PFE1300-48-054NA [BEL]

1300W,48VDC OUTPUT;
PFE1300-48-054NA
型号: PFE1300-48-054NA
厂家: BEL FUSE INC.    BEL FUSE INC.
描述:

1300W,48VDC OUTPUT

输出元件
文件: 总23页 (文件大小:1813K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The PFE1300-48-054NA is a 1300 Watt AC to DC power-factor-  
corrected (PFC) power supply that converts standard AC mains  
power into a main output of 48 VDC for powering intermediate bus  
architectures (IBA) in high performance and reliability servers,  
routers, and network switches. The PFE1300-48-054NA meets  
international safety standards and displays the CE-Mark for the  
European Low Voltage Directive (LVD).  
Best-in-class, “Platinum” efficiency  
Wide input voltage range: 90-264 VAC  
High Power Density design: 30.25 W/in3  
Small form factor: 54.5 x 40.0 x 321.5 mm  
AC input with power factor correction  
lways-On 16.5 W programmable standby output (3.3/5 V)  
Hot-plug capable  
Parallel operation with active digital current sharing  
I2C communication interface for control, programming and  
monitoring with PMBus® protocol  
Over temperature, output over voltage and over current protection  
256 Bytes of EEPROM for user information  
2 Status LEDs: AC OK and DC OK with fault signaling  
High performance servers  
Routers  
Switches  
Disclaimer: PMBus is a registered trademark of SMIF, Inc.  
2
PFE1300-48-054NA  
PFE  
1300  
-
48  
-
054  
N
A
Product Family  
PFE Front-Ends  
Power Level  
1300 W  
V1 Output  
Width  
54 mm  
Airflow  
N: Normal  
Input  
A: AC  
Dash  
Dash  
48 V  
*PFE1300-48-054NAS407 has black front panel with white text  
The PFE1300-48-054NA AC/DC power supply is combination of analog and DSP control, highly efficient front-end power supply.  
It incorporates resonance-soft-switching technology to reduce component stresses, providing increased system reliability and very high  
efficiency. With a wide input operational voltage range and minimal linear derating of output power with input voltage and temperature, the  
PFE1300-48-054NA maximizes power availability in demanding server, network, and other high availability applications. The supply is fan  
cooled and ideally suited for integration with a matching airflow paths.  
The PFC stage guarantee best efficiency and unity power factor over a wide operating range. The DC/DC stage uses soft switching  
resonant techniques in conjunction with synchronous rectification. An active OR-ing device on the output ensures no reverse load current  
and renders the supply ideally suited for operation in redundant power systems.  
The always-on standby output, with selectable voltage level (3.3/5.0 Volts), provides power to external power distribution and management  
controllers. It is protected with an active OR-ing device for maximum reliability.  
Status information is provided with front-panel LEDs. In addition, the power supply can be controlled and the fan speed set via the I2C bus.  
The I2C bus allows full monitoring of the supply, including input and output voltage, current, power, and inside temperatures.  
Cooling is managed by a fan controlled by the DSP controller. The fan speed is adjusted automatically depending on the actual power  
demand and supply temperature and can be overridden through the I2C bus.  
Figure 1. PFE1300-48-054NA Block Diagram  
Stresses in excess of the absolute maximum ratings may cause performance degradation, adversely affect long-term  
reliability, and cause permanent damage to the supply.  
PARAMETER  
Vi max Maximum Input  
DESCRIPTION / CONDITION  
MIN  
NOM  
MAX  
UNIT  
Continuous  
264  
VAC  
tech.support@psbel.com  
3
PFE1300-48-054NA  
General Condition: TA = 0… 45 °C unless otherwise noted.  
PARAMETER  
DESCRIPTION / CONDITION  
MIN  
100  
90  
NOM  
MAX  
240  
UNIT  
VAC  
VAC  
Vi nom  
Vi  
Nominal Input Voltage  
230  
Input Voltage Ranges  
Normal operating (Vi min to Vi max  
For North America Application:  
)
264  
Derated output (1286 to 1032 W)  
(see Figure 7A and Figure 26A)  
Vi red  
Derated Input Voltage Range  
90  
145  
VAC  
For Europe Application Power must be limited to:  
Power Limit (1286 to 893 W)  
(see Figure 7B and Figure 26B)  
Ii max  
Ii p  
Max Input Current  
Inrush Current Limitation  
Input Frequency  
Vin =110 VAC / 60 Hz, Full Load  
12  
50  
64  
Arms  
Ap  
Vi min to Vi max, TNTC = 25°C (Figure 4)  
Fi  
47  
50/60  
0.95  
Hz  
PF  
Vi on  
Vi off  
Power Factor  
Vi nom, 50 Hz, > 0.2 I1 nom  
Ramping up  
W/VA  
VAC  
VAC  
Turn-on Input Voltage1)  
Turn-off Input Voltage1)  
85  
75  
90  
83  
Ramping down  
Vi nom, 0.1Ix nom, Vx nom, TA = 25°C  
Vi nom, 0.2Ix nom, Vx nom, TA = 25°C  
Vi nom, 0.5Ix nom, Vx nom, TA = 25°C  
Vi nom, Ix nom, Vx nom, TA = 25°C  
87.0  
92.0  
94.5  
94.0  
η
Efficiency without Fan  
%
After last AC zero point, V1 > 42 V, VSB within  
regulation, Vi = 230 VAC, Px nom  
Thold  
Hold-up Time  
10  
mS  
1) The Front-End is provided with a minimum hysteresis of 3 V during turn-on and turn-off within the ranges.  
4.1 INPUT FUSE  
Quick-acting 16 A input fuses (5 x 20 mm) in series with L line inside the power supply protect against severe defects. The fuses are not  
accessible from the outside and are therefore not serviceable parts.  
4.2 INRUSH CURRENT  
The AC-DC power supply exhibits an X-capacitance of only 3.2 μF, resulting in a low and short peak current, when the supply is  
connected to the mains. The internal bulk capacitor will be charged through an NTC which will limit the inrush current.  
NOTE: Do not repeat plug-in / out operations within a short time, or else the internal in-rush current limiting device (NTC) may not sufficiently cool  
down and excessive inrush current or component failure(s) may result.  
4.3 INPUT UNDER-VOLTAGE  
If the sinusoidal input voltage stays below the input under voltage lockout threshold Vi on, the supply will be inhibited. Once the input  
voltage returns within the normal operating range, the supply will return to normal operation again.  
4.4 POWER FACTOR CORRECTION  
Power factor correction (PFC) is achieved by controlling the input current waveform synchronously with the input voltage. An analog  
controller is implemented giving outstanding PFC results over a wide input voltage and load ranges. The input current will follow the  
shape of the input voltage.  
4.5 EFFICIENCY  
High efficiency (see Figure 2) is achieved by using state-of-the-art silicon power devices in conjunction with soft-transition topologies  
minimizing switching losses. Synchronous rectifiers on the output reduce the losses in the high current output path. The speed of the fan  
is digitally controlled to keep all components at an optimal operating temperature regardless of the ambient temperature and load  
conditions.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00618_AD  
4
PFE1300-48-054NA  
Figure 2. Efficiency vs. Load Current  
Figure 3. Power Factor vs. Load Current  
Figure 4. Inrush Current, Vin = 230 VAC, 90°  
CH4: Vin (200 V/div), CH3: Iin (20 A/div)  
tech.support@psbel.com  
5
PFE1300-48-054NA  
General Condition: Ta = 0 … +45 °C unless otherwise noted.  
PARAMETER  
DESCRIPTION / CONDITION  
MIN  
NOM  
MAX  
UNIT  
Main Output V1  
V1 nom  
V1 set  
Nominal Output Voltage  
48.0  
VDC  
% V1 nom  
% V1 nom  
W
0.5 I1 nom, Tamb = 25 °C  
Output Setpoint Accuracy  
Total Regulation  
-0.5  
-1  
+0.5  
+1  
dV1 tot  
P1 nom  
I1 nom  
Vi min to Vi max, 0 to 100% I1 nom, Ta min to Ta max  
V1 = 48 VDC  
Nominal Output Power  
Nominal Output Current  
Output Ripple Voltage  
Load Regulation  
1286  
26.8  
V1 = 48 VDC  
ADC  
v1 pp  
V1 nom, I1 nom, 20 MHz BW (See Section 5.1)  
Vi = Vi nom, 0 - 100 % I1 nom  
600  
mVpp  
mV  
dV1 Load  
dV1 Line  
480  
480  
Line Regulation  
Vi =Vi min…Vi max  
mV  
Vi > 140 VAC, Ta < 45°C  
28  
29.5  
ADC  
140 VAC > Vi > 90 VAC, Ta < 45°C  
For North America Application (see Figure 7A)  
For Europe Application (see Figure 7B)  
Deviation from I1 tot / N, I1 > 10%  
Current Limitation  
PFE1300-48-054NA  
I1 max  
dIshare  
dVdyn  
Current Sharing  
-3  
+3  
A
V
ΔI1 = 50% I1 nom, I1 = 5 - 100% I1 nom, 50 Hz -1 kHz  
dI1/dt = 1A/μs, recovery within 1% of V1 nom 1  
ΔI1 = 50% I1 nom, I1 = 5 - 100% I1 nom, 50 Hz -1 kHz  
dI1/dt = 1A/μs, recovery within 1% of V1 nom 1  
Dynamic Load Regulation  
-2.4  
2.4  
Trec  
Recovery Time  
20  
mS  
tAC V1  
tV1 rise  
CLoad  
Start-up Time from AC  
Rise Time  
V1 = 43.2 VDC  
2
sec  
mS  
μF  
V1 = 10…90% V1 nom  
Ta = 25°C, CR mode  
10  
200  
Capacitive Loading  
10000  
Standby Output VSB  
VSB nom Nominal Output Voltage  
VSB_SEL = 1  
3.3  
5.0  
VDC  
VDC  
0.5 ISB nom, Tamb = 25°C  
VSB_SEL = 0  
VSB set  
dVSB tot  
PSB nom  
Output Setpoint Accuracy  
Total Regulation  
VSB_SEL = 0 / 1  
-0.5  
-3  
+0.5  
+3  
%V1nom  
%VSBnom  
W
Vi min to Vi max, 0 to 100% ISB nom, Ta min to Ta max  
VSB = 3.3 VDC , normal airflow  
16.5  
16.5  
5
Nominal Output Power  
VSB = 5.0 VDC, normal airflow  
W
VSB = 3.3 VDC, normal airflow  
ADC  
ADC  
mVpp  
ISB nom  
VSB pp  
dVSB  
Nominal Output Current  
Output Ripple Voltage  
Droop  
VSB = 5.0 VDC, normal airflow  
3.3  
VSB nom, ISB nom, 20 MHz BW (See Section 5.1)  
100  
VSB_SEL = 1  
0 - 100 % ISB nom  
40  
mV  
VSB_SEL = 0  
26.4  
VSB_SEL = 1, normal airflow  
VSB_SEL = 0, normal airflow  
5.25  
3.45  
-5  
6
4.3  
5
ADC  
ADC  
%VSBnom  
μs  
ISB max  
Current Limitation  
dVSBdyn  
Trec  
Dynamic Load Regulation  
Recovery Time  
ΔISB = 50% ISB nom, ISB = 5 … 100% ISB nom  
dIo/dt = 0.5 A/μs, recovery within 2% of Vsb nom  
,
250  
2
tAC VSB  
tVSB rise  
CLoad  
Start-up Time from AC  
Rise Time  
VSB = 90% VSB nom  
sec  
VSB = 10…90% VSB nom (no capacitive loading)  
Tamb = 25°C, CR mode  
4
20  
mS  
μF  
Capacitive Loading  
10000  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00618_AD  
6
PFE1300-48-054NA  
5.1 OUTPUT VOLTAGE RIPPLE  
Internal capacitance at the 48 V output (behind the OR-ing circuitry) is minimized to prevent disturbances during hot plug. In order to  
provide low output ripple voltage in the application, external capacitors should be added close to the power supply output.  
The setup of Figure 5 has been used to evaluate suitable capacitor types. The capacitor combinations of Table 1 and Table 2 should be  
used to reduce the output ripple voltage. The ripple voltage is measured with 20 MHz BWL, close to the external capacitors.  
Figure 5. Output Ripple Test Setup  
NOTE: Care must be taken when using ceramic capacitors with a total capacitance of 1 µF to 50 µF on output V1, due to their high quality factor  
the output ripple voltage may be increased in certain frequency ranges due to resonance effects.  
External capacitor V1  
1 Pc 10 µF / 63 V Electrolytic Capacitor  
1 pc 0.1 uF / 100 V ceramic capacitor  
dV1max  
550  
Unit  
mVpp  
mVpp  
1 Pc 82 µF / 63 V / Conductive Polyer/ø10 x 12.5 mm  
400  
Table 1. Suitable Capacitors for V1  
External capacitor VSB  
dV1max  
Unit  
1 Pc 10 µF / 25 V MLCC  
1 pc 0.1 uF / 25 V MLCC  
2 Pcs 10 µF / 25 V MLCC  
1 pc 0.1 uF / 25 V MLCC  
80  
mVpp  
40  
mVpp  
Table 2. Suitable capacitors for VSB  
The output ripple voltage on VSB is influenced by the main output V1. Evaluating VSB output ripple must be done when maximum load is  
applied to V1.  
PARAMETER  
DESCRIPTION / CONDITION  
MIN  
NOM  
MAX  
UNIT  
A
F
Input Fuses L  
Not user accessible, quick-acting (F)  
16  
V1 OV  
tOV V1  
VSB OV  
tOV VSB  
OV Threshold V1  
57  
59.5  
1
VDC  
ms  
OV Latch Off Time V1  
OV Threshold VSB  
110  
28  
120  
% VSB  
OV Latch Off Time VSB  
1
ms  
Vi > 145 VAC, Ta < 45°C  
29.5  
ADC  
145 VAC > Vi > 90 VAC, Ta < 45°C  
For North America Application (see Figure 7A)  
For Europe Application (see Figure 7B)  
Current Limit V1  
PFE1300-48-054NA  
IV1 lim  
IV1 SC  
tV1 SC  
tV1 SC off  
TSD  
Max Short Circuit Current V1  
Short Circuit Regulation Time  
Short Circuit Latch Off Time  
Over Temperature On Heat Sinks  
V1 < 3 V  
50  
2
A
V1 < 3 V, time until IV1 is limited to < IV1 sc  
Time to latch off when in short circuit  
Automatic shut-down  
ms  
ms  
°C  
200  
115  
100  
tech.support@psbel.com  
 
7
PFE1300-48-054NA  
6.1 OVERVOLTAGE PROTECTION  
The PFE front-ends provide a fixed threshold overvoltage (OV) protection implemented with a HW comparator. Once an OV condition  
has been triggered, the supply will shut down and latch the fault condition. The latch can be unlocked by disconnecting the supply from  
the AC mains or by toggling the PSON_L input.  
6.2 VSB UNDERVOLTAGE DETECTION  
Both main and standby outputs are monitored. LED and PWOK_H pin signal status change if the output voltage exceeds ±5% of its  
nominal voltage. Output undervoltage protection is provided on the standby output only. When VSB falls below 75% of its nominal voltage,  
the main output V1 is inhibited.  
6.3 CURRENT LIMITATION  
6.3.1 MAIN OUTPUT  
When main output runs in current limitation mode its output will turn OFF below 2V but will retry to recover every 1s interval. If  
current limitation mode is still present after the unit retry, output will continuously perform this routine until current is below the  
current limitation point. The supply will go through soft start every time it retry from current limitation mode.  
Figure 6. Current Limitation on V1 (Vi = 230 VAC)  
The main output current limitation will decrease if the ambient (inlet) temperature increases above 45°C or if the AC input voltage is  
too low (see Figure 7 A or B). Note that the actual current limitation on V1 will begin at a current level approximately 75 W higher  
than what is shown in Figure 7 A or B. (See also Chapter 9 Temperature and Fan Control for additional information.  
For European application, derating curve is different from North American application in low line condition as input current  
limitation for AC input connector is different.)  
A. North America  
Figure 7.Current on V1 vs. Vin and Ta for PFE1300-48-054NA  
(Refer to Safety Installation Instruction for details)  
B. Europe  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00618_AD  
 
8
PFE1300-48-054NA  
6.3.2 STANDBY OUTPUT  
The standby output exhibits a substantially rectangular output characteristic down to 0 V (no hiccup mode / latch off). If it runs in  
current limitation and its output voltage drops below the UV threshold, then the main output will be inhibited (standby remains on).  
The current limitation of the standby output is independent of the AC input voltage.  
Figure 8. Current Limitation on VSB  
5
4
3
2
VSB=3.3V  
1
0
VSB=5V  
0
2
4
6
8
Standby Output Current [A]  
Figure 9. Temperature Derating on VS  
PARAMETER  
DESCRIPTION / CONDITION  
Vi min Vi Vi max  
MIN  
-2.5  
-5  
NOM  
MAX  
+2.5  
5
UNIT  
%
%
Arms  
%
%
%
%
A
Vi mon  
Input RMS Voltage  
Ii > 4 Arms  
Ii mon  
Input RMS Current  
-0.3  
-7  
+0.3  
+7  
Ii 4 Arms  
Po > 260 W, Vi = Vi nom  
130 W < Po 260 W, Vi = Vi nom  
Pi mon  
V1 mon  
I1 mon  
True Input Power  
V1 Voltage  
-25  
-2  
+25  
+2  
I1 >10 A  
-2  
+2  
V1 Current  
-0.3  
-5  
+0.3  
+5  
I1 10 A  
Po > 260 W  
Po 260 W  
%
W
Po mon  
Total Output Power  
-13  
-0.1  
-0.2  
+13  
+0.1  
+0.2  
VSB mon  
ISB mon  
Standby Voltage  
Standby Current  
V
A
ISB ISB nom  
tech.support@psbel.com  
9
PFE1300-48-054NA  
8.1 ELECTRICAL CHARACTERISTICS  
PARAMETER  
DESCRIPTION / CONDITION  
MIN  
NOM  
MAX  
UNIT  
PSKILL_H / PSON_L / VSB_SEL / HOTSTANDBYEN_H Inputs  
VIL  
Input Low Level Voltage  
-0.2  
2.4  
0
0.8  
3.5  
1
V
V
VIH  
Input High Level Voltage  
IIL, H  
Maximum Input Sink or Source Current  
Internal Pull Up Resistor on PSKILL_H  
Internal Pull Up Resistor on PSON_L  
Internal Pull Up Resistor on VSB_SEL  
mA  
kΩ  
kΩ  
kΩ  
RpuPSKILL_H  
RpuPSON_L  
RpuVSB_SEL  
10  
10  
10  
Internal Pull Up Resistor on  
HOTSTANDBYEN_H  
kΩ  
RpuHOTSTANDBYEN_H  
10  
kΩ  
kΩ  
RLOW  
Resistance Pin to SGND for Low Level  
0
1
RHIGH  
Resistance Pin to SGND for High Level  
50  
PWOK_H Output  
VOL  
Output Low Level Voltage  
Isink < 4 mA  
0
0.4  
3.5  
V
V
VOH  
Output High Level Voltage  
Isource < 0.5 mA  
2.6  
kΩ  
RpuPWOK_H  
ACOK_H Output  
VOL  
Internal Pull Up Resistor on PWOK_H  
1
Output Low Level Voltage  
Isink < 2 mA  
0
0.4  
3.5  
V
V
VOH  
Output High Level Voltage  
Isource < 50 µA  
2.6  
kΩ  
RpuACOK_H  
Internal Pull Up Resistor on ACOK_H  
10  
SMB_ALERT_L Output  
Vext  
Maximum External Pull Up Voltage  
12  
0.4  
10  
V
V
VOL  
Output Low Level Voltage  
Isource < 4 mA  
0
IOH  
Maximum High Level Leakage Current  
Internal Pull Up Resistor on SMB_ALERT_L  
µA  
kΩ  
RpuSMB_ALERT_L  
None  
8.2 INTERFACING WITH SIGNALS  
All signal pins have protection diodes implemented to protect internal circuits. When the power supply is not powered, the protection  
devices start clamping at signal pin voltages exceeding ±0.5 V. Therefore all input signals should be driven only by an open  
collector/drain to prevent back feeding inputs when the power supply is switched off.  
If interconnecting of signal pins of several power supplies is required, then this should be done by decoupling with small signal  
schottky diodes as shown in examples in Figure 10 (except for SMB_ALERT_L, ISHARE and I2C pins). This will ensure the pin voltage  
is not affected by an unpowered power supply.  
SMB_ALERT_L pins can be interconnected without decoupling diodes, since these pins have no internal pull up resistor and use a  
15 V zener diode as protection device against positive voltage on pins.  
ISHARE pins must be interconnected without any additional components. This in-/output is disconnected from internal circuits when  
the power supply is switched off.  
PSU 1 PDU  
PSU 1 PDU  
3.3V  
3.3V  
PWOK  
VSB_SEL  
PSU 2  
PSU 2  
3.3V  
3.3V  
PWOK  
VSB_SEL  
Figure 10. Interconnection of Signal Pins  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00618_AD  
10  
PFE1300-48-054NA  
8.3 FRONT LEDs  
The front-end has 2 front LEDs showing the status of the supply. LED number one is green and indicates AC power is on or off, while  
LED number two is bi-colored: green and yellow, and indicates DC power presence or fault situations. For the status of the LEDs see  
Table 3 lists the different LED status.  
OPERATING CONDITION  
AC LED  
LED SIGNALING  
AC Line within range  
AC Line UV condition  
DC LED 1)  
Solid Green  
Off  
PSON_L High  
Blinking Yellow (1:1)  
Hot-Standby Mode  
Blinking Yellow/Green (1:2)  
V1 or VSB out of regulation  
Over temperature shutdown  
Output over voltage shutdown (V1 or VSB  
)
Solid Yellow  
Output over current shutdown (V1 or VSB  
Fan error (> 15%)  
)
Over temperature warning  
Blinking Yellow/Green (2:1)  
Blinking Yellow/Green (1:1)  
Minor fan regulation error (> 5%, < 15%)  
1)  
The order of the criteria in the table corresponds to the testing precedence in the controller.  
Table 3. LED Status  
8.4 PRESENT_L  
This signaling pin is recessed within the connector and will contact only once all other connector contacts are closed. This active-low  
pin is used to indicate to a power distribution unit controller that a supply is plugged in. The maximum current on PRESENT_L pin  
should not exceed 10 mA.  
PFE  
PDU  
V1  
VSB  
0V  
PRESENT_L  
Figure 11. PRESENT_L Signal Pin  
8.5 PSKILL_H INPUT  
The PSKILL_H input is active-high and is located on a recessed pin on the connector and is used to disconnect the main output as  
soon as the power supply is being plugged out. This pin should be connected to SGND in the power distribution unit. The standby  
output will remain on regardless of the PSKILL_H input state.  
tech.support@psbel.com  
 
11  
PFE1300-48-054NA  
8.6 AC TURN-ON / DROP-OUTS / ACOK_H  
The power supply will automatically turn-on when connected to the AC line under the condition that the PSON_L signal is pulled low  
and the AC line is within range. The ACOK_H signal is active-high. The timing diagram is shown in Figure 12 and referenced in Table 4.  
OPERATING CONDITION  
MIN MAX UNIT  
tAC VSB  
AC Line to 90% VVSB  
2
2
sec  
sec  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
tAC V1  
AC Line to 90% V1  
AC  
Input  
tACOK_H on1  
tACOK_H on2  
tACOK_H off  
tVSB V1 del  
tV1 holdup  
tVSB holdup  
tACOK_H V1  
tACOK_H VSB  
tV1 off  
ACOK_H signal on delay (start-up)  
ACOK_H signal on delay (dips)  
ACOK_H signal off delay  
VSB to V1 delay  
500  
100  
5
VSB  
tV1 rise  
10  
10  
20  
7
500  
tVSB rise  
tAC VSB  
Effective V1 holdup time  
Effective VSB holdup time  
ACOK_H to V1 holdup  
ACOK_H to VSB holdup  
Minimum V1 off time  
V1  
tVSB V1 del  
tAC V1  
PSON_L  
ACOK_H  
PWOK_H  
tACOK_H on1  
15  
tPWOK_H del  
2000  
2000  
tVSB off  
Minimum VSB off time  
Figure 12. AC Turn-on Timing  
Table 4. AC Turn-on / Dip Timing  
AC  
Input  
AC  
Input  
VSB  
tVSB holdup  
tVSB off  
tV1 holdup  
VSB  
tV1 off  
V1  
tV1 holdup  
tV1 off  
tACOK_H on2  
V1  
tACOK_H V1  
tACOK_H off  
tACOK_H off  
PSON_L  
ACOK_H  
PWOK_H  
PSON_L  
ACOK_H  
PWOK_H  
tACOK_H VSB  
tPWOK_H warn  
tPWOK_H  
warn  
Figure 13. AC Short Dips (below 50 ms)  
Figure 14. AC Long Dips (above 50 ms)  
8.7 PSON_L INPUT  
The PSON_L is an internally pulled-up (3.3 V) input signal to enable/disable the main output V1 of the front-end. This active-low pin is  
also used to clear any latched fault condition. The timing diagram is given in Figure 15 and the parameters in Table 5.  
OPERATING CONDITION  
tPSON_L V1on  
MIN  
10  
MAX  
250  
UNIT  
ms  
PSON_L to V1 delay (on)  
PSON_L to V1 delay (off)  
PSON_L minimum High time  
tPSON_L V1off  
10  
250  
ms  
tPSON_L H min  
10  
ms  
Table 5. PSON_L Timing  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00618_AD  
 
 
12  
PFE1300-48-054NA  
8.8 PWOK_H SIGNAL  
The PWOK_H is an open drain output with an internal pull-up to 3.3 V indicating whether both VSB is within regulation and V1 is above  
43.2V. The timing diagram is shown in Figure 12 / Figure 15 and referenced in the Table 6.  
OPERATING CONDITION  
MIN MAX UNIT  
AC  
Input  
tPWOK_H del PWOK_H to V1 delay (on)  
100  
500  
ms  
PWOK_H to V1 delay (off) caused  
by:  
PSKILL_H  
VSB  
0
1
3
ms  
ms  
Fan Failure, OT, PSON_L with  
minimum load  
ACOK_H  
100  
tV1 rise  
tPSON_L V1off  
tPSON_L V1on  
V1  
*)  
tPWOK_H warn  
1
1
30  
30  
20  
0
ms  
ms  
ms  
tPSON_L H min  
PSON_L  
ACOK_H  
PWOK_H  
UV and OV on VSB  
OC on V1  
1
tPWOK_H del  
tPWOK_H warn  
V1 short  
-20  
-50  
OV on V1  
0
ms  
*) A positive value means a warning time, a negative value a delay (after  
fact).  
*) Test must be done with minimum load of 0.5A load on V1 and no  
capacitive load  
Figure 15. PSON_L turn-on/off Timing  
Table 6. PWOK_H Timing  
8.9 CURRENT SHARE  
The PFE front-ends have an active current share scheme implemented for V1. All the ISHARE current share pins need to be  
interconnected in order to activate the sharing function. If a supply has an internal fault or is not turned on, it will disconnect its  
ISHARE pin from the share bus. This will prevent dragging the output down (or up) in such cases.  
The current share function uses a digital bi-directional data exchange on a recessive bus configuration to transmit and receive current  
share information. The controller implements a Master/Slave current share function. The power supply providing the largest current  
among the group is automatically the Master. The other supplies will operate as Slaves and increase their output current to a value  
close to the Master by slightly increasing their output voltage. The voltage increase is limited to +1V.  
The standby output uses a passive current share method (droop output voltage characteristic).  
8.10 SENSE INPUTS  
Both main and standby outputs have sense lines implemented to compensate for voltage drop on load wires. The maximum allowed  
voltage drop is 200 mV on the positive rail and 100 mV on the PGND rail.  
With open sense inputs the main output voltage will rise by 800 mV and the standby output by 50 mV. Therefore if not used, these  
inputs should be connected to the power output and PGND close to the power supply connector. The sense inputs are protected  
against short circuit. In this case the power supply will shut down.  
8.11 HOT-STANDBY OPERATION  
The hot-standby operation is an operating mode allowing to further increase efficiency at light load conditions in a redundant power  
supply system. Under specific conditions one of the power supplies is allowed to disable its DC/DC stage. This will save the power  
losses associated with this power supply and at the same time the other power supply will operate in a load range having a better  
efficiency. In order to enable the hot standby operation, the HOTSTANDBYEN_H and the ISHARE pins need to be interconnected. A  
power supply will only be allowed to enter the hot-standby mode, when the HOTSTANDBYEN_H pin is high, the load current is low  
(see Figure 16) and the supply was allowed to enter the hot-standby mode by the system controller via the appropriate I2C command  
(by default disabled). The system controller needs to ensure that only one of the power supplies is allowed to enter the hot-standby  
mode.  
If a power supply is in a fault condition, it will pull low its active-high HOTSTANDBYEN_H pin which indicates to the other power  
supply that it is not allowed to enter the hot-standby mode or that it needs to return to normal operation should it already have been in  
the hot-standby mode.  
NOTE: The system controller needs to ensure that only one of the power supplies is allowed to enter the hot-standby model.  
Figure 17 shows the achievable power loss savings when using the hot-standby mode operation. A total power loss reduction of 22%  
is achievable.  
tech.support@psbel.com  
 
13  
PFE1300-48-054NA  
Figure 16. Hot-standby enable/disable current thresholds  
Figure 17. PSU power losses with/without hot-standby mode  
PSU 1  
VSB  
PSU 2  
VSB  
CS  
3 x 3k3  
CS  
HOTSTANDBYEN  
PRESENT_L  
HOTSTANDBYEN  
PRESENT_L  
Figure 18. Recommended Hot-standby Configuration  
In order to prevent voltage dips when the active power supply is unplugged while the other is in hot-standby mode, it is strongly  
recommended to add the external circuit as shown in Figure 18. If the PRESENT_L pin status needs also to be read by the system  
controller, it is recommended to exchange the bipolar transistors with small signal MOS transistors or with digital transistors.  
8.12 I2C / SMBUS COMMUNICATION  
The interface driver in the PFE supply is referenced to the V1 Return. The PFE supply is a communication Slave device only; it never  
initiates messages on the I2C/SMBus by itself. The communication bus voltage and timing is defined in Table 7 further characterized  
through:  
3.3/5V  
There are no internal pull-up resistors  
The SDA/SCL IOs are 3.3 / 5 V tolerant  
Full SMBus clock speed of 100 kbps  
Clock stretching limited to 1 ms  
SCL low time-out of > 25 ms with recovery  
within 10 ms  
RX  
TX  
Rpull-up  
SDA/SCL  
Recognizes any time Start/Stop bus conditions  
Figure 19. Physical layer of communication interface  
The SMB_ALERT_L signal indicates that the power supply is experiencing a problem that the system agent should investigate. This is  
a logical OR of the Shutdown and Warning events.  
Communication to the DSP or the EEPROM will be possible as long as the input AC voltage is provided. If no AC is present,  
communication to the unit is possible as long as it is connected to a life V1 output (provided e.g. by the redundant unit). If only VSB is  
provided, communication is not possible.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00618_AD  
 
14  
PFE1300-48-054NA  
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
-0.5  
MAX  
1.0  
UNIT  
V
ViL  
Input low voltage  
Input high voltage  
ViH  
2.3  
5.5  
V
Vhys  
VoL  
Input hysteresis  
0.15  
V
Output low voltage  
3 mA sink current  
0
0.4  
V
1
1
tr  
Rise time for SDA and SCL  
Output fall time ViHmin ViLmax  
Input current SCL/SDA  
20+0.1Cb  
20+0.1Cb  
-10  
300  
ns  
ns  
μA  
pF  
kHz  
tof  
10 pF < Cb1 < 400 pF  
250  
Ii  
0.1 VDD < Vi < 0.9 VDD  
10  
50  
Ci  
Internal Capacitance for each SCL/SDA  
SCL clock frequency  
fSCL  
Rpu  
0
100  
1
External pull-up resistor  
1000 ns / Cb  
fSCL 100 kHz  
fSCL 100 kHz  
fSCL 100 kHz  
fSCL 100 kHz  
fSCL 100 kHz  
fSCL 100 kHz  
fSCL 100 kHz  
fSCL 100 kHz  
fSCL 100 kHz  
μs  
μs  
μs  
μs  
μs  
ns  
μs  
ms  
tHDSTA  
tLOW  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tSUSTO  
tBUF  
Hold time (repeated) START  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START  
Data hold time  
4.0  
4.7  
4.0  
4.7  
0
3.45  
Data setup time  
250  
4.0  
5
Setup time for STOP condition  
Bus free time between STOP and START  
1 Cb = Capacitance of bus line in pF, typically in the range of 10…400 pF.  
Table 7. I2C / SMBus Specification  
tof  
tLOW  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tSUSTA  
tHDSTA  
tHDDAT tSUDAT  
tSUSTO  
tBUF  
Figure 20. I2C / SMBus Timing  
8.13 ADDRESS SELECTION (APS)  
The APS pin provides the possibility to select the address by connecting a resistor to V1 return (0 V). A fixed addressing offset exists  
between the Controller and the EEPROM.  
NOTE:  
- If the APS pin is left open, the supply will operate with the PMBus® protocol at controller / EEPROM addresses 0xB6 / 0xA6.  
- The APS pin is only read at start-up of the power supply. Therefore, it is not possible to change address dynamically  
3.3V  
I2C Address 2)  
RAPS (Ω) 1)  
Protocol  
Controller  
EEPROM  
12k  
APS  
820  
0xB0  
0xB2  
0xB4  
0xB6  
0xA0  
0xA2  
0xA4  
0xA6  
ADC  
2700  
5600  
8200  
PMBus®  
RAPS  
1) E12 resistor values, use max 5% resistors, see also Figure 21.  
2) The LSB of the address byte is the R/W bit.  
Figure 21. I2C address and Protocol Setting  
Table 8. Address and Protocol Encoding  
tech.support@psbel.com  
15  
PFE1300-48-054NA  
8.14 CONTROLLER AND EEPROM ACCESS  
The controller and the EEPROM in the power supply share the same I2C bus physical layer (see Figure 22). An I2C driver device  
assures logic level shifting (3.3 / 5 V) and a glitch-free clock stretching. The driver also pulls the SDA/SCL line to nearly 0 V when  
driven low by the DSP or the EEPROM providing maximum flexibility when additional external bus repeaters are needed. Such  
repeaters usually encode the low state with different voltage levels depending on the transmission direction.  
The DSP will automatically set the I2C address of the EEPROM with the necessary offset when its own address is changed / set. In  
order to write to the EEPROM, first the write protection needs to be disabled by sending the appropriate command to the DSP. By  
default the write protection is on.  
The EEPROM provides 256 bytes of user memory. None of the bytes are used for the operation of the power supply.  
Address & Protocol Selection  
APS  
SDAi  
SDA  
DSP  
SCLi  
SCL  
WP  
EEPROM  
Protection  
Addr  
Figure 22. I2C Bus to DSP and EEPROM  
8.15 EEPROM PROTOCOL  
The EEPROM follows the industry communication protocols used for this type of device. Even though page write / read commands  
are defined, it is recommended to use the single byte write / read commands.  
WRITE  
The write command follows the SMBus 1.1 Write Byte protocol. After the device address with the write bit cleared a first byte with the  
data address to write to is sent followed by the data byte and the STOP condition. A new START condition on the bus should only  
occur after 5 mS of the last STOP condition to allow the EEPROM to write the data into its memory.  
S
Address  
W
A
Data Address  
A
Data  
A
P
READ  
The read command follows the SMBus 1.1 Read Byte protocol. After the device address with the write bit cleared the data address  
byte is sent followed by a repeated start, the device address and the read bit set. The EEPROM will respond with the data byte at the  
specified location.  
S
Address  
W
A
Data Address  
A
S
Address  
R
A
Data  
nA  
P
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00618_AD  
16  
PFE1300-48-054NA  
8.16 PMBus® PROTOCOL  
The Power Management Bus (PMBus®) is an open standard protocol that defines means of communicating with power conversion  
and other devices. For more information, please see the System Management Interface Forum web site at: www.powerSIG.org.  
PMBus® command codes are not register addresses. They describe a specific command to be executed.  
The PFE1300-48-054NA supply supports the following basic command structures:  
Clock stretching limited to 1 mS  
SCL low time-out of > 25 mS with recovery within 10 mS  
Recognized any time Start/Stop bus conditions  
WRITE  
The write protocol is the SMBus 1.1 Write Byte/Word protocol. Note that the write protocol may end after the command byte or after  
the first data byte (Byte command) or then after sending 2 data bytes (Word command).  
S
Address  
W
A
Command  
A
Data Low Byte1)  
A
Data High Byte1)  
A
P
1) Optional  
In addition, Block write commands are supported with a total maximum length of 255 bytes. See PFE1300-48-054NA Communication  
Manual for further information.  
S
Address  
W
A
Command  
A
Byte Count  
A
Byte 1  
A
Byte N  
A
P
READ  
The read protocol is the SMBus 1.1 Read Byte/Word protocol. Note that the read protocol may request a single byte or word.  
S
Address  
W
A
Command  
A
S
Address  
R
A
Data (Low) Byte  
A
Data High Byte1) nA  
P
1) Optional  
In addition, Block read commands are supported with a total maximum length of 255 bytes. See PFE1300-48-054NA Communication  
Manual BCA.00006 for further information.  
S
Address  
W
A
Command  
A
S
Address  
R
A
Byte Count  
A
Byte 1  
A
Byte N  
nA P  
tech.support@psbel.com  
17  
PFE1300-48-054NA  
8.17 GRAPHICAL USER INTERFACE  
Bel Power Solutions provides with its “Bel Power Solutions I2C Utility” a Windows® XP/Vista/Win7 compatible graphical user interface  
allowing the programming and monitoring of the PFE1300-48-054NA Front-End.  
The utility can be downloaded on: belfuse.com/power-solutions and supports PMBus® protocols.  
The GUI allows automatic discovery of the units connected to the communication bus and will show them in the navigation tree. In the  
monitoring view the power supply can be controlled and monitored.  
If the GUI is used in conjunction with the PFE1300-48-054NA BOARD Evaluation Kit it is also possible to control the PSON_L pin(s) of  
the power supply.  
The monitoring screen also allows to enable the hot-standby mode on the power supply. The mode status is monitored and by  
changing the load current it can be monitored when the power supply is being disabled for further energy savings. This obviously  
requires 2 power supplies being operated as a redundant system (as in the evaluation kit).  
NOTE: The user of the GUI needs to ensure that only one of the power supplies have the hot-standby mode enabled.  
Figure 23. Monitoring Dialog of the I2C Utility  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00618_AD  
18  
PFE1300-48-054NA  
To achieve best cooling results sufficient airflow through the supply must be ensured. Do not block or obstruct the airflow at the rear of  
the supply by placing large objects directly at the output connector. The PFE1300-48-054NA is provided with a normal airflow, which  
means the air enters through the DC-output of the supply and leaves at the AC-inlet. PFE supplies have been designed for horizontal  
operation.  
The fan inside of the supply is controlled by a microprocessor. The rpm of the fan is adjusted to ensure optimal supply cooling and is a  
function of output power and the inlet temperature.  
For the normal airflow version additional constraints apply because of the AC-connector. In a normal airflow unit, the hot air is exiting the  
power supply unit at the AC-inlet.  
The IEC connector on the unit is rated 120°C. The input power is derated to ensure sufficient thermal margin is allotted to the mating  
connector. See Figure 26A or 26B.  
NOTE: It is the responsibility of the user to check the front temperature in such cases. The unit is not limiting its power automatically to meet such a  
temperature limitation.  
Normal Airflow  
Normal Airflow  
Figure 24. Airflow Direction  
Figure 25. Fan Speed vs Main Output Load for PFE1300-48-054NA  
A.  
B. Europe  
Figure 26. Power Derating for PFE1300-48-054NA  
(Refer to Safety Installation Instruction for details)  
tech.support@psbel.com  
19  
PFE1300-48-054NA  
10.1 IMMUNITY  
NOTE: Most of the immunity requirements are derived from EN 55024:1998/A2:2003.  
PARAMETER  
DESCRIPTION / CONDITION  
CRITERION  
IEC / EN 61000-4-2, ±8 kV, 25+25 discharges per test point  
(metallic case, LEDs, connector body)  
IEC / EN 61000-4-2, ±15 kV, 25+25 discharges per test point  
(non-metallic user accessible surfaces)  
IEC / EN 61000-4-3, 10 V/m, 1 kHz/80% Amplitude Modulation,  
1 µs Pulse Modulation, 10 kHz…2 GHz  
IEC / EN 61000-4-4, level 3  
ESD Contact Discharge  
B
ESD Air Discharge  
B
A
Radiated Electromagnetic Field  
Burst  
AC port ±2 kV, 1 minute  
B
DC port ±1 kV, 1 minute  
IEC / EN 61000-4-5  
Line to earth: level 3, ±2 kV  
Line to line: level 2, ±1 kV  
Surge  
VSB: A, V1: B1  
A
RF Conducted Immunity  
IEC/EN 61000-4-6, Level 3, 10 Vrms, CW, 0.1 … 80 MHz  
A
IEC/EN 61000-4-11  
1: Vi 230 V, 100% Load, Phase 0 °, Dip 100%, Duration 10 mS  
2: Vi 230 V, 100% Load, Phase 0 °, Dip 100%, Duration 20 mS  
3: Vi 230 V, 100% Load, Phase 0 °, Dip 100%, Duration > 20 mS  
A
Voltage Dips and Interruptions  
VSB: A, V1: B  
VSB, V1: B  
1 V1 drops to 90 … 97% V1 nom for 3 mS.  
10.2 EMISSION  
PARAMETER  
DESCRIPTION / CONDITION  
CRITERION  
Class A  
6 dB margin  
Class A  
6 dB margin  
Class A  
6 dB margin  
EN55022 / CISPR 22: 0.15 … 30 MHz, QP and AVG, single unit  
EN55022 / CISPR 22: 0.15 … 30 MHz, QP and AVG, 2 units in rack system  
EN55022 / CISPR 22: 30 MHz … 1 GHz, QP, single unit  
Conducted Emission  
Radiated Emission  
Class A  
6 dB margin  
EN55022 / CISPR 22: 30 MHz … 1 GHz, QP, 2 units in rack system  
Harmonic Emissions  
AC Flicker  
IEC61000-3-2, Vin = 115 VAC / 60 Hz, & Vin = 230 VAC / 50 Hz, 100% Load  
IEC61000-3-3, Vin = 230 VAC / 50 Hz, 100% Load  
Class A  
Pass  
Maximum electric strength testing is performed according to IEC/EN 60950-1, and UL/CSA 60950-1. Input-to-output electric strength  
tests should not be repeated in the field. Bel Power Solutions will not honor any warranty claims resulting from electric strength field tests.  
PARAMETER  
DESCRIPTION / CONDITION  
MIN  
NOM  
MAX  
UNIT  
Approved by  
independent body  
(see CE Declaration)  
Approved to the latest edition of the following standards: UL/CSA  
60950-1, IEC60950-1 and EN60950-1  
Agency Approvals  
Input (L/N) to case (PE)  
Input (L/N) to output  
Output to case (PE)  
Input to case  
Basic  
Isolation Strength  
Reinforced  
Functional  
2121  
Electrical Strength Test  
VDC  
Input to output  
4242  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00618_AD  
20  
PFE1300-48-054NA  
PARAMETER  
CONDITIONS / DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
TA  
Ambient temperature  
Vi min to Vi max, I1 nom, ISB nom  
0
+45  
°C  
North America Application:  
Full Power 1286W @ Vi 145-264 VAC  
0
+45  
+45  
+50  
+55  
+60  
Derated power (1032 to 1286 W) @ Vi 90-145 VAC  
Derated power (893 to 1162 W) @ Vi 90-145 VAC  
Derated power (792 to 1028 W) @ Vi 90-145 VAC  
Derated power (716 to 893 W) @ Vi 90-145 VAC  
(see Figure 7A and Figure 26 A)  
0
°C  
+45  
+50  
+55  
TAext  
Extended temp range  
Europe Application Power must be limited to:  
Full Power 1286W @ Vi 145-264 VAC  
0
0
+45  
+45  
Power Limit (893 to 1286 W) @ Vi 90-145 VAC  
Power Limit (893 to 1162 W) @ Vi 90-145 VAC  
Power Limit (792 to 1028 W) @ Vi 90-145 VAC  
Power Limit (716 to 893 W) @ Vi 90-145 VAC  
+45  
+50  
+55  
+50  
+55  
+60  
°C  
(see Figure 7B and Figure 26B)  
Non-operational  
TS  
Na  
Storage temperature  
Audible noise  
-20  
+70  
°C  
dBA  
feet  
m
Vi nom, 50% Io nom, TA = 25 °C  
46  
10,000  
3048  
Altitude  
Operational, above Sea Level  
PARAMETER  
DESCRIPTION / CONDITION  
MIN  
NOM  
MAX  
UNIT  
mm  
kg  
Width  
Height  
Depth  
54.5  
40.0  
Dimensions  
321.5  
1.09  
M
Weight  
13.4  
321.6 ±0.5  
27.71  
Normal Air Flow Direction  
Note: A 3D step file of the power supply casing is available on request.  
Figure 27. Side View 1  
tech.support@psbel.com  
21  
PFE1300-48-054NA  
Figure 28. Top View  
99  
Figure 29. Side View 2  
Figure 30. Front and Rear View  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00618_AD  
22  
PFE1300-48-054NA  
AC Input:  
Unit:  
Counterpart:  
IEC320 Type C16 AC socket.  
IEC320 C15 power cord  
DC Output:  
Power Supply Connector: Tyco Electronics P/N 2-1926736-3 or FCI 101-22460-007LF (NOTE: Column 5 is recessed (short pins))  
Mating Connector: Tyco Electronics P/N 2-1926739-5 or FCI 10108888-R10253SLF  
PIN  
NAME  
DESCRIPTION  
Output  
6, 7, 8, 9, 10  
V1  
+48 VDC main output  
Power ground (return)  
1, 2, 3, 4, 5  
PGND  
Control Pins  
A1  
VSB  
Standby positive output (+3.3/5 V)  
Standby positive output (+3.3/5 V)  
Standby positive output (+3.3/5 V)  
Standby positive output (+3.3/5 V)  
Standby positive output (+3.3/5 V)  
Signal ground (return)  
B1  
VSB  
C1  
VSB  
D1  
VSB  
E1  
VSB  
A2  
SGND  
B2  
SGND  
Signal ground (return)  
C2  
HOTSTANDBYEN_H  
VSB_SENSE_R  
VSB_SENSE  
APS  
Hot standby enable signal: active-high  
Standby output negative sense  
Standby output positive sense  
I2C address and protocol selection (select by a pull down resistor)  
Reserved  
D2  
E2  
A3  
B3  
N/C  
C3  
SDA  
I2C data signal line  
D3  
V1_SENSE_R  
V1_SENSE  
SCL  
Main output negative sense  
E3  
Main output positive sense  
I2C clock signal line  
A4  
B4  
N/C  
Reserved  
C4  
SMB_ALERT_L  
PSON_L  
ACOK_H  
PSKILL_H  
ISHARE  
PWOK_H  
VSB_SEL  
PRESENT_L  
SMB Alert signal output: active-low  
Power supply on input (connect to A2/B2 to turn unit on): active-lo  
AC input OK signal: active-high  
Power supply kill (lagging pin): active-high  
Current share bus (lagging pin)  
Power OK signal output (lagging pin): active-high  
Standby voltage selection (lagging pin)  
Power supply present (lagging pin): active-low  
D4  
E4  
A5  
B5  
C5  
D5  
E5  
tech.support@psbel.com  
23  
PFE1300-48-054NA  
ORDERING PART  
NUMBER  
ITEM  
DESCRIPTION  
SOURCE  
Bel Power Solutions I2C Utility  
Windows XP/Vista/7 compatible GUI  
to program, control and monitor PFE  
Front-Ends (and other I2C units)  
N/A  
belfuse.com/power-solutions  
Dual Connector Board  
Connector board to operate 2 PFE  
units in parallel. Includes an on-board  
USB to I2C converter (Bel Power  
Solutions I2C Utility as desktop  
software)  
belfuse.com/power-solutions  
VRA.00389.0  
NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in  
hazardous environments, or nuclear control systems.  
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date  
manufactured. Specifications are subject to change without notice.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00618_AD  

相关型号:

PFE1300-48-054NA_18

1300W,48VDC OUTPUT
BEL

PFE1500

AC-DC FRONT-END POWER SUPPLIES
BEL

PFE1500-12-054NA

AC-DC FRONT-END POWER SUPPLIES
BEL

PFE1500-12-054NAC

AC-DC FRONT-END POWER SUPPLIES
BEL

PFE1500-12-054NAH

AC-DC FRONT-END POWER SUPPLIES
BEL

PFE1500-12-054ND

DC-DC FRONT END POWER SUPPLY
BEL

PFE1500-12-054RA

AC-DC FRONT-END POWER SUPPLIES
BEL

PFE1500-12-054RAC

AC-DC FRONT-END POWER SUPPLIES
BEL

PFE1500-12-054RAH

AC-DC FRONT-END POWER SUPPLIES
BEL

PFE1500-12-054RD

DC-DC FRONT END POWER SUPPLY
BEL

PFE1500-12-054XD

DC-DC FRONT END POWER SUPPLY
BEL

PFE1500-12-NACS412

AC-DC FRONT-END POWER SUPPLIES
BEL