal-to-noise ratio improves by N.  
6
5
1/2OPA2111  
AV = –1010  
en = 1.9nV/ Hz typ(1) at 10kHz  
BW = 30kHz typ  
10kΩ  
GBW = 30.3 MHz typ  
VOS = ±16µV typ(1)  
VOS/T = ±0.16µV/°C typ(1)  
IB = 40pA max  
2
3
1/2OPA2111  
ZIN = 1012|| 30pF  
10kΩ  
NOTE: (1) Theoretical performance  
achievable from OPA2111BM  
with uncorrelated random  
6
5
distribution of parameters.  
1/2OPA2111  
10kΩ  
2
3
10kΩ  
1/2OPA2111  
2
3
Output  
6
OPA37  
1/2OPA2111  
N = 10  
5 each OPA2111BM  
FIGURE 12. ‘N’ Stage Parallel-Input Amplifier.  
®
OPA2111  
12  
1/2 OPA2111  
1
E1  
–In  
A1  
R2  
10kΩ  
INA106  
10kΩ  
10kΩ  
100kΩ  
2
3
5
R1  
202Ω  
R2  
10kΩ  
6
EO  
Output  
1/2 OPA2111  
100kΩ  
AV = 10  
A2  
1
E2  
+In  
EO = 10(1 + 2 R2/R1)(E2 – E1) = 1000(E2 – E1)  
Using the INA106 for an output difference amplifier extends the input common-mode  
range of an instrumentation amplifier to ±10V. A conventional IA with a unity-gain difference  
amplifier has an input common-mode range limited to ±5V for an output swing of ±10V. This  
is because a unity-gain difference amp needs ±5V at the input for 10V at the output,  
allowing only 5V additional for common-mode.  
FIGURE 13. Precision Instrumentation Amplifier.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
13  
OPA2111  

相关型号:

OPA2111SM/883B

Operational Amplifier, 2 Func, 750uV Offset-Max, MBCY8,
BB

OPA211A

1.1nV/Noise, Low Power, Precision Operational Amplifier in Tiny DFN-8 Package
TI

OPA211AI

1.1nV/☆Hz Noise, Low Power, Precision Operational Amplifier in Small DFN-8 Package
TI

OPA211AID

1.1nV/Noise, Low Power, Precision Operational Amplifier in Tiny DFN-8 Package
TI

OPA211AIDG4

1.1nV/√Hz Noise, Low Power, Precision Operational Amplifier in Small DFN-8 Package
TI

OPA211AIDGKR

1.1nV/Noise, Low Power, Precision Operational Amplifier in Tiny DFN-8 Package
TI

OPA211AIDGKRG4

1.1nV/√Hz Noise, Low Power, Precision Operational Amplifier in Small DFN-8 Package
TI

OPA211AIDGKT

1.1nV/Noise, Low Power, Precision Operational Amplifier in Tiny DFN-8 Package
TI

OPA211AIDGKTG4

1.1nV/√Hz Noise, Low Power, Precision Operational Amplifier in Small DFN-8 Package
TI

OPA211AIDR

1.1nV/Noise, Low Power, Precision Operational Amplifier in Tiny DFN-8 Package
TI

OPA211AIDRG4

1.1nV/√Hz Noise, Low Power, Precision Operational Amplifier in Small DFN-8 Package
TI

OPA211AIDRGR

1.1nV/√Hz Noise, Low Power, Precision Operational Amplifier in Small DFN-8 Package
TI