QME48T40025 [BEL]

Outputs available: 3.3, 2.5, 1.8, 1.5, 1.2 and 1.0 V;
QME48T40025
型号: QME48T40025
厂家: BEL FUSE INC.    BEL FUSE INC.
描述:

Outputs available: 3.3, 2.5, 1.8, 1.5, 1.2 and 1.0 V

文件: 总35页 (文件大小:2695K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The QME48T40 DC-DC Series of converters provide outstanding thermal  
performance in high temperature environments. This performance is  
accomplished through the use of patented/patent-pending circuits,  
packaging, and processing techniques to achieve ultra-high efficiency,  
excellent thermal management, and a low-body profile.  
The low-body profile and the preclusion of heat sinks minimize impedance to  
system airflow, thus enhancing cooling for both upstream and downstream  
devices. The use of 100% automation for assembly, coupled with advanced  
electronic circuits and thermal design, results in a product with extremely high  
reliability.  
Operating from a 36-75 V input, the QME48T40 converters provide any  
standard output voltage from 3.3 V down to 1.0 V that can be trimmed from –  
20% to +10% of the nominal output voltage (±10% for output voltages 1.2 V  
and 1.0 V), thus providing outstanding design flexibility.  
RoHS lead-free solder and lead-solder-exempted products are  
available  
Delivers up to 40 A  
Outputs available: 3.3, 2.5, 1.8, 1.5, 1.2 and 1.0 V  
Industry-standard quarter-brick pinout  
On-board input differential LC-filter  
Startup into pre-biased load  
No minimum load required  
Dimensions: 1.45” x 2.30” x 0.425”  
(36.83 x 58.42 x 10.80 mm)  
Weight: 1.2 oz [34.2 g]  
Meets Basic Insulation requirements of EN60950  
Withstands 100 V input transient for 100 ms  
Fixed-frequency operation  
Fully protected  
Remote output sense  
Non-Latching / Latching OTP option  
Positive or negative logic ON/OFF option  
Output voltage trim range: +10%/−20% with industry-standard trim  
equations (±10% for 1.2 V and 1.0 V)  
High reliability: MTBF = 13.9 million hours, calculated per Telcordia TR-  
332, Method I Case 1  
Approved to the following Safety Standards: UL/CSA60950-1,  
EN60950-1, and IEC60950-1  
Designed to meet Class B conducted emissions per FCC and EN55022  
when used with external filter  
All materials meet UL94, V-0 flammability rating  
2
QME48T40 Series  
1.  
Conditions: TA = 25ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, All output voltages, unless otherwise specified.  
PARAMETER  
CONDITIONS / DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
Absolute Maximum Ratings  
Input Voltage  
Continuous  
0
80  
85  
VDC  
°C  
Operating Ambient Temperature  
Storage Temperature  
Input Characteristics  
Operating Input Voltage Range  
Input Under Voltage Lockout  
Turn-on Threshold  
-40  
-55  
125  
°C  
36  
48  
75  
VDC  
33  
31  
34  
32  
35  
33  
VDC  
VDC  
VDC  
Turn-off Threshold  
Input Voltage Transient  
Isolation Characteristics  
I/O Isolation  
100 ms  
100  
2000  
10  
VDC  
nF  
Isolation Capacitance  
Isolation Resistance  
2
M  
Feature Characteristics  
Switching Frequency  
Output Voltage Trim Range1  
460  
kHz  
%
Non-latching (3.3 - 1.5 V)  
Non-latching (1.2 V and 1.0 V)  
Percent of VOUT(nom)  
Non-latching  
-20  
-10  
+10  
+10  
+10  
140  
%
Remote Sense Compensation1  
Output Overvoltage Protection  
Auto-Restart Period  
%
117  
128  
200  
4
%
Applies to all protection features  
ms  
ms  
Turn-On Time  
ON/OFF Control (Positive Logic)  
Converter Off (logic low)  
Converter On (logic high)  
ON/OFF Control (Negative Logic)  
Converter Off (logic high)  
Converter On (logic low)  
-20  
2.4  
0.8  
20  
VDC  
VDC  
2.4  
-20  
20  
VDC  
VDC  
0.8  
1)  
Vout can be increased up to 10% via the sense leads or 10% via the trim function. However, the total output voltage trim from  
all sources should not exceed 10% of VOUT(nom), in order to ensure specified operation of overvoltage protection circuitry  
tech.support@psbel.com  
3
QME48T40 Series  
2.  
2.1  
These power converters have been designed to be stable with no external capacitors when used in low inductance input  
and output circuits.  
In many applications, the inductance associated with the distribution from the power source to the input of the converter  
can affect the stability of the converter. The addition of a 33 µF electrolytic capacitor with an ESR < 1 Ω across the input  
helps to ensure stability of the converter. In many applications, the user has to use decoupling capacitance at the load. The  
power converter will exhibit stable operation with external load capacitance up to 40,000 µF on 3.3 V 1.0 V outputs.  
Additionally, see the EMC section of this data sheet for discussion of other external components which may be required for  
control of conducted emissions.  
2.2  
The ON/OFF pin is used to turn the power converter on or off remotely via a system signal. There are two remote control  
options available, positive and negative logic, with both referenced to Vin(-). A typical connection is shown in Fig. 1.  
QME Series  
Vin (+)  
ON/OFF  
Vin (-)  
Vout (+)  
SENSE (+)  
TRIM  
Converter  
(Top View)  
Rload  
Vin  
SENSE (-)  
Vout (-)  
CONTROL  
INPUT  
Figure 1. Circuit configuration for ON/OFF function.  
The positive logic version turns on when the ON/OFF pin is at a logic high and turns off when at a logic low. The converter  
is on when the ON/OFF pin is left open. See the Electrical Specifications for logic high/low definitions.  
The negative logic version turns on when the pin is at a logic low and turns off when the pin is at a logic high. The ON/OFF  
pin can be hardwired directly to Vin(-) to enable automatic power up of the converter without the need of an external control  
signal.  
The ON/OFF pin is internally pulled up to 5 V through a resistor. A properly debounced mechanical switch, open-collector  
transistor, or FET can be used to drive the input of the ON/OFF pin. The device must be capable of sinking up to 0.2 mA at  
a low level voltage of 0.8 V. An external voltage source (±20 V maximum) may be connected directly to the ON/OFF input,  
in which case it must be capable of sourcing or sinking up to 1 mA depending on the signal polarity. See the Startup  
Information section for system timing waveforms associated with use of the ON/OFF pin.  
2.3  
The remote sense feature of the converter compensates for voltage drops occurring between the output pins of the converter  
and the load. The SENSE(-) (Pin 5) and SENSE(+) (Pin 7) pins should be connected at the load or at the point where regulation  
is required (see Fig. 2).  
QME Series  
Rw  
Vin (+)  
ON/OFF  
Vin (-)  
Vout (+)  
100  
SENSE (+)  
Converter  
(Top View)  
Rload  
TRIM  
Vin  
SENSE (-)  
10  
Vout (+)  
Rw  
Figure 2. Remote sense circuit configuration  
North America  
Asia-Pacific  
Europe, Middle East  
+1 408 785 5200  
+86 755 298 85888  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
4
QME48T40 Series  
CAUTION  
If remote sensing is not utilized, the SENSE(-) pin must be connected to the Vout(-) pin (Pin 4), and the SENSE(+) pin  
must be connected to the Vout(+) pin (Pin 8) to ensure the converter will regulate at the specified output voltage. If  
these connections are not made, the converter will deliver an output voltage that is slightly higher than the specified  
data sheet value.  
Because the sense leads carry minimal current, large traces on the end-user board are not required. However, sense traces  
should be run side by side and located close to a ground plane to minimize system noise and ensure optimum performance.  
The converter’s output overvoltage protection (OVP) senses the voltage across Vout(+) and Vout(-), and not across the sense  
lines, so the resistance (and resulting voltage drop) between the output pins of the converter and the load should be  
minimized to prevent unwanted triggering of the OVP.  
When utilizing the remote sense feature, care must be taken not to exceed the maximum allowable output power capability  
of the converter, which is equal to the product of the nominal output voltage and the allowable output current for the given  
conditions.  
When using remote sense, the output voltage at the converter can be increased by as much as 10% above the nominal  
rating in order to maintain the required voltage across the load. Therefore, the designer must, if necessary, decrease the  
maximum current (originally obtained from the derating curves) by the same percentage to ensure the converter’s actual  
output power remains at or below the maximum allowable output power.  
2.4  
The output voltage can be adjusted up 10% or down 20% for Vout 1.5 V, and ±10% for Vout = 1.2 V and 1.0 V relative to  
the rated output voltage by the addition of an externally connected resistor.  
The TRIM pin should be left open if trimming is not being used. To minimize noise pickup, a 0.1 µF capacitor is connected  
internally between the TRIM and SENSE(-) pins.  
To increase the output voltage, refer to Fig. 3. A trim resistor, RT-INCR, should be connected between the TRIM (Pin 6) and  
SENSE(+) (Pin 7), with a value of:  
5.11(100Δ)VONOM 626  
[k] (3.3-1.5V)  
RTINCR  
10.22  
1.225Δ  
84.6  
[k] (1.2V)  
RTINCR  
7.2  
Δ
120  
[k] (1.0V)  
RTINCR  
9  
Δ
where,  
R
T-INCR = Required value of trim-up resistor k]  
V
O-NOM = Nominal value of output voltage [V]  
(VO-REQ VO-NOM  
)
[%]  
Δ   
X 100  
VO -NOM  
Vo-REQ = Desired (trimmed) output voltage [V].  
When trimming up, care must be taken not to exceed the converter‘s maximum allowable output power. See previous section  
for a complete discussion of this requirement.  
tech.support@psbel.com  
5
QME48T40 Series  
QME Series  
Vin (+)  
ON/OFF  
Vin (-)  
Vout (+)  
SENSE (+)  
TRIM  
Converter  
(Top View)  
RT-INCR  
Rload  
Vin  
SENSE (-)  
Vout (-)  
Figure 3. Configuration for increasing output voltage.  
To decrease the output voltage (Fig. 4), a trim resistor, RT-DECR, should be connected between the TRIM (Pin 6) and SENSE(-  
) (Pin 5), with a value of:  
511  
RTDECR  
10.22  
[k] (3.3 - 1.5V)  
| Δ |  
700  
R
TDECR  
15[k] (1.2V)  
| Δ |  
700  
RTDECR  
17 [k] (1.0V)  
|Δ |  
where,  
R
T-DECR Required value of trim-down resistor [k]  
Δ
and  
is as defined above.  
Note:  
The above equations for calculation of trim resistor values match those typically used in conventional industry-standard  
quarter-bricks (except for 1.2 V and 1.0 V outputs).  
QME Series  
Vin (+)  
ON/OFF  
Vin (-)  
Vout (+)  
SENSE (+)  
TRIM  
Converter  
(Top View)  
Rload  
Vin  
RT-DECR  
SENSE (-)  
Vout (-)  
Figure 4. Configuration for decreasing output voltage.  
Trimming/sensing beyond 110% of the rated output voltage is not an acceptable design practice, as this condition could  
cause unwanted triggering of the output overvoltage protection (OVP) circuit. The designer should ensure that the difference  
between the voltages across the converter’s output pins and its sense pins does not exceed 10% of VOUT(nom), or:  
[VOUT() VOUT()][VSENSE() VSENSE()] VO - NOM X10%  
[V]  
This equation is applicable for any condition of output sensing and/or output trim.  
North America  
Asia-Pacific  
Europe, Middle East  
+1 408 785 5200  
+86 755 298 85888  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
6
QME48T40 Series  
3.  
Input under voltage lockout is standard with this converter. The converter will shut down when the input voltage drops below  
a pre-determined voltage.  
The input voltage must be typically 34 V for the converter to turn on. Once the converter has been turned on, it will shut off  
when the input voltage drops typically below 32 V. This feature is beneficial in preventing deep discharging of batteries used  
in telecom applications.  
The converter is protected against overcurrent or short circuit conditions. Upon sensing an overcurrent condition, the  
converter will switch to constant current operation and thereby begin to reduce output voltage. When the output voltage  
drops below 60% of the nominal value of output voltage, the converter will shut down.  
Once the converter has shut down, it will attempt to restart nominally every 200 ms with a typical 3-5% duty cycle. The  
attempted restart will continue indefinitely until the overload or short circuit conditions are removed or the output voltage  
rises above 40-50% of its nominal value.  
Once the output current is brought back into its specified range, the converter automatically exits the hiccup mode and  
continues normal operation.  
The converter will shut down if the output voltage across Vout(+) (Pin 8) and Vout(-) (Pin 4) exceeds the threshold of the OVP  
circuitry. The OVP circuitry contains its own reference, independent of the output voltage regulation loop. Once the converter  
has shut down, it will attempt to restart every 200 ms until the OVP condition is removed.  
The converter will shut down under an over temperature condition to protect itself from overheating caused by operation  
outside the thermal derating curves, or operation in abnormal conditions such as system fan failure. After the converter has  
cooled to a safe operating temperature, it will automatically restart.  
The converters meet North American and International safety regulatory requirements per UL60950 and EN60950 (pending).  
Basic Insulation is provided between input and output.  
To comply with safety agencies’ requirements, an input line fuse must be used external to the converter. The Table below  
provides the recommended fuse rating for use with this family of products.  
OUTPUT VOLTAGE  
3.3 V  
FUSE RATING  
7.5 A  
5 A  
2.5 -1.8 V  
1.5 - 1.0 V  
3 A  
Modules are UL approved for maximum fuse rating of 15 Amps. To protect a group of modules with a single fuse, the rating  
can be increased from the recommended values above.  
EMC requirements must be met at the end-product system level, as no specific standards dedicated to EMC characteristics  
of board mounted component dc-dc converters exist. However, Bel Power Solutions tests its converters to several system  
level standards, primary of which is the more stringent EN55022, Information technology equipment - Radio disturbance  
characteristics-Limits and methods of measurement.  
An effective internal LC differential filter significantly reduces input reflected ripple current, and improves EMC.  
With the addition of a simple external filter, all versions of the QME-Series of converters pass the requirements of Class B  
conducted emissions per EN55022 and FCC requirements. Please contact Bel Power Solutions Applications Engineering  
for details of this testing.  
tech.support@psbel.com  
7
QME48T40 Series  
VIN  
Scenario #1: Initial Startup From Bulk Supply  
ON/OFF function enabled, converter started via application of  
VIN. See Figure 5.  
Time  
Comments  
t0  
ON/OFF pin is ON; system front-end power is  
toggled on, VIN to converter begins to rise.  
ON/OFF  
STATE  
OFF  
ON  
t1  
t2  
t3  
VIN crosses Under-Voltage Lockout protection circuit  
threshold; converter enabled.  
Converter begins to respond to turn-on command  
(converter turn-on delay).  
VOUT  
Converter VOUT reaches 100% of nominal value  
For this example, the total converter startup time (t3- t1) is  
typically 4 ms.  
t
t0  
t1 t2  
t3  
Figure 5. Start-up scenario #1.  
VIN  
Scenario #2: Initial Startup Using ON/OFF Pin  
With VIN previously powered, converter started via ON/OFF pin.  
See Figure 6.  
Time  
t0  
Comments  
VINPUT at nominal value.  
t1  
Arbitrary time when ON/OFF pin is enabled (converter  
enabled).  
ON/OFF  
STATE  
OFF  
ON  
t2  
t3  
End of converter turn-on delay.  
Converter VOUT reaches 100% of nominal value.  
For this example, the total converter startup time (t3- t1) is  
typically 4 ms.  
VOUT  
t
t0  
t1 t2  
t3  
Figure 6. Startup scenario #2.  
Scenario #3: Turn-off and Restart Using ON/OFF Pin  
With VIN previously powered, converter is disabled and then  
enabled via ON/OFF pin. See Figure 7.  
Time  
t0  
t1  
Comments  
VIN and VOUT are at nominal values; ON/OFF pin ON.  
ON/OFF pin arbitrarily disabled; converter output falls  
to zero; turn-on inhibit delay period (200 ms typical) is  
initiated, and ON/OFF pin action is internally inhibited.  
ON/OFF pin is externally re-enabled.  
t2  
If (t2- t1) 200 ms, external action of ON/OFF  
pin is locked out by startup inhibit timer.  
If (t2- t1) > 200 ms, ON/OFF pin action is  
internally enabled.  
t3  
Turn-on inhibit delay period ends. If ON/OFF pin is  
ON, converter begins turn-on; if off, converter awaits  
ON/OFF pin ON signal; see Figure 6.  
t4  
t5  
End of converter turn-on delay.  
Converter VOUT reaches 100% of nominal value.  
Figure 7. Startup scenario #3.  
For the condition, (t2- t1) 200 ms, the total converter startup  
time (t5- t2) is typically 204 ms. For (t2- t1) > 200 ms, startup will be  
typically 4 ms after release of ON/OFF pin.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
8
QME48T40 Series  
4.  
The converter has been characterized for many operational aspects, to include thermal derating (maximum load current as  
a function of ambient temperature and airflow) for vertical and horizontal mountings, efficiency, startup and shutdown  
parameters, output ripple and noise, transient response to load step-change, overload, and short circuit.  
The following pages contain specific plots or waveforms associated with the converter. Additional comments for specific  
data are provided below.  
All data presented were taken with the converter soldered to a test board, specifically a 0.060” thick printed wiring board  
(PWB) with four layers. The top and bottom layers were not metalized. The two inner layers, comprised of two-ounce copper,  
were used to provide traces for connectivity to the converter.  
The lack of metalization on the outer layers as well as the limited thermal connection ensured that heat transfer from the  
converter to the PWB was minimized. This provides a worst-case but consistent scenario for thermal derating purposes.  
All measurements requiring airflow were made in the vertical and horizontal wind tunnel using Infrared (IR) thermography  
and thermocouples for thermometry.  
Ensuring components on the converter do not exceed their ratings is important to maintaining high reliability. If one  
anticipates operating the converter at or close to the maximum loads specified in the derating curves, it is prudent to check  
actual operating temperatures in the application. Thermographic imaging is preferable; if this capability is not available, then  
thermocouples may be used. The use of AWG #40 gauge thermocouples is recommended to ensure measurement accuracy.  
Careful routing of the thermocouple leads will further minimize measurement error. Refer to Fig. 8 for the optimum measuring  
thermocouple locations.  
Figure 8. Location of the thermocouple for thermal testing.  
Load current vs. ambient temperature and airflow rates are given in Fig. x.9 and Fig. x.10 for vertical and horizontal converter  
mountings. Ambient temperature was varied between 25 °C and 85 °C, with airflow rates from 30 to 500 LFM (0.15 to 2.5  
m/s).  
For each set of conditions, the maximum load current was defined as the lowest of:  
(i)  
The output current at which any FET junction temperature does not exceed a maximum specified temperature of 120  
°C as indicated by the thermographic image, or  
(ii) The nominal rating of the converter (40 A).  
During normal operation, derating curves with maximum FET temperature less or equal to 120 °C should not be exceeded.  
Temperature on the PCB at thermocouple locations shown in Fig. 8 should not exceed 120 °C in order to operate inside the  
derating curves.  
4.4  
Fig. x.11 shows the efficiency vs. load current plot for ambient temperature of 25 ºC, airflow rate of 300 LFM (1.5 m/s) with  
horizontal mounting and input voltages of 36 V, 48 V and 72 V. Also, a plot of efficiency vs. load current, as a function of  
ambient temperature with Vin = 48 V, airflow rate of 200 LFM (1 m/s) with horizontal mounting is shown in Fig. x.12.  
tech.support@psbel.com  
9
QME48T40 Series  
Fig. x.13 shows the power dissipation vs. load current plot for Ta = 25 ºC, airflow rate of 300 LFM (1.5 m/s) with horizontal  
mounting and input voltages of 36 V, 48 V and 72 V. Also, a plot of power dissipation vs. load current, as a function of  
ambient temperature with Vin = 48 V, airflow rate of 200 LFM (1 m/s) with horizontal mounting is shown in Fig. x.14.  
Output voltage waveforms, during the turn-on transient using the ON/OFF pin for full rated load currents (resistive load) are  
shown without and with external load capacitance in Figs. x.15-16, respectively.  
Fig. x.19 show the output voltage ripple waveform, measured at full rated load current with a 10 µF tantalum and 1 µF  
ceramic capacitor across the output. Note that all output voltage waveforms are measured across a 1 µF ceramic capacitor.  
The input reflected ripple current waveforms are obtained using the test setup shown in Fig x.20. The corresponding  
waveforms are shown in Figs. x.21-22.  
North America  
Asia-Pacific  
Europe, Middle East  
+1 408 785 5200  
+86 755 298 85888  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
10  
QME48T40 Series  
5.  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 3.3 VDC unless otherwise specified.  
PARAMETER  
CONDITIONS / DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
Input Characteristics  
Operating Input Voltage Range  
Input Under Voltage Lockout  
Turn-on Threshold  
36  
48  
75  
VDC  
33  
31  
34  
32  
35  
33  
VDC  
VDC  
Turn-off Threshold  
Input Voltage Transient  
100 ms  
100  
4.1  
VDC  
Maximum Input Current  
Input Stand-by Current  
40 ADC Out @ 36 VDC In  
Vin = 48V, converter disabled  
Vin = 48V, converter enabled  
Vin = 48V, 25 MHz bandwidth  
120 Hz  
ADC  
mA  
3
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current, is  
50  
10  
60  
mA  
mAPK-PK  
dB  
Input Voltage Ripple Rejection  
Output Characteristics  
External Load Capacitance  
Output Current Range  
Plus full load (resistive)  
40,000  
40  
µF  
ADC  
ADC  
A
0
Current Limit Inception  
Non-latching  
42  
47  
50  
52  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Output Voltage Set Point (no load)  
Output Regulation Over Line  
Output Regulation Over Load  
Output Voltage Range  
Non-latching, Short = 10 mΩ  
Non-latching  
60  
9
Arms  
VDC  
mV  
3.267  
-1.5  
3.300  
±2  
3.333  
±5  
±2  
±5  
mV  
Over line, load and temperature1  
+1.5  
%Vout  
VOUT = 3.3 VDC  
Output Ripple and Noise 25 MHz bandwidth  
Full load + 10 µF tantalum + 1 µF ceramic  
55  
35  
110  
70  
mVPK-PK  
mVPK-PK  
VOUT = 1.0 VDC  
Full load + 10 µF tantalum + 1 µF ceramic  
Dynamic Response  
Load Change 50%-75%-50% of Iout Max,  
Co = 1 µF ceramic (Fig. 3.3V.17)  
Co = 470 µF POS + 1 µF ceramic  
502  
1302  
152  
mV  
mV  
µs  
di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Settling Time to 1% of Vout  
Efficiency  
100% Load  
91.0  
92.0  
%
%
50% Load  
1)  
Operating ambient temperature range of -40 ºC to 85 ºC for converter.  
See waveforms for dynamic response and settling time for different output voltages.  
2)  
tech.support@psbel.com  
11  
QME48T40 Series  
50  
40  
30  
20  
10  
0
50  
40  
30  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
NC - 30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
20  
10  
NC - 30 LFM (0.15 m/s)  
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 3.3V.9. Available load current vs. ambient air  
Figure 3.3V.10. Available load current vs. ambient air  
temperature and airflow rates for QME48T40033 converter  
with G height pins mounted horizontally with air flowing from  
pin 1 to pin 3, MOSFET temperature 120 C,  
Vin = 48 V.  
temperature and airflow rates for QME48T40033 converter  
with G height pins mounted vertically with air flowing from pin  
1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
Note: NC Natural convection  
0.95  
0.90  
0.85  
0.95  
0.90  
0.85  
70 C  
55 C  
40 C  
72 V  
48 V  
36 V  
0.80  
0.80  
0.75  
0.75  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Figure 3.3V.12. Efficiency vs. load current and ambient  
temperature for QME48T40033 converter mounted  
horizontally with Vin = 48 V and air flowing from pin 1 to pin 3  
at a rate of 200 LFM (1.0 m/s).  
Figure 3.3V.11. Efficiency vs. load current and input voltage  
for QME48T40033 converter mounted horizontally with air  
flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s) and  
Ta = 25 C.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
12  
QME48T40 Series  
18.00  
15.00  
12.00  
9.00  
18.00  
15.00  
12.00  
9.00  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
6.00  
6.00  
3.00  
3.00  
0.00  
0.00  
0
5
10  
15  
20  
25  
30  
35  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Figure 3.3V.14. Power dissipation vs. load current and  
Figure 3.3V.13. Power dissipation vs. load current and input  
voltage for QME48T40033 converter mounted horizontally with  
air flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 C.  
ambient temperature for QME48T40033 converter mounted  
horizontally with Vin = 48 V and air flowing from pin 1 to pin 3  
at a rate of 200 LFM (1.0 m/s).  
Figure 3.3V.16. Turn-on transient at full rated load current  
(resistive) plus 10,000 µF at Vin = 48 V, triggered via ON/OFF  
pin. Top trace: ON/OFF signal (5 V/div.). Bottom trace:  
output voltage (1 V/div.). Time scale: 2 ms/div.  
Figure 3.3V.15. Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V, triggered via  
ON/OFF pin. Top trace: ON/OFF signal (5 V/div.). Bottom  
trace: output voltage (1 V/div.). Time scale: 2 ms/div.  
Figure 3.3V.17. Output voltage response to load current step-  
change (20 A 30 A 20 A) at Vin = 48 V. Top trace: output  
voltage (100 mV/div.). Bottom trace: load current (10 A/div.).  
Current slew rate: 0.1 A/µs. Co = 1 µF ceramic. Time scale: 0.2  
ms/div.  
Figure 3.3V.18. Output voltage response to load current step-  
change (20 A 30 A 20 A) at Vin = 48 V. Top trace: output  
voltage (100 mV/div.). Bottom trace: load current (10 A/div.).  
Current slew rate: 5 A/µs. Co = 470 µF POS + 1 µF ceramic.  
Time scale: 0.2 ms/div.  
tech.support@psbel.com  
13  
QME48T40 Series  
iS  
iC  
10 H  
source  
inductance  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
QME Series  
DC/DC  
Converter  
Vout  
Vsource  
Figure 3.3V.19. Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with Co = 10 µF tantalum + 1  
µF ceramic and Vin = 48 V. Time scale: 1 µs/div.  
Figure 3.3V.20. Test setup for measuring input reflected ripple  
currents, ic and is.  
Figure 3.3V.21. Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated load  
current and Vin = 48 V. Refer to Fig. 3.3V.20 for test setup.  
Time scale: 1 µs/div.  
Figure 3.3V.22. Input reflected ripple current, is  
(10 mA/div.), measured through 10 µH at the source at full  
rated load current and Vin = 48 V. Refer to  
Fig. 3.3V.20 for test setup. Time scale: 1 µs/div.  
Figure 3.3V.24. Load current (top trace, 20 A/div.,  
50 ms/div.) into a 10 mΩ short circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 2 ms/div.) is an expansion  
of the on-time portion of the top trace.  
Figure 3.3V.23. Output voltage vs. load current showing  
current limit point and converter shutdown point. Input voltage  
has almost no effect on current limit characteristic.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
14  
QME48T40 Series  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 2.5 VDC unless otherwise specified.  
PARAMETER  
CONDITIONS / DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
Input Characteristics  
Operating Input Voltage Range  
Input Under Voltage Lockout  
Turn-on Threshold  
36  
48  
75  
VDC  
33  
31  
34  
32  
35  
33  
VDC  
VDC  
Turn-off Threshold  
Input Voltage Transient  
100 ms  
100  
3.2  
VDC  
Maximum Input Current  
Input Stand-by Current  
40 ADC Out @ 36 VDC In  
Vin = 48V, converter disabled  
Vin = 48V, converter enabled  
Vin = 48V, 25 MHz bandwidth  
120 Hz  
ADC  
mA  
3
47  
9
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current, is  
mA  
mAPK-PK  
dB  
Input Voltage Ripple Rejection  
60  
Output Characteristics  
External Load Capacitance  
Output Current Range  
Plus full load (resistive)  
40,000  
40  
µF  
ADC  
ADC  
A
0
Current Limit Inception  
Non-latching  
42  
47  
50  
52  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Output Voltage Set Point (no load)  
Output Regulation Over Line  
Output Regulation Over Load  
Output Voltage Range  
Non-latching, Short = 10 mΩ  
Non-latching  
60  
9
Arms  
VDC  
mV  
2.475  
-1.5  
2.500  
±2  
2.525  
±5  
±2  
±5  
mV  
Over line, load and temperature1  
+1.5  
%Vout  
VOUT = 3.3 VDC  
Output Ripple and Noise 25 MHz bandwidth  
Full load + 10 µF tantalum + 1 µF ceramic  
55  
35  
110  
70  
mVPK-PK  
mVPK-PK  
VOUT = 1.0 VDC  
Full load + 10 µF tantalum + 1 µF ceramic  
Dynamic Response  
Load Change 50%-75%-50% of Iout Max,  
Co = 1 µF ceramic (Fig. 2.5V.17)  
Co = 470 µF POS + 1 µF ceramic  
502  
1302  
152  
mV  
mV  
µs  
di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Settling Time to 1% of Vout  
Efficiency  
100% Load  
89.0  
91.0  
%
%
50% Load  
1)  
Operating ambient temperature range of -40 ºC to 85 ºC for converter.  
See waveforms for dynamic response and settling time for different output voltages.  
2)  
tech.support@psbel.com  
15  
QME48T40 Series  
50  
40  
50  
40  
30  
20  
10  
0
30  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
NC - 30 LFM (0.15 m/s)  
20  
10  
NC - 30 LFM (0.15 m/s)  
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 2.5V.10. Available load current vs. ambient air  
Figure 2.5V.9. Available load current vs. ambient air  
temperature and airflow rates for QME48T40025 converter  
with G height pins mounted horizontally with air flowing from  
pin 1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
temperature and airflow rates for QME48T40025 converter  
with G height pins mounted vertically with air flowing from pin  
1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
Note: NC Natural convection  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
72 V  
48 V  
70 C  
55 C  
36 V  
40 C  
0.75  
0.75  
0.70  
0.70  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Figure 2.5V.11. Efficiency vs. load current and input voltage  
for QME48T40025 converter mounted horizontally with air  
flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s) and  
Ta = 25 C.  
Figure 2.5V.12. Efficiency vs. load current and ambient  
temperature for QME48T40025 converter mounted horizontally  
with Vin = 48 V and air flowing from pin 1 to pin 3 at a rate of  
200 LFM (1.0 m/s).  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
16  
QME48T40 Series  
18.00  
15.00  
12.00  
9.00  
18.00  
15.00  
12.00  
9.00  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
6.00  
6.00  
3.00  
3.00  
0.00  
0.00  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Figure 2.5V.13. Power dissipation vs. load current and input  
voltage for QME48T40025 converter mounted horizontally with  
air flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 C.  
Figure 2.5V.14. Power dissipation vs. load current and  
ambient temperature for QME48T40025 converter mounted  
horizontally with Vin = 48 V and air flowing from pin 1 to pin 3  
at a rate of 200 LFM (1.0 m/s).  
Figure 2.5V.16. Turn-on transient at full rated load current  
(resistive) plus 10,000 µF at Vin = 48 V, triggered via ON/OFF  
pin. Top trace: ON/OFF signal (5 V/div.). Bottom trace:  
output voltage (1 V/div.). Time scale: 2 ms/div.  
Figure 2.5V.15. Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V, triggered via  
ON/OFF pin. Top trace: ON/OFF signal (5 V/div.). Bottom  
trace: output voltage (1 V/div.). Time scale: 2 ms/div.  
Figure 2.5V.17. Output voltage response to load current step-  
change (20 A 30 A 20 A) at Vin = 48 V. Top trace: output  
voltage (100 mV/div.). Bottom trace: load current (10 A/div.).  
Current slew rate: 0.1 A/µs. Co = 1 µF ceramic. Time scale: 0.2  
ms/div.  
Figure 2.5V.18. Output voltage response to load current step-  
change (20 A 30 A 20 A) at Vin = 48 V. Top trace: output  
voltage (100 mV/div.). Bottom trace: load current (10 A/div.).  
Current slew rate: 5A/µs. Co = 470 µF POS + 1 µF ceramic.  
Time scale: 0.2 ms/div.  
tech.support@psbel.com  
17  
QME48T40 Series  
iS  
iC  
10 H  
source  
inductance  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
QME Series  
DC/DC  
Converter  
Vout  
Vsource  
Figure 2.5V.20. Test setup for measuring input reflected ripple  
Figure 2.5V.19. Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with Co = 10 µF tantalum + 1  
µF ceramic and Vin = 48 V. Time scale: 1 µs/div.  
currents, ic and is.  
Figure 2.5V.21. Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated load  
current and Vin = 48 V. Refer to Fig. 2.5V.20 for test setup.  
Time scale: 1 µs/div.  
Figure 2.5V.22. Input reflected ripple current, is  
(10 mA/div.), measured through 10 µH at the source at full  
rated load current and Vin = 48 V. Refer to  
Fig. 2.5V.20 for test setup. Time scale: 1 µs/div.  
Figure 2.5V.23. Output voltage vs. load current showing  
current limit point and converter shutdown point. Input voltage  
has almost no effect on current limit characteristic.  
Figure 2.5V.24. Load current (top trace, 20 A/div.,  
50 ms/div.) into a 10 mΩ short circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 2 ms/div.) is an expansion  
of the on-time portion of the top trace.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
18  
QME48T40 Series  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 1.8 VDC unless otherwise specified.  
PARAMETER  
CONDITIONS / DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
Input Characteristics  
Operating Input Voltage Range  
Input Under Voltage Lockout  
Turn-on Threshold  
36  
48  
75  
VDC  
33  
31  
34  
32  
35  
33  
VDC  
VDC  
Turn-off Threshold  
Input Voltage Transient  
100 ms  
100  
2.4  
VDC  
Maximum Input Current  
Input Stand-by Current  
40 ADC Out @ 36 VDC In  
Vin = 48V, converter disabled  
Vin = 48V, converter enabled  
Vin = 48V, 25 MHz bandwidth  
120 Hz  
ADC  
mA  
3
45  
9
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current, is  
mA  
mAPK-PK  
dB  
Input Voltage Ripple Rejection  
60  
Output Characteristics  
External Load Capacitance  
Output Current Range  
Plus full load (resistive)  
40,000  
40  
µF  
ADC  
ADC  
A
0
Current Limit Inception  
Non-latching  
42  
47  
50  
52  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Output Voltage Set Point (no load)  
Output Regulation Over Line  
Output Regulation Over Load  
Output Voltage Range  
Non-latching, Short = 10 mΩ  
Non-latching  
60  
9
Arms  
VDC  
mV  
1.782  
-1.5  
1.800  
±2  
1.818  
±5  
±2  
±5  
mV  
Over line, load and temperature1  
+1.5  
%Vout  
VOUT = 3.3 VDC  
Output Ripple and Noise 25 MHz bandwidth  
Full load + 10 µF tantalum + 1 µF ceramic  
55  
35  
110  
70  
mVPK-PK  
mVPK-PK  
VOUT = 1.0 VDC  
Full load + 10 µF tantalum + 1 µF ceramic  
Dynamic Response  
Load Change 50%-75%-50% of Iout Max,  
Co = 1 µF ceramic (Fig. 1.8V.17)  
Co = 470 µF POS + 1 µF ceramic  
502  
1302  
152  
mV  
mV  
µs  
di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Settling Time to 1% of Vout  
Efficiency  
100% Load  
86.5  
88.5  
%
%
50% Load  
1)  
Operating ambient temperature range of -40 ºC to 85 ºC for converter.  
See waveforms for dynamic response and settling time for different output voltages.  
2)  
tech.support@psbel.com  
19  
QME48T40 Series  
50  
40  
30  
20  
10  
0
50  
40  
30  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
NC - 30 LFM (0.15 m/s)  
20  
10  
NC - 30 LFM (0.15 m/s)  
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 1.8V.9. Available load current vs. ambient air  
Figure 1.8V.10. Available load current vs. ambient air  
temperature and airflow rates for QME48T40018 converter  
with G height pins mounted vertically with air flowing from pin  
1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
temperature and airflow rates for QME48T40018 converter  
with G height pins mounted horizontally with air flowing from  
pin 1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
Note: NC Natural convection  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
0.75  
0.75  
0.70  
0.65  
0.70  
0.65  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Figure 1.8V.11. Efficiency vs. load current and input voltage  
for QME48T40018 converter mounted horizontally with air  
flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s) and  
Ta = 25 C.  
Figure 1.8V.12. Efficiency vs. load current and ambient  
temperature for QME48T40018 converter mounted horizontally  
with Vin = 48 V and air flowing from pin 1 to pin 3 at a rate of  
200 LFM (1.0 m/s).  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
20  
QME48T40 Series  
15.00  
12.00  
9.00  
6.00  
3.00  
0.00  
15.00  
12.00  
9.00  
6.00  
3.00  
0.00  
70 C  
55 C  
40 C  
72 V  
48 V  
36 V  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Figure 1.8V.14. Power dissipation vs. load current and  
ambient temperature for QME48T40018 converter  
mounted horizontally with Vin = 48 V and air flowing from  
Figure 1.8V.13. Power dissipation vs. load current and input  
voltage for QME48T40018 converter mounted horizontally with  
air flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 C.  
pin 1 to pin 3 at a rate of 200 LFM (1.0 m/s).  
Figure 1.8V.16. Turn-on transient at full rated load current  
(resistive) plus 10,000 µF at Vin = 48 V, triggered via ON/OFF  
pin. Top trace: ON/OFF signal (5 V/div.). Bottom trace:  
output voltage (1 V/div.). Time scale: 2 ms/div.  
Figure 1.8V.15. Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V, triggered via  
ON/OFF pin. Top trace: ON/OFF signal (5 V/div.). Bottom  
trace: output voltage (1 V/div.). Time scale: 2 ms/div.  
Figure 1.8V.17. Output voltage response to load current step-  
change (20 A 30 A 20 A) at Vin = 48 V. Top trace: output  
voltage (100 mV/div.). Bottom trace: load current (10 A/div.).  
Current slew rate: 0.1 A/µs. Co = 1 µF ceramic. Time scale: 0.2  
ms/div.  
Figure 1.8V.18. Output voltage response to load current step-  
change (20 A 30 A 20 A) at Vin = 48 V. Top trace: output  
voltage (100 mV/div.). Bottom trace: load current (10 A/div.).  
Current slew rate: 5 A/µs. Co = 470 µF POS + 1 µF ceramic.  
Time scale: 0.2 ms/div.  
tech.support@psbel.com  
21  
QME48T40 Series  
iS  
iC  
10 H  
source  
inductance  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
QME Series  
DC/DC  
Converter  
Vout  
Vsource  
Figure 1.8V.20. Test setup for measuring input reflected ripple  
Figure 1.8V.19. Output voltage ripple (20mV/div.) at full rated  
load current into a resistive load with Co = 10 µF tantalum + 1  
µF ceramic and Vin = 48 V. Time scale: 1 µs/div.  
currents, ic and is.  
Figure 1.8V.21. Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated load  
current and Vin = 48 V. Refer to Fig. 1.8V.20 for test setup.  
Time scale: 1 µs/div.  
Figure 1.8V.22. Input reflected ripple current, is  
(10 mA/div.), measured through 10 µH at the source at full  
rated load current and Vin = 48 V. Refer to  
Fig. 1.8V.20 for test setup. Time scale: 1 µs/div.  
Figure 1.8V.24. Load current (top trace, 20 A/div.,  
50 ms/div.) into a 10 mΩ short circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 2 ms/div.) is an expansion  
of the on-time portion of the top trace.  
Figure 1.8V.23. Output voltage vs. load current showing  
current limit point and converter shutdown point. Input voltage  
has almost no effect on current limit characteristic.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
22  
QME48T40 Series  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 1.5 VDC unless otherwise specified.  
PARAMETER  
CONDITIONS / DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
Input Characteristics  
Operating Input Voltage Range  
Input Under Voltage Lockout  
Turn-on Threshold  
36  
48  
75  
VDC  
33  
31  
34  
32  
35  
33  
VDC  
VDC  
Turn-off Threshold  
Input Voltage Transient  
100 ms  
100  
2.0  
VDC  
Maximum Input Current  
Input Stand-by Current  
40 ADC Out @ 36 VDC In  
Vin = 48V, converter disabled  
Vin = 48V, converter enabled  
Vin = 48V, 25 MHz bandwidth  
120 Hz  
ADC  
mA  
3
44  
9
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current, is  
mA  
mAPK-PK  
dB  
Input Voltage Ripple Rejection  
60  
Output Characteristics  
External Load Capacitance  
Output Current Range  
Plus full load (resistive)  
40,000  
40  
µF  
ADC  
ADC  
A
0
Current Limit Inception  
Non-latching  
42  
47  
50  
52  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Output Voltage Set Point (no load)  
Output Regulation Over Line  
Output Regulation Over Load  
Output Voltage Range  
Non-latching, Short = 10 mΩ  
Non-latching  
60  
9
Arms  
VDC  
mV  
1.485  
-1.5  
1.500  
±2  
1.515  
±5  
±2  
±5  
mV  
Over line, load and temperature1  
+1.5  
%Vout  
VOUT = 3.3 VDC  
Output Ripple and Noise 25 MHz bandwidth  
Full load + 10 µF tantalum + 1 µF ceramic  
55  
35  
110  
70  
mVPK-PK  
mVPK-PK  
VOUT = 1.0 VDC  
Full load + 10 µF tantalum + 1 µF ceramic  
Dynamic Response  
Load Change 50%-75%-50% of Iout Max,  
Co = 1 µF ceramic (Fig. 1.5V.17)  
Co = 470 µF POS + 1 µF ceramic  
502  
1302  
152  
mV  
mV  
µs  
di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Settling Time to 1% of Vout  
Efficiency  
100% Load  
84.5  
87.0  
%
%
50% Load  
1)  
Operating ambient temperature range of -40 ºC to 85 ºC for converter.  
See waveforms for dynamic response and settling time for different output voltages.  
2)  
tech.support@psbel.com  
23  
QME48T40 Series  
50  
40  
30  
20  
10  
0
50  
40  
30  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
NC - 30 LFM (0.15 m/s)  
20  
10  
NC - 30 LFM (0.15 m/s)  
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 1.5V.9. Available load current vs. ambient air  
Figure 1.5V.10. Available load current vs. ambient air  
temperature and airflow rates for QME48T40015 converter  
with G height pins mounted vertically with air flowing from pin  
1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
temperature and airflow rates for QME48T40015 converter  
with G height pins mounted horizontally with air flowing from  
pin 1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
Note: NC Natural convection  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
0.75  
0.75  
72 V  
70 C  
0.70  
0.65  
0.60  
48 V  
36 V  
0.70  
0.65  
0.60  
55 C  
40 C  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Figure 1.5V.12. Efficiency vs. load current and ambient  
Figure 1.5V.11. Efficiency vs. load current and input voltage  
for QME48T40015 converter mounted horizontally with air  
flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s) and  
Ta = 25 C.  
temperature for QME48T40015 converter mounted horizontally  
with Vin = 48 V and air flowing from pin 1 to pin 3 at a rate of  
200 LFM (1.0 m/s).  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
24  
QME48T40 Series  
15.00  
12.00  
9.00  
6.00  
3.00  
0.00  
15.00  
12.00  
9.00  
6.00  
3.00  
0.00  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Figure 1.5V.13. Power dissipation vs. load current and input  
voltage for QME48T40015 converter mounted horizontally with  
air flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 C.  
Figure 1.5V.14. Power dissipation vs. load current and  
ambient temperature for QME48T40015 converter mounted  
horizontally with Vin = 48 V and air flowing from pin 1 to pin 3  
at a rate of 200 LFM (1.0 m/s).  
Figure 1.5V.16. Turn-on transient at full rated load current  
(resistive) plus 10,000 µF at Vin = 48 V, triggered via ON/OFF  
pin. Top trace: ON/OFF signal (5 V/div.). Bottom trace:  
output voltage (1 V/div.). Time scale: 2 ms/div.  
Figure 1.5V.15. Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V, triggered via  
ON/OFF pin. Top trace: ON/OFF signal (5 V/div.). Bottom  
trace: output voltage (1 V/div.). Time scale: 2 ms/div.  
Figure 1.5V.18. Output voltage response to load current step-  
change (20 A 30 A 20 A) at Vin = 48 V. Top trace: output  
voltage (100 mV/div.). Bottom trace: load current (10 A/div.).  
Current slew rate: 5A/µs. Co = 470 µF POS + 1 µF ceramic.  
Time scale: 0.2 ms/div.  
Figure 1.5V.17. Output voltage response to load current step-  
change (20 A 30 A 20 A) at Vin = 48 V. Top trace: output  
voltage (100 mV/div.). Bottom trace: load current (10 A/div.).  
Current slew rate: 0.1 A/µs. Co = 1 µF ceramic. Time scale: 0.2  
ms/div.  
tech.support@psbel.com  
25  
QME48T40 Series  
iS  
iC  
10 H  
source  
inductance  
TM Series  
1 F  
ceramic  
capacitor  
33 F  
ESR <1  
electrolytic  
capacitor  
QmaX  
DC-DC  
Converter  
Vout  
Vsource  
Figure 1.5V.20. Test setup for measuring input reflected ripple  
Figure 1.5V.19. Output voltage ripple (20 mV/div.) at full  
rated load current into a resistive load with Co = 10 µF  
tantalum + 1 µF ceramic and Vin = 48 V. Time scale:  
1 µs/div.  
currents, ic and is.  
Figure 1.5V.22. Input reflected ripple current, is  
(10 mA/div.), measured through 10 µH at the source at full  
rated load current and Vin = 48 V. Refer to  
Figure 1.5V.21. Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated load  
current and Vin = 48 V. Refer to Fig. 1.5V.20 for test setup.  
Time scale: 1 µs/div.  
Fig. 1.5V.20 for test setup. Time scale: 1 µs/div..  
Figure 1.5V.24. Load current (top trace, 20 A/div.,  
50 ms/div.) into a 10 mΩ short circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 2 ms/div.) is an expansion  
of the on-time portion of the top trace.  
Figure 1.5V.23. Output voltage vs. load current showing  
current limit point and converter shutdown point. Input voltage  
has almost no effect on current limit characteristic.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
26  
QME48T40 Series  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 1.2 VDC unless otherwise specified.  
PARAMETER  
CONDITIONS / DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
Input Characteristics  
Operating Input Voltage Range  
Input Under Voltage Lockout  
Turn-on Threshold  
36  
48  
75  
VDC  
33  
31  
34  
32  
35  
33  
VDC  
VDC  
Turn-off Threshold  
Input Voltage Transient  
100 ms  
100  
1.6  
VDC  
Maximum Input Current  
Input Stand-by Current  
40 ADC Out @ 36 VDC In  
Vin = 48V, converter disabled  
Vin = 48V, converter enabled  
Vin = 48V, 25 MHz bandwidth  
120 Hz  
ADC  
mA  
3
43  
8
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current, is  
mA  
mAPK-PK  
dB  
Input Voltage Ripple Rejection  
60  
Output Characteristics  
External Load Capacitance  
Output Current Range  
Plus full load (resistive)  
40,000  
40  
µF  
ADC  
ADC  
A
0
Current Limit Inception  
Non-latching  
42  
47  
50  
52  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Output Voltage Set Point (no load)  
Output Regulation Over Line  
Output Regulation Over Load  
Output Voltage Range  
Non-latching, Short = 10 mΩ  
Non-latching  
60  
9
Arms  
VDC  
mV  
1.182  
-1.5  
1.200  
±2  
1.218  
±5  
±2  
±5  
mV  
Over line, load and temperature1  
+1.5  
%Vout  
VOUT = 3.3 VDC  
Output Ripple and Noise 25 MHz bandwidth  
Full load + 10 µF tantalum + 1 µF ceramic  
55  
35  
110  
70  
mVPK-PK  
mVPK-PK  
VOUT = 1.0 VDC  
Full load + 10 µF tantalum + 1 µF ceramic  
Dynamic Response  
Load Change 50%-75%-50% of Iout Max,  
Co = 1 µF ceramic (Fig. 1.2V.17)  
Co = 470 µF POS + 1 µF ceramic  
502  
1302  
152  
mV  
mV  
µs  
di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Settling Time to 1% of Vout  
Efficiency  
100% Load  
82.0  
85.0  
%
%
50% Load  
1)  
Operating ambient temperature range of -40 ºC to 85 ºC for converter.  
See waveforms for dynamic response and settling time for different output voltages.  
2)  
tech.support@psbel.com  
27  
QME48T40 Series  
50  
40  
30  
20  
10  
0
50  
40  
30  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
NC - 30 LFM (0.15 m/s)  
20  
10  
NC - 30 LFM (0.15 m/s)  
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 1.2V.9. Available load current vs. ambient air  
Figure 1.2V.10. Available load current vs. ambient air  
temperature and airflow rates for QME48T40012 converter  
with G height pins mounted vertically with air flowing from pin  
1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
temperature and airflow rates for QME48T40012 converter  
with G height pins mounted horizontally with air flowing from  
pin 1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
Note: NC Natural convection  
0.90  
0.85  
0.80  
0.75  
0.90  
0.85  
0.80  
0.75  
72 V  
48 V  
36 V  
0.70  
70 C  
55 C  
40 C  
0.70  
0.65  
0.60  
0.65  
0.60  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Figure 1.2V.11. Efficiency vs. load current and input voltage  
for QME48T40012 converter mounted horizontally with air  
flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s) and  
Ta = 25 C.  
Figure 1.2V.12. Efficiency vs. load current and ambient  
temperature for QME48T40012 converter mounted  
horizontally with Vin = 48 V and air flowing from pin 1 to pin 3  
at a rate of 200 LFM (1.0 m/s).  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
28  
QME48T40 Series  
15.00  
12.00  
9.00  
6.00  
3.00  
0.00  
15.00  
12.00  
9.00  
6.00  
3.00  
0.00  
70 C  
55 C  
40 C  
72 V  
48 V  
36 V  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Figure 1.2V.14. Power dissipation vs. load current and  
Figure 1.2V.13. Power dissipation vs. load current and input  
voltage for QME48T40012 converter mounted horizontally with  
air flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 C.  
ambient temperature for QME48T40012 converter mounted  
horizontally with Vin = 48 V and air flowing from pin 1 to pin  
3 at a rate of 200 LFM (1.0 m/s).  
Figure 1.2V.15. Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V, triggered via  
ON/OFF pin. Top trace: ON/OFF signal (5 V/div.). Bottom  
trace: output voltage (1 V/div.). Time scale: 2 ms/div.  
Figure 1.2V.16. Turn-on transient at full rated load current  
(resistive) plus 10,000 µF at Vin = 48 V, triggered via ON/OFF  
pin. Top trace: ON/OFF signal (5 V/div.). Bottom trace:  
output voltage (1 V/div.). Time scale: 2 ms/div.  
Figure 1.2V.17. Output voltage response to load current step-  
change (20 A 30 A 20 A) at Vin = 48 V. Top trace: output  
voltage (100 mV/div.). Bottom trace: load current (10 A/div.).  
Current slew rate: 0.1 A/µs. Co = 1 µF ceramic.  
Time scale: 0.2 ms/div.  
Figure 1.2V.18. Output voltage response to load current step-  
change (20 A 30 A 20 A) at Vin = 48 V. Top trace: output  
voltage (100 mV/div.). Bottom trace: load current (10 A/div.).  
Current slew rate: 5 A/µs. Co = 470 µF POS + 1 µF ceramic.  
Time scale: 0.2 ms/div.  
tech.support@psbel.com  
29  
QME48T40 Series  
iS  
iC  
10 H  
source  
inductance  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
QME Series  
DC/DC  
Converter  
Vout  
Vsource  
Figure 1.2V.19. Output voltage ripple (20 mV/div.) at full  
rated load current into a resistive load with Co = 10 µF  
tantalum + 1 µF ceramic and Vin = 48 V. Time scale:  
1 µs/div.  
Figure 1.2V.20. Test setup for measuring input reflected ripple  
currents, ic and is.  
Figure 1.2V.21. Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated load  
current and Vin = 48 V. Refer to Fig. 1.2V.20 for test setup.  
Time scale: 1 µs/div.  
Figure 1.2V.22. Input reflected ripple current, is  
(10 mA/div.), measured through 10 µH at the source at full  
rated load current and Vin = 48 V. Refer to  
Fig. 1.2V.20 for test setup. Time scale: 1 µs/div.  
Figure 1.2V.24. Load current (top trace, 20 A/div.,  
50 ms/div.) into a 10 mΩ short circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 5 ms/div.) is an expansion  
of the on-time portion of the top trace.  
Figure 1.2V.23. Output voltage vs. load current showing  
current limit point and converter shutdown point. Input voltage  
has almost no effect on current limit characteristic.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
30  
QME48T40 Series  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 1.0 VDC unless otherwise specified.  
PARAMETER  
CONDITIONS / DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
Input Characteristics  
Operating Input Voltage Range  
Input Under Voltage Lockout  
Turn-on Threshold  
36  
48  
75  
VDC  
33  
31  
34  
32  
35  
33  
VDC  
VDC  
Turn-off Threshold  
Input Voltage Transient  
100 ms  
100  
1.4  
VDC  
Maximum Input Current  
Input Stand-by Current  
40 ADC Out @ 36 VDC In  
Vin = 48V, converter disabled  
Vin = 48V, converter enabled  
Vin = 48V, 25 MHz bandwidth  
120 Hz  
ADC  
mA  
3
43  
8
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current, is  
mA  
mAPK-PK  
dB  
Input Voltage Ripple Rejection  
60  
Output Characteristics  
External Load Capacitance  
Output Current Range  
Plus full load (resistive)  
40,000  
40  
µF  
ADC  
ADC  
A
0
Current Limit Inception  
Non-latching  
42  
47  
50  
52  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Output Voltage Set Point (no load)  
Output Regulation Over Line  
Output Regulation Over Load  
Output Voltage Range  
Non-latching, Short = 10 mΩ  
Non-latching  
60  
9
Arms  
VDC  
mV  
0.985  
-1.5  
1.000  
±2  
1.015  
±5  
±2  
±5  
mV  
Over line, load and temperature1  
+1.5  
%Vout  
VOUT = 3.3 VDC  
Output Ripple and Noise 25 MHz bandwidth  
Full load + 10 µF tantalum + 1 µF ceramic  
55  
35  
110  
70  
mVPK-PK  
mVPK-PK  
VOUT = 1.0 VDC  
Full load + 10 µF tantalum + 1 µF ceramic  
Dynamic Response  
Load Change 50%-75%-50% of Iout Max,  
Co = 1 µF ceramic (Fig. 1.0V.17)  
Co = 470 µF POS + 1 µF ceramic  
502  
1302  
152  
mV  
mV  
µs  
di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Settling Time to 1% of Vout  
Efficiency  
100% Load  
80.0  
83.0  
%
%
50% Load  
1)  
Operating ambient temperature range of -40 ºC to 85 ºC for converter.  
See waveforms for dynamic response and settling time for different output voltages.  
2)  
tech.support@psbel.com  
31  
QME48T40 Series  
50  
40  
30  
20  
10  
0
50  
40  
30  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
NC - 30 LFM (0.15 m/s)  
20  
10  
NC - 30 LFM (0.15 m/s)  
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 1.0V.9. Available load current vs. ambient air  
Figure 1.0V.10. Available load current vs. ambient air  
temperature and airflow rates for QME48T40010 converter  
with G height pins mounted vertically with air flowing from pin  
1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
temperature and airflow rates for QME48T40010 converter  
with G height pins mounted horizontally with air flowing from  
pin 1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
Note: NC Natural convection  
0.85  
0.80  
0.75  
0.90  
0.80  
0.70  
70 C  
55 C  
40 C  
72 V  
48 V  
36 V  
0.70  
0.60  
0.65  
0.50  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Figure 1.0V.12. Efficiency vs. load current and ambient  
temperature for QME48T40010 converter mounted  
horizontally with Vin = 48 V and air flowing from pin 1 to pin 3  
at a rate of 200 LFM (1.0 m/s).  
Figure 1.0V.11. Efficiency vs. load current and input voltage  
for QME48T40010 converter mounted horizontally with air  
flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s) and  
Ta = 25 C.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
32  
QME48T40 Series  
15.00  
12.00  
9.00  
6.00  
3.00  
0.00  
15.00  
12.00  
9.00  
6.00  
3.00  
0.00  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Figure 1.0V.13. Power dissipation vs. load current and input  
voltage for QME48T40010 converter mounted horizontally with  
air flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 C.  
Figure 1.0V.14. Power dissipation vs. load current and  
ambient temperature for QME48T40010 converter mounted  
horizontally with Vin = 48 V and air flowing from pin 1 to pin 3  
at a rate of 200 LFM (1.0 m/s).  
Figure 1.0V.16. Turn-on transient at full rated load current  
(resistive) plus 10,000 µF at Vin = 48 V, triggered via ON/OFF  
pin. Top trace: ON/OFF signal (5 V/div.). Bottom trace:  
output voltage (1 V/div.). Time scale: 2 ms/div.  
Figure 1.0V.15. Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V, triggered via  
ON/OFF pin. Top trace: ON/OFF signal (5 V/div.). Bottom  
trace: output voltage (1 V/div.). Time scale: 2 ms/div  
.
Figure 1.0V.18. Output voltage response to load current step-  
change (20 A 30 A 20 A) at Vin = 48 V. Top trace: output  
voltage (100 mV/div.). Bottom trace: load current (10 A/div.).  
Current slew rate: 5 A/µs. Co = 470 µF POS + 1 µF ceramic.  
Time scale: 0.2 ms/div.  
Figure 1.0V.17. Output voltage response to load current step-  
change (20 A 30 A 20 A) at Vin = 48 V. Top trace: output  
voltage (100 mV/div.). Bottom trace: load current (10 A/div.).  
Current slew rate: 0.1 A/µs. Co = 1 µF ceramic.  
Time scale: 0.2 ms/div.  
tech.support@psbel.com  
33  
QME48T40 Series  
iS  
iC  
10 H  
source  
inductance  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
QME Series  
DC/DC  
Converter  
Vout  
Vsource  
Figure 1.0V.19. Output voltage ripple (20 mV/div.) at full  
rated load current into a resistive load with Co = 10 F  
tantalum + 1 µF ceramic and Vin = 48 V. Time scale: 1  
µs/div.  
Figure 1.0V.20. Test setup for measuring input reflected ripple  
currents, ic and is.  
Figure 1.0V.21. Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated load  
current and Vin = 48 V. Refer to Fig. 1.0V.20 for test setup.  
Time scale: 1 µs/div.  
Figure 1.0V.22. Input reflected ripple current, is  
(10 mA/div.), measured through 10 µH at the source at full  
rated load current and Vin = 48 V. Refer to  
Fig. 1.0V.20 for test setup. Time scale: 1 µs/div.  
Figure 1.0V.24. Load current (top trace, 20 A/div.,  
50 ms/div.) into a 10 mΩ short circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 5 ms/div.) is an expansion  
of the on-time portion of the top trace.  
Figure 1.0V.23. Output voltage vs. load current showing  
current limit point and converter shutdown point. Input voltage  
has almost no effect on current limit characteristic.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  
34  
QME48T40 Series  
6.  
PAD/PIN CONNECTIONS  
Pad/Pin #  
Function  
Vin (+)  
1
2
3
4
5
6
7
8
ON/OFF  
Vin (-)  
Vout (-)  
SENSE (-)  
TRIM  
SENSE (+)  
Vout (+)  
SIDE VIEW  
All dimensions are in inches [mm]  
Pins 1-3 and 5-7 are Ø 0.040”  
[1.02] with Ø 0.078” [1.98]  
shoulder  
Pins 4 and 8 are Ø 0.062” [1.57]  
without shoulder  
Pin Material & Finish: Brass Alloy  
360 with Matte Tin over Nickel  
Converter Weight: 1.02 oz [34.2 g]  
PL  
Pin  
Height  
HT  
CL  
(Pin Length)  
Option  
Option  
(Maximum Height)  
(Minimum Clearance)  
±0.005 [±0.13]  
0.188 [4.78]  
G
0.425 [10.80]  
0.035 [0.89]  
A
B
0.145 [3.68]  
HT  
(Maximum  
Height)  
CL  
(Minimum  
Clearance)  
Heatsink  
Option  
S1  
0.99 [25.1]  
0.039 [1.00]  
PL (Pin  
Length)  
Pin Option  
±0.005 [±0.13]  
B
0.145 [3.68]  
Tolerance Unless Otherwise Noted  
Linear:  
X.X = +/- .020 [0.5]  
X.XX = +/- 0.010 [0.25]  
X.XXX = +/- 0.005 [0.13]  
Angular  
X° = +/- 2°  
.X° = +/- .25°  
tech.support@psbel.com  
35  
QME48T40 Series  
7.  
Rated  
Load  
Current  
Maximum  
Height  
[HT]  
Pin  
Length  
[PL]  
Product1  
Series  
Input  
Voltage  
Mounting  
Scheme  
Output  
Voltage  
ON/OFF  
Logic  
Special  
Features  
Heatsin  
RoHS  
k2  
QME  
48  
T
40  
033  
-
N
G
B
0
0 STD  
Non-  
Latching  
No Suffix   
RoHS  
lead-solder-  
exemption  
compliant  
No Suffix  
No  
heatsink  
010 1.0 V  
012 1.2 V  
015 1.5 V  
018 1.8 V  
025 2.5 V  
033 3.3 V  
N   
Negative  
L   
Latching  
Options  
Quarter-  
Brick  
Format  
Through  
Hole  
A 0.188”  
B 0.145”  
36-75 V  
40 ADC  
G 0.425”  
-S1   
Heatsink  
as  
P   
Positive  
G RoHS  
compliant  
for all six  
F   
shown  
Switching  
frequency  
440kHz  
substances  
1)  
2)  
The example above describes P/N QME48T40033-NGB0: 36-75 V input, through-hole, 40 A @ 3.3 V output, negative ON/OFF  
logic, a 0.145” solder tail and maximum height of 0.425”, standard (non-latching) protection, and Eutectic Tin/Lead solder.  
Consult factory for the complete list of available options.  
The heatsink option “S1” is only available with the model QME48T40033-NGBOG-S1  
NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems,  
equipment used in hazardous environments, or nuclear control systems.  
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on  
the date manufactured. Specifications are subject to change without notice.  
North America  
Asia-Pacific  
Europe, Middle East  
+1 408 785 5200  
+86 755 298 85888  
+353 61 225 977  
© 2017 Bel Power Solutions & Protection  
BCD.00817_AB  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY