THS3115 [BB]

LOW-NOISE, HIGH-SPEED CURRENT FEEDBACK AMPLIFIERS; 低噪声,高速电流反馈型放大器
THS3115
型号: THS3115
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

LOW-NOISE, HIGH-SPEED CURRENT FEEDBACK AMPLIFIERS
低噪声,高速电流反馈型放大器

放大器
文件: 总14页 (文件大小:372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS3112  
THS3115  
SLOS385 – SEPTEMBER 2001  
LOW-NOISE, HIGH-SPEED CURRENT FEEDBACK AMPLIFIERS  
FEATURES  
APPLICATIONS  
D
Low Noise  
D
D
D
D
Communication Equipment  
Video Distribution  
Motor Drivers  
– 2.9 pA/Hz Noninverting Current Noise  
– 10.8 pA/Hz Inverting Current Noise  
– 2.2 nV/Hz Voltage Noise  
Piezo Drivers  
D
D
Wide Supply Voltage Range ±5 V to ±15 V  
Wide Output Swing  
DESCRIPTION  
– 25 V Output Voltage, R = 100 , ±15-V  
PP  
L
Supply  
The THS3112/5 are low-noise, high-speed current  
feedback amplifiers, ideal for any application requiring  
high output current. The low noninverting current noise  
of 2.9 pA/Hz and the low inverting current noise of 10.8  
pA/Hz increase signal to noise ratios for enhanced  
signal resolution. The THS3112/5 can operate from  
±5-V to ±15-V supply voltages, while drawing as little as  
4.5 mA of supply current per channel. It offers low  
D
D
High Output Current, 150 mA (Min)  
High Speed  
– 110 MHz (–3 dB, G=1, ±15 V)  
– 1550 V/µs Slew Rate (G = 2, ±15 V)  
D
D
Low Distortion, G = 2  
– -78 dBc (1 MHz, 2 V , 100-load)  
PP  
Low Power Shutdown (THS3115)  
– 300-µA Shutdown Quiescent Current Per  
Channel  
–78-dBc total harmonic distortion driving 2 V  
into a  
PP  
100-load. The THS3115 features a low power  
shutdown mode, consuming only 300-µA shutdown  
quiescent current per channel. The THS3112/5 is  
packaged in a standard SOIC, SOIC PowerPAD , and  
TSSOP PowerPAD packages.  
D
D
D
Thermal Shutdown and Short Circuit  
Protection  
Standard SOIC, SOIC PowerPAD , and  
TSSOP PowerPAD Package  
Evaluation Module Available  
VOLTAGE NOISE AND CURRENT NOISE  
vs  
THS3115  
SOIC (D) AND  
TSSOP PowerPAD (PWP) PACKAGE  
(TOP VIEW)  
THS3112  
FREQUENCY  
SOIC (D) AND  
SOIC PowerPAD (DDA) PACKAGE  
(TOP VIEW)  
100  
V
T
= ±5 V to ±15 V  
CC  
= 25°C  
A
I
n–  
1 OUT  
1 IN–  
1 IN+  
V
CC+  
1
2
3
4
8
7
6
5
1 OUT  
1 IN–  
1 IN+  
V
CC+  
1
2
3
4
5
6
7
14  
2 OUT  
2 IN–  
2 IN+  
13 2 OUT  
12 2 IN–  
11 2 IN+  
I
10  
n+  
V
CC–  
V
CC–  
N/C  
10  
9
N/C  
V
n
GND  
N/C  
SHUTDOWN  
N/C  
8
1
10  
100  
1 K  
10 K  
100 K  
f – Frequency – Hz  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright 2001, Texas Instruments Incorporated  
1
www.ti.com  
THS3112  
THS3115  
SLOS385 SEPTEMBER 2001  
AVAILABLE OPTIONS  
PACKAGED DEVICE  
EVALUATION  
MODULES  
T
A
SOIC-8  
(D)  
SOIC-8 PowerPAD  
(DDA)  
SOIC-14  
(D)  
TSSOP-14  
(PWP)  
0°C to 70°C  
THS3112CD  
THS3112ID  
THS3112CDDA  
THS3112IDDA  
THS3115CD  
THS3115ID  
THS3115CPWP  
THS3115IPWP  
THS3112EVM  
THS3115EVM  
40°C to 85°C  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, V  
to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 V  
CC–  
CC+  
Input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± V  
CC  
Output current (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 mA  
Differential input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 4 V  
Maximum junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
Total power dissipation at (or below) 25°C free-air temperature . . . . . . . . . . . See Dissipation Ratings Table  
Operating free-air temperature, T : Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Storage temperature, T : Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 125°C  
stg  
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 125°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: TheTHS3112andTHS3115mayincorporateaPowerPAD ontheundersideofthechip. Thisactsasaheatsinkandmustbeconnected  
toathermallydissipatingplaneforproperpowerdissipation. Failuretodosomayresultinexceedingthemaximumjunctiontemperature  
which could permanently damage the device. See TI Technical Brief SLMA002 for more information about utilizing the PowerPAD  
thermally enhanced package.  
DISSIPATION RATING TABLE  
T
= 25°C  
A
PACKAGE  
θ
JA  
POWER RATING  
D-8  
DDA  
D-14  
PWP  
95°C/W  
67°C/W  
1.32 W  
1.87 W  
66.6°C/W  
37.5°C/W  
1.88 W  
3.3 W  
This data was taken using the JEDEC proposed high-K test PCB.  
For the JEDEC low-K test PCB, the θ is168°C/W for the D-8  
JA  
package and 122.3°C/W for the D-14 package.  
recommended operating conditions  
MIN NOM  
MAX  
±15  
30  
UNIT  
Dual supply  
±5  
10  
0
Supply voltage, V  
to V  
V
CC+  
CC–  
Single supply  
C-suffix  
70  
Operating free-air temperature, T  
°C  
A
I-suffix  
40  
2
85  
High level (device shutdown)  
Low level (device active)  
Shutdown pin input levels, relative to the GND pin  
V
0.8  
2
www.ti.com  
THS3112  
THS3115  
SLOS385 SEPTEMBER 2001  
electrical characteristics over recommended operating free-air temperature range, T = 25°C,  
A
V
= ±15 V, R = 750 , R = 100 (unless otherwise noted)  
CC  
F L  
dynamic performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
95  
MAX  
UNIT  
V
= ±5 V  
= ±15 V  
= ±5 V  
= ±15 V  
= ±5 V  
= ±15 V  
= ±15 V  
= ±5 V  
R
= 1 k,  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
F
R
R
= 100 Ω  
= 100 Ω  
L
L
G = 1  
V
V
V
V
V
V
V
V
V
V
110  
103  
110  
25  
Small-signal bandwidth (3 dB)  
R
= 750 ,  
G = 2  
F
BW  
SR  
MHz  
R
= 750 ,  
G = 2  
F
Bandwidth (0.1 dB)  
48  
V
V
= 10 V  
1550  
820  
1300  
50  
O
PP  
G = 2  
= 680 Ω  
Slew rate (see Note 2), G=8  
Settling time to 0.1%  
V/µs  
R
F
= 5 V  
O
PP  
= ±15 V  
= ±5 V  
V
V
= 2 V  
= 5 V  
O
PP  
PP  
t
s
ns  
G = 1  
= ±15 V  
63  
O
NOTE 2: Slew rate is defined from the 25% to the 75% output levels.  
noise/distortion performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
78  
UNIT  
V
V
V
V
= 2 V  
= 8 V  
= 2 V  
= 6 V  
G = 2,  
R
= 680 Ω,  
O(PP)  
O(PP)  
O(PP)  
O(PP)  
F
V
CC  
= ±15 V, f = 1 MHz  
75  
THD  
Total harmonic distortion  
dBc  
76  
G = 2,  
R
= 680 Ω,  
F
V
V
= ±5 V, f = 1 MHz  
CC  
74  
V
n
Input voltage noise  
Input current noise  
= ±5 V, ±15 V  
f = 10 kHz  
2.2  
2.9  
nV/Hz  
pA/Hz  
CC  
Noninverting Input  
Inverting Input  
I
n
V
CC  
= ±5 V, ±15 V  
f = 10 kHz  
10.8  
67  
67  
V
V
V
V
V
V
= ±5 V  
= ±15 V  
= ±5 V  
= ±15 V  
= ±5 V  
= ±15 V  
G = 2,  
= 2 Vpp  
f = 1 MHz,  
CC  
CC  
CC  
CC  
CC  
CC  
Crosstalk  
dBc  
V
O
0.01%  
G = 2,  
R = 150 Ω  
L
Differential gain error  
Differential phase error  
0.01%  
0.011°  
0.011°  
40 IRE modulation  
±100 IRE Ramp  
NTSC and PAL  
3
www.ti.com  
THS3112  
THS3115  
SLOS385 SEPTEMBER 2001  
electrical characteristics over recommended operating free-air temperature range, T = 25°C,  
A
V
= ±15 V, R = 750 , R = 100 (unless otherwise noted) (continued)  
CC  
F
L
dc performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
8
UNIT  
T
A
= 25°C  
3
Input offset voltage  
T
= full range  
= 25°C  
13  
3
A
mV  
V
V
= ±5 V,  
= ±15 V  
CC  
CC  
T
A
1
V
IO  
Channel offset voltage matching  
Offset drift  
T
A
= full range  
= full range  
= 25°C  
4
T
A
10  
µV/°C  
T
A
23  
30  
2
Input bias current  
T
= full range  
T = 25°C  
A
A
0.33  
4
V
V
= ±5 V,  
CC  
CC  
I
IB  
+ Input bias current  
µA  
= ±15 V  
T
= full range  
= 25°C  
3
A
T
A
22  
30  
Input offset current  
T
A
= full range  
V
CC  
V
CC  
= ±5 V,  
= ±15 V  
Z
OL  
Open loop transimpedance  
R
= 1 k,  
L
1
MΩ  
input characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
= ±5 V  
= ±15 V  
= ±5 V,  
±2.5  
±2.7  
CC  
CC  
CC  
V
Input common-mode voltage range  
T
= full range  
V
ICR  
A
±12.5 ±12.7  
T
A
T
A
T
A
T
A
= 25°C  
56  
54  
63  
60  
62  
V = 2.5 V to 2.5 V  
I
= full range  
= 25°C  
CMRR Common-mode rejection ratio  
dB  
67  
V
CC  
= ±15 V,  
V = 12.5 V to 12.5 V  
= full range  
I
+ Input  
1.5  
15  
2
MΩ  
R
C
Input resistance  
I
i
Input  
Input capacitance  
pF  
output characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3.9  
MAX  
UNIT  
R
= 1 k,  
T
= 25°C  
L
A
G = 4, V = 1 V,  
I
T
A
= 25°C  
3.6  
3.4  
3.8  
V
CC  
= ±5 V  
R
R
= 100 ,  
= 1 k,  
L
L
T
A
= full range  
= 25°C  
V
O
Output voltage swing  
V
T
A
13.5  
13.3  
G = 4, V = 3.4 V,  
I
T
A
= 25°C  
12.2  
12  
V
CC  
= ±15 V  
R
R
R
= 100 ,  
= 25 ,  
= 25 ,  
L
L
L
T
A
= full range  
G = 4, V = 1.025 V,  
I
100  
175  
130  
V
= ±5 V  
CC  
G = 4, V = 3.4 V,  
I
O
Output current drive  
Output resistance  
T
A
= 25°C  
mA  
I
270  
14  
V
= ±15 V  
CC  
open loop  
r
o
4
www.ti.com  
THS3112  
THS3115  
SLOS385 SEPTEMBER 2001  
electrical characteristics over recommended operating free-air temperature range, T = 25°C,  
A
V
= ±15 V, R = 750 , R = 100 , GND = 0 V (unless otherwise noted) (continued)  
CC  
power supply  
F
L
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
5.5  
6
UNIT  
T
= 25°C  
4.4  
A
V
CC  
V
CC  
V
CC  
V
CC  
= ±5 V  
= ±15 V  
= ±5 V  
= ±15 V  
T
= full range  
= 25°C  
A
Quiescent current (per amplifier)  
Power supply rejection ratio  
I
mA  
CC  
T
A
4.9  
60  
74  
6.5  
7.5  
T
= full range  
= 25°C  
A
T
A
53  
50  
68  
66  
T
= full range  
= 25°C  
A
PSRR  
dB  
T
A
T
A
= full range  
shutdown characteristics (THS3115 only)  
PARAMETER  
TEST CONDITIONS  
= 0 V, V = ±5 V, ±15 V  
MIN  
TYP  
0.3  
0.1  
0.4  
18  
MAX  
UNIT  
mA  
µs  
I
t
t
I
Shutdown quiescent current (per channel)  
Disable time (see Note 3)  
V
V
V
V
0.45  
CC(SHDN)  
GND  
CC  
= ±15 V  
= ±15 V  
DIS  
CC  
CC  
CC  
Enable time (see Note 3)  
µs  
EN  
Shutdown pin input bias current for power up  
= ±5 V, ±15 V, V  
= ±5 V, ±15 V, V  
= 0 V  
25  
µA  
IL(SHDN)  
(SHDN)  
(SHDN)  
I
Shutdown pin input bias current for power down  
V
CC  
= 3.3 V  
110  
130  
µA  
IH(SHDN)  
NOTE 3: Disable/enable time is defined as the time from when the shutdown signal is applied to the SHDN pin to when the supply current has  
reached half of its final value.  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
Small signal closed loop gain  
Gain and phase  
vs Frequency  
1 11, 13, 14  
vs Frequency  
12  
15, 16  
17, 18  
19, 20  
21, 22  
23, 24  
25  
Small signal closed loop noninverting gain  
Small signal closed loop inverting gain  
Small and large signal output  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
Harmonic distortion  
vs Peaktopeak output voltage  
vs Frequency  
V , I  
n
Voltage noise and current noise  
Common-mode rejection ratio  
Power supply rejection ratio  
Crosstalk  
n
CMRR  
PSRR  
vs Frequency  
26  
vs Frequency  
27  
vs Frequency  
28  
Z
o
Output impedance  
vs Frequency  
29  
SR  
Slew rate  
vs Output voltage step  
vs Free-air temperature  
vs Common-mode input voltage  
vs Free-air temperature  
vs Output current  
vs Output current  
vs Supply voltage  
30  
31  
V
Input offset voltage  
IO  
32  
I
Input bias current  
33  
B
V
O
Output voltage  
34, 35  
36  
Output voltage headroom  
Supply current (per channel)  
Shutdown response  
I
37  
CC  
38  
5
www.ti.com  
THS3112  
THS3115  
SLOS385 SEPTEMBER 2001  
TYPICAL CHARACTERISTICS  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
3
15  
3
R
= 560 Ω  
R
= 560 Ω  
F
F
R
= 430 Ω  
F
0
12  
0
R
= 560 Ω  
F
R
= 750 Ω  
= 1.2 kΩ  
F
3  
3  
9
6
R
= 750 Ω  
R = 1.2 kΩ  
F
F
R
= 750 Ω  
F
R
F
6  
9  
6  
9  
3
G = 1,  
G = 4,  
G = 1,  
V
= ±5 V,  
12  
15  
0
CC  
12  
15  
V
= ±15 V,  
R = 100 Ω  
L
CC  
V
R
= ±15 V,  
= 100 Ω  
CC  
L
R
= 100 Ω  
L
3  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
f Frequency MHz  
f Frequency MHz  
f Frequency MHz  
Figure 1  
Figure 2  
Figure 3  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
15  
21  
21  
R
= 430 Ω  
R
= 200 Ω  
R
= 200 Ω  
F
F
F
18  
15  
12  
9
18  
15  
12  
9
12  
9
R
= 560 Ω  
F
R
= 430 Ω  
F
R
= 750 Ω  
F
R
= 750 Ω  
F
R = 430 Ω  
F
R
= 750 Ω  
F
6
3
6
6
G = 4,  
G = 8,  
G = 8,  
V
= ±5 V,  
0
CC  
V
R
= ±15 V,  
= 100 Ω  
CC  
L
3
0
V
= ±5 V,  
3
0
CC  
R
= 100 Ω  
L
R
= 100 Ω  
L
3  
0.1  
10  
100  
1000  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
f Frequency MHz  
f Frequency MHz  
f Frequency MHz  
Figure 4  
Figure 5  
Figure 6  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
8
3
2
R
= 560 Ω  
R
= 750 Ω  
F
F
R
= 750 Ω  
F
7
6
5
4
1
0
0
R
= 910 Ω  
= 1.1 kΩ  
F
R
= 1.1 kΩ  
F
R
= 1 kΩ  
F
1  
3  
R
F
R
= 1 kΩ  
F
R
= 750 Ω  
F
2  
3  
4  
6  
3
2
1
0
G = 1,  
G = 1,  
V
= ±15 V,  
CC  
= 100 Ω  
9  
G = 2,  
V
= ±5 V,  
CC  
R
L
V
= ±5 V,  
5  
6  
CC  
R
= 100 Ω  
L
R
= 100 Ω  
L
12  
0.1  
10  
100  
1000  
0.1  
1
10  
100  
1000  
1
0.1  
1
100  
1000  
10  
f Frequency MHz  
f Frequency MHz  
f Frequency MHz  
Figure 7  
Figure 8  
Figure 9  
6
www.ti.com  
THS3112  
THS3115  
SLOS385 SEPTEMBER 2001  
TYPICAL CHARACTERISTICS  
GAIN AND PHASE  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
15  
12  
9
9
15  
R
= 430 Ω  
F
R
= 560 Ω  
R
= 430 Ω  
F
F
6
3
12  
R
= 560 Ω  
R
= 560 Ω  
F
F
R
= 1 kΩ  
F
9
6
3
R
= 750 Ω  
F
R = 750 Ω  
F
R
= 750 Ω  
F
R
= 1 kΩ  
F
R
= 1 kΩ  
F
6
0
3  
6  
9  
3
G = 4,  
G = 4,  
G = 2,  
0
V
= ±15 V,  
= 100 Ω  
0
CC  
V
= ±15 V,  
= 100 Ω  
V
= ±15 V,  
= 100 Ω  
CC  
CC  
R
L
R
R
L
L
3  
0.1  
3  
0.1  
10  
100  
1000  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
1
f Frequency MHz  
f Frequency MHz  
f Frequency MHz  
Figure 10  
Figure 11  
Figure 12  
SMALL SIGNAL CLOSED LOOP  
NONINVERTING GAIN  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
21  
21  
20  
R
= 200 Ω  
R
= 200 Ω  
F
F
R
= 250 Ω  
F
R
= 560 Ω  
F
18  
15  
12  
18  
15  
15  
10  
5
R
= 750 Ω  
R
= 430 Ω  
= 750 Ω  
F
F
R = 750 Ω  
F
R
= 430 Ω  
F
R
F
12  
9
R
= 1 kΩ  
F
9
6
3
0
0
G = 8,  
6
3
0
5  
G = 8,  
V
= ±5 V,  
CC  
V
R
= ±15 V,  
= 100 Ω  
CC  
L
R
= 100 Ω  
L
10  
15  
V
R
= ±5 V,  
CC  
= 100 Ω  
L
0.1  
10  
100  
1000  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
f Frequency MHz  
f Frequency MHz  
f Frequency MHz  
Figure 13  
Figure 14  
Figure 15  
SMALL SIGNAL CLOSED LOOP  
NONINVERTING GAIN  
vs  
SMALL SIGNAL CLOSED LOOP  
SMALL SIGNAL CLOSED LOOP  
INVERTING GAIN  
vs  
INVERTING GAIN  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
21  
18  
15  
12  
9
21  
21  
R
= 430 Ω  
18  
15  
12  
9
18  
15  
12  
9
F
R
= 430 Ω  
R
= 200 Ω  
F
F
R
= 430 Ω  
F
R
= 750 Ω  
F
R
= 560 Ω  
F
R
= 560 Ω  
F
6
6
6
R
= 750 Ω  
F
R
= 1 kΩ  
3
3
3
F
0
0
0
3  
3  
3  
R
= 750 Ω  
= ±5 V,  
F
6  
9  
6  
6  
9  
12  
15  
9  
V
R
= ±15 V,  
= 100 Ω  
CC  
L
V
R
= ±5 V,  
= 100 Ω  
CC  
L
V
R
CC  
12  
15  
12  
= 100 Ω  
L
15  
10  
100  
1000  
10  
100  
1000  
10  
100  
1000  
f Frequency MHz  
f Frequency MHz  
f Frequency MHz  
Figure 16  
Figure 17  
Figure 18  
7
www.ti.com  
THS3112  
THS3115  
SLOS385 SEPTEMBER 2001  
TYPICAL CHARACTERISTICS  
HARMONIC DISTORTION  
SMALL AND LARGE SIGNAL OUTPUT  
vs  
SMALL AND LARGE SIGNAL OUTPUT  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
18  
20  
40  
60  
80  
18  
V
R
= ±5 V, G = 2  
V
= ±15 V, G = 2  
G = 2,  
2nd Harmonic  
CC  
CC  
4 V  
4 V  
PP  
PP  
= 680 , R = 100 Ω  
R
= 680 , R = 100 Ω  
R
R
V
= 680 ,  
100 ,  
F
L
F
L
F
L
12  
6
12  
= ±5 V,  
CC  
2 V  
PP  
1.125 V  
2 V  
V
= 2 V  
PP  
O
PP  
6
0
PP  
1.125 V  
PP  
3rd Harmonic  
0
0.711 V  
PP  
PP  
0.711 V  
PP  
6  
6  
0.4 V  
0.4 V  
12  
18  
24  
PP  
12  
18  
24  
100  
120  
4th Harmonic  
10  
0.125 V  
PP  
5th Harmonic  
0.1  
0.125 V  
1
PP  
1
100  
0.1  
1
10  
100  
1000  
0.1  
10  
100  
1000  
f Frequency MHz  
f Frequency MHz  
f Frequency MHz  
Figure 19  
Figure 20  
Figure 21  
HARMONIC DISTORTION  
HARMONIC DISTORTION  
vs  
HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
PEAK-TO-PEAK OUTPUT VOLTAGE  
PEAK-TO-PEAK OUTPUT VOLTAGE  
70  
20  
40  
60  
80  
10  
G = 2,  
2nd Harmonic  
G = 2,  
R
R
V
= 680 ,  
100 ,  
F
L
2nd Harmonic  
R
R
V
= 680 ,  
3rd Harmonic  
5th Harmonic  
F
L
100 ,  
= ±5 V,  
= ±15 V,  
CC  
30  
50  
70  
V
= 2 V  
CC  
80  
90  
O(PP)  
f = 1MHz  
3rd Harmonic  
3rd Harmonic  
2nd Harmonic  
4th Harmonic  
G = 2,  
F
100  
110  
R
R
= 680 ,  
100 ,  
100  
120  
90  
4th Harmonic  
L
V
= ±15 V,  
CC  
5th Harmonic  
0.1 1  
5th Harmonic  
f = 1MHz  
4th Harmonic  
110  
10  
100  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
9
V
Peak-to-Peak Output Voltage V  
f Frequency MHz  
V
Peak-to-Peak Output Voltage V  
PP  
PP  
Figure 22  
Figure 23  
Figure 24  
POWER SUPPLY REJECTION RATIO  
VOLTAGE NOISE AND CURRENT NOISE  
vs  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
70  
80  
100  
G = 2,  
V
T
A
= ±5 V to ±15 V  
G = 2,  
R
R
CC  
= 25°C  
R
R
= 100 ,  
= 680 Ω  
L
F
70  
60  
50  
40  
30  
20  
10  
0
100 ,  
= 1 kΩ  
L
F
60  
50  
40  
30  
20  
PSRR ±15 V  
I
n–  
V
= ±15 V  
CC  
PSRR ±5 V  
V
= ±5 V  
CC  
I
10  
n+  
V
n
10  
0
1
0.1  
1
10  
100  
0.1  
1
10  
100  
10  
100  
1 K  
10 K  
100 K  
f Frequency MHz  
f Frequency MHz  
f Frequency Hz  
Figure 25  
Figure 26  
Figure 27  
8
www.ti.com  
THS3112  
THS3115  
SLOS385 SEPTEMBER 2001  
TYPICAL CHARACTERISTICS  
CROSSTALK  
vs  
OUTPUT IMPEDANCE  
vs  
SLEW RATE  
vs  
FREQUENCY  
FREQUENCY  
OUTPUT VOLTAGE STEP  
100  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
0
G = 2  
G = 2,  
= ±5 V to ±15 V,  
= 100 ,  
V
= ±5 V to ±15 V,  
CC  
R = 1 kΩ  
F
10  
R
R
T
= 680 ,  
= 100 ,  
= 25°C  
V
R
R
F
L
A
CC  
L
F
20  
30  
40  
50  
60  
70  
10  
= 680 Ω  
V
= ±15 V  
CC  
1
0.1  
V
= ±5 V  
CC  
80  
90  
0.01  
100  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
0
2
4
6
8
10  
12  
f Frequency MHz  
f Frequency MHz  
V
Output Voltage Step V  
O
Figure 28  
Figure 29  
Figure 30  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET VOLTAGE  
vs  
INPUT BIAS CURRENT  
vs  
FREE-AIR TEMPERATURE  
COMMON-MODE INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
10  
9
8
7
6
5
4
0
V
T
= ±15 V,  
V
V
R
= ±15 V,  
= 0 V,  
CC  
= 25°C,  
CC  
CM  
A
1  
V
= ±15 V, I  
IB–  
CC  
5
R
= 100 Ω  
= 100 Ω  
L
L
2  
3  
4  
0
5  
V
= ±5 V, I  
IB–  
CC  
3
2
1
0
V
= ±5 V, I  
IB+  
CC  
10  
15  
5  
6  
V
= ±15 V, I  
CC  
IB+  
15  
10  
5  
0
5
10  
15  
40  
20  
0
20  
40  
60  
80 85  
40  
20  
0
20  
40  
60  
80 85  
V
Common-Mode Input Voltage V  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
CM  
F
Figure 31  
Figure 32  
Figure 33  
OUTPUT VOLTAGE HEADROOM  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
OUTPUT CURRENT  
5
5
15  
|V | |V  
CC  
|
O
4.5  
4.5  
V
T
A
= ±15 V and ±5 V  
CC  
= 25°C  
4
4
13.5  
G = 4,  
3.5  
3.5  
R
= 750 Ω  
F
3
2.5  
2
3
2.5  
12  
2
1.5  
1.5  
1
10.5  
V
R
T
A
= ±5 V,  
= 750 Ω  
= 25°C  
V
R
T
A
= ±15 V,  
CC  
CC  
F
1
= 750 Ω  
F
0.5  
0.5  
0
= 25°C  
9
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
I
O
Output Current |mA|  
I
O
Output Current mA  
I
O
Output Current mA  
Figure 34  
Figure 35  
Figure 36  
9
www.ti.com  
THS3112  
THS3115  
SLOS385 SEPTEMBER 2001  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT (PER CHANNEL)  
vs  
SUPPLY VOLTAGE  
SHUTDOWN RESPONSE  
16  
14  
5
4
3
2
1
0
V = ±15 V  
CC  
G = 8  
T
A
= 85°C  
R
R
= 330 Ω  
= 100 Ω  
F
F
12  
10  
V = 0.5 VDC  
I
T
A
= 25°C  
8
6
4
T
A
= 40°C  
2
1.5  
1
0.5  
0
2
0
0
2.5  
5
7.5  
10  
12.5  
15  
0
1
2
3
4
5
6
7
8
9
10  
V
Supply Voltage ±V  
CC  
t Time ns  
Figure 38  
Figure 37  
10  
www.ti.com  
THS3112  
THS3115  
SLOS385 SEPTEMBER 2001  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°ā8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
11  
www.ti.com  
THS3112  
THS3115  
SLOS385 SEPTEMBER 2001  
MECHANICAL INFORMATION  
DDA (SPDSOG8)  
Power PADt PLASTIC SMALL-OUTLINE  
0,49  
0,35  
M
0,10  
1,27  
8
5
Thermal Pad  
(See Note D)  
0,20 NOM  
3,99  
3,81  
6,20  
5,84  
Gage Plane  
0,25  
1
4
4,98  
4,80  
0°8°  
0,89  
0,41  
1,68 MAX  
Seating Plane  
0,10  
1,55  
1,40  
0,13  
0,03  
4202561/A 02/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.  
This pad is electrically and thermally connected to the backside of the die and possibly selected leads.  
PowerPAD is a trademark of Texas Instruments.  
12  
www.ti.com  
THS3112  
THS3115  
SLOS385 SEPTEMBER 2001  
MECHANICAL DATA  
PWP (R-PDSO-G**)  
PowerPAD PLASTIC SMALL-OUTLINE  
20 PINS SHOWN  
0,30  
0,19  
0,65  
20  
M
0,10  
11  
Thermal Pad  
(See Note D)  
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
1
10  
0,25  
A
0°ā8°  
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
28  
DIM  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4073225/F 10/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusions.  
D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.  
This pad is electrically and thermally connected to the backside of the die and possibly selected leads.  
E. Falls within JEDEC MO-153  
PowerPAD is a trademark of Texas Instruments Incorporated.  
13  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TIs terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TIs standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding thirdparty products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2002, Texas Instruments Incorporated  

相关型号:

THS3115CD

Dual, Low-Noise, High Output Current, 110-MHz Amplifier with Shutdown 14-SOIC 0 to 70
TI

THS3115CDG4

1 CHANNEL, VIDEO AMPLIFIER, PDSO14, GREEN, PLASITC, MS-012AB, SOIC-14
TI

THS3115CDR

1 CHANNEL, VIDEO AMPLIFIER, PDSO14, GREEN, PLASITC, MS-012AB, SOIC-14
TI

THS3115CDRG4

1 CHANNEL, VIDEO AMPLIFIER, PDSO14, GREEN, PLASITC, MS-012AB, SOIC-14
TI

THS3115CPWP

具有关断状态的双路低噪声高输出电流的 110MHz 放大器 | PWP | 14 | 0 to 70
TI

THS3115CPWPR

具有关断状态的双路低噪声高输出电流的 110MHz 放大器 | PWP | 14 | 0 to 70
TI

THS3115CPWPRG4

1 CHANNEL, VIDEO AMPLIFIER, PDSO14, GREEN, PLASTIC, HTSSOP-14
TI

THS3115ID

具有关断状态的双路低噪声高输出电流的 110MHz 放大器 | D | 14 | -40 to 85
TI

THS3115IDG4

1 CHANNEL, VIDEO AMPLIFIER, PDSO14, GREEN, PLASITC, MS-012AB, SOIC-14
TI

THS3115IPWP

具有关断状态的双路低噪声高输出电流的 110MHz 放大器 | PWP | 14 | -40 to 85
TI

THS3115IPWPR

具有关断状态的双路低噪声高输出电流的 110MHz 放大器 | PWP | 14 | -40 to 85
TI

THS3120

LOW-NOISE, HIGH-OUTPUT DRIVE, CURRENT-FEEDBACK, OPERATIONAL AMPLIFIERS
TI