QME48T4012NGBLG [BEL]

DC-DC Regulated Power Supply Module, 1 Output, 48.72W, Hybrid, ROHS COMPLIANT PACKAGE-8;
QME48T4012NGBLG
型号: QME48T4012NGBLG
厂家: BEL FUSE INC.    BEL FUSE INC.
描述:

DC-DC Regulated Power Supply Module, 1 Output, 48.72W, Hybrid, ROHS COMPLIANT PACKAGE-8

文件: 总35页 (文件大小:571K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Features  
RoHS lead-free solder and lead-solder-exempted  
products are available  
Delivers up to 40 A  
Outputs available: 3.3, 2.5, 1.8, 1.5, 1.2 and 1.0 V  
Industry-standard quarter-brick pinout  
On-board input differential LC-filter  
Startup into pre-biased load  
No minimum load required  
Dimensions: 1.45” x 2.30” x 0.425”  
(36.83 x 58.42 x 10.80 mm)  
Weight: 1.2 oz [34.2 g]  
Meets Basic Insulation requirements of EN60950  
Withstands 100 V input transient for 100 ms  
Fixed-frequency operation  
Fully protected  
Remote output sense  
Non-Latching / Latching OTP option  
Positive or negative logic ON/OFF option  
Output voltage trim range: +10%/20% with  
Applications  
Telecommunications  
Data communications  
Wireless communications  
Servers, Workstations  
industry-standard trim equations (±10% for 1.2 V  
and 1.0 V)  
Benefits  
High reliability: MTBF = 13.9 million hours,  
calculated per Telcordia TR-332, Method I Case 1  
High efficiency – no heat sink required  
Higher current capability at 70 ºC than most  
competitors’ 40 A half-bricks  
UL60950 recognized in US and Canada and  
DEMKO certified per IEC/EN60950 (pending)  
Designed to meet Class B conducted emissions per  
FCC and EN55022 when used with external filter  
All materials meet UL94, V-0 flammability rating  
Description  
The QME48T40 DC-DC Series of converters provide outstanding thermal performance in high temperature  
environments. This performance is accomplished through the use of patented/patent-pending circuits, packaging,  
and processing techniques to achieve ultra-high efficiency, excellent thermal management, and a low-body profile.  
The low-body profile and the preclusion of heat sinks minimize impedance to system airflow, thus enhancing  
cooling for both upstream and downstream devices. The use of 100% automation for assembly, coupled with  
advanced electronic circuits and thermal design, results in a product with extremely high reliability.  
Operating from a 36-75 V input, the QME48T40 converters provide any standard output voltage from 3.3 V down  
to 1.0 V that can be trimmed from –20% to +10% of the nominal output voltage (±10% for output voltages 1.2 V  
and 1.0 V), thus providing outstanding design flexibility.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 1 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Electrical Specifications  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vi n = 48 VDC, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max Units  
Absolute Maximum Ratings  
Input Voltage  
Continuous  
0
80  
85  
VDC  
°C  
Operating Ambient Temperature  
Storage Temperature  
-40  
-55  
125  
°C  
Input Characteristics  
Operating Input Voltage Range  
Input Under Voltage Lockout  
Turn-on Threshold  
36  
48  
75  
VDC  
33  
31  
34  
32  
35  
33  
VDC  
VDC  
VDC  
Turn-off Threshold  
Input Voltage Transient  
Maximum Input Current  
100 ms  
100  
40 ADC Out @ 36 VDC In  
VOUT = 3.3 VDC  
4.1  
3.2  
2.4  
2.0  
1.6  
1.4  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
mA  
VOUT = 2.5 VDC  
VOUT = 1.8 VDC  
VOUT = 1.5 VDC  
VOUT = 1.2 VDC  
VOUT = 1.0 VDC  
Input Stand-by Current  
Vin = 48V, converter disabled  
Vin = 48V, converter enabled  
VOUT = 3.3 VDC  
3
Input No Load Current (0 load on the output)  
50  
47  
45  
44  
43  
43  
mA  
mA  
mA  
mA  
mA  
mA  
VOUT = 2.5 VDC  
VOUT = 1.8 VDC  
VOUT = 1.5 VDC  
VOUT = 1.2 VDC  
VOUT = 1.0 VDC  
Input Reflected-Ripple Current, is  
Vin = 48V, 25 MHz bandwidth  
VOUT = 3.3 VDC  
10  
9
mAPK-PK  
mAPK-PK  
mAPK-PK  
mAPK-PK  
mAPK-PK  
mAPK-PK  
dB  
VOUT = 2.5 VDC  
VOUT = 1.8 VDC  
9
VOUT = 1.5 VDC  
9
VOUT = 1.2 VDC  
8
VOUT = 1.0 VDC  
8
Input Voltage Ripple Rejection  
120 Hz  
60  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 2 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Electrical Specifications (continued)  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max Units  
Output Characteristics  
External Load Capacitance  
Output Current Range  
Plus full load (resistive)  
40,000  
40  
µF  
ADC  
ADC  
A
0
Current Limit Inception  
Non-latching  
42  
47  
50  
9
52  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Output Voltage Set Point (no load)  
Non-latching, Short = 10 m  
Non-latching  
60  
Arms  
VDC  
VDC  
VDC  
VDC  
VDC  
VDC  
mV  
VOUT = 3.3 VDC  
VOUT = 2.5 VDC  
VOUT = 1.8 VDC  
VOUT = 1.5 VDC  
VOUT = 1.2 VDC  
VOUT = 1.0 VDC  
3.267 3.300 3.333  
2.475 2.500 2.525  
1.782 1.800 1.818  
1.485 1.500 1.515  
1.182 1.200 1.218  
0.985 1.000 1.015  
Output Regulation Over Line  
Output Regulation Over Load  
Output Voltage Range  
±2  
±2  
±5  
±5  
mV  
Over line, load and temperature1  
VOUT = 3.3 VDC  
-1.5  
+1.5  
%Vout  
55  
35  
110 mVPK-PK  
Output Ripple and Noise – 25 MHz bandwidth Full load + 10 µF tantalum + 1 µF ceramic  
VOUT = 1.0 VDC  
70  
mVPK-PK  
Full load + 10 µF tantalum + 1 µF ceramic  
Dynamic Response  
Load Change 50%-75%-50% of Iout Max,  
di/dt = 0.1 A/μs  
Co = 1 µF ceramic (Fig. 3.3V.9)  
Co = 470 µF POS + 1 µF ceramic  
502  
1302  
152  
mV  
mV  
µs  
di/dt = 5 A/μs  
Settling Time to 1% of Vout  
Efficiency  
%
100% Load  
VOUT = 3.3 VDC  
VOUT = 2.5 VDC  
VOUT = 1.8 VDC  
VOUT = 1.5 VDC  
VOUT = 1.2 VDC  
VOUT = 1.0 VDC  
VOUT = 3.3 VDC  
VOUT = 2.5 VDC  
VOUT = 1.8 VDC  
VOUT = 1.5 VDC  
VOUT = 1.2 VDC  
VOUT = 1.0 VDC  
91.0  
89.0  
86.5  
84.5  
82.0  
80.0  
92.0  
%
%
%
%
%
%
50% Load  
91.0  
88.5  
87.0  
85.0  
83.0  
%
%
%
%
%
Additional Notes:  
1
Operating ambient temperature range of -40 ºC to 85 ºC for converter.  
2
See waveforms for dynamic response and settling time for different output voltages.  
3
Vout can be increased up to 10% via the sense leads or 10% via the trim function. However, the total output voltage trim from all sources  
should not exceed 10% of VOUT(NOM), in order to ensure specified operation of overvoltage protection circuitry  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 3 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Electrical Specifications (continued)  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max Units  
Isolation Characteristics  
I/O Isolation  
2000  
10  
VDC  
nF  
Isolation Capacitance  
Isolation Resistance  
Feature Characteristics  
Switching Frequency  
Output Voltage Trim Range3  
2
MΩ  
460  
kHz  
Non-latching (3.3 - 1.5 V)  
Non-latching (1.2 V and 1.0 V)  
Percent of VOUT(NOM)  
-20  
-10  
+10  
+10  
+10  
%
%
%
Remote Sense Compensation3  
Output Overvoltage Protection  
Auto-Restart Period  
Non-latching  
117  
128  
200  
4
140  
%
Applies to all protection features  
ms  
ms  
Turn-On Time  
ON/OFF Control (Positive Logic)  
Converter Off (logic low)  
Converter On (logic high)  
ON/OFF Control (Negative Logic)  
Converter Off (logic high)  
Converter On (logic low)  
-20  
2.4  
0.8  
20  
VDC  
VDC  
2.4  
-20  
20  
VDC  
VDC  
0.8  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 4 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
ON/OFF input, in which case it must be capable of  
sourcing or sinking up to 1 mA depending on the  
signal polarity. See the Startup Information section  
for system timing waveforms associated with use of  
Operations  
Input and Output Impedance  
These power converters have been designed to be  
stable with no external capacitors when used in low  
inductance input and output circuits.  
the ON/OFF pin.  
Remote Sense (Pins 5 and 7)  
In many applications, the inductance associated with  
the distribution from the power source to the input of  
the converter can affect the stability of the converter.  
The addition of a 33 µF electrolytic capacitor with an  
ESR < 1 across the input helps to ensure stability  
of the converter. In many applications, the user has  
to use decoupling capacitance at the load. The  
power converter will exhibit stable operation with  
external load capacitance up to 40,000 µF on 3.3 V –  
1.0 V outputs.  
The remote sense feature of the converter  
compensates for voltage drops occurring between  
the output pins of the converter and the load. The  
SENSE(-) (Pin 5) and SENSE(+) (Pin 7) pins should  
be connected at the load or at the point where  
regulation is required (see Fig. B).  
QME Series  
Rw  
Vin (+)  
ON/OFF  
Vin (-)  
Vout (+)  
100  
Converter  
SENSE (+)  
(Top View)  
Rload  
TRIM  
Vin  
Additionally, see the EMC section of this data sheet  
for discussion of other external components which  
may be required for control of conducted emissions.  
SENSE (-)  
10  
Vout (+)  
Rw  
ON/OFF (Pin 2)  
Fig. B: Remote sense circuit configuration.  
The ON/OFF pin is used to turn the power converter  
on or off remotely via a system signal. There are two  
remote control options available, positive and  
negative logic, with both referenced to Vin(-). A  
typical connection is shown in Fig. A.  
CAUTION  
If remote sensing is not utilized, the SENSE(-) pin must be  
connected to the Vout(-) pin (Pin 4), and the SENSE(+) pin  
must be connected to the Vout(+) pin (Pin 8) to ensure the  
converter will regulate at the specified output voltage. If these  
connections are not made, the converter will deliver an  
output voltage that is slightly higher than the specified data  
sheet value.  
QME Series  
Vin (+)  
ON/OFF  
Vin (-)  
Vout (+)  
SENSE (+)  
TRIM  
Converter  
(Top View)  
Because the sense leads carry minimal current,  
large traces on the end-user board are not required.  
However, sense traces should be run side by side  
and located close to a ground plane to minimize  
system noise and ensure optimum performance.  
Rload  
Vin  
SENSE (-)  
Vout (-)  
CONTROL  
INPUT  
The converter’s output overvoltage protection (OVP)  
senses the voltage across Vout(+) and Vout(-), and  
not across the sense lines, so the resistance (and  
resulting voltage drop) between the output pins of  
the converter and the load should be minimized to  
prevent unwanted triggering of the OVP.  
Fig. A: Circuit configuration for ON/OFF function.  
The positive logic version turns on when the ON/OFF  
pin is at a logic high and turns off when at a logic  
low. The converter is on when the ON/OFF pin is left  
open. See the Electrical Specifications for logic  
high/low definitions.  
When utilizing the remote sense feature, care must  
be taken not to exceed the maximum allowable  
output power capability of the converter, which is  
equal to the product of the nominal output voltage  
and the allowable output current for the given  
conditions.  
The negative logic version turns on when the pin is  
at a logic low and turns off when the pin is at a logic  
high. The ON/OFF pin can be hardwired directly to  
Vin(-) to enable automatic power up of the converter  
without the need of an external control signal.  
The ON/OFF pin is internally pulled up to 5 V  
through a resistor. A properly debounced mechanical  
switch, open-collector transistor, or FET can be used  
to drive the input of the ON/OFF pin. The device  
must be capable of sinking up to 0.2 mA at a low  
level voltage of 0.8 V. An external voltage source  
(±20 V maximum) may be connected directly to the  
When using remote sense, the output voltage at the  
converter can be increased by as much as 10%  
above the nominal rating in order to maintain the  
required voltage across the load. Therefore, the  
designer must, if necessary, decrease the maximum  
current (originally obtained from the derating curves)  
by the same percentage to ensure the converter’s  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 5 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
actual output power remains at or below the  
maximum allowable output power.  
To decrease the output voltage (Fig. D), a trim  
resistor, RT-DECR, should be connected between the  
TRIM (Pin 6) and SENSE(-) (Pin 5), with a value of:  
Output Voltage Adjust /TRIM (Pin 6)  
511  
The output voltage can be adjusted up 10% or down  
20% for Vout 1.5 V, and ±10% for Vout = 1.2 V and  
1.0 V relative to the rated output voltage by the  
addition of an externally connected resistor.  
R
R
R
TDECR  
TDECR  
TDECR  
10.22  
15  
[k]  
(3.3 – 1.5 V)  
(1.2 V)  
| Δ |  
700  
[k]  
The TRIM pin should be left open if trimming is not  
being used. To minimize noise pickup, a 0.1 µF  
capacitor is connected internally between the TRIM  
and SENSE(-) pins.  
| Δ |  
700  
17  
[k]  
(1.0 V)  
| Δ |  
To increase the output voltage, refer to Fig. C. A trim  
resistor, RT-INCR, should be connected between the  
TRIM (Pin 6) and SENSE(+) (Pin 7), with a value of:  
where,  
RTDECR Required value of trim-down resistor [k]  
and Δ is defined above.  
5.11(100 Δ)VONOM 626  
RTINCR  
10.22  
[k],  
1.225Δ  
Note:  
The above equations for calculation of trim resistor values match  
those typically used in conventional industry-standard quarter-bricks  
(except for 1.2 V and 1.0 V outputs).  
for 3.3 – 1.5 V.  
84.6  
R
R
TINCR  
7.2  
[k]  
[k]  
(1.2 V)  
Δ
QME Series  
Vin (+)  
ON/OFF  
Vin (-)  
Vout (+)  
SENSE (+)  
TRIM  
Converter  
120  
TINCR  
9  
(1.0 V)  
(Top View)  
Δ
Rload  
Vin  
RT-DECR  
SENSE (-)  
Vout (-)  
where,  
RTINCR Required value of trim-up resistor k]  
VONOM Nominal value of output voltage [V]  
Fig. D: Configuration for decreasing output voltage.  
(VO-REQ VO-NOM)  
Trimming/sensing beyond 110% of the rated output  
voltage is not an acceptable design practice, as this  
condition could cause unwanted triggering of the  
output overvoltage protection (OVP) circuit. The  
designer should ensure that the difference between  
the voltages across the converter’s output pins and its  
sense pins does not exceed 10% of VOUT(NOM), or:  
Δ   
X 100  
[%]  
VO-NOM  
VOREQ Desired (trimmed) output voltage [V].  
When trimming up, care must be taken not to exceed  
the converter‘s maximum allowable output power.  
See the previous section for a complete discussion  
of this requirement.  
[V]  
[VOUT()VOUT()][VSENSE()VSENSE()] VO - NOMX10%  
This equation is applicable for any condition of output  
sensing and/or output trim.  
QME Series  
Vin (+)  
ON/OFF  
Vin (-)  
Vout (+)  
SENSE (+)  
TRIM  
Converter  
(Top View)  
RT-INCR  
Rload  
Vin  
SENSE (-)  
Vout (-)  
Fig. C: Configuration for increasing output voltage.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 6 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Protection Features  
Safety Requirements  
Input Undervoltage Lockout  
The converters meet North American and  
Input undervoltage lockout is standard with this  
converter. The converter will shut down when the  
input voltage drops below a pre-determined voltage.  
International safety regulatory requirements per  
UL60950 and EN60950 (pending). Basic Insulation is  
provided between input and output.  
The input voltage must be typically 34 V for the  
converter to turn on. Once the converter has been  
turned on, it will shut off when the input voltage  
drops typically below 32 V. This feature is beneficial  
in preventing deep discharging of batteries used in  
telecom applications.  
To comply with safety agencies’ requirements, an  
input line fuse must be used external to the  
converter. The Table below provides the  
recommended fuse rating for use with this family of  
products.  
Output Overcurrent Protection (OCP)  
Output Voltage  
3.3 V  
2.5 V, 1.8 V  
Fuse Rating  
7.5 A  
The converter is protected against overcurrent or  
short circuit conditions. Upon sensing an overcurrent  
condition, the converter will switch to constant  
current operation and thereby begin to reduce output  
voltage. When the output voltage drops below 60%  
of the nominal value of output voltage, the converter  
will shut down.  
5 A  
3 A  
1.5 V, 1.2 V, 1.0 V  
All QME converters are UL approved (pending) for a  
maximum fuse rating of 15 Amps. To protect a group  
of converters with a single fuse, the rating can be  
increased from the recommended value above.  
Once the converter has shut down, it will attempt to  
restart nominally every 200 ms with a typical 3-5%  
duty cycle. The attempted restart will continue  
indefinitely until the overload or short circuit  
conditions are removed or the output voltage rises  
above 40-50% of its nominal value.  
Electromagnetic Compatibility (EMC)  
EMC requirements must be met at the end-product  
system level, as no specific standards dedicated to  
EMC characteristics of board mounted component  
dc-dc converters exist. However, Power-One tests its  
converters to several system level standards,  
primary of which is the more stringent EN55022,  
Once the output current is brought back into its  
specified range, the converter automatically exits the  
hiccup mode and continues normal operation.  
Information  
technology  
equipment  
-
Radio  
disturbance characteristics-Limits and methods of  
measurement.  
Output Overvoltage Protection (OVP)  
The converter will shut down if the output voltage  
across Vout(+) (Pin 8) and Vout(-) (Pin 4) exceeds  
the threshold of the OVP circuitry. The OVP circuitry  
contains its own reference, independent of the output  
voltage regulation loop. Once the converter has shut  
down, it will attempt to restart every 200 ms until the  
OVP condition is removed.  
An effective internal LC differential filter significantly  
reduces input reflected ripple current, and improves  
EMC.  
With the addition of a simple external filter, all  
versions of the QME-Series of converters pass the  
requirements of Class B conducted emissions per  
EN55022 and FCC requirements. Please contact  
Power-One Applications Engineering for details of  
this testing.  
Overtemperature Protection (OTP)  
The converter will shut down under an  
overtemperature condition to protect itself from  
overheating caused by operation outside the thermal  
derating curves, or operation in abnormal conditions  
such as system fan failure. After the converter has  
cooled to a safe operating temperature, it will  
automatically restart.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 7 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
VIN  
Startup Information (using negative ON/OFF)  
Scenario #1: Initial Startup From Bulk Supply  
ON/OFF function enabled, converter started via application  
of VIN. See Figure E.  
ON/OFF  
STATE  
OFF  
ON  
Time  
t0  
Comments  
ON/OFF pin is ON; system front end power is  
toggled on, VIN to converter begins to rise.  
VIN crosses undervoltage Lockout protection  
circuit threshold; converter enabled.  
Converter begins to respond to turn-on  
command (converter turn-on delay).  
VOUT  
t1  
t2  
t3  
t
Converter VOUT reaches 100% of nominal value.  
t0  
t1 t2  
t3  
For this example, the total converter startup time (t3- t1) is  
typically 4 ms.  
Fig. E: Startup scenario #1.  
VIN  
Scenario #2: Initial Startup Using ON/OFF Pin  
With VIN previously powered, converter started via  
ON/OFF pin. See Figure F.  
Time  
t0  
t1  
Comments  
VINPUT at nominal value.  
Arbitrary time when ON/OFF pin is enabled  
(converter enabled).  
ON/OFF  
STATE  
OFF  
ON  
t2  
t3  
End of converter turn-on delay.  
Converter VOUT reaches 100% of nominal value.  
For this example, the total converter startup time (t3- t1) is  
typically 4 ms.  
VOUT  
Scenario #3: Turn-off and Restart Using ON/OFF Pin  
With VIN previously powered, converter is disabled and  
then enabled via ON/OFF pin. See Figure G.  
t
t0  
t1 t2  
t3  
Time  
Comments  
t0  
VIN and VOUT are at nominal values; ON/OFF pin  
ON.  
Fig. F: Startup scenario #2.  
t1  
ON/OFF pin arbitrarily disabled; converter  
output falls to zero; turn-on inhibit delay period  
(200 ms typical) is initiated, and ON/OFF pin  
action is internally inhibited.  
IN  
V
t2  
ON/OFF pin is externally re-enabled.  
If (t2- t1) 200 ms, external action of  
ON/OFF pin is locked out by startup inhibit  
timer.  
200 ms  
ON/OFF  
STATE  
OFF  
ON  
If (t2- t1) > 200 ms, ON/OFF pin action is  
internally enabled.  
t3  
Turn-on Inhibit delay period ends. If ON/OFF pin  
is ON, converter begins turn-on; if off, converter  
awaits ON/OFF pin ON signal; see Figure F.  
End of converter turn-on delay.  
OUT  
V
t4  
t5  
Converter VOUT reaches 100% of nominal value.  
For the condition, (t2- t1) 200 ms, the total converter  
startup time (t5- t2) is typically 204 ms. For (t2- t1) > 200 ms,  
startup will be typically 4 ms after release of ON/OFF pin.  
t
0
1
2
3
4
5
t
t
t
t
t
t
Fig. G: Startup scenario #3.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 8 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Thermal Derating  
Characterization  
Load current vs. ambient temperature and airflow  
rates are given in Fig. x.1 and Fig. x.2 for vertical and  
horizontal converter mountings. Ambient temperature  
was varied between 25 °C and 85 °C, with airflow  
rates from 30 to 500 LFM (0.15 to 2.5 m/s).  
General Information  
The converter has been characterized for many  
operational aspects, to include thermal derating  
(maximum load current as a function of ambient  
temperature and airflow) for vertical and horizontal  
mountings, efficiency, startup and shutdown  
parameters, output ripple and noise, transient  
response to load step-change, overload, and short  
circuit.  
For each set of conditions, the maximum load current  
was defined as the lowest of:  
(i) The output current at which any FET junction  
temperature does not exceed a maximum specified  
temperature of 120 °C as indicated by the  
thermographic image, or  
The following pages contain specific plots or  
waveforms associated with the converter. Additional  
comments for specific data are provided below.  
(ii) The nominal rating of the converter (40 A).  
During normal operation, derating curves with  
maximum FET temperature less or equal to 120 °C  
should not be exceeded. Temperature on the PCB at  
thermocouple locations shown in Fig. H should not  
exceed 120 °C in order to operate inside the derating  
curves.  
Test Conditions  
All data presented were taken with the converter  
soldered to a test board, specifically a 0.060” thick  
printed wiring board (PWB) with four layers. The top  
and bottom layers were not metalized. The two inner  
layers, comprised of two-ounce copper, were used to  
provide traces for connectivity to the converter.  
Efficiency  
Fig. x.3 shows the efficiency vs. load current plot for  
ambient temperature of 25 ºC, airflow rate of 300 LFM  
(1.5 m/s) with horizontal mounting and input voltages  
of 36 V, 48 V and 72 V. Also, a plot of efficiency vs.  
load current, as a function of ambient temperature  
with Vin = 48 V, airflow rate of 200 LFM (1 m/s) with  
horizontal mounting is shown in Fig. x.4.  
The lack of metalization on the outer layers as well  
as the limited thermal connection ensured that heat  
transfer from the converter to the PWB was  
minimized. This provides a worst-case but consistent  
scenario for thermal derating purposes.  
All measurements requiring airflow were made in the  
vertical and horizontal wind tunnel using Infrared (IR)  
thermography and thermocouples for thermometry.  
Power Dissipation  
Fig. x.5 shows the power dissipation vs. load current  
plot for Ta = 25 ºC, airflow rate of 300 LFM (1.5 m/s)  
with horizontal mounting and input voltages of 36 V,  
48 V and 72 V. Also, a plot of power dissipation vs.  
load current, as a function of ambient temperature  
with Vin = 48 V, airflow rate of 200 LFM (1 m/s) with  
horizontal mounting is shown in Fig. x.6.  
Ensuring components on the converter do not  
exceed their ratings is important to maintaining high  
reliability. If one anticipates operating the converter  
at or close to the maximum loads specified in the  
derating curves, it is prudent to check actual  
operating  
temperatures  
in  
the  
application.  
Thermographic imaging is preferable; if this  
capability is not available, then thermocouples may  
be used. The use of AWG #40 gauge thermocouples  
is recommended to ensure measurement accuracy.  
Careful routing of the thermocouple leads will further  
minimize measurement error. Refer to Fig. H for the  
optimum measuring thermocouple locations.  
Startup  
Output voltage waveforms, during the turn-on  
transient using the ON/OFF pin for full rated load  
currents (resistive load) are shown without and with  
external load capacitance in Figs. x.7-8, respectively.  
Ripple and Noise  
Fig. x.11 show the output voltage ripple waveform,  
measured at full rated load current with a 10 µF  
tantalum and 1 µF ceramic capacitor across the  
output. Note that all output voltage waveforms are  
measured across a 1 µF ceramic capacitor.  
The input reflected ripple current waveforms are  
obtained using the test setup shown in Fig x.12. The  
corresponding waveforms are shown in Figs. x.13-14.  
Fig. H: Locations of the thermocouple for thermal testing.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 9 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
50  
40  
30  
20  
10  
0
50  
40  
30  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
NC - 30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
20  
10  
NC - 30 LFM (0.15 m/s)  
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 3.3V.1:  
Available load current vs. ambient air  
Fig. 3.3V.2: Available load current vs. ambient air  
temperature and airflow rates for QME48T40033 converter  
with G height pins mounted horizontally with air flowing  
from pin 1 to pin 3, MOSFET temperature 120 C,  
Vin = 48 V.  
temperature and airflow rates for QME48T40033 converter  
with G height pins mounted vertically with air flowing from  
pin 1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
Note: NC – Natural convection  
0.95  
0.90  
0.85  
0.95  
0.90  
0.85  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
0.80  
0.80  
0.75  
0.75  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Fig. 3.3V.3: Efficiency vs. load current and input voltage  
for QME48T40033 converter mounted horizontally with air  
flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 C.  
Fig. 3.3V.4: Efficiency vs. load current and ambient  
temperature for QME48T40033 converter mounted  
horizontally with Vin = 48 V and air flowing from pin 1 to  
pin 3 at a rate of 200 LFM (1.0 m/s).  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 10 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
18.00  
15.00  
12.00  
9.00  
18.00  
15.00  
12.00  
9.00  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
6.00  
6.00  
3.00  
3.00  
0.00  
0.00  
0
5
10  
15  
20  
25  
30  
35  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Fig. 3.3V.5: Power dissipation vs. load current and input  
voltage for QME48T40033 converter mounted  
horizontally with air flowing from pin 1 to pin 3 at a rate of  
Fig. 3.3V.6: Power dissipation vs. load current and  
ambient temperature for QME48T40033 converter  
mounted horizontally with Vin = 48 V and air flowing from  
pin 1 to pin 3 at a rate of 200 LFM (1.0 m/s).  
300 LFM (1.5 m/s) and Ta = 25 C.  
Fig. 3.3V.8: Turn-on transient at full rated load current  
(resistive) plus 10,000 µF at Vin = 48 V, triggered via  
ON/OFF pin. Top trace: ON/OFF signal (5 V/div.).  
Bottom trace: output voltage (1 V/div.). Time scale:  
2 ms/div.  
Fig. 3.3V.7: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (1 V/div.). Time  
scale: 2 ms/div.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 11 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Fig. 3.3V.9: Output voltage response to load current  
Fig. 3.3V.10: Output voltage response to load current  
step-change (20 A – 30 A – 20 A) at Vin = 48 V. Top  
trace: output voltage (100 mV/div.). Bottom trace: load  
step-change (20 A – 30 A – 20 A) at Vin = 48 V. Top  
trace: output voltage (100 mV/div.). Bottom trace: load  
current (10 A/div.). Current slew rate: 0.1 A/µs.  
Co = 1 µF ceramic. Time scale: 0.2 ms/div.  
current (10 A/div.). Current slew rate:  
5
A/µs.  
Co = 470 µF POS + 1 µF ceramic. Time scale:  
0.2 ms/div.  
iS  
iC  
10 H  
source  
inductance  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
QME Series  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 3.3V.11: Output voltage ripple (20 mV/div.) at full  
rated load current into a resistive load with Co = 10 µF  
tantalum + 1 µF ceramic and Vin = 48 V. Time scale:  
1 µs/div.  
Fig. 3.3V.12: Test setup for measuring input reflected  
ripple currents, ic and is.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 12 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Fig. 3.3V.13: Input reflected ripple current, ic  
Fig. 3.3V.14: Input reflected ripple current, is  
(10 mA/div.), measured through 10 µH at the source at  
full rated load current and Vin = 48 V. Refer to  
Fig. 3.3V.12 for test setup. Time scale: 1 µs/div.  
(100 mA/div.), measured at input terminals at full rated  
load current and Vin = 48 V. Refer to Fig. 3.3V.12 for  
test setup. Time scale: 1 µs/div.  
Fig. 3.3V.15: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
Fig. 3.3V.16: Load current (top trace, 20 A/div.,  
50 ms/div.) into a 10 mshort circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 2 ms/div.) is an  
expansion of the on-time portion of the top trace.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 13 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
50  
40  
30  
20  
10  
0
50  
40  
30  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
NC - 30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
20  
10  
NC - 30 LFM (0.15 m/s)  
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 2.5V.1:  
Available load current vs. ambient air  
Fig. 2.5V.2: Available load current vs. ambient air  
temperature and airflow rates for QME48T40025 converter  
with G height pins mounted horizontally with air flowing  
from pin 1 to pin 3, MOSFET temperature 120 C,  
Vin = 48 V.  
temperature and airflow rates for QME48T40025 converter  
with G height pins mounted vertically with air flowing from  
pin 1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
Note: NC – Natural convection  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
0.75  
0.75  
0.70  
0.70  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Fig. 2.5V.3: Efficiency vs. load current and input voltage  
for QME48T40025 converter mounted horizontally with air  
flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 C.  
Fig. 2.5V.4: Efficiency vs. load current and ambient  
temperature for QME48T40025 converter mounted  
horizontally with Vin = 48 V and air flowing from pin 1 to  
pin 3 at a rate of 200 LFM (1.0 m/s).  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 14 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
18.00  
15.00  
12.00  
9.00  
18.00  
15.00  
12.00  
9.00  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
6.00  
6.00  
3.00  
3.00  
0.00  
0.00  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Fig. 2.5V.5: Power dissipation vs. load current and input  
voltage for QME48T40025 converter mounted  
horizontally with air flowing from pin 1 to pin 3 at a rate of  
Fig. 2.5V.6: Power dissipation vs. load current and  
ambient temperature for QME48T40025 converter  
mounted horizontally with Vin = 48 V and air flowing from  
pin 1 to pin 3 at a rate of 200 LFM (1.0 m/s).  
300 LFM (1.5 m/s) and Ta = 25 C.  
Fig. 2.5V.8: Turn-on transient at full rated load current  
(resistive) plus 10,000 µF at Vin = 48 V, triggered via  
ON/OFF pin. Top trace: ON/OFF signal (5 V/div.).  
Bottom trace: output voltage (1 V/div.). Time scale:  
2 ms/div.  
Fig. 2.5V.7: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (1 V/div.). Time  
scale: 2 ms/div.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 15 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Fig. 2.5V.9: Output voltage response to load current  
Fig. 2.5V.10: Output voltage response to load current  
step-change (20 A – 30 A – 20 A) at Vin = 48 V. Top  
trace: output voltage (100 mV/div.). Bottom trace: load  
current (10 A/div.). Current slew rate: 5A/µs.  
Co = 470 µF POS + 1 µF ceramic. Time scale:  
0.2 ms/div.  
step-change (20 A – 30 A – 20 A) at Vin = 48 V. Top  
trace: output voltage (100 mV/div.). Bottom trace: load  
current (10 A/div.). Current slew rate: 0.1 A/µs.  
Co = 1 µF ceramic. Time scale: 0.2 ms/div.  
iS  
iC  
10 H  
source  
inductance  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
QME Series  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 2.5V.11: Output voltage ripple (20 mV/div.) at full  
rated load current into a resistive load with Co = 10 µF  
tantalum + 1 µF ceramic and Vin = 48 V. Time scale:  
1 µs/div.  
Fig. 2.5V.12: Test setup for measuring input reflected  
ripple currents, ic and is.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 16 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Fig. 2.5V.13: Input reflected ripple current, ic  
Fig. 2.5V.14: Input reflected ripple current, is  
(10 mA/div.), measured through 10 µH at the source at  
full rated load current and Vin = 48 V. Refer to  
Fig. 2.5V.12 for test setup. Time scale: 1 µs/div.  
(100 mA/div.), measured at input terminals at full rated  
load current and Vin = 48 V. Refer to Fig. 2.5V.12 for  
test setup. Time scale: 1 µs/div.  
Fig. 2.5V.16: Load current (top trace, 20 A/div.,  
50 ms/div.) into a 10 mshort circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 2 ms/div.) is an  
expansion of the on-time portion of the top trace.  
Fig. 2.5V.15: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 17 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
50  
40  
30  
20  
10  
0
50  
40  
30  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
NC - 30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
20  
10  
NC - 30 LFM (0.15 m/s)  
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.8V.1:  
Available load current vs. ambient air  
Fig. 1.8V.2: Available load current vs. ambient air  
temperature and airflow rates for QME48T40018 converter  
with G height pins mounted horizontally with air flowing  
from pin 1 to pin 3, MOSFET temperature 120 C,  
Vin = 48 V.  
temperature and airflow rates for QME48T40018 converter  
with G height pins mounted vertically with air flowing from  
pin 1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
Note: NC – Natural convection  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
72 V  
48 V  
36 V  
0.75  
70 C  
55 C  
40 C  
0.75  
0.70  
0.65  
0.70  
0.65  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.8V.3: Efficiency vs. load current and input voltage  
for QME48T40018 converter mounted horizontally with air  
flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 C.  
Fig. 1.8V.4: Efficiency vs. load current and ambient  
temperature for QME48T40018 converter mounted  
horizontally with Vin = 48 V and air flowing from pin 1 to  
pin 3 at a rate of 200 LFM (1.0 m/s).  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 18 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
15.00  
12.00  
9.00  
6.00  
3.00  
0.00  
15.00  
12.00  
9.00  
6.00  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
3.00  
0.00  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.8V.5: Power dissipation vs. load current and input  
voltage for QME48T40018 converter mounted  
horizontally with air flowing from pin 1 to pin 3 at a rate of  
Fig. 1.8V.6: Power dissipation vs. load current and  
ambient temperature for QME48T40018 converter  
mounted horizontally with Vin = 48 V and air flowing from  
pin 1 to pin 3 at a rate of 200 LFM (1.0 m/s).  
300 LFM (1.5 m/s) and Ta = 25 C.  
Fig. 1.8V.8: Turn-on transient at full rated load current  
(resistive) plus 10,000 µF at Vin = 48 V, triggered via  
ON/OFF pin. Top trace: ON/OFF signal (5 V/div.).  
Bottom trace: output voltage (1 V/div.). Time scale:  
2 ms/div.  
Fig. 1.8V.7: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (1 V/div.). Time  
scale: 2 ms/div.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 19 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Fig. 1.8V.9: Output voltage response to load current  
Fig. 1.8V.10: Output voltage response to load current  
step-change (20 A – 30 A – 20 A) at Vin = 48 V. Top  
trace: output voltage (100 mV/div.). Bottom trace: load  
current (10 A/div.). Current slew rate: 5 A/µs. Co =  
470 µF POS + 1 µF ceramic. Time scale: 0.2 ms/div.  
step-change (20 A – 30 A – 20 A) at Vin = 48 V. Top  
trace: output voltage (100 mV/div.). Bottom trace: load  
current (10 A/div.). Current slew rate: 0.1 A/µs. Co =  
1 µF ceramic. Time scale: 0.2 ms/div.  
iS  
iC  
10 H  
source  
inductance  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
QME Series  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 1.8V.11: Output voltage ripple (20mV/div.) at full  
rated load current into a resistive load with Co = 10 µF  
tantalum + 1 µF ceramic and Vin = 48 V. Time scale:  
1 µs/div.  
Fig. 1.8V.12: Test setup for measuring input reflected  
ripple currents, ic and is.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 20 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Fig. 1.8V.13: Input reflected ripple current, ic  
Fig. 1.8V.14: Input reflected ripple current, is  
(10 mA/div.), measured through 10 µH at the source at  
full rated load current and Vin = 48 V. Refer to  
Fig. 1.8V.12 for test setup. Time scale: 1 µs/div.  
(100 mA/div.), measured at input terminals at full rated  
load current and Vin = 48 V. Refer to Fig. 1.8V.12 for  
test setup. Time scale: 1 µs/div.  
Fig. 1.8V.15: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
Fig. 1.8V.16: Load current (top trace, 20 A/div.,  
50 ms/div.) into a 10 mshort circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 2 ms/div.) is an  
expansion of the on-time portion of the top trace.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 21 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
50  
40  
30  
20  
10  
0
50  
40  
30  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
NC - 30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
20  
10  
NC - 30 LFM (0.15 m/s)  
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.5V.1:  
Available load current vs. ambient air  
Fig. 1.5V.2: Available load current vs. ambient air  
temperature and airflow rates for QME48T40015 converter  
with G height pins mounted horizontally with air flowing  
from pin 1 to pin 3, MOSFET temperature 120 C,  
Vin = 48 V.  
temperature and airflow rates for QME48T40015 converter  
with G height pins mounted vertically with air flowing from  
pin 1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
Note: NC – Natural convection  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
0.75  
0.75  
72 V  
70 C  
0.70  
0.65  
0.60  
48 V  
36 V  
0.70  
0.65  
0.60  
55 C  
40 C  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.5V.3: Efficiency vs. load current and input voltage  
for QME48T40015 converter mounted horizontally with air  
flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 C.  
Fig. 1.5V.4: Efficiency vs. load current and ambient  
temperature for QME48T40015 converter mounted  
horizontally with Vin = 48 V and air flowing from pin 1 to  
pin 3 at a rate of 200 LFM (1.0 m/s).  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 22 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
15.00  
12.00  
9.00  
6.00  
3.00  
0.00  
15.00  
12.00  
9.00  
6.00  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
3.00  
0.00  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.5V.5: Power dissipation vs. load current and input  
voltage for QME48T40015 converter mounted  
horizontally with air flowing from pin 1 to pin 3 at a rate of  
Fig. 1.5V.6: Power dissipation vs. load current and  
ambient temperature for QME48T40015 converter  
mounted horizontally with Vin = 48 V and air flowing from  
pin 1 to pin 3 at a rate of 200 LFM (1.0 m/s).  
300 LFM (1.5 m/s) and Ta = 25 C.  
Fig. 1.5V.8: Turn-on transient at full rated load current  
(resistive) plus 10,000 µF at Vin = 48 V, triggered via  
ON/OFF pin. Top trace: ON/OFF signal (5 V/div.).  
Bottom trace: output voltage (1 V/div.). Time scale:  
2 ms/div.  
Fig. 1.5V.7: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (1 V/div.). Time  
scale: 2 ms/div.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 23 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Fig. 1.5V.9: Output voltage response to load current  
Fig. 1.5V.10: Output voltage response to load current  
step-change (20 A – 30 A – 20 A) at Vin = 48 V. Top  
trace: output voltage (100 mV/div.). Bottom trace: load  
current (10 A/div.). Current slew rate: 5A/µs. Co =  
470 µF POS + 1 µF ceramic. Time scale: 0.2 ms/div.  
step-change (20 A – 30 A – 20 A) at Vin = 48 V. Top  
trace: output voltage (100 mV/div.). Bottom trace: load  
current (10 A/div.). Current slew rate: 0.1 A/µs. Co =  
1 µF ceramic. Time scale: 0.2 ms/div.  
iS  
iC  
10 H  
source  
inductance  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
QME Series  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 1.5V.11: Output voltage ripple (20 mV/div.) at full  
rated load current into a resistive load with Co = 10 µF  
tantalum + 1 µF ceramic and Vin = 48 V. Time scale:  
1 µs/div.  
Fig. 1.5V.12: Test setup for measuring input reflected  
ripple currents, ic and is.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 24 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Fig. 1.5V.13: Input reflected ripple current, ic  
Fig. 1.5V.14: Input reflected ripple current, is  
(10 mA/div.), measured through 10 µH at the source at  
full rated load current and Vin = 48 V. Refer to  
Fig. 1.5V.12 for test setup. Time scale: 1 µs/div.  
(100 mA/div.), measured at input terminals at full rated  
load current and Vin = 48 V. Refer to Fig. 1.5V.12 for  
test setup. Time scale: 1 µs/div.  
Fig. 1.5V.15: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
Fig. 1.5V.16: Load current (top trace, 20 A/div.,  
50 ms/div.) into a 10 mshort circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 2 ms/div.) is an  
expansion of the on-time portion of the top trace.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 25 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
50  
40  
30  
20  
10  
0
50  
40  
30  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
NC - 30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
20  
10  
NC - 30 LFM (0.15 m/s)  
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.2V.1:  
Available load current vs. ambient air  
Fig. 1.2V.2: Available load current vs. ambient air  
temperature and airflow rates for QME48T40012 converter  
with G height pins mounted horizontally with air flowing  
from pin 1 to pin 3, MOSFET temperature 120 C,  
Vin = 48 V.  
temperature and airflow rates for QME48T40012 converter  
with G height pins mounted vertically with air flowing from  
pin 1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
Note: NC – Natural convection  
0.90  
0.85  
0.80  
0.75  
0.90  
0.85  
0.80  
0.75  
72 V  
48 V  
36 V  
0.70  
70 C  
55 C  
40 C  
0.70  
0.65  
0.60  
0.65  
0.60  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.2V.3: Efficiency vs. load current and input voltage  
for QME48T40012 converter mounted horizontally with air  
flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 C.  
Fig. 1.2V.4: Efficiency vs. load current and ambient  
temperature for QME48T40012 converter mounted  
horizontally with Vin = 48 V and air flowing from pin 1 to  
pin 3 at a rate of 200 LFM (1.0 m/s).  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 26 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
15.00  
12.00  
9.00  
6.00  
3.00  
0.00  
15.00  
12.00  
9.00  
6.00  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
3.00  
0.00  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.2V.5: Power dissipation vs. load current and input  
voltage for QME48T40012 converter mounted  
horizontally with air flowing from pin 1 to pin 3 at a rate of  
Fig. 1.2V.6: Power dissipation vs. load current and  
ambient temperature for QME48T40012 converter  
mounted horizontally with Vin = 48 V and air flowing from  
pin 1 to pin 3 at a rate of 200 LFM (1.0 m/s).  
300 LFM (1.5 m/s) and Ta = 25 C.  
Fig. 1.2V.8: Turn-on transient at full rated load current  
(resistive) plus 10,000 µF at Vin = 48 V, triggered via  
ON/OFF pin. Top trace: ON/OFF signal (5 V/div.).  
Bottom trace: output voltage (1 V/div.). Time scale:  
2 ms/div.  
Fig. 1.2V.7: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (1 V/div.). Time  
scale: 2 ms/div.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 27 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Fig. 1.2V.9: Output voltage response to load current  
Fig. 1.2V.10: Output voltage response to load current  
step-change (20 A – 30 A – 20 A) at Vin = 48 V. Top  
trace: output voltage (100 mV/div.). Bottom trace: load  
current (10 A/div.). Current slew rate: 5 A/µs. Co =  
470 µF POS + 1 µF ceramic. Time scale: 0.2 ms/div.  
step-change (20 A – 30 A – 20 A) at Vin = 48 V. Top  
trace: output voltage (100 mV/div.). Bottom trace: load  
current (10 A/div.). Current slew rate: 0.1 A/µs. Co =  
1 µF ceramic. Time scale: 0.2 ms/div.  
iS  
iC  
10 H  
source  
inductance  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
QME Series  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 1.2V.11: Output voltage ripple (20 mV/div.) at full  
rated load current into a resistive load with Co = 10 µF  
tantalum + 1 µF ceramic and Vin = 48 V. Time scale:  
1 µs/div.  
Fig. 1.2V.12: Test setup for measuring input reflected  
ripple currents, ic and is.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 28 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Fig. 1.2V.13: Input reflected ripple current, ic  
Fig. 1.2V.14: Input reflected ripple current, is  
(10 mA/div.), measured through 10 µH at the source at  
full rated load current and Vin = 48 V. Refer to  
Fig. 1.2V.12 for test setup. Time scale: 1 µs/div.  
(100 mA/div.), measured at input terminals at full rated  
load current and Vin = 48 V. Refer to Fig. 1.2V.12 for  
test setup. Time scale: 1 µs/div.  
Fig. 1.2V.15: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
Fig. 1.2V.16: Load current (top trace, 20 A/div.,  
50 ms/div.) into a 10 mshort circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 5 ms/div.) is an  
expansion of the on-time portion of the top trace.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 29 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
50  
40  
30  
20  
10  
0
50  
40  
30  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
NC - 30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
20  
10  
NC - 30 LFM (0.15 m/s)  
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.0V.1:  
Available load current vs. ambient air  
Fig. 1.0V.2: Available load current vs. ambient air  
temperature and airflow rates for QME48T40010 converter  
with G height pins mounted horizontally with air flowing  
from pin 1 to pin 3, MOSFET temperature 120 C,  
Vin = 48 V.  
temperature and airflow rates for QME48T40010 converter  
with G height pins mounted vertically with air flowing from  
pin 1 to pin 3, MOSFET temperature 120 C, Vin = 48 V.  
Note: NC – Natural convection  
0.90  
0.80  
0.70  
0.85  
0.80  
0.75  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
0.60  
0.70  
0.50  
0.65  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.0V.3: Efficiency vs. load current and input voltage  
for QME48T40010 converter mounted horizontally with air  
flowing from pin 1 to pin 3 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 C.  
Fig. 1.0V.4: Efficiency vs. load current and ambient  
temperature for QME48T40010 converter mounted  
horizontally with Vin = 48 V and air flowing from pin 1 to  
pin 3 at a rate of 200 LFM (1.0 m/s).  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 30 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
15.00  
12.00  
9.00  
6.00  
3.00  
0.00  
15.00  
12.00  
9.00  
6.00  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
3.00  
0.00  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.0V.5: Power dissipation vs. load current and input  
voltage for QME48T40010 converter mounted  
horizontally with air flowing from pin 1 to pin 3 at a rate of  
Fig. 1.0V.6: Power dissipation vs. load current and  
ambient temperature for QME48T40010 converter  
mounted horizontally with Vin = 48 V and air flowing from  
pin 1 to pin 3 at a rate of 200 LFM (1.0 m/s).  
300 LFM (1.5 m/s) and Ta = 25 C.  
Fig. 1.0V.8: Turn-on transient at full rated load current  
(resistive) plus 10,000 µF at Vin = 48 V, triggered via  
ON/OFF pin. Top trace: ON/OFF signal (5 V/div.).  
Bottom trace: output voltage (1 V/div.). Time scale:  
2 ms/div.  
Fig. 1.0V.7: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (1 V/div.). Time  
scale: 2 ms/div.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 31 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Fig. 1.0V.9: Output voltage response to load current  
Fig. 1.0V.10: Output voltage response to load current  
step-change (20 A – 30 A – 20 A) at Vin = 48 V. Top  
trace: output voltage (100 mV/div.). Bottom trace: load  
current (10 A/div.). Current slew rate: 5 A/µs. Co =  
470 µF POS + 1 µF ceramic. Time scale: 0.2 ms/div.  
step-change (20 A – 30 A – 20 A) at Vin = 48 V. Top  
trace: output voltage (100 mV/div.). Bottom trace: load  
current (10 A/div.). Current slew rate: 0.1 A/µs. Co =  
1 µF ceramic. Time scale: 0.2 ms/div.  
iS  
iC  
10 H  
source  
inductance  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
QME Series  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 1.0V.11: Output voltage ripple (20 mV/div.) at full  
rated load current into a resistive load with Co = 10 F  
tantalum + 1 µF ceramic and Vin = 48 V. Time scale:  
1 µs/div.  
Fig. 1.0V.12: Test setup for measuring input reflected  
ripple currents, ic and is.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 32 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Fig. 1.0V.13: Input reflected ripple current, ic  
Fig. 1.0V.14: Input reflected ripple current, is  
(10 mA/div.), measured through 10 µH at the source at  
full rated load current and Vin = 48 V. Refer to  
Fig. 1.0V.12 for test setup. Time scale: 1 µs/div.  
(100 mA/div.), measured at input terminals at full rated  
load current and Vin = 48 V. Refer to Fig. 1.0V.12 for  
test setup. Time scale: 1 µs/div.  
Fig. 1.0V.15: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
Fig. 1.0V.16: Load current (top trace, 20 A/div.,  
50 ms/div.) into a 10 mshort circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 5 ms/div.) is an  
expansion of the on-time portion of the top trace.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 33 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Physical Information  
QME48T Pinout (Through-hole)  
Pad/Pin Connections  
Pad/Pin #  
Function  
1
2
3
4
5
6
7
8
Vin (+)  
ON/OFF  
Vin (-)  
1
2
3
8
7
6
5
4
Vout (-)  
SENSE(-)  
TRIM  
TOP VIEW  
SIDE VIEW  
SENSE(+)  
Vout (+)  
QME48T Platform Notes  
All dimensions are in inches [mm]  
Pins 1-3 and 5-7 are Ø 0.040” [1.02] with Ø 0.078”  
[1.98] shoulder  
Pins 4 and 8 are Ø 0.062” [1.57] without shoulder  
Pin Material & Finish: Brass Alloy 360  
with Matte Tin over Nickel  
Converter Weight: 1.2 oz [34.2 g] typical  
Height  
HT  
CL  
PL  
Pin  
Option  
Option (Max. Height) (Min. Clearance)  
Pin Length  
G
0.425 [10.80] 0.035 [0.89]  
±0.005 [±0.13]  
A
B
0.188 [4.78]  
0.145 [3.68]  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 34 of 35  
QME48T40 DC-DC Series Data Sheet  
36-75 VDC Input; 1.0-3.3 VDC @ 40A Output  
Heatsink  
Option  
S1  
HT  
CL  
(Min.  
0.039 [1.00]  
(Max. Height)  
0.99 [25.1]  
PL  
Pin  
Option  
Pin Length  
±0.005 [±0.13]  
0.145 [3.68]  
B
Converter Part Numbering Ordering Information  
Rated  
Max  
Height  
[HT]  
Pin  
Length  
[PL]  
Special  
Feature  
Product  
Series  
Input  
Mounting  
Scheme  
Output  
ON/OFF  
Logic  
Load  
RoHS  
Heatsink  
Voltage  
Voltage  
Current  
s
QME  
48  
T
40  
033  
-
N
G
B
0
No Suffix  
RoHS  
lead-solder-  
exemption  
compliant  
Through  
hole  
0   
STD  
Non-  
No Suffix  
No  
010 1.0V  
012 1.2V  
015 1.5V  
018 1.8V  
025 2.5V  
033 3.3V  
Through  
hole  
N   
Quarter-  
Brick  
Format  
Negative  
T   
Through-  
hole  
heatsink  
A   
0.188”  
Latching  
36-75 V  
40 ADC  
G   
0.425”  
P   
Positive  
L   
Latching  
Option  
-S1   
Heatsink  
as shown  
G RoHS  
compliant  
for all six  
B   
0.145”  
substances  
Example: The example above describes P/N QME48T40033-NGB0: 36-75 V input, through-hole, 40 A @ 3.3 V output, negative ON/OFF  
logic, a 0.145” solder tail and maximum height of 0.425”, standard (non-latching) protection, and Eutectic Tin/Lead solder. Consult factory for  
the complete list of available options.  
Attention: The heatsink option “S1” is only available with the model QME48T40033-NGBOG-S1  
Notes:  
1. NUCLEAR AND MEDICAL APPLICATIONS - Power-One products are not designed, intended for use in, or authorized for use as critical  
components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written  
consent of the respective divisional president of Power-One, Inc.  
2. TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending  
on the date manufactured. Specifications are subject to change without notice.  
ZD-02057 Rev. 4.2.1, 23-Feb-10  
www.power-one.com  
Page 35 of 35  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY