5228-DS06-R [BOARDCOM]

10/100BASE-TX/FX Octal Transceiver;
5228-DS06-R
型号: 5228-DS06-R
厂家: Broadcom Corporation.    Broadcom Corporation.
描述:

10/100BASE-TX/FX Octal Transceiver

局域网(LAN)标准
文件: 总100页 (文件大小:1108K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
BCM5228  
10/100BASE-TX/FX Octal-Φ™ Transceiver  
GENERAL DESCRIPTION  
FEATURES  
The BCM5228 is an octal 10/100BASE-TX/FX  
transceiver targeted at Fast Ethernet switches. The  
device contains eight full-duplex 10BASE-T/100BASE-  
TX/FX Fast Ethernet transceivers, each of which  
perform all of the physical layer interface functions for  
10BASE-T Ethernet on Category 3, 4, or 5 unshielded  
twisted-pair (UTP) cable and 100BASE-TX Fast  
Ethernet on Category 5 UTP cable. The 100BASE-FX is  
supported at each port through the use of external fiber-  
optic transmit and receive devices.  
10BASE-T/100BASE-TX/FX IEEE 802.3u compliant  
Single-chip octal physical interface-RMII to magnetics  
Reduced Media Independent Interface (RMII)  
Option-Serial Media Independent Interface (SMII)  
Option-Source Synchronous SMII (S3MII)  
Fully integrated digital adaptive equalizers  
125-MHz clock generator and timing recovery  
On-chip multimode transmit waveshaping  
Edge-rate control eliminates external filters  
Integrated baseline wander correction  
HP Auto-MDIX  
The BCM5228 is a highly integrated solution combining  
digital adaptive equalizers, ADCs, phase locked loops,  
line drivers, encoders, decoders, and the required  
support circuitry into a single monolithic CMOS chip. The  
BCM5228 complies with the IEEE 802.3 specification,  
including the auto-negotiation subsections.  
Cable length indication  
Cable noise level indication  
IEEE 802.3υ-compliant auto-negotiation  
Shared MII management interface up to 25 Mbps  
Serial LED status pins  
Programmable parallel LED pins  
The effective use of digital technology in the BCM5228  
design results in robust performance over a broad range  
of operating scenarios. Problems inherent to mixed-  
signal implementations (such as analog offset and on-  
chip noise) are eliminated by employing field-proven  
digital adaptive equalization and digital clock recovery  
techniques.  
Interrupt output capability  
Loopback mode for diagnostics  
IEEE 1149.1 (JTAG) and NAND chain ICT support  
Low-power, dual-supply 2.5V/3.3V CMOS technology  
Compatible with 2.5V/3.3V I/O  
208-pin PQFP and 256-pin FPBGA packages  
APPLICATIONS  
Fast Ethernet switches  
Multimode  
Xmt DAC  
TD± {1:8}  
TXD{1:8}  
10BASE-T  
8
PCS  
SSYNC  
Auto-  
MDIX  
Baseline  
Wander  
SSSMII_TXC  
Correction  
100BASE-X  
PCS  
SSSMII_RSYNC  
SSSMII_RXC  
RXD{1:8}  
Digital  
Adaptive  
Equalizer  
RD± {1:8}  
ADC  
8
Auto-Negotiation  
/Link Integrity  
CRS/Link  
INTR/SLED_DO  
LED1{1:8}  
LED2{1:8}  
Detection  
LED/INT  
8
8
Drivers  
REF_CLK  
Clock  
Clock  
Recovery  
Generator  
SSSMII_DIS/SLED_CLK  
MODES/CONTROLS  
Bias  
13  
RDAC  
JTAG  
Generator  
MII  
MDC  
MII  
Registers  
Mgmt  
Control  
JTAG  
Test Logic  
MDIO  
5
Figure 1: Functional Block Diagram  
5228-DS09-405-R  
7/12/04  
16215 Alton Parkway P.O. Box 57013 • Irvine, CA 92619-7013 • Phone: 949-450-8700 • Fax: 949-450-8710  
BCM5228  
Data Sheet  
7/12/04  
REVISION HISTORY  
Revision  
Date  
Change Description  
5228-DS09-405-R  
5228-DS08-R  
07/12/04  
06/02/03  
Resized the “BGA Pinout (Top View)” figure to improve readability.  
Added 2.5V I/O-OVDD option under “Features” on the cover.  
Added ”HP Auto-MDIX.”  
Added SLED_CLK frequency to ”Serial LED Mode.”  
Added description to bit 4, Activity LED, in Table 37, ”Auxiliary Mode Register  
(Address 29d, 1Dh).”  
5228-DS07-R  
5228-DS06-R  
09/09/02  
03/07/02  
Added PLL VDD pin definition table and figures.  
Included details on Isolate mode, super Isolate mode, and Auto Power-Down  
mode.  
Included bit 15 (FDX LED enable) changes to serial LED mode.  
Included Jumbo Packet mode bits and descriptions.  
Show correct default value for shadow register 1Ah.  
Updated the following:  
“MII Register Map Summary” table.  
“Clock and Reset Timing” figure.  
“Packaging Thermal Characteristics” section.  
“Ordering Information” section.  
5228-DS05-R  
5228-DS04-R  
10/24/01  
03/15/01  
Added ordering information; added minor table information updates.  
Added the following to “Features” on the cover:  
-
-
-
-
Option-source synchronous SMII (S3MII)  
HP Auto-MDIX  
Cable Length Indication  
Cable Noise Level Indication  
Following Table 32, deleted from Interrupt Enable description: “Bits 14 and 15  
of this register are mutually exclusive. Only one may be set at a time.”  
In Table 49, inserted TYP values for parameters TD± after TXEN Assert and  
TXD to TD± Steady State Delay.  
In Table 50, added TYP values for parameter CRS_DV Assert after RD±,  
CRS_DV Deassert after RD±; and CRS_DV Deassert after RD±, Valid EOP.  
Deleted last row (parameter RD± to CRS_DV Steady State Delay).  
In Table 57, added TYP and MAX values for Total Supply Current for AVDD,  
DVDD and OVDD pins.  
Added Section 10: “Packaging Thermal Characteristics.”  
Corrected specification of register 19h, bit 0 from jabber detect to full-duplex  
indication.  
Broadcom Corporation  
Page ii  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Revision  
Date  
Change Description  
5228-DS03-R  
09/01/00  
Correct several signal name inconsistencies.  
Changed P14 from PLLVDDP to OVDD in:  
-
-
Tables 2 and 3  
Figures 1, 2, and 3  
Changed AGND from C05 to C06 in Table 3.  
Modified description for “100BASE-FX Mode”.  
Changed LED_CLK to SLED_CLK for “Low-Cost Serial LED Mode.”  
Changed address 1Ah bit 15 in Table 15 from FDX LED Enable to Reserved.  
Deleted FDX LED Enable bit description for Table 32.  
Added TX_ER parameter to Table 49.  
Added CRS_DV, RX_ER, and note 3 to Table 50.  
Changed SRD_Delay to SRX_Delay in Figure 8.  
Deleted reference to IVDD in Table 57.  
5228-DS02-R  
5228-DS01-R  
12/15/99  
11/24/99  
Added MDIX info. Minor editorial changes.  
Initial release.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Page iii  
Broadcom Corporation  
P.O. Box 57013  
16215 Alton Parkway  
Irvine, CA 92619-7013  
© 2004 by Broadcom Corporation  
All rights reserved  
Printed in the U.S.A.  
Broadcom® and the pulse logo are registered trademarks of Broadcom Corporation and/or its subsidiaries in the United  
States and certain other countries. All other trademarks mentioned are the property of their respective owners.  
This data sheet (including, without limitation, the Broadcom component(s) identified herein) is not designed, intended,  
or certified for use in any military, nuclear, medical, mass transportation, aviation, navigations, pollution control,  
hazardous substances management, or other high risk application. BROADCOM PROVIDES THIS DATA SHEET "AS-  
IS", WITHOUT WARRANTY OF ANY KIND. BROADCOM DISCLAIMS ALL WARRANTIES, EXPRESSED AND  
IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS  
FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.  
Data Sheet  
BCM5228  
7/12/04  
TABLE OF CONTENTS  
Section 1: Functional Description......................................................................................1  
Overview ....................................................................................................................................................... 1  
Encoder/Decoder ......................................................................................................................................... 1  
Link Monitor.................................................................................................................................................. 2  
Carrier Sense................................................................................................................................................ 2  
Auto-Negotiation .......................................................................................................................................... 3  
Digital Adaptive Equalizer .......................................................................................................................... 3  
ADC ............................................................................................................................................................... 3  
Digital Clock Recovery/Generator .............................................................................................................. 3  
Baseline Wander Correction....................................................................................................................... 3  
Multimode Transmit DAC ............................................................................................................................ 5  
Stream Cipher............................................................................................................................................... 5  
Far-End Fault ................................................................................................................................................ 5  
Reduced Media Independent Interface (RMII)............................................................................................ 5  
MII Management ........................................................................................................................................... 6  
Serial Media Independent Interface (SMII) ................................................................................................. 6  
Interrupt Mode.............................................................................................................................................. 7  
Section 2: Hardware Signal Definition Table.....................................................................9  
Section 3: Pinout Diagrams ..............................................................................................19  
Section 4: Operational Description..................................................................................25  
Resetting the BCM5228 ............................................................................................................................. 25  
Loopback Mode.......................................................................................................................................... 25  
Full-Duplex Mode ....................................................................................................................................... 25  
100BASE-FX Mode ..................................................................................................................................... 25  
10BASE-T Mode ......................................................................................................................................... 26  
Isolate Mode ............................................................................................................................................... 26  
Super Isolate Mode .................................................................................................................................... 26  
Auto Power-Down Mode............................................................................................................................ 26  
Jumbo Packet Mode .................................................................................................................................. 27  
PHY Address .............................................................................................................................................. 27  
HP Auto-MDIX............................................................................................................................................. 28  
Broadcom Corporation  
Document 5228-DS09-405-R  
Page v  
BCM5228  
Data Sheet  
7/12/04  
Section 5: LED Modes....................................................................................................... 29  
Description..................................................................................................................................................29  
Serial LED Mode .........................................................................................................................................29  
Low-Cost Serial LED Mode........................................................................................................................30  
Parallel LED Mode ......................................................................................................................................33  
Section 6: Register Summary .......................................................................................... 35  
MII Management Interface: Register Programming.................................................................................35  
MII Register Map Summary...................................................................................................................37  
MII Status Register .....................................................................................................................................41  
PHY Identifier Registers.............................................................................................................................42  
Auto-Negotiation Advertisement Register ...............................................................................................43  
Auto-Negotiation Link Partner (LP) Ability Register ...............................................................................44  
Auto-Negotiation Expansion Register......................................................................................................45  
Auto-Negotiation Next Page Register.......................................................................................................46  
Auto-Negotiation Link Partner (LP) Next Page Transmit Register.........................................................47  
100BASE-X Auxiliary Control Register.....................................................................................................48  
100BASE-X Auxiliary Status Register.......................................................................................................49  
100BASE-X Receive Error Counter...........................................................................................................50  
100BASE-X False Carrier Sense Counter.................................................................................................51  
100BASE-X Disconnect Counter...............................................................................................................51  
Auxiliary Control/Status Register .............................................................................................................52  
Auxiliary Status Summary Register..........................................................................................................54  
Interrupt Register........................................................................................................................................55  
Auxiliary Mode 2 Register..........................................................................................................................56  
10BASE-T Auxiliary Error and General Status Register .........................................................................57  
Auxiliary Mode Register.............................................................................................................................60  
Auxiliary Multiple PHY Register ................................................................................................................61  
Broadcom Test Register ............................................................................................................................62  
Auxiliary Mode 4 (PHY 1) Register (Shadow Register) ...........................................................................63  
Auxiliary Mode 4 (PHY 2) Register (Shadow Register) ...........................................................................64  
Auxiliary Mode 4 (PHY 3) Register (Shadow Register) ...........................................................................65  
Auxiliary Status 2 Register (Shadow Register)........................................................................................66  
Auxiliary Status 3 Register (Shadow Register)........................................................................................67  
Auxiliary Mode 3 Register (Shadow Register) .........................................................................................68  
Broadcom Corporation  
Page vi  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Auxiliary Status 4 Register (Shadow Register) ....................................................................................... 69  
Section 7: Timing and AC Characteristics ......................................................................70  
Section 8: Electrical Characteristics................................................................................76  
Section 9: Mechanical Information...................................................................................78  
Section 10: Packaging Thermal Characteristics.............................................................80  
Section 11: Application Examples ...................................................................................82  
Section 12: Ordering Information.....................................................................................87  
Broadcom Corporation  
Document 5228-DS09-405-R  
Page vii  
BCM5228  
Data Sheet  
7/12/04  
Broadcom Corporation  
Page viii  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
LIST OF FIGURES  
Figure 1: Functional Block Diagram .....................................................................................................................i  
Figure 2: BCM5228F Pinout Diagram .............................................................................................................. 19  
Figure 3: BCM5228U Pinout Diagram.............................................................................................................. 20  
Figure 4: BGA Pinout (Top View) ..................................................................................................................... 21  
Figure 5: Clock and Reset Timing .................................................................................................................... 70  
Figure 6: RMII Transmit Packet Timing............................................................................................................ 71  
Figure 7: RMII Receive Packet Timing............................................................................................................. 72  
Figure 8: RMII Receive Packet with False Carrier............................................................................................ 72  
Figure 9: SMII/S3MII Timing............................................................................................................................. 73  
Figure 10: Management Interface Timing......................................................................................................... 74  
Figure 11: Management Interface Timing (with Preamble Suppression On).................................................... 74  
Figure 12: 208-Pin PQFP Package .................................................................................................................. 78  
Figure 13: 256-Pin Fine Pitch BGA (FPBGA) Package.................................................................................... 79  
Figure 14: SMII Application .............................................................................................................................. 82  
Figure 15: SMII Application using Source Synchronous Signals...................................................................... 83  
Figure 16: Switch Application ........................................................................................................................... 85  
Broadcom Corporation  
Document 5228-DS09-405-R  
Page ix  
BCM5228  
Data Sheet  
7/12/04  
Broadcom Corporation  
Page x  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
LIST OF TABLES  
Table 1: 4B5B Encoding..................................................................................................................................... 4  
Table 2: Pin Definitions....................................................................................................................................... 9  
Table 3: BGA Ballout by Signal Name.............................................................................................................. 22  
Table 4: Receive FIFO Size Select .................................................................................................................. 27  
Table 5: Jumbo Packet Enable and Descrambler Lock Timer ......................................................................... 27  
Table 6: Serial LED Mode Bit Framing............................................................................................................. 29  
Table 7: Low-Cost Serial Mode Bank 1 LED Selection .................................................................................... 30  
Table 8: Low-Cost Serial Mode Bank 2 LED Selection .................................................................................... 30  
Table 9: Low-Cost Serial Mode Bank 3 LED Selection .................................................................................... 31  
Table 10: Low-Cost Serial Mode Bank 4 LED Selection .................................................................................. 31  
Table 11: Low-Cost Serial Mode Bank 5 LED Selection .................................................................................. 31  
Table 12: Low-Cost Serial Mode Bank 6 LED Selection .................................................................................. 32  
Table 13: Parallel LED Mode LED1 Selection.................................................................................................. 33  
Table 14: Parallel LED Mode LED2 Selection.................................................................................................. 33  
Table 15: Parallel LED Mode LED3 Selection.................................................................................................. 34  
Table 16: MII Management Frame Format....................................................................................................... 35  
Table 17: MII Register Map Summary.............................................................................................................. 37  
Table 18: MII Shadow Register Map Summary (MII Register 1Fh, bit7 = 1).................................................... 38  
Table 19: MII Control Register (Address 00d, 00h).......................................................................................... 39  
Table 20: MII Status Register (Address 01d, 01h) ........................................................................................... 41  
Table 21: PHY Identifier Registers (Addresses 02d and 03d, 02h and 03h).................................................... 42  
Table 22: Auto-Negotiation Advertisement Register (Address 04d, 04h)......................................................... 43  
Table 23: Auto-Negotiation Link Partner Ability Register (Address 05d, 05h).................................................. 44  
Table 24: Auto-Negotiation Expansion Register (Address 06d, 06h)............................................................... 45  
Table 25: Next Page Transmit Register (Address 07d, 07h)............................................................................ 46  
Table 26: Next Page Transmit Register (Address 08d, 08h)............................................................................ 47  
Table 27: 100-BASE-X Auxiliary Control Register (Address 16d, 10h)............................................................ 48  
Table 28: 100BASE-X Auxiliary Status Register (Address 17d, 11h)............................................................... 49  
Table 29: 100BASE-X Receive Error Counter (Address 18d, 12h).................................................................. 50  
Table 30: 100BASE-X False Carrier Sense Counter (Address 19d, 13h)........................................................ 51  
Table 31: 100BASE-X Disconnect Counter...................................................................................................... 51  
Table 32: Auxiliary Control/Status Register (Address 24d, 18h) ...................................................................... 52  
Broadcom Corporation  
Document 5228-DS09-405-R  
Page xi  
BCM5228  
Data Sheet  
7/12/04  
Table 33: Auxiliary Status Summary Register (Address 25d, 19h)...................................................................54  
Table 34: Interrupt Register (Address 26d, 1Ah) ..............................................................................................55  
Table 35: Auxiliary Mode 2 Register (Address 27d, 1Bh) .................................................................................56  
Table 36: 10BASE-T Auxiliary Error and General Status Register (Address 28d, 1Ch)...................................57  
Table 37: Auxiliary Mode Register (Address 29d, 1Dh)....................................................................................60  
Table 38: Auxiliary Multiple PHY Register (Address 30d, 1Eh) ........................................................................61  
Table 39: Broadcom Test (Address 31d, 1Fh)..................................................................................................62  
Table 40: Auxiliary Mode 4 (PHY 1) Register (Shadow Register 26d, 1Ah) .....................................................63  
Table 41: Auxiliary Mode 4 (PHY 2) Register (Shadow Register 26d, 1Ah) .....................................................64  
Table 42: Auxiliary Mode 4 (PHY 3) Register (Shadow Register 26d, 1Ah) .....................................................65  
Table 43: Auxiliary Status 2 Register (Shadow Register 27d, 1Bh)..................................................................66  
Table 44: Cable Length.....................................................................................................................................66  
Table 45: Auxiliary Status 3 Register (Shadow Register 28d, 1Ch)..................................................................67  
Table 46: Auxiliary Mode 3 Register (Shadow Register 29d, 1Dh)...................................................................68  
Table 47: Current Receive FIFO Size...............................................................................................................68  
Table 48: Auxiliary Status 4 Register (Shadow Register 30d, 1Eh)..................................................................69  
Table 49: Clock Timing .....................................................................................................................................70  
Table 50: Reset Timing.....................................................................................................................................70  
Table 51: RMII Transmit Timing........................................................................................................................71  
Table 52: RMII Receive Timing.........................................................................................................................71  
Table 53: SMII/S3MII Timing ............................................................................................................................72  
Table 54: Auto-Negotiation Timing ...................................................................................................................73  
Table 55: LED Timing .......................................................................................................................................73  
Table 56: MII Management Data Interface Timing............................................................................................73  
Table 58: Recommended Operating Conditions...............................................................................................76  
Table 59: Electrical Characteristics...................................................................................................................76  
Table 60: ThetaJA vs. Airflow for the BCM5228B (256 FPBGA) Package........................................................80  
Table 61: ThetaJA vs. Airflow for the BCM5228F (208 PQFP) Package...........................................................80  
Table 62: ThetaJA vs. Airflow for the BCM5228U (208 PQFP) Package ..........................................................80  
Table 63: ThetaJA vs. Airflow for the BCM5228B with Heat Sink......................................................................87  
Broadcom Corporation  
Page xii  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Section 1: Functional Description  
OVERVIEW  
The BCM5228 is a single-chip device containing eight independent Fast Ethernet transceivers. Each transceiver performs  
all of the physical layer interface functions for 100BASE-TX full-duplex or half-duplex Ethernet on Category 5 unshielded  
twisted-pair (UTP) cable, and 10BASE-T full-duplex or half-duplex Ethernet on Category 3, 4, or 5 UTP cable. Each port can  
also be configured for 100BASE-FX full-duplex or half-duplex transmission over fiber-optic cabling when paired with an  
external fiber-optic line driver and receiver.  
The chip performs:  
4B5B, MLT3, NRZI, and Manchester encoding and decoding  
Clock and data recovery  
Stream cipher scrambling/descrambling  
Digital adaptive equalization  
Line transmission  
Carrier sense and link integrity monitor  
Auto-negotiation  
RMII, SMII, S3MII, and management functions  
The BCM5228 can be connected to a MAC through the RMII or SMII on one side, and directly to the network media on the  
other side through either:  
Isolation transformers for UTP modes  
Fiber-optic transmitter/receiver components for FX mode  
The BCM5228 is compliant with the IEEE 802.3 standard.  
ENCODER/DECODER  
In 100BASE-TX and 100BASE-FX modes, the BCM5228 transmits and receives a continuous data stream on twisted-pair  
or fiber-optic cable. When the RMII Transmit Enable pin is asserted, data from the transmit data pins is encoded into 5-bit  
code groups and inserted into the transmit data stream. The 4B5B encoding is shown in Table 1 on page 4. The transmit  
packet is encapsulated by replacing the first two nibbles of preamble with a start-of-stream delimiter (J/K codes) and  
appending an end-of-stream delimiter (T/R codes) to the end of the packet. The transmitter repeatedly sends the idle code  
group between packets.  
In TX mode, the encoded data stream is scrambled by a stream cipher block and then serialized and encoded into MLT3  
signal levels. A multimode transmit DAC is used to drive the MLT3 data onto the twisted-pair cable. In FX mode, the  
scrambling function is bypassed and the data is NRZI encoded. The multimode transmit DAC drives differential positive ECL  
(PECL) levels to an external fiber-optic transmitter.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Functional Description  
Page 1  
BCM5228  
Data Sheet  
7/12/04  
Following baseline wander correction, adaptive equalization, and clock recovery in TX mode, the receive data stream is  
converted from MLT3 to serial NRZI data. The NRZI data is descrambled by the stream cipher block and then deserialized  
and aligned into 5-bit code groups.  
In FX mode, the receive data stream differential PECL levels are sampled from the fiber-optic receiver. Baseline wander  
correction, adaptive equalization, and stream cipher descrambling functions are bypassed, and NRZI decoding is used  
instead of MLT3.  
The 5-bit code groups are decoded into 4-bit data nibbles, as shown in Table 1 on page 4. The start-of-stream delimiter is  
replaced with preamble nibbles, and the end-of-stream delimiter and idle codes are replaced with all zeros. The decoded  
data is driven onto the RMII/SMII receive data pins. When an invalid code group is detected in the data stream, the BCM5228  
asserts the RMII/SMII RXER signal. The chip also asserts RXER for several other error conditions that improperly terminate  
the data stream. While RXER is asserted, the receive data pins are driven with a 01 for an invalid data reception and a 10  
for a false carrier.  
In 10BASE-T mode, Manchester encoding and decoding is performed on the data stream. The multimode transmit DAC  
performs pre-equalization for 100m of Category 3 cable.  
LINK MONITOR  
In 100BASE-TX mode, receive signal energy is detected by monitoring the receive pair for transitions in the signal level.  
Signal levels are qualified using squelch detect circuits. When no signal or certain invalid signals are detected on the receive  
pair, the link monitor enters and remains in the Link Fail state where only idle codes are transmitted. When a valid signal is  
detected on the receive pair for a minimum period of time, the link monitor enters the Link Pass state and the transmit and  
receive functions are enabled.  
In 100BASE-FX mode, the external fiber-optic receiver performs the signal energy detection function and communicates this  
information directly to the BCM5228 through the differential SD± pins.  
In 10BASE-T mode, a link-pulse detection circuit constantly monitors the RD± pins for the presence of valid link pulses.  
CARRIER SENSE  
In DTE mode, the carrier sense and receive data valid signals are multiplexed on the same pin. The carrier sense is asserted  
asynchronously on the CRS_DV pin as soon as valid activity is detected in the receive data stream. Loss of carrier results  
in the deassertion of CRS_DV synchronous to the cycle of REF_CLK that presents the first di-bit of a nibble onto RXD. If the  
PHY has additional bits to be presented on RXD following the initial deassertion of CRS_DV, the PHY asserts CRS_DV on  
cycles of REF_CLK that present the second di-bit of each nibble, and deasserts CRS_DV on cycles of REF_CLK that  
present the first di-bit of each nibble. If carrier sense is asserted and a valid SSD is not detected immediately, RXER is  
asserted. A value of 2h (2 hex) is driven on the receive data pins to indicate false carrier sense.  
In 10BASE-T mode, carrier sense is asserted asynchronously on the CRS pin when valid preamble activity is detected on  
the RD± input pins.  
Broadcom Corporation  
Page 2  
Link Monitor  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
AUTO-NEGOTIATION  
The BCM5228 contains the ability to negotiate its mode of operation over the twisted-pair link using the auto-negotiation  
mechanism defined in the IEEE 802.3u specification. Auto-negotiation can be enabled or disabled by hardware or software  
control. When the auto-negotiation function is enabled, the BCM5228 automatically chooses its mode of operation by  
advertising its abilities and comparing them with those received from its link partner. The BCM5228 can be configured to  
advertise 100BASE-TX full-duplex and/or half-duplex and 10BASE-T full-duplex and/or half-duplex. Each transceiver  
negotiates independently with its link partner and chooses the highest level of operation available for its own link.  
DIGITAL ADAPTIVE EQUALIZER  
The digital adaptive equalizer removes interzonal interference created by the transmission channel media. The equalizer  
accepts sampled unequalized data from the ADC on each channel and produces equalized data. The BCM5228 achieves  
an optimum signal to noise ratio by using a combination of feed-forward equalization and decision-feedback equalization.  
This powerful technique achieves a 100BASE-TX BER of less than 1 x 10-12 for transmission up to 100 meters on Category 5  
twisted-pair cable, even in harsh noise environments. The digital adaptive equalizers in the BCM5228 achieve performance  
close to theoretical limits. The all-digital nature of the design makes the performance very tolerant to on-chip noise. The filter  
coefficients are self adapting to any quality of cable or cable length. Because of transmit pre-equalization in 10BASE-T mode  
and complete lack of ISI in 100BASE-FX mode, the adaptive equalizer is bypassed in this mode of operation.  
ADC  
Each receive channel has its own 125-MHz analog to digital converter (ADC). The ADC samples the incoming data on the  
receive channel and produces a digital output. The output of the ADC is fed to the digital adaptive equalizer. Advanced  
analog circuit techniques achieve low offset, high power supply noise rejection, fast settling time, and low bit error rate (BER).  
DIGITAL CLOCK RECOVERY/GENERATOR  
The all-digital clock recovery and generator block creates all internal transmit and receive clocks. The transmit clocks are  
locked to the 50-MHz clock input, while the receive clocks are locked to the incoming data streams. Clock recovery circuits  
optimized to MLT3, NRZI, and Manchester encoding schemes are included for use with each of the three different operating  
modes. The input data streams are sampled by the recovered clock from each port and fed synchronously to the respective  
digital adaptive equalizer.  
BASELINE WANDER CORRECTION  
A 100BASE-TX data stream is not always DC balanced. Because the receive signal must pass through a transformer, the  
DC offset of the differential receive input can wander. This effect, known as baseline wander, can greatly reduce the noise  
immunity of the receiver. The BCM5228 automatically compensates for baseline wander by removing the DC offset from the  
Broadcom Corporation  
Document 5228-DS09-405-R  
Auto-Negotiation  
Page 3  
BCM5228  
Data Sheet  
7/12/04  
input signal, and thereby significantly reducing the chance of a receive symbol error. The baseline wander correction circuit  
is not required, and is therefore bypassed, in 10BASE-T and 100BASE-FX operating modes  
Table 1: 4B5B Encoding  
Name  
4b Code  
5b Code  
Meaning  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
I
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
11110  
01001  
10100  
10101  
01010  
01011  
01110  
01111  
10010  
10011  
10110  
10111  
11010  
11011  
11100  
11101  
11111  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
Data 9  
Data A  
Data B  
Data C  
Data D  
Data E  
Data F  
Idle  
0000a  
0101a  
0101a  
0000a  
J
11000  
10001  
01101  
00111  
Start-of-stream delimiter, part 1  
Start-of-stream delimiter, part 2  
End-of-stream delimiter, part 1  
End-of-stream delimiter, part 2  
K
T
R
0000a  
1000  
0111  
0111  
0111  
0111  
0111  
0111  
0111  
0111  
0111  
0111  
H
V
V
V
V
V
V
V
V
V
V
00100  
00000  
00001  
00010  
00011  
00101  
00110  
01000  
01100  
10000  
11001  
Transmit error (used to force signalling errors)  
Invalid code  
Invalid code  
Invalid code  
Invalid code  
Invalid code  
Invalid code  
Invalid code  
Invalid Code  
Invalid Code  
Invalid Code  
a. Treated as invalid code (mapped to 0111) when received in data field.  
Broadcom Corporation  
Page 4  
Baseline Wander Correction  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
MULTIMODE TRANSMIT DAC  
The multimode transmit digital to analog converter (DAC) transmits MLT3-coded symbols in 100BASE-TX mode, NRZI-  
coded symbols in 100BASE-FX mode and Manchester-coded symbols in 10BASE-T mode. It performs programmable edge-  
rate control in TX mode, which decreases unwanted high frequency signal components thus reducing EMI. High-frequency  
pre-emphasis is performed in 10BASE-T mode, and no filtering is performed in 100BASE-FX mode. The transmit DAC  
utilizes a current drive output which is well balanced and produces very low noise transmit signals. PECL voltage levels are  
produced with resistive terminations in 100BASE-FX mode.  
STREAM CIPHER  
In 100BASE-TX mode, the transmit data stream is scrambled in order to reduce radiated emissions on the twisted-pair cable.  
The data is scrambled by exclusive ORing the NRZI signal with the output of an 11-bit wide linear feedback shift register  
(LFSR), which produces a 2047-bit non-repeating sequence. The scrambler reduces peak emissions by randomly spreading  
the signal energy over the transmit frequency range, and eliminating peaks at certain frequencies. Signal energy is spread  
further by using unique seeds to generate a different non-repeating sequence for each of the eight ports.  
The receiver descrambles the incoming data stream by exclusive ORing it with the same sequence generated at the  
transmitter. The descrambler detects the state of the transmit LFSR by looking for a sequence representing consecutive idle  
codes. The descrambler locks to the scrambler state after detecting a sufficient number of consecutive idle code-groups.  
The receiver does not attempt to decode the data stream unless the descrambler is locked. Once locked, the descrambler  
continuously monitors the data stream to make sure that it has not lost synchronization. The receive data stream is expected  
to contain inter-packet idle periods. If the descrambler does not detect enough idle codes within 724 µs, it becomes unlocked,  
and the receive decoder is disabled. If the receiver is put into Token Ring mode (see bit 10, register 1Bh), the descrambler  
monitors the receiver for 5792 µs before unlocking. The descrambler is always forced into the unlocked state when a link  
failure condition is detected. Stream cipher scrambling/descrambling is not used in 100BASE-FX and 10BASE-T modes.  
FAR-END FAULT  
Auto-negotiation provides a Remote Fault capability for detection of asymmetric link failures. Because auto-negotiation is  
not available for 100BASE-FX, the BCM5228 implements the IEEE 802.3 standard Far-End Fault mechanism for the  
indication and detection of remote error conditions. If the Far-End Fault mechanism is enabled, a transceiver transmits the  
Far-End Fault indication whenever a receive channel failure is detected (signal detect is deasserted). Each transceiver also  
continuously monitors the receive channel when a valid signal is present (signal detect asserted). When its link partner is  
indicating a remote error, the transceiver forces its link monitor into the link fail state and set the Remote Fault bit in the RMII  
status register. The Far-End Fault mechanism is on by default in 100BASE-FX mode, off by default in 100BASE-TX and  
10BASE-T modes, and can be controlled by software after reset.  
REDUCED MEDIA INDEPENDENT INTERFACE (RMII)  
The interface in the BCM5228 is based on the low pin count (Reduced) Media Independent Interface (RMII) developed by  
the RMII Consortium. A copy of the specification can be found on the consortium Web site at:  
Broadcom Corporation  
Document 5228-DS09-405-R  
Multimode Transmit DAC  
Page 5  
BCM5228  
Data Sheet  
7/12/04  
http://www.rmii-consort.com. The purpose of this interface is to provide a low-cost alternative to the IEEE 802.3u[2] Media  
Independent Interface (MII). The RMII is capable of supporting 10 megabit and 100 megabit data rates with a single clock,  
using independent 2-bit wide transmit and receive paths.  
A single 50-MHz synchronous reference clock is used as a timing reference for all transmitters and receivers. By doubling  
the clock frequency relative to the MII, four pins are saved in the data path, which uses two lines into each transmitter and  
two lines out of each receiver, compared to four lines used in each direction in the MII. Since start-of-packet and end-of-  
packet timing information is preserved across the interface, the MAC is able to derive the COL signal from the receive and  
transmit data delimiters, saving another pin.  
Transmit and receive clocks have been eliminated as well. All data transfers are synchronous with REF_CLK. This poses  
less of a challenge for the transmitter than it does for the receiver, which is now required to buffer output data in a FIFO until  
an edge of the REF_CLK is suitably aligned. The received data bits and the RX_DV signal are passed through the FIFO,  
but the CRS_DV bit is not. It is asserted for the time the wire is receiving a frame. If the remote transmitter is idle, and no  
data need be passed from the receiver, status information can be made available by setting Bit 1 of register 10h. Out-of-  
band signaling consists of 2 di-bit pairs immediately following the last di-bit pair of a received packet. The 2 di-bit pairs consist  
of full-duplex, Link Speed - msb, lsb and RXER, FIFO Error - msb, lsb.  
MII MANAGEMENT  
Management of each transceiver within the BCM5228 remains the same as it was under the MII specification. Each PHY  
contains an independent set of MII management registers. They share a single MDC/MDIO serial interface. Each transceiver  
has a unique address and must be accessed individually. The common base address for the group of eight individual  
transceivers is defined by configuring the five external PHYAD address input pins.  
SERIAL MEDIA INDEPENDENT INTERFACE (SMII)  
The SMII is an alternative to both the MII and RMII. The objective is to reduce the number of pins required to interconnect  
the MAC and the PHY. This is accomplished by clocking data and control signals in and out of each PHY on a pair of pins  
at a rate of 125 MHz. The SMII mode is selected by pulling the SMII_EN pin high during power-on reset.  
Data and control signals passing from the MAC to the PHY use the serial transmit (STX) line. Data and control signals  
passing from the PHY to the MAC use the serial receive (SRX) line. All bit transfers are synchronous with clock (SCLK) at  
125 MHz. Frame synchronization is provided by a fourth line (SYNC), asserted at the beginning of each frame, which occurs  
every 10 cycles of SCLK. Each PHY is provided with an STX and an SRX pair. Pins TXD0{x} and RXD0{x}, where x is the  
number of the specific PHY, are used to perform the STX and SRX functions.  
The BCM5228 chip has a single SCLK and SYNC input that is common to all PHYs. Pins REF_CLK and SSYNC are used  
for these functions.  
Receive data and control information are passed from the PHY to the MAC in 10 bit frames. In 100 Mbps mode, each frame  
represents a new byte of data. In 10 Mbps mode, each byte of data is repeated 10 times. The MAC can sample any one of  
every 10 frames. Since the timing of data coming from a remote transmitter is not synchronized with the local SCLK or SYNC  
lines and can contain errors in frequency, a FIFO capable of storing 28 bits is provided in each receive path. The received  
data bits and the RX_DV signal are passed through the FIFO, but the CRS bit is not. It is asserted for the time the wire is  
receiving a frame. If the remote transmitter is idle and no data need be passed from the receiver, status information becomes  
available.  
Broadcom Corporation  
Page 6  
MII Management  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Transmit data and control information are passed from the MAC to the PHY in 10 bit frames, as in the receive path. In  
100 Mbps mode, each frame represents a new byte of data. In 10 Mbps mode, each byte of data is repeated 10 times, and  
the PHY can transmit any one of every 10 frames.  
INTERRUPT MODE  
The BCM5228 can be programmed to provide an interrupt output consisting of an OR of the eight interrupts, one from each  
PHY. The interrupt feature is disabled by default. The interrupt capability is enabled by setting MII register 1Ah, bit 14. The  
SLED_DO pin becomes the INTR# pin, when the SERIAL_EN is pulled low during power-up reset. If a serial LED mode is  
required, hardware interrupt can be obtained by wire ORing LED2{1:8} open drain outputs and programming LED2 to output  
interrupt by setting TXER/LED1{5:3} pins to a 5 during power-on reset. The status of each interrupt source is also reflected  
in register 1Ah, bits 1, 2 and 3. The sources of interrupt are change in link, speed or full-duplex status. If any type of interrupt  
occurs, the Interrupt Status bit, register 1Ah, bit 0 is set.  
In addition, each transceiver has its own register controlling the interrupt function.  
If the interrupt enable bit is set to 0, no status bits sets, and no interrupts are generated. If the interrupt enable bit is set to  
1, the following conditions apply:  
If mask status bits are to 0 and the interrupt mask is set to 1, status bits are set but no interrupts are generated.  
If mask status bits are set to 0 and the interrupt mask is set to 0, status bits and interrupts are available.  
If mask status bits are set to 1 and the interrupt mask is set to 0, no status bits and no interrupts are available.  
Changes from active to inactive or vice versa causes an interrupt. Setting register 1Ah, bit 8 high masks all interrupts,  
regardless of the settings of the individual mask bits.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Interrupt Mode  
Page 7  
BCM5228  
Data Sheet  
7/12/04  
Broadcom Corporation  
Page 8  
Interrupt Mode  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Section 2: Hardware Signal Definition Table  
These conventions are used in the following table:  
# = Active low  
I = Digital input  
O = Digital output  
I/O = Bidirectional  
IA = Analog input  
OA = Analog output  
IPU = Digital input with internal pull-up  
IPD = Digital input with internal pull-down  
OOD = Open-drain output  
O3S = Tri-state output  
I/OPD = Bidirectional with internal pull-down  
B = Bias  
Bus naming convention: Pin label followed by {Port #}  
Pin type  
Table 2: Pin Definitions  
BCM5228B BCM5228F BCM5228U Pin Label  
I/O  
Description  
Media Connections  
A12,B12  
A11,B11  
A08,B08  
A07,B07  
T06,R06  
T07,R07  
T10,R10  
T11,R11  
A13,B13  
A10,B10  
A09,B09  
A06,B06  
T05,R05  
T08,R08  
T09,R09  
T12,R12  
166,167  
178,177  
184,185  
196,195  
64,65  
165,166  
173,172  
179,180  
198,197  
62,63  
RD+{1}, RD–{1}  
IA  
Receive Pair. Differential data from the media  
is received on the RD signal pair.  
RD+{2}, RD–{2}  
RD+{3}, RD–{3}  
RD+{4}, RD–{4}  
RD+{5}, RD–{5}  
RD+{6}, RD–{6}  
RD+{7}, RD–{7}  
RD+{8}, RD–{8}  
TD+{1}, TD–{1}  
TD+{2}, TD–{2}  
TD+{3}, TD–{3}  
TD+{4}, TD–{4}  
TD+{5}, TD–{5}  
TD+{6}, TD–{6}  
TD+{7}, TD–{7}  
TD+{8}, TD–{8}  
76,75  
81,80  
82,83  
87,88  
94,93  
95,94  
164,165  
180,179  
182,183  
198,197  
62,63  
163,164  
175,174  
177,178  
200,199  
60,61  
OA  
Transmit Pair. Differential data is transmitted  
to the media on the TD signal pair.  
78,77  
83,82  
80,81  
85,86  
96,95  
97,96  
Broadcom Corporation  
Document 5228-DS09-405-R  
Hardware Signal Definition Table  
Page 9  
BCM5228  
Data Sheet  
7/12/04  
Table 2: Pin Definitions (Cont.)  
BCM5228B BCM5228F BCM5228U Pin Label  
I/O  
Description  
D12,E12  
D11,E11  
D08,E08  
E07,D07  
N09,M09  
N10,M10  
N11,M11  
N12,M12  
171,170  
173,174  
189,188  
191,192  
69,68  
SD+{1}, SD–{1}  
SD+{2}, SD–{2}  
SD+{3}, SD–{3}  
SD+{4}, SD–{4}  
SD+{5}, SD–{5}  
SD+{6}, SD–{6}  
SD+{7}, SD–{7}  
SD+{8}, SD–{8}  
IPD  
100BASE-FX Signal Detect. Indicates signal  
quality status on the fiber-optic link in  
100BASE-FX mode. When the signal quality  
is good, the SD+ pin should be driven high  
relative to the SDpin. 100BASE-FX mode is  
disabled when both pins are simultaneously  
pulled low or left unconnected.  
71,72  
87,86  
89,90  
Reduced Media Independent Interface (RMII)  
T15  
99  
100  
REF_CLK  
I
Reference Clock Input. This pin must be  
driven with a continuous 50-MHz clock in the  
RMII application and a 125-MHz clock in the  
SMII application. It provides timing for  
CRS_DV, RXD1, RXD0, TX_EN,  
TXD1,TXD0, and RX_ER. Accuracy shall be  
±50 ppm, with a duty cycle between 35% and  
65% inclusive.  
C03  
B02  
B01  
A01  
T01  
R01  
P04  
P03  
D16  
E16  
F15  
F16  
G15  
G16  
H15  
H16  
J15  
4
4
TX_EN{1:8}  
IPD  
Transmit Enable. In RMII mode,active high  
indicates that the MAC is presenting di-bits on  
TXD1,TXD0 for transmission. TX_EN is  
asserted synchronously with the first nibble of  
the preamble and remains asserted while all  
di-bits to be transmitted are presented to the  
RMII. TX_EN transitions synchronously with  
respect to REF_CLK.  
3
3
208  
207  
53  
208  
207  
53  
52  
52  
51  
51  
50  
50  
149  
150  
145  
146  
139  
140  
135  
136  
127  
128  
123  
124  
117  
118  
113  
114  
149  
150  
145  
146  
139  
140  
135  
136  
127  
128  
123  
124  
117  
118  
113  
114  
TXD1{1}  
TXD0{1}  
TXD1{2}  
TXD0{2}  
TXD1{3}  
TXD0{3}  
TXD1{4}  
TXD0{4}  
TXD1{5}  
TXD0{5}  
TXD1{6}  
TXD0{6}  
TXD1{7}  
TXD0{7}  
TXD1{8}  
TXD0{8}  
IPD  
Transmit Data Input. In RMII mode,  
TXD1,TXD0 dibit wide data is input on these  
pins for transmission by the PHY. The data is  
synchronous with REF_CLK. TXD1 is the  
most significant bit. Values other than 00 on  
TXD1,TXD0 while TX_EN is deasserted are  
ignored by the PHY.  
In SMII mode, the TXD0{1:8} form the STXD  
pins for each PHY.  
J16  
K15  
K16  
L15  
L16  
M15  
M16  
Broadcom Corporation  
Page 10  
Hardware Signal Definition Table  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Table 2: Pin Definitions (Cont.)  
BCM5228B BCM5228F BCM5228U Pin Label  
I/O  
Description  
A02  
A03  
B04  
A04  
R03  
R02  
T03  
T02  
D14  
D15  
E14  
E15  
F12  
F13  
G12  
G14  
H12  
H13  
J12  
204  
203  
202  
201  
59  
206  
205  
204  
203  
57  
CRS_DV{1:8}  
O3S  
Carrier Sense/Receive Data Valid. In RMII  
mode, CRS_DV shall be asserted by the PHY  
when the medium is non-idle. The data on  
RXD1,RXD0 is considered valid once  
CRS_DV is asserted. During a false carrier  
event, CRS_DV shall remain asserted for the  
duration of carrier activity. CRS_DV is not  
synchronized with respect to REF_CLK.  
58  
56  
57  
55  
56  
54  
151  
152  
147  
148  
141  
142  
137  
138  
129  
130  
125  
126  
119  
120  
115  
116  
8
151  
152  
147  
148  
141  
142  
137  
138  
129  
130  
125  
126  
119  
120  
115  
116  
8
RXD1{1}  
RXD0{1}  
RXD1{2}  
RXD0{2}  
RXD1{3}  
RXD0{3}  
RXD1{4}  
RXD0{4}  
RXD1{5}  
RXD0{5}  
RXD1{6}  
RXD0{6}  
RXD1{7}  
RXD0{7}  
RXD1{8}  
RXD0{8}  
RX_ER{1:8}  
O3S  
Receive Data Outputs. In RMII mode,  
RXD1,RXD0 data is output synchronous with  
REF_CLK. For each clock period in which  
CRS_DV is asserted, RXD1,RXD0 transfers 2  
bits of data from the PHY. RXD1 is the most  
significant bit.  
In SMII mode, the RXD0{1:8} form the SRXD  
pins for each PHY.  
J14  
K12  
K13  
L12  
L14  
D02  
D01  
C02  
C01  
N03  
M01  
M02  
L01  
O3S  
Receive Error Detected. In RMII mode,  
RX_ER is asserted high for one or more  
REF_CLK periods to indicate that an error  
was detected somewhere in the frame  
presently being transferred from the PHY.  
RX_ER transitions synchronously with  
respect to REF_CLK.  
7
7
6
6
5
5
43  
43  
42  
42  
41  
41  
40  
40  
Serial Media Independent Interface (SMII)  
H01  
23  
23  
SMII_EN/SLED_CLK I/OPU  
SMII Enable. Active high. An active high or  
being left unconnected during power-on reset  
selects the SMII mode, while an active low  
selects the RMII mode.  
Serial LED Clock. After power-on reset, if  
Serial or Low-Cost Serial LED mode is  
enabled, this pin sources the clock for serial  
data SLED_DO. For details, see “LED  
Modes” on page 29.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Hardware Signal Definition Table  
Page 11  
BCM5228  
Data Sheet  
7/12/04  
Table 2: Pin Definitions (Cont.)  
BCM5228B BCM5228F BCM5228U Pin Label  
I/O  
Description  
P15  
105  
105  
SSYNC  
IPD  
SMII SYNC. In SMII mode, this pin must be  
connected to a free running sync pulse  
occurring 1 of every 10 clock cycles. In RMII  
mode, this pin is NC (No Connect).  
Data and controls are transferred through  
TXD0 and RXD0 between respective MAC  
and PHY in default SMII mode. If source  
synchronous enable, SSMII_EN, is high, then  
SSYNC provides sync for TXD0 only and  
SMII_RSYNC from the BCM5228 provides  
sync for RXD0.  
R15  
103  
103  
SSMII_EN  
IPD  
SMII Source Synchronous (S3MII) Enable.  
Active high. When S3MII is enabled, the  
BCM5228 provides a source synchronous  
receive clock (SMII_RXC) and a sync  
(SMII_RSYNC) for MAC to use. The  
BCM5228 uses SMII_TXC along with SSYNC  
to receive data from the MAC. Signals  
CRS_DV, TXER, TXEN, and RXER are not  
used when Source Synchronous mode is  
enabled.  
R16  
P16  
106  
107  
106  
107  
SMII_RXC  
O3S  
O3S  
SMII Source Synchronous Receive Clock.  
Optional 125-MHz clock in SMII mode for  
MAC use to clock in RXD0.  
SMII_RSYNC  
SMII Source Synchronous SYNC. In S3MII  
mode, this pin provides a source  
synchronous SYNC pulse for MAC to use  
for RXD0 if Source Synchronous is enabled.  
T16  
104  
104  
SMII_TXC  
IPD  
SMII Source Synchronous Transmit Clock.  
125-MHz clock in SMII mode for BCM5228 to  
clock in TXD0 if Source Synchronous is  
enabled.  
Management Data I/O  
J01  
32  
31  
32  
31  
MDIO  
MDC  
I/OPU  
Management Data I/O. This serial input/  
output bit is used to read from and write to the  
RMII registers. The data value on the MDIO  
pin is valid and latched on the rising edge of  
MDC.  
K01  
IPD  
Management Data Clock. The MDC clock  
input must be provided to allow RMII  
management functions. Clock frequencies up  
to 25 MHz are supported.  
G05  
H05  
H04  
J05  
J03  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
PHYAD{4:0}  
IPD  
PHY Address Selects. These inputs set the  
base address for MII management PHY  
addresses. Also serve as test control inputs  
along with TESTEN to select the NAND-chain  
test mode.  
Broadcom Corporation  
Page 12  
Hardware Signal Definition Table  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Table 2: Pin Definitions (Cont.)  
BCM5228B BCM5228F BCM5228U Pin Label  
I/O  
Description  
H02  
22  
22  
MASTERPHY/  
SFRAME  
I/OPD  
Master PHY Address Mode. Active high.  
This forces PHY address 0 to be a global write  
address for all PHYs within the BCM5228. An  
active high during power-on reset selects the  
master PHY address mode, while an active  
low or being left unconnected selects the  
normal address mode.  
Serial LED Frame. After power-on reset, this  
pin sources the serial LED frame output signal  
if serial LED mode is enabled.  
Mode  
C16  
N15  
157  
109  
157  
109  
RESET#  
F100  
IPU  
IPU  
Reset. Active Low. Resets the BCM5228. Pin  
not included in NAND chain.  
10/100 Mode Select. When high and ANEN is  
low, all transceivers are forced to 100BASE-X  
operation. When low and ANEN is low, all  
transceivers are forced to 10BASE-T  
operation. When ANEN is high, F100 has no  
effect on the operation.  
M13  
C15  
108  
156  
108  
156  
ANEN  
IPU  
Auto-Negotiation Enable. Active high. When  
pulled high, auto-negotiation begins  
immediately after reset. When low, auto-  
negotiation is disabled after reset. Auto-  
negotiation can be enabled under software  
control (register 0, bit 12) if auto-negotiation is  
enabled through hardware.  
FDXEN  
IPD  
Full-Duplex Mode Enable. The FDXEN pin is  
logically ORed with an MII control bit to  
generate an internal full-duplex enable signal.  
When FDXEN is high, the BCM5228 can  
operate in full-duplex mode as determined by  
auto-negotiation. When FDXEN is low, the  
internal control bit (register 0, bit 8)  
determines the full-duplex operating mode.  
Initial value of the internal control bit is zero.  
G01  
F05  
19  
20  
19  
20  
TXER_EN  
MDIX_DIS  
I/OPU  
I/OPD  
TXER Enable. Active high. When pulled high  
during power-on reset, TXER[1:8]/LED1[1:8]  
pins become TXER[1:8] input. Otherwise they  
become LED1[1:8] output.  
HP Auto-MDIX Disable. Active high. When  
pulled high during reset, automatic TX cable  
swap detection function of the BCM5228 is  
disabled. Leave this pin unconnected for  
normal operation.  
F04  
17  
17  
TESTEN  
IPD  
Test Enable. Active high test control input  
used along with PHYAD[4:0] to select the  
NAND-chain test mode. This test mode is  
latched when TESTEN is pulsed high, then  
low, with PHYAD[4:0]=10111. This pin is not  
included in the NAND chain and must be  
pulled low or left unconnected during normal  
operation.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Hardware Signal Definition Table  
Page 13  
BCM5228  
Data Sheet  
7/12/04  
Table 2: Pin Definitions (Cont.)  
BCM5228B BCM5228F BCM5228U Pin Label  
I/O  
Description  
LED  
G03  
21  
21  
SERIAL_EN  
LC_SER_EN  
I/OPD  
Serial LED Enable. Active high. Serial LED  
mode is enabled if this pin is high and the LC-  
SER_EN pin is low during power-on reset.  
Serial LED mode and Low-Cost Serial LED  
mode cannot be active at the same time.  
For details, see “LED Modes” on page 29.  
G02  
18  
18  
I/OPU  
Low-Cost Serial LED Enable. Active high.  
Low-Cost Serial LED mode is enabled if this  
pin is high and SER_EN pin is high during  
power-on reset. Low-Cost Serial LED mode  
and Serial LED mode can not be active at the  
same time.  
For details, see “LED Modes” on page 29.  
K02  
30  
30  
SLED_DO/INTR#  
OOD  
Serial LED Data. Active low serial LED  
data. This pin becomes serial LED data  
output if SER_EN pin is high during power-  
on reset. For details, see “LED  
Modes” on page 29.  
PHY Interrupt. Active low output. This pin  
becomes interrupt output if SER_EN pin is low  
during power-on reset.  
F01  
F02  
E01  
E02  
P01  
P02  
N02  
N01  
12  
11  
10  
9
12  
11  
10  
9
TX_ER{1:8}  
LED1{1:8}  
I/OPD  
TXER[1:8]. Active high input. This pin  
becomes TXER input if TXER_EN pin is high  
during power-on reset. TXER function is  
typically used in HSTR application for  
transmitting halt codes.  
47  
46  
45  
44  
47  
46  
45  
44  
TXER[1:8] pins are sampled during power-on  
reset to set the default LED output for LED1,  
LED2 and LED3. For details, see “LED  
Modes” on page 29.  
LED1[1:8]. Active low output. This pin  
becomes LED1 output if TXER_EN pin is low  
during power-on reset. LED1 can be  
configured to output one of LINK, SPEED,  
ACTIVITY, FULL-DUPLEX, TRANSMIT,  
RECEIVE, INTERRUPT or COLLISION  
status. For details, see “LED  
Modes” on page 29.  
C04  
E06  
D05  
C05  
M07  
N07  
M06  
N06  
185  
186  
187  
188  
68  
LED2{1:8}  
OOD  
LED2. Active low. This pin can be configured  
to output one of SPEED, ACTIVITY, FULL-  
DUPLEX, TRANSMIT, RECEIVE,  
INTERRUPT, COLLISION, or LINK status.  
For details, see “LED Modes” on page 29.  
69  
70  
71  
Broadcom Corporation  
Page 14  
Hardware Signal Definition Table  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Table 2: Pin Definitions (Cont.)  
BCM5228B BCM5228F BCM5228U Pin Label  
I/O  
Description  
D03  
B03  
E05  
D04  
M05  
N04  
N05  
M04  
189  
190  
191  
192  
72  
LED3{1:8}  
O3S  
LED3. Active low. The function of this LED  
signal can be configured to output one of  
ACTIVITY, FULL-DUPLEX, LINK or SPEED  
status. For details, see “LED  
Modes” on page 29.  
73  
74  
75  
Bias  
A15  
A14  
161  
162  
160  
161  
RDAC  
VREF  
B
B
DAC Bias Resistor. Adjusts the current level  
of each of the transmit DAC’s. A resistor of  
1.24-k1% must be connected between  
the RDAC pin and AGND.  
Voltage Reference. Low-impedance bias pin  
driven by the internal band-gap voltage  
reference. This pin must be left unconnected  
during normal operation.  
JTAG  
L02  
L03  
37  
35  
37  
35  
TDI  
IPU  
Test Mode Select. Serial data input to the  
JTAG TAP controller. Sampled on the rising  
edge of TCK. If unused, it can be left  
unconnected.  
TMS  
IPU  
Test Data Input. Single control input to the  
JTAG TAP controller used to traverse the test-  
logic state machine. Sampled on the rising  
edge of TCK. If unused, it can be left  
unconnected.  
L05  
K04  
36  
33  
36  
33  
TCK  
TDO  
IPU  
Test Clock. Clock input used to synchronize  
the JTAG TAP control and data transfers. If  
unused, it can be left unconnected.  
O3S  
Test Data Output. Serial data output from the  
JTAG TAP Controller. Updated on the falling  
edge of TCK. Actively driven both high and  
low when enabled, otherwise high  
impedance.  
K05  
34  
34  
TRST#  
IPU  
Test Reset. Asynchronous active-low reset  
input to the JTAG TAP Controller. Must be  
held low during power-up to insure the TAP  
Controller initializes to the test-logic-reset  
state. Can be pulled low continuously when  
JTAG functions are not used. Must be held  
low for normal operation.  
Power  
T14  
101  
102  
PLLVDDC  
2.5-V, Phase Locked Loop VDD Core,  
DVDD  
R14  
P14  
98  
99  
PLLGND  
Phase Locked Loop GND  
100  
101  
PLLVDDP  
PLL PAD VDD. Tie this to the same supply as  
OVDD.  
A16  
160  
159  
BIASVDD  
2.5-V, Bias VDD  
Broadcom Corporation  
Document 5228-DS09-405-R  
Hardware Signal Definition Table  
Page 15  
BCM5228  
Data Sheet  
7/12/04  
Table 2: Pin Definitions (Cont.)  
BCM5228B BCM5228F BCM5228U Pin Label  
I/O  
Description  
B16  
A05  
C07  
C10  
C13  
P07  
P11  
T04  
T13  
B05  
B14  
B15  
C06  
C08  
C09  
C11  
C12  
D09  
D10  
E09  
P05  
P06  
P08  
P09  
P10  
P12  
P13  
R04  
R13  
E04  
E13  
G04  
K14  
L04  
N13  
C14  
F03  
G06  
J13  
163  
67  
162  
65  
BIASGND  
AVDD  
Bias GND  
2.5-V, Analog VDD  
73  
78  
85  
90  
91  
92  
169  
175  
187  
193  
61  
168  
170  
182  
195  
59  
AGND  
Analog GND  
66  
64  
70  
66  
74  
77  
79  
79  
84  
84  
88  
89  
92  
91  
97  
93  
168  
172  
176  
181  
186  
190  
194  
199  
98  
167  
169  
171  
176  
181  
183  
194  
196  
201  
2
2
DVDD  
DGND  
2.5-V, Digital Core VDD  
15  
15  
48  
48  
111  
132  
154  
1
111  
132  
154  
1
Digital Core GND  
14  
14  
49  
49  
110  
133  
155  
110  
133  
155  
M03  
N14  
Broadcom Corporation  
Page 16  
Hardware Signal Definition Table  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Table 2: Pin Definitions (Cont.)  
BCM5228B BCM5228F BCM5228U Pin Label I/O  
Description  
3.3V, Digital Periphery (Output Buffer) VDD  
D06  
E03  
F14  
G13  
H03  
K03  
L13  
M14  
N08  
D13  
F06  
F07  
H11  
H14  
J04  
13  
13  
OVDD  
16  
16  
39  
39  
121  
122  
143  
144  
67  
121  
122  
143  
144  
184  
38  
38  
OGND  
Digital Periphery (Output Buffer) GND  
60  
58  
112  
131  
134  
153  
200  
76  
112  
131  
134  
153  
193  
202  
L06  
L07  
N16  
Broadcom Corporation  
Document 5228-DS09-405-R  
Hardware Signal Definition Table  
Page 17  
BCM5228  
Data Sheet  
7/12/04  
Broadcom Corporation  
Page 18  
Hardware Signal Definition Table  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Section 3: Pinout Diagrams  
The the pinout diagram for the BCM5228F (FX Support) is illustrated on Figure 2.  
FDXEN  
DGND  
DVDD  
OGND  
RXD0{1}  
RXD1{1}  
TXD0{1}  
TXD1{1}  
RXD0{2}  
RXD1{2}  
TXD0{2}  
TXD1{2}  
OVDD  
OVDD  
RXD0{3}  
RXD1{3}  
TXD0{3}  
TXD1{3}  
RXD0{4}  
RXD1{4}  
TXD0{4}  
TXD1{4}  
OGND  
156  
155  
154  
153  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
DGND  
1
2
3
4
5
6
7
8
9
DVDD  
TXEN{2}  
TXEN{1}  
RXER{4}  
RXER{3}  
RXER{2}  
RXER{1}  
TXER{4}  
TXER{3}  
TXER{2}  
TXER{1}  
OVDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
DGND  
DVDD  
OVDD  
TESTEN  
LC_SER_EN  
TXER_EN  
MDIX_DIS  
SER_EN  
MASTERPHY  
SMII_EN  
DGND  
DVDD  
OGND  
PHYAD4  
PHYAD3  
PHYAD2  
PHYAD1  
PHYAD0  
NC  
132  
131  
130  
129  
RXD0{5}  
RXD1{5}  
TXD0{5}  
TXD1{5}  
RXD0{6}  
RXD1{6}  
TXD0{6}  
TXD1{6}  
OVDD  
BCM5228  
(Top View)  
F
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
SLED_DO  
MDC  
MDIO  
TDO  
TRST#  
TMS  
TCK  
TDI  
OGND  
OVDD  
RXER{8}  
RXER{7}  
RXER{6}  
RXER{5}  
TXER{8}  
TXER{7}  
OVDD  
RXD0{7}  
RXD1{7}  
TXD0{7}  
TXD1{7}  
RXD0{8}  
RXD1{8}  
TXD0{8}  
TXD1{8}  
OGND  
DVDD  
DGND  
TXER{6}  
TXER{5}  
DVDD  
DGND  
TXEN{8}  
109 F100  
108 ANEN  
107 SMII_RSYNC  
106 SMII_RXC  
105 SSYNC  
50  
51  
52  
TXEN{7}  
TXEN{6}  
Figure 2: BCM5228F Pinout Diagram  
The pinout diagram for the BCM5228U (UTP Support) is illustrated on Figure 3 on page 20.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Pinout Diagrams  
Page 19  
BCM5228  
Data Sheet  
7/12/04  
FDXEN  
DGND  
DVDD  
OGND  
RXD0{1}  
RXD1{1}  
TXD0{1}  
TXD1{1}  
RXD0{2}  
RXD1{2}  
TXD0{2}  
156  
155  
154  
153  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
DGND  
1
2
3
4
5
6
7
8
DVDD  
TXEN{2}  
TXEN{1}  
RXER{4}  
RXER{3}  
RXER{2}  
RXER{1}  
TXER{4}  
TXER{3}  
TXER{2}  
TXER{1}  
OVDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
TXD1{2}  
OVDD  
OVDD  
DGND  
DVDD  
OVDD  
RXD0{3}  
RXD1{3}  
TXD0{3}  
TXD1{3}  
RXD0{4}  
RXD1{4}  
TXD0{4}  
TXD1{4}  
OGND  
TESTEN  
LC_SER_EN  
TXER_EN  
MDIX_DIS  
SER_EN  
MASTERPHY  
SMII_EN  
PHYAD4  
PHYAD3  
DGND  
DVDD  
OGND  
132  
131  
130  
129  
PHYAD2  
PHYAD1  
PHYAD0  
NC  
RXD0{5}  
RXD1{5}  
TXD0{5}  
TXD1{5}  
RXD0{6}  
RXD1{6}  
TXD0{6}  
TXD1{6}  
OVDD  
BCM5228U  
(Top View)  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
SLED_DO  
MDC  
MDIO  
TDO  
TRST#  
TMS  
TCK  
TDI  
OGND  
OVDD  
RXER{8}  
RXER{7}  
RXER{6}  
RXER{5}  
TXER{8}  
TXER{7}  
OVDD  
RXD0{7}  
RXD1{7}  
TXD0{7}  
TXD1{7}  
RXD0{8}  
RXD1{8}  
TXD0{8}  
TXD1{8}  
OGND  
DVDD  
DGND  
TXER{6}  
TXER{5}  
DVDD  
DGND  
TXEN{8}  
109 F100  
108 ANEN  
SMII_RSYNC  
106 SMII_RXC  
107  
50  
51  
52  
TXEN{7}  
TXEN{6}  
105  
SSYNC  
Figure 3: BCM5228U Pinout Diagram  
Broadcom Corporation  
Page 20  
Pinout Diagrams  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
CRS_DV CRS_DV CRS_DV  
A
B
C
D
E
F
TXEN{4}  
AVDD  
TD+{4}  
RD+{4}  
RD+{3}  
TD+{3}  
TD+{2}  
RD+{2}  
RD+{1}  
TD+{1}  
VREF  
RDAC  
BIASVDD  
BIASGND  
RESET#  
A
B
C
D
E
F
{1}  
{2}  
{4}  
T
T
R
R
T
T
T
S
CRS_DV  
{3}  
TXEN{3} TXEN{2} LED3{2}  
AGND  
LED2{4}  
LED2{3}  
LED3{3}  
TD-{4}  
AGND  
OVDD  
LED2{2}  
OGND  
DGND  
TGND  
RD-{4}  
AVDD  
SD-{4}  
SD+{4}  
OGND  
TGND  
RD-{3}  
AGND  
SD+{3}  
SD-{3}  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
NC  
TD-{3}  
AGND  
AGND  
AGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
SD-{5}  
SD+{5}  
AGND  
TD-{7}  
TD-{2}  
AVDD  
A GND  
NC  
RD-{2}  
AGND  
SD+{2}  
SD-{2}  
TGND  
TGND  
OGND  
TGND  
TGND  
TGND  
SD-{7}  
SD+{7}  
AVDD  
RD-{8}  
RD-{1}  
AGND  
SD+{1}  
SD-{1}  
TD-{1}  
AVDD  
OGND  
DVDD  
AGND  
DGND  
AGND  
RXER{4} RXER{3} TXEN{1} LED2{1}  
FDXEN  
RXER{2} RXER{1} LED3{1}  
LED3{4}  
DVDD  
RXD1{1} RXD0{1} TXD1{1}  
RXD1{2} RXD0{2} TXD0{1}  
TX_ER{3}/ TX_ER{4}/  
OVDD  
LED1{3}  
LED1{4}  
TX_ER{1}/ TX_ER{2}/  
DGND  
TESTEN MDIX_DIS  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
SD-{6}  
SD+{6}  
AGND  
RD-{7}  
RXD1{3} RXD0{3}  
OVDD  
TXD1{2} TXD0{2}  
LED1{1}  
LED1{2}  
LC_SER_  
EN  
SERIAL_EN  
G
H
J
TXER_EN  
DVDD  
PHY AD4  
RXD1{4}  
OVDD  
RXD0{4} TXD1{3} TXD0{3}  
G
H
J
SMII_EN/ MASTERP  
SLED_CL  
K
HY/  
SFRAME  
OVDD  
PHYAD0  
OVDD  
TMS  
PHYAD2 PHYAD3  
TGND  
RXD1{5} RXD0{5}  
OGND  
TXD1{4} TXD0{4}  
MDIO  
MDC  
NC  
OGND  
TDO  
PHYAD1  
TRST#  
TCK  
TGND  
TGND  
RXD1{6}  
DGND  
RXD0{6} TXD1{5} TXD0{5}  
M
M
R
R
T
T
T
SLED_DO/  
INTR#  
K
L
TGND  
TGND  
RXD1{7} RXD0{7}  
DVDD  
TXD1{6} TXD0{6}  
K
L
RXER{8}  
TDI  
DVDD  
LED3{8}  
OGND  
LED2{7}  
LED2{8}  
AGND  
RD-{5}  
OGND  
LED2{5}  
LED2{6}  
AVDD  
RD-{6}  
RXD1{8}  
SD-{8}  
SD+{8}  
AGND  
TD-{8}  
OVDD  
ANEN  
DVDD  
AGND  
AGND  
RXD0{8} TXD1{7} TXD0{7}  
PLLVDDP TXD1{8} TXD0{8}  
M
N
P
R
T
RXER{6} RXER{7}  
TX_ER{8}/ TX_ER{7}/  
DGND  
LED3{5}  
LED3{7}  
AGND  
TD-{5}  
M
N
P
R
T
RXER{5} LED3{6}  
TXEN{8} TXEN{7}  
OVDD  
AGND  
TD-{6}  
DGND  
F100  
OGND  
LED1{8}  
LED1{7}  
TX_ER{5}/ TX_ER{6}/  
SMII_  
RSYNC  
PLLVDDP SSYNC  
PLLGND SSMII_EN  
LED1{5}  
LED1{6}  
CRS_DV CRS_DV  
{6} {5}  
SMII_  
RXC  
TXEN{6}  
AGND  
CRS_DV CRS_DV  
SMII_  
TXC  
TXEN{5}  
01  
AVDD  
04  
TD+{5}  
05  
RD+{5}  
06  
RD+{6}  
07  
TD+{6}  
08  
TD+{7}  
09  
RD+{7}  
10  
RD+{8}  
11  
TD+{8}  
12  
AVDD PLLVDDC REF_CLK  
{8}  
{7}  
T
C
02  
03  
13  
14  
15  
16  
T
R
R
T
Note: TGND balls are thermal grounds  
Figure 4: BGA Pinout (Top View)  
Broadcom Corporation  
Document 5228-DS09-405-R  
Pinout Diagrams  
Page 21  
BCM5228  
Data Sheet  
7/12/04  
Table 3: BGA Ballout by Signal Name  
Signal Name  
Ball  
Signal Name  
Ball  
Signal Name  
Ball  
AGND  
B05  
B14  
B15  
C06  
C08  
C09  
C11  
C12  
D09  
D10  
E09  
P05  
P06  
P08  
P09  
P10  
P12  
P13  
R04  
R13  
M13  
A05  
C07  
C10  
C13  
P07  
P11  
T04  
T13  
B16  
A16  
A02  
A03  
B04  
A04  
CRS_DV{5}  
CRS_DV{6}  
CRS_DV{7}  
CRS_DV{8}  
DGND  
R03  
R02  
T03  
T02  
C14  
F03  
G06  
J13  
MASTERPHY/SFRAME  
MDC  
H02  
K01  
J01  
AGND  
AGND  
MDIO  
AGND  
MDIX_DIS  
NC  
F05  
E10  
J02  
M08  
D13  
F06  
F07  
H11  
H14  
J04  
AGND  
AGND  
DGND  
NC  
AGND  
DGND  
NC  
AGND  
DGND  
OGND  
AGND  
DGND  
M03  
N14  
E04  
E13  
G04  
K14  
L04  
N13  
N15  
C15  
G02  
C04  
E06  
D05  
C05  
M07  
N07  
M06  
N06  
D03  
B03  
E05  
D04  
M05  
N04  
N05  
M04  
OGND  
AGND  
DGND  
OGND  
AGND  
DVDD  
OGND  
AGND  
DVDD  
OGND  
AGND  
DVDD  
OGND  
AGND  
DVDD  
OGND  
L06  
L07  
N16  
D06  
E03  
F14  
G13  
H03  
K03  
L13  
M14  
N08  
P14  
J03  
AGND  
DVDD  
OGND  
AGND  
DVDD  
OGND  
AGND  
F100  
OVDD  
AGND  
FDXEN  
LC_SER_EN  
LED2{1}  
LED2{2}  
LED2{3}  
LED2{4}  
LED2{5}  
LED2{6}  
LED2{7}  
LED2{8}  
LED3{1}  
LED3{2}  
LED3{3}  
LED3{4}  
LED3{5}  
LED3{6}  
LED3{7}  
LED3{8}  
OVDD  
AGND  
OVDD  
AGND  
OVDD  
ANEN  
OVDD  
AVDD  
OVDD  
AVDD  
OVDD  
AVDD  
OVDD  
AVDD  
OVDD  
AVDD  
PLLVDDP  
PHYAD0  
PHYAD1  
PHYAD2  
PHYAD3  
PHYAD4  
PLLGND  
PLLVDDC  
RD–{1}  
RD–{2}  
AVDD  
AVDD  
J05  
AVDD  
H04  
H05  
G05  
R14  
T14  
B12  
B11  
BIASGND  
BIASVDD  
CRS_DV{1}  
CRS_DV{2}  
CRS_DV{3}  
CRS_DV{4}  
Broadcom Corporation  
Page 22  
Pinout Diagrams  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Table 3: BGA Ballout by Signal Name (Cont.)  
Signal Name  
Ball  
Signal Name  
Ball  
Signal Name  
Ball  
RD-{3}  
B08  
B07  
R06  
R07  
R10  
R11  
A12  
A11  
A08  
A07  
T06  
T07  
T10  
T11  
A15  
T15  
C16  
D15  
E15  
F13  
G14  
H13  
J14  
RXER{4}  
RXER{5}  
RXER{6}  
RXER{7}  
RXER{8}  
SD-{1}  
C01  
N03  
M01  
M02  
L01  
E12  
E11  
E08  
D07  
M09  
M10  
M11  
M12  
D12  
D11  
D08  
E07  
N09  
N10  
N11  
N12  
G03  
K02  
P16  
R16  
T16  
H01  
R15  
P15  
L05  
B13  
B10  
B09  
B06  
R05  
R08  
TD–{7}  
TD–{8}  
TD+{1}  
TD+{2}  
TD+{3}  
TD+{4}  
TD+{5}  
TD+{6}  
TD+{7}  
TD+{8}  
TDI  
R09  
R12  
A13  
A10  
A09  
A06  
T05  
T08  
T09  
T12  
L02  
K04  
F04  
F08  
F09  
F10  
F11  
G07  
G08  
G09  
G10  
G11  
H06  
H07  
H08  
H09  
H10  
J06  
J07  
J08  
J09  
J10  
J11  
K06  
K07  
K08  
RD-{4}  
RD-{5}  
RD-{6}  
RD-{7}  
RD-{8}  
RD+{1}  
SD-{2}  
RD+{2}  
SD-{3}  
RD+{3}  
SD-{4}  
RD+{4}  
SD-{5}  
RD+{5}  
SD-{6}  
RD+{6}  
SD-{7}  
TDO  
RD+{7}  
SD-{8}  
TESTEN  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
TGND  
RD+{8}  
SD+{1}  
RDAC  
SD+{2}  
REF_CLK  
RESET#  
RXD0{1}  
RXD0{2}  
RXD0{3}  
RXD0{4}  
RXD0{5}  
RXD0{6}  
RXD0{7}  
RXD0{8}  
RXD1{1}  
RXD1{2}  
RXD1{3}  
RXD1{4}  
RXD1{5}  
RXD1{6}  
RXD1{7}  
RXD1{8}  
RXER{1}  
RXER{2}  
RXER{3}  
SD+{3}  
SD+{4}  
SD+{5}  
SD+{6}  
SD+{7}  
SD+{8}  
SERIAL_EN  
SLED_DO/INTR#  
SMII_RSYNC  
SMII_RXC  
SMII_TXC  
SMII_EN/SLED_CLK  
SSMII_EN  
SSYNC  
TCK  
K13  
L14  
D14  
E14  
F12  
G12  
H12  
J12  
TD-{1}  
K12  
L12  
D02  
D01  
C02  
TD-{2}  
TD-{3}  
TD-{4}  
TD-{5}  
TD-{6}  
Broadcom Corporation  
Document 5228-DS09-405-R  
Pinout Diagrams  
Page 23  
BCM5228  
Data Sheet  
7/12/04  
Table 3: BGA Ballout by Signal Name (Cont.)  
Signal Name  
Ball  
Signal Name  
Ball  
Signal Name  
Ball  
TGND  
K09  
K10  
K11  
L08  
L09  
L10  
L11  
L03  
K05  
E16  
F16  
G16  
H16  
J16  
K16  
TXD0{7}  
TXD0{8}  
TXD1{1}  
TXD1{2}  
TXD1{3}  
TXD1{4}  
TXD1{5}  
TXD1{6}  
TXD1{7}  
TXD1{8}  
TXEN{1}  
TXEN{2}  
TXEN{3}  
TXEN{4}  
TXEN{5}  
L16  
M16  
D16  
F15  
G15  
H15  
J15  
TXEN{6}  
R01  
P04  
P03  
G01  
F01  
F02  
E01  
E02  
P01  
P02  
N02  
N01  
A14  
TGND  
TXEN{7}  
TGND  
TXEN{8}  
TGND  
TXER_EN  
TGND  
TX_ER{1}/LED1{1}  
TX_ER{2}/LED1{2}  
TX_ER{3}/LED1{3}  
TX_ER{4}/LED1{4}  
TX_ER{5}/LED1{5}  
TX_ER{6}/LED1{6}  
TX_ER{7}/LED1{7}  
TX_ER{8}/LED1{8}  
VREF  
TGND  
TGND  
TMS  
K15  
L15  
M15  
C03  
B02  
B01  
A01  
T01  
TRST#  
TXD0{1}  
TXD0{2}  
TXD0{3}  
TXD0{4}  
TXD0{5}  
TXD0{6}  
Broadcom Corporation  
Page 24  
Pinout Diagrams  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Section 4: Operational Description  
RESETTING THE BCM5228  
There are two ways to reset each transceiver in the BCM5228. A hardware reset pin has been provided which resets all  
internal nodes inside the chip to a known state. The reset pulse must be asserted for at least 2 µs. Hardware reset should  
always be applied to a BCM5228 after power-up and after all clocks to the chip are running.  
Each transceiver in the BCM5228 also has an individual software reset capability. To perform software reset, a 1 must be  
written to bit 15 of the MII Control register 0 (see “MII Register Map Summary” on page 37) of the transceiver. This bit is self-  
clearing, meaning that a second write operation is not necessary to end the reset. There is no effect if a 0 is written to this bit.  
LOOPBACK MODE  
The loopback mode allows in-circuit testing of the BCM5228 chip. All packets sent in through the TXD pins are looped-back  
internally to the RXD pins, and are not sent out to the cable. Incoming packets on the cable are ignored.  
The loopback mode can be entered by writing a 1 to bit 14 of the MII Control register or by writing a 1 to bit 8 and bit 7 of  
shadow register 1Dh. In order to resume normal operation the bits must be 0.  
Several function bypass modes are also supported which can provide a number of different combinations of feedback paths  
during loopback testing. These bypass modes include: bypass scrambler, bypass MLT3 encoder and bypass 4B5B encoder.  
FULL-DUPLEX MODE  
The BCM5228 supports full-duplex operation. While in full-duplex mode, a transceiver can simultaneously transmit and  
receive packets on the cable. By default, each transceiver in the BCM5228 powers up in half-duplex mode.  
When auto-negotiation is disabled, full-duplex operation can be enabled either by a pin (FDXEN) or by an MII register bit  
(register 0 bit 8).  
When auto-negotiation is enabled in DTE mode, full-duplex capability is advertised by default but can be overridden by a  
write to the auto-negotiation Advertisement register (04h).  
100BASE-FX MODE  
Any of the BCM5228F transceivers can interface with an external 100BASE-FX fiber-optic driver and receiver instead of the  
magnetics module used with twisted-pair cable. The differential transmit and receive data pairs operate at PECL voltage  
levels instead of those required for twisted-pair transmission, if the termination scheme recommended in the application note  
Broadcom Corporation  
Document 5228-DS09-405-R  
Operational Description  
Page 25  
BCM5228  
Data Sheet  
7/12/04  
is used. The data is encoded using two-level NRZI instead of three-level MLT3. The data stream is not scrambled for fiber-  
optic transmission. The stream cipher function is bypassed when 100BASE-FX mode is selected.  
The external fiber-optic receiver detects signal status and communicate it to the BCM5228B or BCM5228F through the SD  
pins. In this mode, the internal signal detect function is bypassed. The 100BASE-FX mode is automatically selected  
whenever a valid differential signal is detected at the SD input pins. Pulling both SD+ and SD– low simultaneously disables  
the 100BASE-FX mode.  
10BASE-T MODE  
The same magnetics module is used to interface the twisted-pair cable in 10BASE-T mode and in 100BASE-TX mode. The  
data is two-level Manchester coded instead of three-level MLT3 and no scrambling/descrambling or 4B5B coding is  
performed.  
Data and clock rates are decreased by a factor of 10, with the RMII interface operating at 2.5 MHz.  
ISOLATE MODE  
Each transceiver in the BCM5228 can be isolated from the RMII/SMII/S3MII interface. When a transceiver is put into isolate  
mode, all RMII/SMII/S3MII input pins (TXD0, TXD1, TX_EN, TX_ER, SSYNC, SMII_TXC) are ignored and all RMII/SMII/  
S3MII output pins (CRS_DV, RX_ER, RXD0, RXD1, SMII_RSYNC, SMII_RXC) are set at high impedance. MII management  
pins (MDC, MDIO,) and analog TD±, RD± pins operate normally. Writing a 1 to bit 10 of the MII Control register 0 puts the  
port into isolate mode. Writing a 0 to the same bit removes it from isolate mode. Upon resetting the chip or resetting the  
isolated port, the isolate mode is off.  
SUPER ISOLATE MODE  
When the chip is in super isolate mode, in addition to isolate mode actions, the chip also sets the analog TD± pins to high  
impedance. Writing a 1 to bit 3 of the MII register 1Eh puts the port into super isolate mode. Writing a 0 to the same bit  
removes it from super isolate mode. Upon resetting the chip or resetting the isolated port, the super isolate mode is off.  
AUTO POWER-DOWN MODE  
The BCM5228 supports a low power mode called auto power-down mode. Auto power-down mode is enabled by setting bit  
5 of shadow register 1Bh. When in this mode, the BCM5228 automatically enters the low power mode if the energy from the  
link partner is lost. Similarly, the next time energy is detected, the chip resumes full power mode. When the BCM5228 is in  
this low power mode, it wakes up after approximately 2.5 to 5.0 seconds, as determined by bit 4 of shadow register 1Bh, and  
sends a link pulse while monitoring energy from the link partner. If energy is detected, the BCM5228 enters full power mode  
and establishes link with the link partner. Otherwise, the wake-up mode continues for a duration of approximately 40–600  
milliseconds, as determined by bits [3:0] of shadow register 1Bh before going to low power mode. See Table 43 on page 66  
for details of various bits.  
Broadcom Corporation  
Page 26  
10BASE-T Mode  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
JUMBO PACKET MODE  
In 100BASE-X mode, the BCM5228 can support jumbo packet size. The size of the packet that can be handled reliably  
depends on the descrambler lock timer settings and the receive FIFO size. By default, the BCM5228 provides an effective  
10 bits of receive FIFO to allow for extremely large packet sizes. These modes are enabled by setting appropriate bits in the  
MII registers. Table 4 shows the number of effective FIFO bits supported.  
Table 4: Receive FIFO Size Select  
Packet Size  
(bytesb)  
Jumbo Packet FIFO Enable  
Reg 1Bh bit 9  
Extended FIFO Enable  
Reg 10h bit 2  
Number of Effective  
FIFO Bits Supported  
0
0
1
1
0
1
0
1
10  
20  
20  
12 500  
25 000  
25 000  
40 (20a)  
50 000/25 000  
a. In this mode, the BCM5228 operation is guaranteed to only 20 bits of effective FIFO depth, although under some  
circumstances, it could behave as if the FIFO depth is 40 bits.  
b. The packet size calculation is based on 50 ppm clock tolerance for local and link partner.  
When changing the receive FIFO size, it is necessary to identify the receive packet size requirement and set the descrambler  
timer lock accordingly. The descrambler lock is controlled by the Jumbo Packet Enable bit located in register 1HBh, bit 10.  
Table 5: Jumbo Packet Enable and Descrambler Lock Timer  
Jumbo Packet Enable  
Descrambler Lock Timer  
Packet Size  
Reg 1Bh bit 10  
0
1
720 µs  
5792 µs  
9050  
72 400  
The packet size that can be reliably received is the lower number indicated by two settings: the Jumbo Packet Enable bit  
and the two Extended FIFO Enable bits.  
PHY ADDRESS  
Each transceiver in the BCM5228 has a unique PHY address for MII management. The PHY address is determined by the  
using the base address, which is input on the PHYAD[4:0] pins. The following shows the addressing of the eight PHYs.  
PHY0 = PHYAD + 0, PHY1 = PHYAD + 1,... PHY7 = PHYAD + 7  
Every time an MII write or read operation is executed, the transceiver compares the PHY address with its own PHY address  
definition. The operation is executed only when the addresses match.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Jumbo Packet Mode  
Page 27  
BCM5228  
Data Sheet  
7/12/04  
HP AUTO-MDIX  
During auto-negotiation and in various operating modes, one end of the link must be configured as an MDI (Media  
Independent Interface) crossover so that each transceiver’s transmitter is connected to the other’s receiver. The BCM5228  
contains the ability to perform HP Auto-MDIX crossover, thus eliminating the need for crossover cable or cross-wired (MDIX)  
ports.  
During auto-negotiation and in various operating modes, the BCM5228 normally transmits on TD± and receives on RD±.  
When connected via a straight-through cable to another device that does not have HP Auto-MDIX, the BCM5228  
automatically switches its transmitter to RD± and its receiver to TD± to communicate with that device. If the link partner also  
has HP Auto-MDIX, then a random algorithm determines which end performs the crossover function.  
The HP Auto-MDIX feature is implemented in accordance with the IEEE 802.3ab specification. The HP Auto-MDIX crossover  
feature is a function of auto-negotiation. Therefore, if the BCM5228 is configured not to perform auto-negotiation, HP Auto-  
MDIX crossover does not work, and a specific cable is required to ensure that each transceiver’s transmitter is connected  
to the other’s receiver.  
The HP Auto-MDIX feature is enabled in hardware by pulling the MDIX_DIS pin low during power-on reset. If enabled by  
hardware, this feature can be disabled by setting bit 11 of the MII register 1Ch to 0.  
Broadcom Corporation  
Page 28  
HP Auto-MDIX  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Section 5: LED Modes  
DESCRIPTION  
The BCM5228 offers a rich set of LED display outputs through serial and parallel LED modes. There are two serial LED  
modes available, Serial LED mode and Low-Cost Serial LED mode. The serial LED mode provides compatibility with few  
other Broadcom PHYs. Serial LED modes are selected by hardware only during power-on reset. When any serial LED mode  
is enabled global hardware interrupt feature is not available. However, if interrupt and a serial or a Low-Cost Serial LED  
mode is desired simultaneously, then a parallel LED can be programmed to provide on interrupt output per port and eight  
such interrupt can be ORed to obtain a global interrupt.  
SERIAL LED MODE  
The Serial LED mode is enabled only by having the SER_EN pin high and the LC_SER_EN pin low during power-on reset.  
If Serial LED mode is enabled, then the Low-cost Serial LED mode and hardware global interrupt are disabled. In Serial LED  
mode, the BCM5228 sources a serial data stream, the associated clock, and a framing signal as follows:  
Serial data stream, SLED_DO, which is an active low bit stream containing 48 bits per frame.  
Serial data clock, SLED_CLK, is used to clock out SLED_DO on the falling edge of this clock. SLED-DO is valid on the  
rising edge of this clock. SLED_CLK is approximately 3.125 MHz in forced 100BASE-T and -FX modes, and 2.5 MHz in  
all other modes.  
Framing pulse, SFRAME, which is a logic high pulse occurring once every 48 SLED_DO bit times. SFRAME goes high  
coincident with bit 0 of port 1.  
When the serial LED mode is enabled by hardware, the LED stream is selected for SLED_DO as shown in Table 6,  
depending on the values of bits 14 and 15 of MII register 1Ah. The data stream contains bit 0 to bit 5 for port 1, bit 0 to bit 5  
for port 2, … and bit 0 to bit 5 for port 8.  
Table 6: Serial LED Mode Bit Framing  
Reg 1Ah  
Serial Bit 5 Serial Bit 4  
COL  
Serial Bit 3  
Serial Bit 2  
Serial Bit 1  
Serial Bit 0  
Bit 15 = 0 Bit 14 = 0 FDX  
Speed100  
Link  
Link  
Link  
Link  
Transmit  
Port Interrupt  
FDX  
Receive  
Activity  
Activity  
Activity  
Bit 15 = 0  
Bit 15 = 1  
Bit 15 = 1  
Bit 14 = 1 FDX  
Bit 14 = 0 FDX  
Bit 14 = 1 FDX  
Global Interrupt Speed100  
COL Speed100  
Global Interrupt Speed100  
FDX  
NOTE—A global interrupt indicates an interrupt from any of the eight PHYs as if they were ORed together. A port interrupt  
is provided on a per-PHY basis.  
Broadcom Corporation  
Document 5228-DS09-405-R  
LED Modes  
Page 29  
BCM5228  
Data Sheet  
7/12/04  
LOW-COST SERIAL LED MODE  
The low-cost serial LED mode is enabled by pulling both LC_SER_EN pin and SER_EN pin high during power-on reset.  
When enabled, serial LED data stream, SLED_DO, is shifted out on the falling edge of SLED_CLK. SLED_DO is valid on  
the rising edge of this clock. The data is shifted in such a manner that the update of LEDs using a simple shift register that  
drive the display LEDs do not cause noticeable flicker in normal operation.  
There are six banks, bank 1 through bank 6, associated with six LED outputs. Each bank has its own MII register bits that  
select LED a signal to output from that bank. The selected signal from each bank is shifted out on the LED_DO pin in the  
following order for a total of 48 LED outputs:  
Bank 1 for port 1 through port 8  
Bank 2 for port 1 through port 8,…,  
Bank 6 for port 1 through 8  
The low-cost serial LED mode programmable banks are located in the MII shadow register 1Ah of port 2 and port 3. For  
programming details, see Table 7, Table 8, Table 9, Table 10, Table 11, and Table 12. The default LED outputs are Speed,  
Link, Full-duplex, Activity, Speed, and Link for bank 1 through bank 6, respectively.  
Table 7: Low-Cost Serial Mode Bank 1 LED Selection  
MII Shadow Registera 1Ah, PHY 3, Bits [2:0]  
Value  
LED Selection  
0
1
2
3
4
5
6
7
Speed  
Activity  
Full-duplex  
Transmit  
Receive  
Interrupt  
Collision  
Link  
SERIAL BANK 1 SELECT  
BITS[2:0]  
a. The MII Shadow register is accessed by setting MII register 1Fh bit 7 to 1.  
Table 8: Low-Cost Serial Mode Bank 2 LED Selection  
MII Shadow Registera 1Ah, PHY 3, Bits [5:3]  
Value  
LED Selection  
0
1
2
3
4
5
6
7
Link  
Speed  
Activity  
Full-duplex  
Transmit  
Receive  
Interrupt  
Collision  
SERIAL LED BANK 2 SELECT  
BITS[2:0]  
a. The MII Shadow register is accessed by setting MII register 1Fh bit 7 to 1.  
Broadcom Corporation  
Page 30  
Low-Cost Serial LED Mode  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Table 9: Low-Cost Serial Mode Bank 3 LED Selection  
MII Shadow Registera 1Ah, PHY 3, Bits [8:6]  
Value  
LED Selection  
0
1
2
3
4
5
6
7
Full-duplex  
Transmit  
Receive  
Interrupt  
Collision  
Link  
SERIAL LED BANK 3 SELECT  
BITS[2:0]  
Speed  
Activity  
a. The MII Shadow register is accessed by setting MII register 1Fh bit 7 to 1.  
Table 10: Low-Cost Serial Mode Bank 4 LED Selection  
MII Shadow Registera 1Ah, PHY 2, Bits [2:0]  
Value  
LED Selection  
0
1
2
3
4
5
6
7
Activity  
Full-duplex  
Transmit  
Receive  
Interrupt  
Collision  
Link  
SERIAL LED BANK 4 SELECT  
BITS[2:0]  
Speed  
a. The MII Shadow register is accessed by setting MII register 1Fh bit 7 to 1.  
Table 11: Low-Cost Serial Mode Bank 5 LED Selection  
MII Shadow Registera 1Ah, PHY 2, Bits [5:3]  
Value  
LED Selection  
0
1
2
3
4
5
6
7
Speed  
Activity  
Full-duplex  
Transmit  
Receive  
Interrupt  
Collision  
Link  
SERIAL LED BANK 5 SELECT  
BITS[2:0]  
a. The MII Shadow register is accessed by setting MII register 1Fh bit 7 to 1.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Low-Cost Serial LED Mode  
Page 31  
BCM5228  
Data Sheet  
7/12/04  
Table 12: Low-Cost Serial Mode Bank 6 LED Selection  
MII Shadow Register a1Ah, PHY 2, Bits [8:6]  
Value  
LED Selection  
0
1
2
3
4
5
6
7
Link  
Speed  
Activity  
Full-duplex  
Transmit  
Receive  
Interrupt  
Collision  
SERIAL BANK 6 SELECT  
BITS[2:0]  
a. The MII Shadow register is accessed by setting MII register 1Fh bit 7 to 1.  
Broadcom Corporation  
Page 32  
Low-Cost Serial LED Mode  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
PARALLEL LED MODE  
The BCM5228U offers a parallel LED mode that is active all the time. There are 3 LED pins, LED1, LED2, and LED3 for  
each port each of which can be individually configured to output one of many LED signals. Configuration can be  
accomplished either by hardware or programming MII register bits. LED1 pins are shared with TXER. These pins can be  
configured to output LED1 if TXER_EN pin is pulled low during power-on reset.  
For unmanaged system design using the BCM5228U, the parallel LED pins for each port can be programmed through  
hardware during power-on reset by pull-down or pull-up combinations of TXER/LED1 [1:8] pins. Pull-up and pull-down of  
these pins should be done using a series 4.7-kresistor to OVDD or OGND respectively and LED drive and polarity should  
be such that the active low output on LED1 lights up the LED. LED2 and LED3 can be configured to output one of Link,  
Speed, Activity, Full-duplex, Transmit, Receive, Interrupt or Collision while LED3 can be configured to be one of Activity,  
Full-duplex, Link or Speed. Software configuration of LED1, LED2 and LED3 is accomplished through MII shadow register  
1Ah, Phy 1, bits [7:0]. For details, see Table 13, Table 14, and Table 15. Because LED2{1:8} pins are open drain, they can  
be wire 0Red together and configured (by hardware during power-on reset or through software by setting bits in the MII  
shadow register) to provide global hardware interrupt when required.  
Table 13: Parallel LED Mode LED1 Selection  
MII Shadow Registera 1Ah, PHY 1, Bits [2:0]  
TXER[3:1]  
Value  
LED1 Selection  
0
1
2
3
4
5
6
7
Link  
Speed  
Activity  
Full-duplex  
Transmit  
Receive  
Interrupt  
Collision  
POWER-ON  
LED1 SELECT  
BITS[2:0]  
LED1 SELECT[2:0]  
a. The MII Shadow register is accessed by setting MII register 1Fh bit 7 to 1.  
Table 14: Parallel LED Mode LED2 Selection  
Value  
MII Shadow Registera 1Ah, PHY 1, Bits [5:3]  
TXER [6:4]  
LED2 Selection  
0
1
2
3
4
5
6
7
Speed  
Activity  
Full-duplex  
Transmit  
Receive  
Interrupt  
Collision  
Link  
POWER-ON  
RESET LED2  
SELECT[2:0]  
LED2 SELECT[2:0]  
a. The MII Shadow register is accessed by setting MII register 1Fh bit 7 to 1.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Parallel LED Mode  
Page 33  
BCM5228  
Data Sheet  
7/12/04  
Table 15: Parallel LED Mode LED3 Selection  
a
TXER [8:7]  
Value  
LED3 Selection  
MII Shadow Register 1Ah, PHY 1, Bits [7:6]  
0
1
2
3
Activity  
Full-duplex  
Link  
POWER-ON RESET  
LED3 SELECT[1:0]  
LED3 SELECT[1:0]  
Speed  
a. The MII Shadow register is accessed by setting MII register 1Fh bit 7 to 1.  
Broadcom Corporation  
Page 34  
Parallel LED Mode  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Section 6: Register Summary  
MII MANAGEMENT INTERFACE: REGISTER PROGRAMMING  
The BCM5228 fully complies with the IEEE 802.3u Media Independent Interface (MII) specification. The MII management  
interface registers of each port are serially written-to and read from using a common set of MDIO and MDC pins. A single  
clock waveform must be provided to the BCM5228 at a rate of 0–25 MHz through the MDC pin. The serial data is  
communicated on the MDIO pin. Every MDIO bit must have the same period as the MDC clock. The MDIO bits are latched  
on the rising edge of the MDC clock. Every MII read or write instruction frame contains the following fields:  
Table 16: MII Management Frame Format  
Operation  
PRE  
ST  
OP  
PHYAD  
REGAD  
TA  
Data  
Idle  
Direction  
Read  
1 ... 1  
01  
10  
AAAAA  
RRRRR  
ZZ  
Z0  
Z ... Z  
D ... D  
Z
Z
Driven to BCM5228  
Driven by BCM5228  
Write  
1 ... 1  
01  
01  
AAAAA  
RRRRR  
10  
D ... D  
Z
Driven to BCM5228  
Preamble (PRE). Thirty-two consecutive 1 bits must be sent through the MDIO pin to the BCM5228 to signal the beginning  
of an RMII instruction. Fewer than thirty-two 1 bits causes the remainder of the instruction to be ignored.  
Start of Frame (ST). A 01 pattern indicates that the start of the instruction follows.  
Operation Code (OP). A Read instruction is indicated by 10, while a Write instruction is indicated by 01.  
PHY Address (PHYAD). A 5-bit PHY address follows next, with the MSB transmitted first. The PHY address allows a single  
MDIO bus to access multiple PHY chips. The BCM5228 supports a complete address space with PHYAD[4:0] input-pins  
used as the base address for selecting one of the eight transceivers.  
Register Address (REGAD). A 5-bit register address follows, with the MSB transmitted first. The register map of the  
BCM5228, containing register addresses and bit definitions, are provided on the following pages.  
Turnaround (TA). The next two bit times are used to avoid contention on the MDIO pin when a Read operation is performed.  
For a Write operation, 10 must be sent to the BCM5228 chip during these two bit times. For a Read operation, the MDIO pin  
must be placed into High-Impedance during these two bit times. The chip drives the MDIO pin to 0 during the second bit time.  
Data. The last 16 bits of the frame are the actual data bits. For a Write operation, these bits are sent to the BCM5228,  
whereas, for a read operation, these bits are driven by the BCM5228. In either case, the MSB is transmitted first. When  
writing to the BCM5228, the data field bits must be stable 10 ns before the rising edge of MDC, and must be held valid for  
10 ns after the rising edge of MDC. When reading from the BCM5228, the data field bits are valid after the rising-edge of  
MDC until the next rising edge of MDC.  
Idle. A high impedance state of the MDIO line. All tri-state drivers are disabled and the PHY’s pull-up resistor pulls the MDIO  
line to logic 1.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Register Summary  
Page 35  
BCM5228  
Data Sheet  
7/12/04  
At least one or more idle states are required between frames. The following shows two examples of MII write and read  
instructions.  
To put a transceiver with PHY address 00001 into Loopback mode, the following MII write instruction must be issued:  
1111 1111 1111 1111 1111 1111 1111 1111 0101 00001 00000 10 0100 0000 0000 0000 1...  
To determine if a PHY is in the link pass state, the following MII read instruction must be issued:  
1111 1111 1111 1111 1111 1111 1111 1111 0110 00001 00001 ZZ ZZZZ ZZZZ ZZZZ ZZZZ 1...  
For the MII read operation, the BCM5228 drives the MDIO line during the TA and Data fields (the last 17 bit times). A final  
65th clock pulse must be sent to close the transaction and cause a write operation to take place.  
Broadcom Corporation  
Page 36  
MII Management Interface: Register Programming  
Document 5228-DS09-405-R  
MII REGISTER MAP SUMMARY  
Table 17 contains the MII register map summary for each port of the BCM5228. The register addresses are specified in hex form, and the name of register bits  
have been abbreviated. When writing to any register, preserve existing values of the reserved bits by completing a “Read/Modify Write.” Ignore reserved bits when  
reading registers. Never write to an undefined register. The reset values of the registers are shown in the INIT column. Some of these values could be different  
depending on how the device is configured and also depending on the device revision value.  
Table 17: MII Register Map Summary  
Addr Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Init  
00h  
Control  
Soft  
Reset  
Loopback  
Force100  
Auto-neg  
Enable  
Power  
Down  
Isolate  
Restart Full-duplex Collision  
Reserved  
3000h  
Auto-neg  
Test  
01h  
Status  
T4  
Capable  
TX FDX  
Capable  
TX  
Capable  
BASE-T 10BASE-T  
Reserved  
MF pream  
suppress  
Auto-neg  
comp  
Remote  
Fault  
Auto-neg  
Capable  
Link  
Status  
Jabber  
Detect  
Extd Reg 7809h  
Capable  
FDX  
Capable  
Capable  
02h  
03h  
PhyID High  
PhyID Low  
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
1
0
0
0
0
0
0040h  
61D0h  
Model #  
1
Revision #  
0
0
0
0
0
04h  
05h  
Aut-neg  
Advertise  
Next  
Page  
Reserved  
Remote  
Fault  
Reserved Tech  
Pause  
Adv  
T4  
Adv  
TX FDX  
Adv  
TX  
Adv  
BASE-T  
FDX  
Adv  
BASE-T  
Advertised Selector Field[4:0]  
0
01E1h  
0000h  
0
0
1
Link Partner  
Ability  
LP Next  
Page  
LP  
LP Rem  
Fault  
Reserved Tech  
LP  
Pause  
LP  
T4  
LP  
TX FDX  
LP  
TX  
LP  
BASE-T  
FDX  
LP  
BASE-T  
Link Partner Selector Field [4:0]  
Acknowledge  
06h  
07h  
08h  
10h  
Auto-neg  
Reserved  
Toggle  
Par Det  
Fault  
LP Next  
Pg Able  
Next Pg  
Able  
Page  
LP Auto- 0004h  
neg Able  
Expansion  
Recvd  
Next Page  
Next  
Reserved  
Reserved  
Message  
Page  
Acknowledge2  
Acknowledge2  
Reserved  
Message/Unformatted Code Field  
2001h  
Page  
LP Next Page  
Next  
Page  
Message  
Page  
Toggle  
Message/Unformatted Code Field  
0000h  
100BASE-X  
Aux Control  
Reserved  
Trans  
Disable  
Bypass  
4B5B  
Enc/Dec  
Bypass  
Scram/  
Bypass  
NRZI  
Bypass  
Rcv Sym  
Align  
Baseline  
Wander  
Disable  
FEF  
Reserved  
Extended  
FIFO  
Enable  
Reserved  
0000h  
0000h  
Enable  
Descram  
Enc/Dec  
11h  
100BASE-X  
Aux Status  
Reserved  
R/SMII  
FX Mode  
Locked  
Current  
100 Link  
Status  
Current  
Remote  
Fault  
Reserved  
False  
Carrier  
Detected  
Bad  
RCV  
Error  
Detected  
XMT  
Error  
Detected  
Lock  
Error  
Detected  
MLT3  
Error  
Detected  
Over  
Under  
Run  
ESD  
Detected  
12h  
13h  
14h  
100BASE-X  
RCV Error  
Counter  
Receive Error Counter[15:0]  
0000h  
0000h  
0200h  
100BASE-X  
False Carrier  
Counter  
RMII/SMII Overrun/Underrun Counter[7:0]  
False Carrier Sense Counter[7:0]  
100BASE-X RMII/SMII  
Disconnect  
Counter  
RMII/SMII  
Slowrxd  
Reserved  
Fastrxd  
15h  
16h  
17h  
18h  
Reserved  
Reserved  
PTest  
Reserved  
Reserved  
Reserved  
0300h  
0000h  
0000h  
003xh  
Auxiliary  
Control/  
Status  
Jabber  
Disable  
Force Link  
Reserved  
TXDAC  
HSQ  
LSQ  
Edge Rate[1:0]  
Auto-neg Force 100  
SP100  
FDX  
Power  
Mode  
Enable  
Indication Indication Indication  
Indication  
19h  
Auxiliary  
Status  
Summary  
Auto-neg  
Complete  
Auto-neg  
Complete  
Ack  
Auto-neg  
Ack Detect  
Auto-neg  
Ability  
Detect  
Auto-neg  
Pause  
Auto-neg  
HCD  
Auto-neg  
Pardet  
Fault  
LP  
Remote  
Fault  
LP  
Page  
Rcvd  
LP  
SP100  
Link  
Status  
Internal  
Full-duplex 0000h  
Auto-neg Indication  
Able  
Auto-neg Indication  
Enabled  
Table 17: MII Register Map Summary (Cont.)  
Addr Name  
15  
14  
13  
Reserved  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Init  
1Ah  
Interrupt  
FDX LED INTR Enable  
Enable  
FDX Mask SPD Mask Link Mask  
INTR  
Mask  
Reserved  
Global  
Interrupt  
Status  
FDX  
Change  
SPD  
Change  
Link  
Change  
INTR  
Status  
0F0xh  
1Bh  
Auxiliary  
Mode2  
Reserved  
10BASE-T  
Dribble  
Jumbo  
Packet  
Enable  
Jumbo  
Packet  
FIFO  
Reserved  
Reserved  
Block  
Traffic  
Activity  
LED  
Serial  
LED  
Enable  
(PHY 2  
of 8)  
SQE  
Activity/  
Link LED  
Enable  
Qual  
Parallel  
Detect  
Mode  
Reserved 008Ah  
10BASE-T Meter LED  
Disable  
Correct  
Echo  
Mode  
Mode  
Force On  
Enable  
1Ch  
1Dh  
10BASE-T  
Auxiliary  
Error  
and General  
Status  
Reserved  
MDIX  
Status  
MDIX  
Manual  
Swap  
HP Auto- Manchstr  
MDIX  
Disable  
EOF  
Err  
(BASE-T)  
0
0
1
Reserved  
Auto-neg Force 100  
Enable  
Indicator  
SP100  
Indicator  
FDX  
Indicator  
002xh  
Code  
Err  
(BASE-T)  
Indicator  
Auxiliary  
Mode  
Reserved  
Reserved  
Restart  
Activity  
LED  
Link  
LED  
Force  
Inactive  
Reserved  
Block  
TXEN  
Mode  
Reserved x000h  
Force  
Inactive  
1Eh  
1Fh  
Auxiliary  
Multi-PHY  
HCD  
HC  
T4  
HCD  
TX  
HCD  
HCD  
Reserved  
Auto-neg  
Reserved  
ACK  
Detect  
Ability  
Detect  
Super  
Isolate  
Reserved  
RXER  
Code  
Mode  
0000h  
000Bh  
TX FDX  
10BASE-T 10BASE-T  
FDX  
Auto-neg Complete  
Broadcom  
Test  
Reserved  
Shadow  
Register  
Enable  
Reserved  
Table 18: MII Shadow Register Map Summary (MII Register 1Fh, bit7 = 1)  
Addr  
Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Init  
18h  
1Ah  
Reserved  
Reserved  
003Ah  
3000h  
Auxiliary  
Mode 4  
(PHY 1)  
Reserved  
Reserved  
Reserved  
MII LED  
Select  
Enable  
Parallel LED3  
Select[1:0]  
Parallel LED2 Select[2:0]  
Serial Bank 5 Select[2:0]  
Serial Bank 2 Select[2:0]  
Parallel LED1 Select[2:0]  
Serial Bank 4 Select[2:0]  
Serial Bank 1 Select[2:0]  
APD Wake-Up Timer[3:0]  
1Ah  
1Ah  
1Bh  
1Ch  
Auxiliary  
Mode 4  
(PHY 2)  
Serial Bank 6 Select[2:0]  
Serial Bank 3 Select[2:0]  
3000h  
3000h  
0001h  
0000h  
Auxiliary  
Mode 4  
(PHY 3)  
Auxiliary  
Status 2  
MLT3  
Detect  
Cable Length 100x[2:0]  
ADC Peak Amplitude[5:0]  
APD  
Enable  
APD  
Sleep  
Timer  
Auxiliary  
Status 3  
FLP  
Detect  
NLP  
Detect  
Link  
Link  
Fail Timer  
Expire  
Noise[7:0] (Root Mean Square error)  
Break  
Timer  
Expire  
FIFO Consumption[3:0]  
FIFO Size Select[3:0]  
1Dh  
1Eh  
Auxiliary  
Mode 3  
Reserved  
0004h  
0000h  
Auxiliary  
Status4  
Packet Length Counter[15:0]  
Data Sheet  
BCM5228  
7/12/04  
MII CONTROL REGISTER  
Table 19: MII Control Register (Address 00d, 00h)  
Bit  
Name  
R/W  
Description  
Default  
15  
Soft Reset  
R/W  
(SC)  
1 = PHY reset  
0 = Normal operation  
0
14  
13  
12  
Loopback  
R/W  
R/W  
R/W  
1 = loopback mode  
0 = Normal operation  
0
1
1
Forced Speed Selection  
Auto-Negotiation Enable  
1 = 100 Mbps  
0 = 10 Mbps  
1 = Auto-negotiation enable  
0 = Auto-negotiation disable  
11  
10  
Power Down  
Isolate  
RO  
0 = Normal operation  
0
0
R/W  
1 = Electrically isolate PHY from RMII  
0 = Normal operation  
9
8
Restart Auto-Negotiation  
Duplex Mode  
R/W  
(SC)  
1 = Restart auto-negotiation process  
0 = Normal operation  
0
0
R/W  
1 = Full-duplex  
0 = Half-duplex  
Reserveda  
Reserveda  
7
0
0
6:0  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
Soft Reset. To reset the BCM5228 by software control, a 1 must be written to bit 15 of the Control register using an MII write  
operation. The bit clears itself after the reset process is complete, and need not be cleared using a second MII write. Writes  
to other Control register bits have no effect until the reset process is completed, which requires approximately 1  
microsecond. Writing a 0 to this bit has no effect. Since this bit is self-clearing, after a few cycles from a write operation, it  
returns a 0 when read.  
Loopback. The BCM5228 can be placed into loopback mode by writing a 1 to bit 14 of the Control register. The loopback  
mode can be cleared by writing a 0 to bit 14 of the Control register, or by resetting the chip. When this bit is read, it returns  
a 1 when the chip is in software-controlled loopback mode, otherwise it returns a 0.  
Forced Speed Selection. If auto-negotiation is enabled, this bit has no effect on the speed selection. However, if auto-  
negotiation is disabled by software control, the operating speed of the BCM5228 can be forced by writing the appropriate  
value to bit 13 of the Control register. Writing a 1 to this bit forces 100BASE-X operation, while writing a 0 forces 10BASE-  
T operation. When this bit is read, it returns the value of the software-controlled forced speed selection only. In order to read  
the overall state of forced speed selection, including both hardware and software control, use bit 2of the Auxiliary Error and  
General Status register, 1Ch.  
Auto-Negotiation Enable. Auto-negotiation can be disabled by one of two methods: hardware or software control. If the  
ANEN input pin is driven to a logic 0, auto-negotiation is disabled by hardware control. If bit 12 of the Control register is  
written with a value of 0, auto-negotiation is disabled by software control. When auto-negotiation is disabled in this manner,  
writing a 1 to the same bit of the Control register or resetting the chip re-enables auto-negotiation. Writing to this bit has no  
Broadcom Corporation  
Document 5228-DS09-405-R  
MII Management Interface: Register Programming  
Page 39  
BCM5228  
Data Sheet  
7/12/04  
effect when auto-negotiation has been disabled by hardware control. When read, this bit returns the value most recently  
written to this location, or 1 if it has not been written since the last chip reset.  
Power Down. The BCM5228 does not implement power-down mode. However, the device does support auto power-down  
mode (see “Auto Power-Down Mode” on page 26).  
Isolate. Each individual PHY can be isolated from its Media Independent Interface by writing a 1 to bit 10 of the Control  
register. All RMII outputs is tri-stated and all RMII/SMII/S3MII inputs are ignored. Because the MII/SMII/S3MII management  
interface is still active, the isolate mode can be cleared by writing a 0 to bit 10 of the Control register, or by resetting the chip.  
When this bit is read, it returns a 1 when the chip is in isolate mode, otherwise, it returns a 0. See also “Isolate  
Mode” on page 26.  
Restart Auto-Negotiation. Bit 9 of the Control register is a self-clearing bit that allows the auto-negotiation process  
to be restarted, regardless of the current status of the auto-negotiation state machine. In order for this bit to have  
an effect, auto-negotiation must be enabled. Writing a 1 to this bit restarts the auto-negotiation, while writing a 0 to  
this bit has no effect. Since the bit is self-clearing after only a few cycles, it always returns a 0 when read. The  
operation of this bit is identical to bit 9 of the Auxiliary Multiple PHY register.  
Duplex Mode. By default, the BCM5228 powers up in half-duplex mode. The chip can be forced into full-duplex mode by  
writing a 1 to bit 8 of the Control register while auto-negotiation is disabled. Half-duplex mode can be resumed by writing a  
0 to bit 8 of the Control register, or by resetting the chip.  
Broadcom Corporation  
Page 40  
MII Management Interface: Register Programming  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
MII STATUS REGISTER  
Table 20: MII Status Register (Address 01d, 01h)  
Bit  
Name  
R/W  
Description  
Default  
15  
100BASE-T4 Capability  
RO  
0 = Not 100BASE-T4 capable  
1 = 100BASE-TX full-duplex capable  
1 = 100BASE-TX half-duplex capable  
1 = 10BASE-T full-duplex capable  
1 = 10BASE-T half-duplex capable  
0
14  
100BASE-TX FDX Capability RO  
1
13  
100BASE-TX Capability  
10BASE-T FDX Capability  
10BASE-T Capability  
RO  
RO  
RO  
1
12  
1
11  
1
Reserveda  
10:7  
0000  
6
5
4
3
2
1
0
MF Preamble Suppression  
R/W  
1 = Preamble may be suppressed  
0 = Preamble always required  
0
0
0
1
0
0
1
Auto-Negotiation Complete  
Remote Fault  
RO  
1 = Auto-negotiation process completed  
0 = Auto-negotiation process not completed  
RO  
LH  
1 = Far-End Fault condition detected  
0 = No Far-End Fault condition detected  
Auto-Negotiation Capability  
Link Status  
RO  
1 = Auto-negotiation capable  
0 = Not auto-negotiation capable  
RO  
LL  
1 = Link is up (Link Pass state)  
0 = Link is down (Link Fail state)  
Jabber Detect  
RO  
LH  
1 = Jabber condition detected  
0 = No Jabber condition detected  
Extended Capability  
RO  
1 = Extended register capable  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
100BASE-T4 Capability. The BCM5228 is not capable of 100BASE-T4 operation, and returns a 0 when bit 15 of the status  
register is read.  
100BASE-X Full-Duplex Capability. The BCM5228 is capable of 100BASE-X full-duplex operation, and returns a 1 when  
bit 14 of the Status register is read.  
100BASE-X Half-Duplex Capability. The BCM5228 is capable of 100BASE-X half-duplex operation, and returns a 1 when  
bit 13 of the Status register is read.  
10BASE-T Full-Duplex Capability. The BCM5228 is capable of 10BASE-T full-duplex operation, and returns a 1 when bit  
12 of the Status register is read.  
10BASE-T Half-Duplex Capability. The BCM5228 is capable of 10BASE-T half-duplex operation, and returns a 1 when bit  
11 of the Status register is read.  
MF Preamble Suppression. This bit is the only writable bit in the Status register. Setting this bit to a 1 allows subsequent  
MII management frames to be accepted with or without the standard preamble pattern. When preamble suppression is  
enabled, only two preamble bits are required between successive management commands, instead of the normal 32.  
Broadcom Corporation  
Document 5228-DS09-405-R  
MII Status Register  
Page 41  
BCM5228  
Data Sheet  
7/12/04  
Auto-Negotiation Complete. Bit 5 of the Status register returns a 1 if the auto-negotiation process has been completed and  
the contents of registers 4, 5 and 6 are valid.  
Remote Fault. The PHY returns a 1 in bit 4 of the Status register when its link partner has signalled a far-end fault condition.  
When a far-end fault occurs, the bit is latched at 1 and remains so until the register is read and the remote fault condition  
has been cleared. This only applies to the FX mode of operation.  
Auto-Negotiation Capability. The BCM5228 is capable of performing IEEE auto-negotiation, and returns a 1 when bit 4 of  
the Status register is read, regardless of whether or not the auto-negotiation function has been disabled.  
Link Status. The BCM5228 returns a 1 on bit 2 of the Status register when the link state machine is in Link Pass, indicating  
that a valid link has been established. Otherwise, it returns 0. When a link failure occurs after the Link Pass state has been  
entered, the Link Status bit is latched at 0 and remains so until the bit is read. After the bit is read, it becomes 1 if the Link  
Pass state has been entered again.  
Jabber Detect. 10BASE-T operation only. The BCM5228 returns a 1 on bit 1 of the Status register if a jabber condition has  
been detected. After the bit is read, or if the chip is reset, it reverts to 0.  
Extended Capability. The BCM5228 supports extended capability registers, and returns a 1 when bit 0 of the Status register  
is read. Several extended registers have been implemented in the BCM5228, and their bit functions are defined later in this  
section.  
PHY IDENTIFIER REGISTERS  
Table 21: PHY Identifier Registers (Addresses 02d and 03d, 02h and 03h)  
Bit  
Name  
R/W  
Description  
Value  
15:0  
15:0  
MII Address 00010  
MII Address 00011  
RO  
RO  
PHYID high  
PHYID low  
0040h  
XXXXh  
Broadcom Corporation has been issued an Organizationally Unique Identifier (OUI) by the IEEE. It is a 24-bit number,  
00-10-18, expressed as hex values (the two most significant bits (OUI[23:22]) of the OUI are not represented). That number,  
along with the Broadcom Model Number for the BCM5228 part, 1Ch, and Broadcom Revision number, 00h, is placed into  
two MII registers. The translation from OUI, Model Number and Revision Number to PHY Identifier register occurs as follows:  
PHYID High[15:0] = OUI[21:6]  
PHYID Low[15:0] = OUI[5:0] + Model[5:0] + Rev[3:0]  
Figure 21 on page 42 shows the result of concatenating these values to form the MII Identifier registers PHYID HIGH and  
PHYID LOW.  
Broadcom Corporation  
Page 42  
PHY Identifier Registers  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
AUTO-NEGOTIATION ADVERTISEMENT REGISTER  
Table 22: Auto-Negotiation Advertisement Register (Address 04d, 04h)  
Bit  
Name  
R/W  
Description  
Default  
15  
Next Page  
R/W  
1 = Next page ability is enabled  
0
0 = Next page ability is disabled  
Reserveda  
14  
0
13  
Remote Fault  
R/W  
RO  
1 = Transmit remote fault  
Ignore when read  
0
12:11  
10  
Reserved Technologies  
Pause  
00  
0
R/W  
R/W  
1 = Pause operation for full-duplex  
1 = Advertise T4 capability  
0 = Do not advertise T4 capability  
9
Advertise 100BASE-T4  
0
8
Advertise 100BASE-X FDX  
R/W  
1 = Advertise 100BASE-X full-duplex  
0 = Do not advertise 100BASE-X full-duplex  
1
7
6
Advertise 100BASE-X  
R/W  
R/W  
1 = Advertise 100BASE-X  
1
1
Advertise 10BASE-T FDX  
1 = Advertise 10BASE-T full-duplex  
0 = Do not advertise 10BASE-T full-duplex  
5
Advertise 10BASE-T  
R/W  
R/W  
1 = Advertise 10BASE-T  
Indicates 802.3  
1
4:0  
Advertise Selector Field  
00001  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
Next Page. The BCM5228 supports the Next Page function.  
Remote Fault. Writing a 1 to bit 13 of the Advertisement register causes a remote fault indicator to be sent to the link partner  
during auto-negotiation. Writing a 0 to this bit or resetting the chip clears the Remote Fault transmission bit. This bit returns  
the value last written to it, or else 0, if no write has been completed since the last chip reset.  
Reserved Technologies. Ignore output when read.  
Pause. Pause operation for full-duplex links. The use of this bit is independent of the negotiated data rate, medium, or link  
technology. The setting of this bit indicates the availability of additional DTE capability when full-duplex operation is in use.  
This bit is used by one MAC to communicate pause capability to its link partner and has no effect on PHY operation.  
Advertise. Bits 9:5 of the Advertisement register allow the user to customize the ability information transmitted to the link  
partner. The default value for each bit reflects the abilities of the BCM5228. By writing a 1 to any of the bits, the corresponding  
ability is transmitted to the link partner. Writing a 0 to any bit causes the corresponding ability to be suppressed from  
transmission. Resetting the chip restores the default bit values. Reading the register returns the values last written to the  
corresponding bits, or else the default values if no write has been completed since the last chip reset.  
Advertise Selector Field. Bits 4:0 of the Advertisement register contain the value 00001, indicating that the chip belongs  
to the 802.3 class of PHY transceivers.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Auto-Negotiation Advertisement Register  
Page 43  
BCM5228  
Data Sheet  
7/12/04  
AUTO-NEGOTIATION LINK PARTNER (LP) ABILITY REGISTER  
Table 23: Auto-Negotiation Link Partner Ability Register (Address 05d, 05h)  
Bit  
Name  
R/W  
Description  
Default  
15  
14  
13  
12:11  
10  
9
LP Next Page  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Link partner next page bit  
0
LP Acknowledge  
Link partner acknowledge bit  
0
LP Remote Fault  
Link partner remote fault indicator  
Ignore when read  
0
Reserved Technologies  
LP Advertise Pause  
000  
Link partner has pause capability  
Link partner has 100BASE-T4 capability  
Link partner has 100BASE-X FDX capability  
Link partner has 100BASE-X capability  
Link partner has 10BASE-T FDX capability  
Link partner has 10BASE-T capability  
Link partner selector field  
0
LP Advertise 100BASE-T4  
LP Advertise 100BASE-X FDX  
LP Advertise 100BASE-X  
LP Advertise 10BASE-T FDX  
LP Advertise 10BASE-T  
Link Partner Selector Field  
0
8
0
7
0
6
0
5
0
4:0  
00000  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
The values contained in the Auto-Negotiation Link Partner Ability register are only guaranteed to be valid after auto-  
negotiation has successfully completed, as indicated by bit 5 of the MII Status register.  
LP Next Page. Bit 15 of the Link Partner Ability register returns a value of 1 when the link partner implements the Next Page  
function and has Next Page information that it wants to transmit. The BCM5228 does not implement the Next Page function,  
and thus ignores the Next Page bit, except to copy it to this register.  
LP Acknowledge. Bit 14 of the Link Partner Ability register is used by auto-negotiation to indicate that a device has  
successfully received its link partner’s link code word.  
LP Remote Fault. Bit 13 of the Link Partner Ability register returns a value of 1 when the link partner signals that a remote  
fault has occurred. The BCM5228 simply copies the value to this register and does not act upon it.  
Reserved Technologies. Ignore when read.  
LP Advertise Pause. Indicates that the Link Partner Pause bit is set.  
LP Advertise. Bits 9:5 of the Link Partner Ability register reflect the abilities of the link partner. A 1 on any of these bits  
indicates that the Link Partner is capable of performing the corresponding mode of operation. Bits 9:5 are cleared any time  
auto-negotiation is restarted or the BCM5228 is reset.  
Link Partner Selector Field. Bits 4:0 of the Link Partner Ability register reflect the value of the link partner’s selector field.  
These bits are cleared any time auto-negotiation is restarted or the chip is reset.  
Broadcom Corporation  
Page 44  
Auto-Negotiation Link Partner (LP) Ability Register  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
AUTO-NEGOTIATION EXPANSION REGISTER  
Table 24: Auto-Negotiation Expansion Register (Address 06d, 06h)  
R/W Description  
Bit  
Name  
Default  
Reserveda  
15:5  
000h  
RO  
LH  
1 = Parallel detection fault.  
0 = No parallel detection fault  
4
Parallel Detection Fault  
0
1 = Link partner has next page capability  
0 = Link partner does not have next page  
3
2
1
Link Partner Next Page Able  
Next Page Able  
RO  
RO  
RO  
0
1
0
1 = Next page able  
1 = New page has been received  
0 = New page has not been received  
Page Received  
RO  
LH  
1 = Link partner has auto-negotiation capability  
0 = Link partner does not have auto-negotiation  
0
Link Partner Auto-Negotiation Able  
0
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
Parallel Detection Fault. Bit 4 of the Auto-Negotiation Expansion register is a read-only bit that gets latched high when a  
parallel detection fault occurs in the auto-negotiation state machine. For further details, consult the IEEE standard. The bit  
is reset to 0 after the register is read or when the chip is reset.  
Link Partner Next Page Able. Bit 3 of the Auto-Negotiation Expansion register returns a 1 when the link partner has Next  
Page capabilities. It has the same value as bit 15 of the Link Partner Ability register.  
Next Page Able. The BCM5228 Returns 1 when bit 2 of the auto-negotiation Expansion register is read indicating that it has  
Next Page capabilities.  
Page Received. Bit 1 of the Auto-Negotiation Expansion register is latched high when a new link code word is received from  
the link partner, checked, and acknowledged. It remains high until the register is read, or until the chip is reset.  
Link Partner Auto-Negotiation Able. Bit 0 of the Auto-Negotiation Expansion register returns a 1 when the link partner is  
known to have auto-negotiation capability. Before any auto-negotiation information is exchanged, or if the link partner does  
not comply with IEEE auto-negotiation, the bit returns a value of 0.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Auto-Negotiation Expansion Register  
Page 45  
BCM5228  
Data Sheet  
7/12/04  
AUTO-NEGOTIATION NEXT PAGE REGISTER  
Table 25: Next Page Transmit Register (Address 07d, 07h)  
R/W Description  
Bit  
15  
14  
13  
Name  
Default  
1 = Additional next page(s) follows  
0 = Last page  
Next Page  
R/W  
0
0
1
Reserveda  
1 = Message page  
0 = Unformatted page  
Message Page  
R/W  
R/W  
1 = Complies with message  
0 = Cannot comply with message  
12  
11  
Acknowledge 2  
Toggle  
0
0
1
1 = Previous value of the transmitted link code word  
equalled logic zero  
0 = Previous value of the transmitted link code word  
equalled logic one  
RO  
10:  
0
Message/Unformatted Code  
Field  
R/W  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
Next Page. Indicates whether this is the last Next Page to be transmitted.  
Message Page. Differentiates a Message Page from an unformatted page.  
Acknowledge 2. Indicates that a device has the ability to comply with the message.  
Toggle. Used by the arbitration function to ensure synchronization with the link partner during Next Page exchange.  
Message Code Field. An 11-bit wide field, encoding 2048 possible messages.  
Unformatted Code Field. An 11-bit wide field, which can contain an arbitrary value.  
Broadcom Corporation  
Page 46  
Auto-Negotiation Next Page Register  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
AUTO-NEGOTIATION LINK PARTNER (LP) NEXT PAGE TRANSMIT  
REGISTER  
Table 26: Next Page Transmit Register (Address 08d, 08h)  
Bit  
15  
14  
13  
Name  
R/W  
Description  
Default  
1 = Additional next page(s) follows  
0 = Last page  
Next Page  
RO  
0
0
0
Reserveda  
1= Message page  
0 = Unformatted page  
Message Page  
RO  
RO  
1 = Complies with message  
0 = Cannot comply with message  
12  
Acknowledge 2  
Toggle  
0
1 = Previous value of the transmitted link code word  
equalled logic zero  
0 = Previous value of the transmitted link code word  
11  
RO  
0
0
equalled logic one  
10:0  
Message/Unformatted Code Field RO  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
Next Page. Indicates whether this is the last Next Page.  
Message Page. Differentiates a Message Page from an unformatted page.  
Acknowledge 2. Indicates that link partner has the ability to comply with the message.  
Toggle. Used by the arbitration function to ensure synchronization with the link partner during Next Page exchange.  
Message Code Field. An 11-bit wide field, encoding 2048 possible messages.  
Unformatted Code Field. An 11-bit wide field, which can contain an arbitrary value.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Auto-Negotiation Link Partner (LP) Next Page Transmit Register  
Page 47  
BCM5228  
Data Sheet  
7/12/04  
100BASE-X AUXILIARY CONTROL REGISTER  
Table 27: 100-BASE-X Auxiliary Control Register (Address 16d, 10h)  
R/W Description  
Bit  
Name  
Default  
Reserveda  
Transmit Disable  
15:14  
0
1 = Transmitter disabled in PHY  
0 = Normal operation  
13  
R/W  
0
0
Reserveda  
12:11  
1 = Transmit and receive 5B codes over RMII  
10  
Bypass 4B5B Encoder/Decoder  
R/W  
pins  
0 = Normal RMII  
0
1 = Scrambler and descrambler disabled  
0 = Scrambler and descrambler enabled  
9
8
7
6
Bypass Scrambler/Descrambler  
Bypass NRZI Encoder/Decoder  
Bypass Receive Symbol Alignment  
R/W  
R/W  
R/W  
0
0
0
0
1 = NRZI encoder and decoder is disabled  
0 = NRZI encoder and decoder is enabled  
1 = 5B receive symbols not aligned  
0 = Receive symbols aligned to 5B boundaries  
1 = Baseline wander correction disabled  
0 = Baseline wander correction enabled  
Baseline Wander Correction Disable R/W  
1 = Far-end fault enabled  
0 = Far-end fault disabled  
5
FEF Enable  
R/W  
0
0
Reserveda  
4:3  
1 = Extended FIFO mode  
0 = Normal FIFO mode  
2
Extended FIFO Enable  
R/W  
0
Reserveda  
1:0  
00  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
Transmit Disable. The transmitter can be disabled by writing a 1 to bit 13 of MII register 10h. The transmitter output (TD±)  
is forced into a high impedance state.  
Bypass 4B5B Encoder/Decoder. The 4B5B encoder and decoder can be bypassed by writing a 1 to bit 10 of MII register  
10h. The transmitter sends 5B codes from the TXER and TXD1,TXD0 pins directly to the scrambler. TXEN must be active,  
and frame encapsulation (insertion of J/K and T/R codes) is not performed. The receiver places descrambled and aligned  
5B codes onto the RXER, RXD1 and RXD0 pins. CRS is asserted when a valid frame is received.  
Bypass Scrambler/Descrambler. The stream cipher function can be disabled by writing a 1 to bit 9 of MII register 10h. The  
Stream Cipher function can be re-enabled by writing a 0 to this bit.  
Bypass NRZI Encoder/Decoder. The NRZI encoder and decoder can be bypassed by writing a 1 to bit 8 of MII register  
10h, causing 3-level NRZI data to be transmitted and received on the cable. Normal operation (3-level NRZI encoding and  
decoding) can be re-enabled by writing a 0 to this bit.  
Broadcom Corporation  
Page 48  
100BASE-X Auxiliary Control Register  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Bypass Receive Symbol Alignment. Receive symbol alignment can be bypassed by writing a 1 to bit 7 of MII register 10h.  
When used in conjunction with the bypass 4B5B encoder/decoder bit, unaligned 5B codes are placed directly on the RXER  
and RXD1, RXD0 pins.  
Baseline Wander Correction Disable. The baseline wander correction circuit can be disabled by writing a 1 to bit 6 of MII  
register 10h. The BCM5228 corrects for baseline wander on the receive data signal when this bit is cleared.  
FEF Enable. Controls the far-end fault mechanism associated with 100BASE-FX operation. A 1 enables the FEF  
function, and a 0 disables it.  
Extended FIFO Enable. Controls the extended receive FIFO mechanism. This bit may have to be set if the Jumbo  
Packet Enable bit is set. See Table 4 on page 27 for details.  
100BASE-X AUXILIARY STATUS REGISTER  
Table 28: 100BASE-X Auxiliary Status Register (Address 17d, 11h)  
Bit  
Name  
R/W  
Description  
Default  
Reserveda  
15:12  
0
R/SMII Overrun/Underrun  
Detected  
1 = Error detected  
0 = No error  
11  
RO  
0
1 = 100BASE-FX mode  
0 = 100BASE-TX or 10BASE-T mode  
10  
9
FX Mode  
Locked  
RO  
RO  
PIN  
0
1 = Descrambler locked  
0 = Descrambler unlocked  
Current 100BASE-X  
Link Status  
1 = Link pass  
0 = Link fail  
8
RO  
0
1 = Remote fault detected  
0 = No remote fault detected  
7
6
5
Remote Fault  
RO  
0
0
0
Reserveda  
RO  
LH  
1 = False carrier detected since last read  
0 = No false carrier since last read  
False Carrier Detected  
RO  
LH  
1 = ESD error detected since last read  
0 = No ESD error since last read  
4
3
2
1
0
Bad ESD Detected  
0
0
0
0
0
RO  
LH  
1 = Receive error detected since last read  
0 = No receive error since last read  
Receive Error Detected  
Transmit Error Detected  
Lock Error Detected  
RO  
LH  
1 = Transmit error code received since last read  
0 = No transmit error code received since last read  
RO  
LH  
1 = Lock error detected since last read  
0 = No lock error since last read  
RO  
LH  
1 = MLT3 code error detected since last read  
0 = No MLT3 code error since last read  
MLT3 Code Error Detected  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
Broadcom Corporation  
Document 5228-DS09-405-R  
100BASE-X Auxiliary Status Register  
Page 49  
BCM5228  
Data Sheet  
7/12/04  
R/SMII Overrun/Underrun Detected. The PHY returns a 1 in bit 11, when the RMII receive FIFO encounters an overrun  
or underrun condition.  
FX Mode. Returns a value derived from the SD± input pins. Returns a 1 when SD± are driven with a valid differential  
signal level. Returns a 0 when both SD+ and SD– are simultaneously driven low.  
Locked. The PHY returns a 1 in bit 9 when the descrambler is locked to the incoming data stream. Otherwise, it returns a 0.  
Current 100BASE-X Link Status. The PHY returns a 1 in bit 8 when the 100BASE-X link status is good. Otherwise, it  
returns a 0.  
Remote Fault. The PHY returns a 1 while its link partner is signalling a far-end fault condition. Otherwise, it returns a 0.  
False Carrier Detected. The PHY returns a 1 in bit 5 of the Extended Status register if a false carrier has been detected  
since the last time this register was read. Otherwise, it returns a 0.  
Bad ESD Detected. The PHY returns a 1 in bit 4 if an end-of-stream delimiter error has been detected since the last time  
this register was read. Otherwise, it returns a 0.  
Receive Error Detected. The PHY returns a 1 in bit 3 if a packet was received with an invalid code since the last time this  
register was read. Otherwise, it returns a 0.  
Transmit Error Detected. The PHY returns a 1 in bit 2 if a packet was received with a Transmit Error code since the last  
time this register was read. Otherwise, it returns a 0.  
Lock Error Detected. The PHY returns a 1 in bit 1 if the descrambler has lost lock since the last time this register was read.  
Otherwise, it returns a 0.  
MLT3 Code Error Detected. The PHY returns a 1 in bit 0 if an MLT3 coding error has been detected in the receive data  
stream since the last time this register was read. Otherwise it returns a 0.  
100BASE-X RECEIVE ERROR COUNTER  
Table 29: 100BASE-X Receive Error Counter (Address 18d, 12h)  
Bit  
Name  
R/W  
Description  
Default  
Number of non-collision packets with receive errors  
since last read  
15:0  
Receive Error Counter [15:0] R/W  
0000h  
Receive Error Counter [15:0]. This counter increments each time the BCM5228 receives a non-collision packet containing  
at least one receive error. The counter automatically clears itself when read. When the counter reaches its maximum value,  
FFh, it stops counting receive errors until cleared  
Broadcom Corporation  
Page 50  
100BASE-X Receive Error Counter  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
100BASE-X FALSE CARRIER SENSE COUNTER  
Table 30: 100BASE-X False Carrier Sense Counter (Address 19d, 13h)  
Bit  
Name  
R/W  
Description  
Default  
RMII/SMII Overrun/Underrun  
Counter [7:0]  
15:8  
R/W  
Number of RMII overruns/underruns since last read  
00h  
False Carrier Sense Counter  
[7:0]  
7:0  
R/W  
Number of false carrier sense events since last read  
00h  
RMII/SMII Overrun/Underrun Counter [7:0]. The RMII/SMII Overrun/Underrun Counter increments each time the  
BCM5228 detects an overrun or underrun of the RMII/SMII FIFOs. The counter automatically clears itself when read. When  
the counter reaches its maximum value, FFh, it stops counting overrun/underrun errors until cleared.  
False Carrier Sense Counter [7:0]. This counter increments each time the BCM5228 detects a false carrier on the receive  
input. This counter automatically clears itself when read. When the counter reaches its maximum value (FFh), it stops  
counting false carrier sense errors until it is cleared.  
100BASE-X DISCONNECT COUNTER  
Table 31: 100BASE-X Disconnect Counter  
Bit  
Name  
R/W  
Description  
Default  
1 = In extended FIFO mode, detect fast receive data  
15  
RMII/SMII Fast RXD  
R/O  
0
0 = Normal  
0 = Normal  
14  
RMII/SMII Slow RXD  
R/O  
0
1 = In extended FIFO mode, detect slow receive data  
Reserveda  
Reserveda  
13:8  
7:0  
000010  
00h  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
RMII/SMII Fast RXD. Extended FIFO operation only. Bit 15 of the Disconnect Counter register indicates the FIFO state  
machine has detected fast receive data relative to the REF_CLK input.  
RMII/SMII Slow RXD. Extended FIFO operation only. Bit 14 of the Disconnect Counter register indicates the FIFO state  
machine has detected slow receive data relative to the REF_CLK input.  
Broadcom Corporation  
Document 5228-DS09-405-R  
100BASE-X False Carrier Sense Counter  
Page 51  
BCM5228  
Data Sheet  
7/12/04  
AUXILIARY CONTROL/STATUS REGISTER  
Table 32: Auxiliary Control/Status Register (Address 24d, 18h)  
Bit  
Name  
R/W  
R/W  
Description  
1= Jabber function disabled in PHY  
Default  
15  
Jabber Disable  
0
0 = Jabber function enabled in PHY  
14  
Link Disable  
R/W  
1= Link Integrity test disabled in PHY  
0 = Link Integrity test is enabled in PHY  
0
Reserveda  
HSQ:LSQ  
13:8  
7:6  
000000  
00  
R/W  
These two bits define the squelch mode of the  
10BASE-T carrier sense mechanism:  
00 = Normal squelch  
01 = Low squelch  
10 = High squelch  
11 = Not allowed  
5:4  
Edge Rate [1:0]  
R/W  
00 = 1 ns  
01 = 2 ns  
10 = 3 ns  
11 = 4 ns  
11  
3
2
1
0
Auto-Negotiation Indicator  
Force 100/10 Indication  
Speed Indication  
RO  
RO  
RO  
RO  
1 = Auto-negotiation activated  
0 = Speed forced manually  
1
1
0
0
1 = Speed forced to 100BASE-X  
0 = Speed forced to 10BASE-T  
1 = 100BASE-X  
0 = 10BASE-T  
Full-Duplex Indication  
1 = Full-duplex active  
0 = Full-duplex not active  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
Jabber Disable. 10BASE-T operation only. Bit 15 of the Auxiliary Control register allows the user to disable the jabber detect  
function, defined in the IEEE standard. This function shuts off the transmitter when a transmission request has exceeded a  
maximum time limit. By writing a 1 to bit 15 of the Auxiliary Control register, the jabber detect function is disabled. Writing a  
0 to this bit or resetting the chip restores normal operation. Reading this bit returns the value of Jabber Detect Disable.  
Link Disable. Writing a 1 to bit 14 of the Auxiliary Control register allows the user to disable the link integrity state machines,  
and place the BCM5228 into forced link pass status. Writing a 0 to this bit or resetting the chip restores the link integrity  
functions. Reading this bit returns the value of Link Integrity Disable.  
HSQ:LSQ. Extend or decrease the squelch levels for detection of incoming 10BASE-T data packets. The default squelch  
levels implemented are those defined in the IEEE standard. The high-squelch and low-squelch levels are useful for situations  
where the IEEE-prescribed levels are inadequate. The squelch levels are used by the CRS/LINK block to filter out noise and  
recognize only valid packet preambles and link integrity pulses. Extending the squelch levels allows the BCM5228 to operate  
properly over longer cable lengths. Decreasing the squelch levels can be useful in situations where there is a high level of  
noise present on the cables. Reading these 2 bits returns the value of the squelch levels.  
Broadcom Corporation  
Page 52  
Auxiliary Control/Status Register  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Edge Rate [1:0]. Control bits used to program the transmit DAC output edge rate in 100BASE-TX mode. These bits are  
logically ANDed with the ER [1:0] input pins to produce the internal edge-rate controls (Edge_Rate [1] AND ER [1],  
Edge_Rate [0] AND ER [0]).  
Auto-Negotiation Indicator. A read-only bit that indicates whether auto-negotiation has been enabled or disabled on the  
BCM5228. A combination of a 1 in bit 12 of the Control register and a logic 1 on the ANEN input pin is required to enable  
auto-negotiation. When auto-negotiation is disabled, bit 3 of the Auxiliary Control register returns a 0. At all other times, it  
returns a 1.  
Force100/10 Indication. A read-only bit that returns a value of 0 when one of following two cases is true:  
The ANEN pin is low AND the F100 pin is low, or  
Bit 12 of the Control register has been written 0 AND bit 13 of the Control register has been written 0.  
When bit 8 of the Auxiliary Control register is 0, the speed of the chip is 10BASE-T. In all other cases, either the speed is  
not forced (auto-negotiation is enabled), or the speed is forced to 100BASE-X.  
Speed Indication. Bit 1 of the Auxiliary Control register is a read-only bit that shows the true current operation speed of the  
BCM5228. A 1 bit indicates 100BASE-X operation, while a 0 indicates 10BASE-T. While the auto-negotiation exchange is  
performed, the BCM5228 is always operating at 10BASE-T speed  
Full-Duplex Indication. Bit 0 of the Auxiliary Control register is a read-only bit that returns a 1 when the BCM5228 is in full-  
duplex mode. In all other modes, it returns a 0.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Auxiliary Control/Status Register  
Page 53  
BCM5228  
Data Sheet  
7/12/04  
AUXILIARY STATUS SUMMARY REGISTER  
This register contains copies of redundant status bits found elsewhere within the MII register space.  
Table 33: Auxiliary Status Summary Register (Address 25d, 19h)  
Bit  
Name  
R/W  
Description  
Default  
15  
14  
Auto-Negotiation Complete  
RO  
1 = Auto-negotiation process completed  
0
0
Auto-Negotiation Complete  
Acknowledge  
RO  
LH  
1 = Auto-negotiation completed acknowledge state  
13  
12  
Auto-Negotiation  
Acknowledge Detected  
RO  
LH  
1 = Auto-negotiation acknowledge detected  
1 = Auto-negotiation for link partner ability  
BCM5228 and link partner pause operation bit set  
0
0
Auto-Negotiation Ability  
Detect  
RO  
LH  
11  
Auto-Negotiation Pause  
Auto-Negotiation HCD  
RO  
RO  
0
10:8  
000 = No highest common denominator  
001 = 10BASE-T  
000  
010 = 10BASE-T full-duplex  
011 = 100BASE-TX  
100 = 100BASE-T4  
101 = 100BASE-TX full-duplex  
11x = Undefined  
7
6
5
4
3
2
Auto-Negotiation Parallel  
Detection Fault  
RO  
LH  
1 = Parallel detection fault  
0
0
0
0
0
0
Link Partner Remote Fault  
RO  
1 = Link partner has signalled a far-end fault  
condition in  
FX mode  
Link Partner Page Received  
RO  
LH  
1 = New page has been received  
Link Partner Auto-  
Negotiation Able  
RO  
1 = Link partner is auto-negotiation capable  
Speed Indicator  
RO  
1 = 100 Mbps  
0 = 10 Mbps  
Link Status  
RO  
LL  
1 = Link is up (link pass state)  
1
0
Auto-Negotiation Enabled  
Full-Duplex Indication  
RO  
1 = Auto-negotiation enabled  
1 = Full-duplex active  
1
0
RO  
LL  
0 = Full-duplex not active  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
Descriptions for each of these individual bits can be found associated with their primary register descriptions.  
Broadcom Corporation  
Page 54  
Auxiliary Status Summary Register  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
INTERRUPT REGISTER  
Table 34: Interrupt Register (Address 26d, 1Ah)  
BIt  
Name  
R/W  
Description  
Default  
15  
14  
13:12  
11  
10  
9
FDX LED Enable  
INTR Enable  
R/W  
R/W  
FDX LED enable in serial LED stream  
Interrupt enable  
0
0
Reserveda  
FDX Mask  
SPD Mask  
LINK Mask  
INTR Mask  
00  
1
R/W  
R/W  
R/W  
R/W  
Full-duplex interrupt mask  
SPEED interrupt mask  
LINK interrupt mask  
Master interrupt mask  
1
1
8
1
Reserveda  
7:5  
000  
Global Interrupt  
Indicator  
1= Indicates an interrupt is present within the  
BCM5228  
4
RO  
0
3
2
1
0
FDX Change  
SPD Change  
LINK Change  
INTR Status  
RO, LH  
RO, LH  
RO, LH  
RO, LH  
Duplex change interrupt  
Speed change interrupt  
Link change interrupt  
Interrupt status  
0
0
0
0
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
FDX LED Enable. Setting this bit enables the FDX LED status to output serial LED data in serial LED mode. See  
Table 6 on page 29 for details.  
INTR Enable. Setting this bit enables Interrupt mode. The state of this bit also affects which status signals are shifted out  
on the serial LED data in Serial LED mode. See Table 6 on page 29 for details.  
FDX Mask. When this bit is set, changes in duplex mode do not generate an interrupt.  
SPD Mask. When this bit is set, changes in operating speed do not generate an interrupt.  
LINK Mask. When this bit is set, changes in link status do not generate an interrupt.  
INTR Mask. Master interrupt mask. When this bit is set, no interrupts are generated regardless of the state of the other mask  
bits.  
Global Interrupt Indicator. A 1 indicates an Interrupt is present within the BCM5228.  
FDX Change. A 1 indicates a change of duplex status since last register read. A register read clears the bit.  
SPD Change. A 1 indicates a change of speed status since last register read. A register read clears the bit.  
LINK Change. A 1 indicates a change of link status since last register read. A register read clears the bit.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Interrupt Register  
Page 55  
BCM5228  
Data Sheet  
7/12/04  
INTR Status. Represents status of the INTR# pin. A 1 indicates that the interrupt mask is off and that one or more of the  
change bits are set. A register read clears the bit.  
AUXILIARY MODE 2 REGISTER  
Table 35: Auxiliary Mode 2 Register (Address 27d, 1Bh)  
BIt  
Name  
R/W  
Description  
Default  
Reserveda  
15:12  
11  
0
0
10BASE-T Dribble Bit  
Correct  
R/W  
1 = Enable  
0 = Disable  
1 = Enable  
0 = Disable  
1 = Enable  
0 = Disable  
10  
9
Jumbo Packet Enable  
R/W  
R/W  
0
0
Jumbo Packet FIFO Enable  
Reserveda  
8
7
0
1
Block 10BASE-T Echo  
Mode  
R/W  
1 = Enable  
0 = Disable  
1 = Enable  
0 = Disable  
1 = On  
6
5
Traffic Meter LED Mode  
R/W  
R/W  
0
0
Activity LED Force On  
0 = Normal operation  
Reserveda  
4
3
2
1
1
0
Reserveda  
Activity/Link LED Mode  
R/W  
1 = Enable  
0 = Disable  
1 = Enable  
0 = Disable  
1
0
Qual Parallel Detect Mode  
Reserveda  
R/W  
1
0
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
10BASE-T Dribble Bit Correct. When enabled, the PHY rounds-down to the nearest nibble when dribble bits are present  
on the 10BASE-T input stream.  
Jumbo Packet Enable. When enabled, the 100BASE-X unlock timer changes to allow long packets. See  
Table 5 on page 27 for details.  
Jumbo Packet FIFO Enable. When enabled, the RMII/SMII/S3MII receive FIFO doubles from 7 nibbles to 14 nibbles. The  
Jumbo Packet FIFO Enable bit should be set to a 1 when jumbo packet mode is enabled. See Table 4 on page 27 and  
Table 5 on page 27 for details.  
Broadcom Corporation  
Page 56  
Auxiliary Mode 2 Register  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Block 10BASE-T Echo Mode. When enabled, during 10BASE-T half-duplex transmit operation, the TXEN signal does not  
echo onto the RXDV pin. The TXEN echoes onto the CRS pin, and the CRS deassertion directly follows the TXEN  
deassertion.  
Traffic Meter LED Mode. When enabled, the Activity LEDs (ACTLED# and FDXLED# if full-duplex LED and interrupt LED  
modes are not enabled) do not blink based on the internal LED clock (approximately 80 µs of time). Instead, they blink based  
on the rate of receive and transmit activity. Each time a receive or transmit operation occurs, the LED turns on for a minimum  
of 5 µs. During light traffic, the LED blinks at a low rate, while during heavier traffic the LEDs remain on.  
Activity LED Force On. When set to 1, the Col LED, Transmit LED, Receive LED, and Activity LED are turned on. This bit  
has a higher priority than the Activity LED Force Inactive, bit 4, register 1Dh.  
Activity/Link LED Mode. When enabled, the receive output goes active upon acquiring link and pulses during receive or  
transmit activity.  
Qual Parallel Detect Mode. This bit allows the auto-negotiation/parallel detection process to be qualified with information  
in the Advertisement register.  
If this bit is not set, the local BCM5228 device is enabled to auto-negotiate, and the far-end device is a 10BASE-T or  
100BASE-X non auto-negotiating legacy type, the local device auto-negotiates/parallel-detects the far-end device,  
regardless of the contents of its Advertisement register (04h).  
If this bit is set, the local device compares the link speed detected to the contents of its Advertisement register. If the  
particular link speed is enabled in the Advertisement register, the local device asserts link. If the link speed is disabled in this  
register, then the local device does not assert link and continues monitoring for a matching capability link speed.  
10BASE-T AUXILIARY ERROR AND GENERAL STATUS REGISTER  
Table 36: 10BASE-T Auxiliary Error and General Status Register (Address 28d, 1Ch)  
Bit  
Name  
R/W  
Description  
Default  
Reserveda  
15:14  
13  
0
0
MDIX Status  
RO  
0 = MDI is in use  
1 = MDIX is in use  
12  
11  
MDIX Manual Swap  
R/W  
R/W  
0 = MDI or MDIX if MDIX is not disabled  
1 = Force MDIX  
0
0
HP Auto-MDIX Disable  
0 = Enable HP auto-MDIX  
1 = Disable HP auto-MDIX  
10  
9
Manchester Code Error  
End-of-Frame Error  
RO  
RO  
1 = Manchester code error (10BASE-T)  
0
0
0
1 = EOF detection error (10BASE-T)  
Reserveda  
Reserveda  
Reserveda  
8
7:5  
4
001  
0
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
Broadcom Corporation  
Document 5228-DS09-405-R  
10BASE-T Auxiliary Error and General Status Register  
Page 57  
BCM5228  
Data Sheet  
7/12/04  
Table 36: 10BASE-T Auxiliary Error and General Status Register (Address 28d, 1Ch)  
3
2
1
0
Auto-Negotiation Indication  
Force 100/10 Indication  
Speed Indication  
RO  
RO  
RO  
RO  
1 = Auto-negotiation activated  
0 = Speed forced manually  
1
1
0
0
1 = Speed forced to 100BASE-X  
0 = Speed forced to 10BASE-T  
1 = 100BASE-X  
0 = 10BASE-T  
Full-Duplex Indication  
1 = Full-duplex active  
0 = Full-duplex not active  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
All Error bits in the Auxiliary Error and General Status register are read-only and are latched high. When certain types of  
errors occur in the BCM5228, one or more corresponding error bits become 1. They remain so until the register is read, or  
until a chip reset occurs. All such errors necessarily result in data errors, and are indicated by a high value on the RXER  
output pin at the time the error occurs.  
MDIX Status. This bit, when read as a 1, indicates that the MDI TD± and RD± signals for the BCM5228 have been  
swapped. The cause for this is one of the following:  
the MDIX Swap bit was manually set to a 1, or  
the HP Auto-MDIX function is enabled and the BCM5228 has detected an MDI cross-over cable.  
MDIX Manual Swap. When this bit is set to a 1, the MDI TD± and RD± signals for the BCM5228 are forced into being  
swapped.  
HP Auto-MDIX Disable. When this bit is set to a 1, the HP Auto-MDIX function is disabled in the BCM5228.  
Manchester Code Error. Indicates that a Manchester code violation was received. This bit is only valid during 10BASE-T  
operation.  
End-of-Frame Error. Indicates that the end-of-frame (EOF) sequence was improperly received, or not received at all. This  
error bit is only valid during 10BASE-T operation.  
Auto-Negotiation Indication. A read-only bit that indicates whether auto-negotiation has been enabled or disabled on the  
BCM5228. A combination of a 1 in bit 12 of the Control register and a logic 1 on the ANEN input pin is required to enable  
auto-negotiation. When auto-negotiation is disabled, bit 15 of the Auxiliary Mode register returns a 0. At all other times, it  
returns a 1.  
Force 100/10 Indication. A read-only bit that returns a value of 0 when one of following two cases is true:  
The ANEN pin is low AND the F100 pin is low, or  
Bit 12 of the Control register has been written 0 AND bit 13 of the Control register has been written 0.  
When bit 2 of the Auxiliary Control register is 0, the speed of the chip is 10BASE-T. In all other cases, either the speed is  
not forced (auto-negotiation is enabled), or the speed is forced to 100BASE-X.  
Speed Indication. A read-only bit that shows the true current operation speed of the BCM5228. A 1 bit indicates 100BASE-  
X operation, while a 0 indicates 10BASE-T. While the auto-negotiation exchange is performed, the BCM5228 is always  
operating at 10BASE-T speed.  
Broadcom Corporation  
Page 58  
10BASE-T Auxiliary Error and General Status Register  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Full-Duplex Indication. A read-only bit that returns a 1 when the BCM5228 is in full-duplex mode. In all other modes, it  
returns a 0.  
Broadcom Corporation  
Document 5228-DS09-405-R  
10BASE-T Auxiliary Error and General Status Register  
Page 59  
BCM5228  
Data Sheet  
7/12/04  
AUXILIARY MODE REGISTER  
Table 37: Auxiliary Mode Register (Address 29d, 1Dh)  
Bit  
Name  
R/W  
Description  
Default  
Reserveda  
15:5  
000h  
1 = Disable Col LED, Transmit LED,  
Receive  
LED, and Activity LED  
0 = Enable above LEDs  
4
Activity LED Force Inactive  
R/W  
0
1 = Disable link LED output  
0 = Enable link LED output  
3
2
1
0
Link LED Disable  
R/W  
0
0
0
0
Reserveda  
1 = Enable block TXEN mode  
0 = Disable block TXEN mode  
Block TXEN Mode  
R/W  
Reserveda  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a Read/Modify Write.  
Activity LED Force Inactive. When set to 1, disables the Col LED, Transmit LED, Receive LED, and Activity LED. This bit  
has a lower priority than the Activity LED Force On, bit 5 of register 1Bh.  
Link LED Disable. When set to 1, disables the Link LED output pin. When 0, Link LED output is enabled.  
Block TXEN Mode. When this mode is enabled, short IPGs of 1, 2, 3, or 4 TXC cycles all result in the insertion of two idles  
before the beginning of the next packet’s JK symbols.  
Broadcom Corporation  
Page 60  
Auxiliary Mode Register  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
AUXILIARY MULTIPLE PHY REGISTER  
Table 38: Auxiliary Multiple PHY Register (Address 30d, 1Eh)  
Bit  
Name  
R/W  
RO  
Description  
1 = Auto-negotiation result is 100BASE-TX full-duplex  
Default  
15  
HCD_TX_FDX  
HCD_T4  
0
14  
RO  
RO  
RO  
RO  
1 = Auto-negotiation result is 100BASE-T4  
1 = Auto-negotiation result is 100BASE-TX  
1 = Auto-negotiation result is 10BASE-T full-duplex  
1 = Auto-negotiation result is 10BASE-T  
0
13  
HCD_TX  
0
12  
HCD_10BASE-T_FDX  
HCD_10BASE-T  
0
11  
0
Reserveda  
10:9  
00  
8
Restart Auto-Negotiation  
R/W  
(SC)  
1 = Restart auto-negotiation process  
0 = No effect  
0
7
Auto-Negotiation Complete  
RO  
1 = Auto-negotiation process completed  
0 = Auto-negotiation process not completed  
0
6
5
4
3
Acknowledge Complete  
Acknowledge Detected  
Ability Detect  
RO  
RO  
RO  
R/W  
1 = Auto-negotiation acknowledge completed  
1 = Auto-negotiation acknowledge detected  
1 = Auto-negotiation waiting for LP ability  
0
0
0
0
Super Isolate  
1 = Super isolate mode  
0 = Normal operation  
Reserveda  
2
1
0
0
10BASE-T Serial Mode  
R/W  
1 = Enable 10BASE-T serial mode  
0 = Disable 10BASE-T serial mode  
Reserveda  
0
0
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
HCD. Bits 15:11 of the Auxiliary Multiple PHY register are 5 read-only bits that report the highest common denominator  
(HCD) result of the auto-negotiation process. Immediately upon entering the Link Pass state after each reset or restart auto-  
negotiation, only 1 of these 5 bits is 1. The Link Pass state is identified by a 1 in bit 6 or 7 of this register. The HCD bits are  
reset to 0 every time auto-negotiation is restarted or the BCM5228 is reset.  
For their intended application, these bits uniquely identify the HCD only after the first link pass after reset or restart of auto-  
negotiation. If the ability of the link partner is different on later link fault and subsequent renegotiations, more than one of the  
above bits may be active.  
Restart Auto-Negotiation. A self-clearing bit that allows the auto-negotiation process to be restarted, regardless of  
the current status of the state machine. For this bit to work, auto-negotiation must be enabled. Writing a 1 to this  
bit restarts auto-negotiation. Because the bit is self-clearing, it always returns a 0 when read. The operation of this  
bit is identical to bit 9 of the Control register.  
Auto-Negotiation Complete. This read-only bit returns a 1 after the auto-negotiation process has been completed. It  
remains 1 until the auto-negotiation process is restarted, a link fault occurs, or the chip is reset. If auto-negotiation is disabled  
or the process is still in progress, the bit returns a 0.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Auxiliary Multiple PHY Register  
Page 61  
BCM5228  
Data Sheet  
7/12/04  
Acknowledge Complete. This read-only bit returns a 1 after the acknowledgment exchange portion of the auto-negotiation  
process has been completed and the arbitrator state machine has exited the acknowledge complete state. It remains this  
value until the auto-negotiation process is restarted, a link fault occurs, auto-negotiation is disabled, or the BCM5228 is reset.  
Acknowledge Detected. This read-only bit is set to 1 when the arbitrator state machine exits the acknowledge detect state.  
It remains high until the auto-negotiation process is restarted, or the BCM5228 is reset.  
Ability Detect. This read-only bit returns a 1 when the auto-negotiation state machine is in the ability detect state. It enters  
this state a specified time period after the auto-negotiation process begins, and exits after the first FLP burst or link pulses  
are detected from the link partner. This bit returns a 00 any time the auto-negotiation state machine is not in the ability detect  
state.  
Super Isolate. Writing a 1 to this bit places the BCM5228 into the super isolate mode. Similar to the isolate mode, all RMII/  
SMII/S3MII inputs are ignored, and all RMII/SMII/S3MII outputs are tri-stated. Additionally, all link pulses are suppressed.  
This allows the BCM5228 to coexist with another PHY on the same adapter card, with only one being activated at any time.  
See also “Super Isolate Mode” on page 26.  
10BASE-T Serial Mode. Writing a 1 to bit 1 of the Auxiliary Mode register enables the 10BASE-T Serial mode. In  
10BASE-T Serial mode, data packets traverse to the MAC layer across only TXD0 and RXD0 at a rate of 10 MHz. Serial  
operation is not available in 100BASE-X mode.  
BROADCOM TEST REGISTER  
Table 39: Broadcom Test (Address 31d, 1Fh)  
BIt  
Name  
R/W  
Description  
Default  
Reserveda  
15:8  
00h  
1 = Enable shadow registers 1Ah-1Eh  
0 = Disable shadow registers  
7
Shadow Register Enable  
R/W  
0
Reserveda  
Reserveda  
Reserveda  
6
0
5
0
4:0  
0Bh  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
Shadow Register Enable. Writing a 1 to bit 7 of register 1Fh allows R/W access to the shadow registers.  
Broadcom Corporation  
Page 62  
Broadcom Test Register  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
AUXILIARY MODE 4 (PHY 1) REGISTER (SHADOW REGISTER)  
Table 40: Auxiliary Mode 4 (PHY 1) Register (Shadow Register 26d, 1Ah)  
BIt  
Name  
R/W  
Description  
Default  
Reserveda  
15:9  
0011 000b  
0
1 = Enable LED output selection through MII  
register  
8
MII LED Select Enable  
R/W  
Configuration bits for LED3 output. For details, see  
“LED Modes” on page 29.  
TXER/LED1[7:6]b  
TXER/LED1[5:3]  
TXER/LED1[2:0]  
7:6  
5:3  
2:0  
Parallel LED3 Select[1:0]  
Parallel LED2 Select[2:0]  
Parallel LED1 Select[2:0]  
R/W  
R/W  
R/W  
Configuration bits for LED2 output. For details, see  
“LED Modes” on page 29.  
Configuration bits for LED1 output. For details, see  
“LED Modes” on page 29.  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation. MII Shadow register bank 1 is accessed by setting MII register 1Fh bit 7 to a 1.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
b. Status of TXER/LED1[7:0] during power-on reset determines the default values for parallel LED3, LED2 and LED1 selects.  
MII LED Select Enable. Enables configuration of LED functions through MII register writes when this bit is set to a 1.  
Otherwise, power-on reset configurations are in effect.  
Parallel LED3 Select[1:0]. Bit 7 and 6 select LED output for the parallel LED3 pin if MII LED select enable is set to a 1.  
Parallel LED2 Select[2:0]. Bit 5 and 3 select LED output for the parallel LED2 pin if MII LED select enable is set to a 1.  
Parallel LED1 Select[2:0]. Bit 2 and 0 select LED output for the parallel LED1 pin if MII LED select enable is set to a 1.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Auxiliary Mode 4 (PHY 1) Register (Shadow Register)  
Page 63  
BCM5228  
Data Sheet  
7/12/04  
AUXILIARY MODE 4 (PHY 2) REGISTER (SHADOW REGISTER)  
Table 41: Auxiliary Mode 4 (PHY 2) Register (Shadow Register 26d, 1Ah)  
BIt  
Name  
R/W  
Description  
Default  
Reserveda  
0011  
000b  
15:9  
Configuration bits for bank 6 output in low-cost  
serial LED mode. For details, see “LED  
Modes” on page 29.  
8:6  
5:3  
2:0  
Serial Bank 6 Select[2:0]  
Serial Bank 5 Select[2:0]  
Serial Bank 4 Select[2:0]  
R/W  
R/W  
R/W  
000  
000  
000  
Configuration bits for bank 5 output in low-cost  
serial LED mode. For details, see “LED  
Modes” on page 29.  
Configuration bits for bank 4 output in low-cost  
serial LED mode. For details, see “LED  
Modes” on page 29.  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation. MII Shadow register bank 1 is accessed by setting MII register 1Fh bit 7 to a 1.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
Serial Bank 6 Select[2:0]. If low-cost serial LED mode is selected, these bits configure bank 6 LED output on the serial LED  
data stream SLED_DO.  
Serial Bank 5 Select[2:0]. If low-cost serial LED mode is selected, these bits configure bank 5 LED output on the serial LED  
data stream SLED_DO.  
Serial Bank 4 Select [2:0]. If low-cost serial LED mode is selected, these bits configure bank 4 LED output on the serial  
LED data stream SLED_DO.  
Broadcom Corporation  
Page 64  
Auxiliary Mode 4 (PHY 2) Register (Shadow Register)  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
AUXILIARY MODE 4 (PHY 3) REGISTER (SHADOW REGISTER)  
Table 42: Auxiliary Mode 4 (PHY 3) Register (Shadow Register 26d, 1Ah)  
BIt  
Name  
R/W  
Description  
Default  
0011  
000b  
Reserveda  
15:9  
Configuration bits for bank 3 output in low-cost  
serial LED mode. For details, see “LED  
Modes” on page 29.  
8:6  
5:3  
2:0  
Serial Bank 3 Select[2:0]  
Serial Bank 2 Select[2:0]  
Serial Bank 1 Select[2:0]  
R/W  
R/W  
R/W  
000  
000  
000  
Configuration bits for bank 2 output in low-cost  
serial LED mode. For details, see “LED  
Modes” on page 29.  
Configuration bits for bank 1 output in low-cost  
serial LED mode. For details, see “LED  
Modes” on page 29.  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation. MII Shadow register bank 1 is accessed by setting MII register 1Fh bit 7 to a 1.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
Serial Bank 3 Select[2:0]. If low-cost serial LED mode is selected, these bits configure bank 6 LED output on serial LED  
data stream SLED_DO.  
Serial Bank 2 Select[2:0]. If low-cost serial LED mode is selected, these bits configure bank 5 LED output on serial LED  
data stream SLED_DO.  
Serial Bank 1 Select[2:0]. If low-cost serial LED mode is selected, these bits configure bank 4 LED output on serial LED  
data stream SLED_DO.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Auxiliary Mode 4 (PHY 3) Register (Shadow Register)  
Page 65  
BCM5228  
Data Sheet  
7/12/04  
AUXILIARY STATUS 2 REGISTER (SHADOW REGISTER)  
Table 43: Auxiliary Status 2 Register (Shadow Register 27d, 1Bh)  
BIt  
Name  
R/W  
Description  
Default  
15  
MLT3 Detected  
R/O  
1 = MLT3 detected  
0
The BCM5228 shows the cable length in 20-meter  
increments, as shown in Table 44.  
14:12  
11:6  
Cable Length 100X[2:0]  
ADC Peak Amplitude[5:0]  
R/O  
R/O  
000  
00h  
A to D peak amplitude seen  
0 = Normal mode  
5
APD Enable  
R/W  
0
1 = Enable auto power-down mode  
0 = 2.5-second sleep before wake up  
1= 5.0-second sleep before wake up  
Duration of wake up  
4
APD Sleep Timer  
R/W  
R/W  
0
3:0  
APD Wake-Up Timer[3:0]  
0001  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation. MII Shadow register bank 1 is accessed by setting MII register 1Fh bit 7 to a 1.  
MLT3 Detected. The BCM5228 returns a 1 in this bit whenever MLT3 signaling is detected.  
Cable Length 100X [2:0]. The BCM5228 provides the cable length for each port when a 100TX link is established.  
Table 44: Cable Length  
Cable Length 100x [2:0]  
Cable Length in Meters  
000  
001  
010  
011  
100  
101  
110  
111  
< 20  
20 to <40  
40 to <60  
60 to < 80  
80 to < 100  
100 to < 120  
120 to < 140  
> 140  
ADC Peak Amplitude [5:0]. The BCM5228 returns the A to D converter’s 6-bit peak amplitude seen during this link.  
APD Enable. When in normal mode, if this bit is set to a 1, the BCM5228 enters auto power-down mode. If this bit is set and  
the link is lost, the BCM5228 enters low power-down mode. When energy is detected, the device enters full power mode.  
Otherwise, it wakes up after either 2.5 seconds or 5.0 seconds, as determined by the APD Sleep Timer bit. When the  
BCM5228 wakes up, it sends link pulses and also monitors energy. If the link partner’s energy is detected, the BCM5228  
device continues to stay in wake-up mode for a duration determined by the APD wake-up timer before going to low power  
mode.  
APD Sleep Timer. This bit determines how long the BCM5228 stays in low power mode before waking up. If this bit is a 0,  
the BCM5228 device waits approximately 2.5 seconds before waking up. Otherwise, it wakes up after approximately 5.0  
seconds.  
Broadcom Corporation  
Page 66  
Auxiliary Status 2 Register (Shadow Register)  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
APD Wake-Up Timer[3:0]. This counter determines how long the BCM5228 stays in wake-up mode before going to low  
power mode. This value is specified in 40-millisecond increments from 0 to 600 milliseconds. A value of 0 forces the  
BCM5228 to stay in low power mode indefinitely. In this case, the BCM5228 requires a hard reset to return to normal mode.  
AUXILIARY STATUS 3 REGISTER (SHADOW REGISTER)  
Table 45: Auxiliary Status 3 Register (Shadow Register 28d, 1Ch)  
BIt  
Name  
R/W  
Description  
Default  
15:8  
7:4  
Noise [7:0]  
R/O  
Current mean square error value, valid only if link is established 00h  
Reserveda  
000h  
0000  
3:0  
FIFO Consumption [3:0]  
R/O  
Currently used number of nibbles in the receive FIFO  
Note: MII Shadow register bank 1 is accessed by setting MII register 1Fh bit 7 to a 1.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
Noise[7:0]. The BCM5228 provides the current mean squared error value for noise when a valid link is established.  
FIFO Consumption[3:0]. The BCM5228 indicates the number of nibbles of FIFO currently used.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Auxiliary Status 3 Register (Shadow Register)  
Page 67  
BCM5228  
Data Sheet  
7/12/04  
AUXILIARY MODE 3 REGISTER (SHADOW REGISTER)  
Table 46: Auxiliary Mode 3 Register (Shadow Register 29d, 1Dh)  
BIt  
15:9  
8
Name  
R/W  
Description  
Default  
Reserveda  
Reserveda  
Reserveda  
Reserveda  
0
0
7
0
6
0
Reserveda  
5:4  
3:0  
0h  
4h  
FIFO Size Select [3:0]  
R/W  
Currently-selected receive FIFO size  
Note: R/W = Read/Write, RO = Read Only, SC = Self Clear, LL = Latched Low, LH = Latched High, LL and LH Clear  
after read operation. MII Shadow register bank 1 is accessed by setting MII register 1Fh bit 7 to a 1.  
a. Preserve existing values of reserved bits by completing a “Read/Modify Write.”  
FIFO Size Select[3:0]. The BCM5228 indicates the current selection of receive FIFO size using bit 3 through 0, as shown  
in Table 47. The size can also be determined by the Extended FIFO Enable bit (register 10h, bit 2) and the Jumbo Packet  
FIFO Enable bit (register 1Bh, bit 9) for backward compatibility with the 0.35-micron products.  
Table 47: Current Receive FIFO Size  
Receive Fifo size in Use  
FIFO Size Select[3:0]  
(# of bits)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
12  
16  
20  
24  
28  
32  
36  
40  
44  
48  
52  
56  
60  
64  
Broadcom Corporation  
Page 68  
Auxiliary Mode 3 Register (Shadow Register)  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
AUXILIARY STATUS 4 REGISTER (SHADOW REGISTER)  
Table 48: Auxiliary Status 4 Register (Shadow Register 30d, 1Eh)  
BIt  
Name  
R/W  
Description  
Default  
15:0  
Packet Length Counter[15:0]  
R/O  
Number of bytes in the last received packet  
0000h  
Packet Length Counter[15:0]. The BCM5228 shows the number bytes in the last packet received. This is valid only when  
a valid link is established.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Auxiliary Status 4 Register (Shadow Register)  
Page 69  
BCM5228  
Data Sheet  
7/12/04  
Section 7: Timing and AC Characteristics  
All digital output timing is specified at CL = 30 pF.  
Output rise/fall times are measured between 10% and 90% of the output signal swing. Input rise/fall times are measured  
between VIL maximum and VIH minimum. Output signal transitions are referenced to the midpoint of the output signal swing.  
Input signal transitions are referenced to the midpoint between VIL maximum and VIH minimum.  
Table 49: Clock Timing  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
REF_CLK cycle time (50-MHz operation)  
REF_CLK cycle time (125-MHz operation)  
CK_CYCLE  
CK_CYCLE  
20  
8
ns  
ns  
CK_HI  
CK_LO  
REF_CLK high/low time (50-MHz operation)  
REF_CLK high/low time (125-MHz operation)  
7
10  
4
13  
ns  
ns  
CK_HI  
CK_LO  
REF_CLK rise/fall time (50-MHz operation)  
REF_CLK rise/fall time (125-MHz operation)  
CK_EDGE  
CK_EDGE  
2
1
ns  
ns  
Table 50: Reset Timing  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Reset pulse length with stable REF_CLK input  
Activity after end of reset  
RESET_LEN  
RESET_WAIT  
RESET_EDGE  
2
µs  
µs  
ns  
100  
RESET rise/fall time  
10  
CK_EDGE  
CK_EDGE  
REF_CLK  
CK_LO  
CK_HI  
Normal PHY  
activity can  
begin here  
CK_CYCLE  
RESET_EDGE  
RESET_WAIT  
RESET#  
RESET_LEN  
RESET_EDGE  
Figure 5: Clock and Reset Timing  
Broadcom Corporation  
Page 70  
Timing and AC Characteristics  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Table 51: RMII Transmit Timing  
Parameter  
Symbol  
Min Typ  
Max Unit  
REF_CLK cycle time  
REF_CLK  
4
2
20  
ns  
ns  
ns  
ns  
ns  
TXEN, TX_ER, TXD[1:0] setup time to REF_CLK rising  
TXEN, TX_ER, TXD[1:0] hold time from REF_CLK rising  
TD after TXEN assert  
TXEN_SETUP  
TXEN_HOLD  
TXEN_TDATA  
TXD_TDATA  
89  
95  
TXD to TD steady state delay  
Note: TXD[1:0] shall provide valid data for each REF_CLK period while TX_EN is asserted. As the REF_CLK frequency  
is 10 times the data rate in 10MB/s mode, the value on TXD[1:0] shall be valid such that TXD[1:0] can be sampled every  
10th cycle, regardless of the starting cycle within the group and yield the correct frame data.  
REF_CLK  
TX_EN  
TXD[1]  
TXD[0]  
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
0
0
Preamble  
SFD  
Data  
Figure 6: RMII Transmit Packet Timing  
Table 52: RMII Receive Timing  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
REF_CLK cycle time  
REF_CLK  
2
20  
ns  
ns  
ns  
ns  
ns  
RXD[1:0], CRS, DV, RX_ER output delay from REF_CLK rising  
CRS_DV assert after RD±  
16  
RX_CRS_DV  
RX_CRS_DV  
124  
164  
237  
CRS_DV deassert after RD±  
CRS_DV deassert after RD±, valid EOP  
RX_CRS_DV_EOP  
Note: As the REF_CLK frequency is 10 times the data rate in 10 Mbps mode, the value on RXD[1:0] is valid such that  
RXD[1:0] can be sampled every 10th cycle, regardless of the starting cycle within the group and yield the correct frame  
data. The receiver accounts for differences between the local REF_CLK and the recovered clock through use of  
sufficient elasticity buffering. The output delay has a load of 25 pf, which accommodates a PCB trace length of over 12  
inches.  
Broadcom Corporation  
Document 5228-DS09-405-R  
Timing and AC Characteristics  
Page 71  
BCM5228  
Data Sheet  
7/12/04  
REF_CLK  
CRS_DV  
RXD[1]  
RXD[0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
0
0
/J/  
/K/  
Preamble  
SFD  
Data  
Figure 7: RMII Receive Packet Timing  
REF_CLK  
CRS_DV  
RXD[1]  
RXD[0]  
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
False Carrier Detected  
Figure 8: RMII Receive Packet with False Carrier  
Table 53: SMII/S3MII Timing  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
STX (TXD) setup (SCLK rising)  
STX (TXD) hold (SCLK rising)  
SYNC (SSYNC) setup (SCLK rising)  
SYNC (SSYNC) hold (SCLK rising)  
SRX (RXD) delay (SCLK rising)  
SMII_RSYNC delay  
STX_SETUP  
STX_HOLD  
1.5  
1.0  
1.5  
1.0  
2.0  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
SYNC_SETUP  
SYNC_HOLD  
SRX_DELAY  
SYNC_DELAY  
5.0  
5.0  
Note: SCLK is REF_CLK in SMII mode  
SCLK is SMII_TXC for S3MII STX  
SCLK is SMII_RXC for S3MII SRX  
Broadcom Corporation  
Page 72  
Timing and AC Characteristics  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
SYNC_SETUP  
SYNC_HOLD  
SYNC  
SYNC_DELAY  
SCLK  
STX_SETUP  
STX_HOLD  
STX  
TXD3  
TXD5  
TXD7  
RXD7  
TX_ER  
TXD2  
TXD4  
TXD6  
RXD6  
TX_EN TXD0 TXD1  
SRX  
RXD1 RXD2 RXD3  
CRS RX_DV RXD0  
SRX_DELAY  
RXD4 RXD5  
Figure 9: SMII/S3MII Timing  
Table 54: Auto-Negotiation Timing  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Link test pulse width  
100  
16  
ns  
ms  
µs  
µs  
FLP burst interval  
5.7  
111  
55.5  
22.3  
139  
69.5  
Clock pulse to clock pulse  
Clock pulse to data pulse (data = 1)  
123  
62.5  
Table 55: LED Timing  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LED on time (ACTLED)  
LED off time (ACTLED)  
80  
80  
ms  
ms  
Table 56: MII Management Data Interface Timing  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MDC cycle time  
40  
20  
ns  
ns  
ns  
ns  
ns  
ns  
MDC high/low  
MDC rise/fall time  
10  
MDIO input setup time to MDC rising  
MDIO input hold time from MDC rising  
MDIO output delay from MDC rising  
10  
10  
0
30  
Broadcom Corporation  
Document 5228-DS09-405-R  
Timing and AC Characteristics  
Page 73  
BCM5228  
Data Sheet  
7/12/04  
MDC_CYCLE  
MDIO_SETUP  
MDC_RISE  
MDC  
MDC_FALL  
MDIO_HOLD  
MDIO_SETUP  
MDIO_HOLD  
MDIO (Into BCM5228)  
MDIO_DELAY  
MDIO (From BCM5228)  
Figure 10: Management Interface Timing  
MDC  
SKIP  
Hi-Z (PHY Pull-UP)  
SKIP  
MDIO  
D0  
T
D1  
IDLE  
S
Start of MDC/MDIO Cycle  
End of MDC/MDIO Cycle  
Skip 2 MDC Clocks between MDC/MDIO Cycles With Preamble Suppressed  
RMII Register 1, Bit 6 set to 1  
Figure 11: Management Interface Timing (with Preamble Suppression On)  
Broadcom Corporation  
Page 74  
Timing and AC Characteristics  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Broadcom Corporation  
Document 5228-DS09-405-R  
Timing and AC Characteristics  
Page 75  
BCM5228  
Data Sheet  
7/12/04  
Section 8: Electrical Characteristics  
Table 57: Absolute Maximum Ratings  
Symbol  
VDD  
VI  
Parameter  
Min  
Max  
Units  
V
Supply voltage  
Input voltage  
GND 0.3  
GND 0.3  
2.75  
OVDD + 0.3  
±10  
V
II  
Input current  
mA  
°C  
V
TSTG  
VESD  
Storage temperature  
Electrostatic discharge  
40  
+125  
1000  
Note: These specifications indicate levels where permanent damage to the device can occur. Functional operation is  
not guaranteed under these conditions. Operation at absolute maximum conditions for extended periods can adversely  
affect long-term reliability of the device.  
Table 58: Recommended Operating Conditions  
Operating  
Symbol Parameter  
Pins  
Min  
Max  
Units  
Mode  
VDD  
VDD  
VIH  
Supply voltage  
OVDD  
2.375  
2.375  
2.0  
3.465  
2.625  
V
V
V
Supply voltage  
AVDD, DVDD, PLLVDDC, BIASVDD  
All digital inputs  
High-level  
input voltage  
VIL  
Low-level  
input voltage  
All digital inputs  
SD± {1:8}  
0.8  
0.4  
V
100BASE-FX  
100BASE-FX  
V
VIDIFF  
VICM  
Differential  
input voltage  
SD± {1:8}  
150  
mV  
Common mode input  
voltage  
RD± {1:8}  
100BASE-TX  
100BASE-FX  
1.85  
1.60  
0
2.05  
1.80  
70  
V
RD± {1:8}, SD± {1:8}  
V
TA  
Ambient operating  
temperature  
°C  
Table 59: Electrical Characteristics  
Symbol Parameter  
Pins  
Conditions  
Min  
Typ  
Max  
Units  
AVDD, DVDD  
OVDD  
100BASE-TX  
100BASE-TX  
839  
59  
892  
76  
mA  
mA  
Total supply  
IDD  
current  
IOH = 12 mA,  
OVDD = 3.3 V  
Digital outputs  
Digital outputs  
TD± {1:8}  
OVDD 0.5  
V
V
V
High-level  
VOH  
IOH = 12 mA,  
OVDD = 2.5 V  
OVDD 0.4  
output voltage  
Driving loaded  
magnetics module  
VDD +  
1.5  
Broadcom Corporation  
Page 76  
Electrical Characteristics  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Table 59: Electrical Characteristics (Cont.)  
Symbol Parameter  
Pins  
Conditions  
Min  
Typ  
Max  
Units  
IOL = 8 mA  
All digital outputs  
0.4  
V
Low-level  
VOL  
Driving loaded  
magnetics module  
output voltage  
TD± {1:8}  
TD± {1:8}  
DVDD 1.5  
V
Differential  
VODIFF  
100BASE-FX  
mode  
400  
mV  
output voltage  
VI = OVDD  
VI = DGND  
VI = OVDD  
VI = DGND  
+100  
-200  
+200  
–100  
µA  
µA  
µA  
µA  
Digital inputs with  
pull-up resistors  
Digital inputs with  
pull-down resistors  
II  
Input current  
DGND VI ≤  
OVDD  
All other digital  
inputs  
±100  
µA  
µA  
DGND VO  
OVDD  
All three-state  
outputs  
High-impedance  
output current  
IOZ  
All open-drain  
outputs  
VO = OVDD  
µA  
V
Vbias  
Bias voltage  
VREF, RDAC  
1.18  
1.30  
Broadcom Corporation  
Document 5228-DS09-405-R  
Electrical Characteristics  
Page 77  
BCM5228  
Data Sheet  
7/12/04  
Section 9: Mechanical Information  
E
E1  
D
D1  
1
θ
3
A2  
A
h
seating  
plane  
A1  
θ
4
θ
Millimeter  
Nom  
2
Symbol  
Max  
Min  
A
4.10  
0.50  
0.25  
A1  
A2  
0.37  
3.49  
3.39  
30.35  
27.90  
30.35  
27.90  
0.30  
3.59  
b
30.60  
28.00  
30.60  
28.00  
0.60  
30.85  
28.10  
30.85  
28.10  
D
D1  
E
E1  
L
r
1
0.75  
0.30  
0.23  
r
2
b
h
0.22  
0.15  
0.13  
θ
e
0.50 BSC  
1
c
0.08  
0.20  
0.30  
0.102  
r1  
r2  
e
L
c
°
°
θ
0
7
1
°
°
°
10  
θ
2
2
6
10  
Notes:  
1. Drawings on this page are not to scale  
°
θ
3
°
10  
θ
4
2. All dimensions are in millimeters except where noted  
3. Foot length "L" is measured at gage plane, 0.25mm above the seating plane  
4. Seating plane is defined by three lowest lead tips  
208-pin detail  
Figure 12: 208-Pin PQFP Package  
Broadcom Corporation  
Page 78  
Mechanical Information  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
0.15  
Z
Z
0.20  
Z
X
1.45P0.10  
0.10  
4X  
0.40P0.05  
17.00  
A1 BALL PAD CORNER  
5
Ø0.50 TYP  
C0.20 M  
C0.08 M  
Z
X
Y
Z
SEATING PLANE  
6
1.05P0.05  
A1 BALL PAD CORNER  
TOP VIEW  
16  
15  
14 13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
SIDE VIEW  
A
B
C
D
E
F
G
H
J
K
L
M
N
6
5
PRIMARY DATUM Z AND SEATING PLANE ARE DEFINED BY  
THE SPHERICAL CROWNS OF THE SOLDER BALLS.  
P
R
T
DIMENSION IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER,  
PARALLEL TO PRIMARY DATUM Z.  
4.  
3.  
2.  
1.  
THE MAXIMUM ALLOWABLE NUMBER OF SOLDER BALLS IS 256.  
THE MAXIMUM SOLDER BALL MATRIX SIZE IS 16 X 16.  
THE BASIC SOLDER BALL GRID PITCH IS 1.00.  
1.00  
1.00 REF  
ALL DIMENSIONS AND TOLERANCES CONFORM TO ASME Y14.5M-1994.  
BOTTOM VIEW  
(256 SOLDER BALLS)  
Figure 13: 256-Pin Fine Pitch BGA (FPBGA) Package  
Broadcom Corporation  
Document 5228-DS09-405-R  
Mechanical Information  
Page 79  
BCM5228  
Data Sheet  
7/12/04  
Section 10: Packaging Thermal Characteristics  
Table 60: ThetaJA vs. Airflow for the BCM5228B (256 FPBGA) Package  
Airflow (feet per minute)  
ThetaJA(°C/W)  
0
100  
200  
400  
600  
19.02  
16.70  
15.85  
14.84  
14.16  
ThetaJC for this package is 5.84°C/W. The BCM5228B is designed and rated for a maximum junction temperature of 125°C.  
Table 61: ThetaJA vs. Airflow for the BCM5228F (208 PQFP) Package  
Airflow (feet per minute)  
ThetaJA(°C/W)  
0
100  
200  
400  
600  
16.35  
13.96  
13.09  
12.21  
11.70  
ThetaJC for this package is 6.19°C/W. The BCM5228F is designed and rated for a maximum junction temperature of 125°C.  
Table 62: ThetaJA vs. Airflow for the BCM5228U (208 PQFP) Package  
Airflow (feet per minute)  
ThetaJA(°C/W)  
0
100  
200  
400  
600  
16.35  
13.96  
13.09  
12.21  
11.70  
ThetaJC for this package is 6.19°C/W. The BCM5228U is designed and rated for a maximum junction temperature of 125°C.  
Broadcom Corporation  
Page 80  
Packaging Thermal Characteristics  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Broadcom Corporation  
Document 5228-DS09-405-R  
Packaging Thermal Characteristics  
Page 81  
BCM5228  
Data Sheet  
7/12/04  
Section 11: Application Examples  
RXD0{1:8}  
8
TXD0{1:8}  
BCM5228  
8
SCLK  
16 Port  
125 MHz  
MAC  
SSYNC  
TXD0{1:8}  
RXD0{1:8}  
BCM5228  
8
8
Figure 14: SMII Application  
Broadcom Corporation  
Page 82  
Application Examples  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
SMII_RSYNC  
RXD0 {1:8}  
SMII_RXC  
8
BCM5228  
SMII_TXC  
TXD0{1:8}  
SSYNC  
8
SCLK  
125 MHz  
16 Port  
MAC  
SSYNC  
TXD0{1:8}  
SMII_TXC  
8
BCM5228  
SMII_RSYNC  
RXD0 {1:8}  
SMII_RXC  
8
Figure 15: SMII Application using Source Synchronous Signals  
Broadcom Corporation  
Document 5228-DS09-405-R  
Application Examples  
Page 83  
BCM5228  
Data Sheet  
7/12/04  
Broadcom Corporation  
16215 Alton Parkway  
P.O. Box 57013  
Irvine, CA 92619-7013  
Phone: 949-450-8700  
Fax: 949-450-8710  
Broadcom® Corporation reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.  
Information furnished by Broadcom Corporation is believed to be accurate and reliable. However, Broadcom Corporation  
does not assume any liability arising out of the application or use of this information, nor the application or use of any product or  
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
MAC  
MAC  
MAC  
MAC  
RMII{1}/SMII{1}  
RMII{2}/SMII{2}  
RMII{7}/SMII{7}  
RMII{8}/SMII{8}  
BCM5228  
REF_CLK  
50-MHz (RMII)  
125-MHz (SMII)  
MAGNETICS  
RJ45  
(1)  
RJ45  
(2)  
RJ45  
(7)  
RJ45  
(8)  
Figure 16: Switch Application  
Broadcom Corporation  
Document 5228-DS09-405-R  
Application Examples  
Page 85  
BCM5228  
Data Sheet  
7/12/04  
Broadcom Corporation  
Page 86  
Application Examples  
Document 5228-DS09-405-R  
Data Sheet  
BCM5228  
7/12/04  
Section 12: Ordering Information  
Part Number  
Package  
Ambient Temperature  
BCM5228UA4KPF  
BCM5228FA4KPF  
BCM5228BA4KPB  
208 PQFP  
208 PQFP  
256 FBGA  
0°C to 70°C (32°F to 158° F)  
0°C to 70°C (32°F to 158°F)  
0°C to 70°C (32° F to 158°F)  
BCM5228UA4IPF  
BCM5228FA4IPF  
BCM5228BA4IPB  
208 PQFP  
208 PQFP  
256 FPBGA  
–40°C to 85°C (–40°F to 185°F)  
–40°C to 85°C (–40°F to 185°F)  
–40°C to 70°C (–40°F to 158°F)  
Note: A4 is the current revision number at the time of publication of this data sheet.  
The BCM5228BA4IPB can operate at –40°C to +85°C (–40°F to 185°F) if used with a heat sink (see the following for details)  
or equivalent:  
Manufacturer:  
Part Number:  
Wakefield Engineering  
624-60AB, made of extruded aluminum, 21 mm × 21 mm × 15.2 mm pin-fin  
Thermal Interface: Chomerics T410 double-sided thermal tape  
The following thermal data applies to the BCM5228BA4IPB with the heat sink previously described.  
Table 63: ThetaJA vs. Airflow for the BCM5228B with Heat Sink  
Airflow (feet per minute)  
ThetaJA(°C/W)  
0
100  
200  
400  
600  
13.37  
11.51  
10.61  
9.94  
9.58  
Broadcom Corporation  
Document 5228-DS09-405-R  
Ordering Information  
Page 87  
BCM5228  
Data Sheet  
7/12/04  
Broadcom Corporation  
Page 88  
Ordering Information  
Document 5228-DS09-405-R  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY