ACMD-7403-BLK [BOARDCOM]

Miniature UMTS Band II / PCS Duplexer;
ACMD-7403-BLK
型号: ACMD-7403-BLK
厂家: Broadcom Corporation.    Broadcom Corporation.
描述:

Miniature UMTS Band II / PCS Duplexer

PCS 过程控制系统
文件: 总11页 (文件大小:1279K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACMD-7403  
Miniature UMTS Band II / PCS Duplexer  
Data Sheet  
Description  
Features  
The Avago Technologies’ ACMD-7403 is a miniature Miniature Size  
duplexer designed for use in UMTS Band II and PCS  
(Blocks A–F) handsets.  
3.0 x 3.0 mm Max footprint  
1.2 mm Max height  
High Power Rating  
The ACMD-7403 enhances the sensitivity and dynamic  
range of handset receivers by providing more than 54 dB  
attenuation of the transmitted signal at the receiver input  
and more than 44 dB rejection of transmit-generated  
noise in the receive band.  
33 dBm Abs Max Tx Power  
Lead-Free Construction  
Maximum Insertion Loss in the Tx channel is only 2.7 dB,  
which minimizes current drain from the power amplifier.  
Insertion Loss in the Rx channel is a maximum of 3.2 dB,  
thus improving receiver sensitivity.  
Specifications  
Rx Band Performance, 1930.5-1989.5 MHz, – 30 to +85°C  
Rx Noise Blocking: 44 dB min  
Insertion Loss: 3.2 dB max  
The ACMD-7403 is designed with Avago Technologies’  
Film Bulk Acoustic Resonator (FBAR) technology, which  
makes possible ultra-small, high-Q filters at a fraction  
of their usual size. The excellent power handling capa-  
bility of the FBAR bulk-mode resonators supports the  
high output power levels needed in PCS handsets while  
adding virtually no distortion.  
Tx Band Performance, 1850.5-1909.5 MHz, – 30 to +85°C  
Tx Interferer Blocking: 52 dB min  
Insertion Loss: 2.7 dB max  
Applications  
The ACMD-7403 also utilizes Avago Technologies’ innova-  
tive Microcap bonded-wafer, chip scale packaging tech-  
nology. This process allows the filters to be assembled in  
a molded chip-on-board module that is less than 1.2 mm  
high with a footprint of only 3.0 mm x 3.0 mm.  
Handsets or data terminals operating in the PCS (A–F)  
frequency band.  
Functional Block Diagram  
[2,3]  
[1]  
ACMD-7403 Electrical Specifications , Z =50 , T as indicated,  
0
C
– 30°C  
Typ Max Min  
+25°C  
Typ Max Min  
+85°C  
Typ Max  
Symbol Parameter  
Antenna Port to Receive Port  
Units  
Min  
S23  
Insertion Loss in Receive Band  
1930.5 – 1931.5 MHz  
1931.5 – 1989.5 MHz  
dB  
3.2  
3.0  
1.9  
1.3  
3.1  
3.0  
3.0  
3.2  
∆S23  
S22  
Ripple (p-p) in Receive Band  
dB  
dB  
1.7  
15  
Return Loss of Receive Port  
in Receive Band  
9.5  
52  
9.5  
52  
9.5  
52  
S23  
Attenuation in Transmit Band  
(1850.5 – 1909.5 MHz)  
dB  
59  
S23  
S23  
Attenuation 0 – 1600 MHz  
dB  
dB  
20  
14  
29  
18  
Attenuation in Receive 2nd Harmonic  
Band (3861 – 3979 MHz)  
Transmit Port to Antenna Port  
S31  
Insertion Loss in Transmit Band  
1850.5 – 1908.5 MHz  
1908.5 – 1909.5 MHz  
dB  
2.5  
2.5  
1.0  
1.4  
2.1  
2.3  
2.5  
2.7  
∆S31  
S11  
Ripple (p-p) in Transmit Band  
dB  
dB  
1.3  
20  
Return Loss of Transmit Port  
in Transmit Band  
9.5  
40  
9.5  
40  
9.5  
40  
S31  
Attenuation in Receive Band  
(1930.5 – 1989.5 MHz)  
dB  
49  
S31  
S31  
Attenuation 0 – 1600 MHz  
dB  
dB  
22  
23  
32  
27  
Attenuation in GPS Rx Band  
(1574.42 – 1576.42 MHz)  
S31  
Attenuation in Transmit 2nd Harmonic  
Band (3701 – 3819 MHz)  
dB  
5
9
Antenna Port  
S33  
S33  
Return Loss of Antenna Port in Receive  
Band (1930.5 – 1989.5 MHz)  
dB  
dB  
9
9
9
9
16  
17  
9
9
Return Loss of Antenna Port in Transmit  
Band (1850.5 – 1909.5 MHz)  
Isolation Transmit Port to Receive Port  
S21  
S21  
Tx-Rx Isolation in Receive Band  
(1930.5 – 1989.5 MHz)  
dB  
dB  
44  
54  
44  
54  
51  
61  
44  
54  
Tx-Rx Isolation in Transmit Band  
(1850.5 – 1909.5 MHz)  
Notes:  
T
is the case temperature and is defined as the temperature of the underside of the Duplexer where it makes contact with the circuit board.  
C
Min/Max specifications are guaranteed at the indicated temperature with the input power to the Tx ports equal to or less than +29 dBm over all Tx  
frequencies unless otherwise noted. Typical data is the average value of the parameter over the indicated band at the specified temperature. Typical  
values may vary over time.  
ACMD-7403  
[1]  
Absolute Maximum Ratings  
Characterization  
A test circuit similar to the one shown in Figure 1 was  
used to measure typical device performance. This circuit  
is designed to interface with Air Coplanar (ACP), Ground-  
Signal-Ground (GSG) RF probes of the type commonly  
used to test semiconductor wafers.The PCB test circuit  
uses multiple vias to create a well-grounded pad to  
which the device under test (DUT) is solder-attached.  
Short lengths of 50-ohm microstripline connect the DUT  
to ACP probe patterns on the board.  
Parameter  
Unit Value  
Storage temperature  
°C  
–65 to +125  
Maximum RF Input Power to Tx Port  
dBm +33  
[2]  
Maximum Recommended Operating Conditions  
Parameter  
Unit Value  
[3]  
[3]  
Operating temperature, Tc  
Tx Power ≤ 29 dBm  
,
,
°C  
–40 to +100  
Operating temperature, Tc  
Tx Power ≤ 30 dBm  
°C  
–40 to +85  
A test circuit with ACMD-7403 mounted in place is shown  
in Figure 2. S-parameters are then measured using a  
network analyzer and calibrated ACP probe set.  
Notes:  
1. Operation in excess of any one of these conditions may result in  
permanent damage to the device.  
2. The device will function over the recommended range without  
degradation in reliability or permanent change in performance, but  
is not guaranteed to meet electrical specifications.  
Phase data for s-parameters measured with ACP probe  
circuits are adjusted to place the reference plane at the  
edge of the duplexer.  
3.  
T is defined as case temperature, the temperature of the underside  
of the duplexer where it makes contact with the circuit board.  
C
Figure 2. Test Circuit with Duplexer.  
Figure 1. ACP Probe Test Circuit.  
ACMD-7403 Typical Performance at T = 25°C  
c
0.0  
-1.0  
-2.0  
-3.0  
0.0  
-1.0  
-2.0  
-3.0  
1930  
1940  
1950  
1960  
1970  
1980  
1990  
1850  
1860  
1870  
1880  
1890  
1900  
1910  
Frequency (MHz)  
Frequency (MHz)  
Figure 3. Tx–Ant Insertion Loss  
Figure 4. Ant–Rx Insertion Loss  
0
0
-5  
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-15  
-20  
-25  
1750 1800 1850 1900 1950 2000 2050 2100  
1750  
1800  
1850  
1900  
1950  
2000  
2050  
2100  
Frequency (MHz)  
Frequency (MHz)  
Figure 6. Tx Rejection in Rx Band and Rx Rejection in Tx Band  
Figure 5. Tx and Rx Port Return Loss  
0
-5  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-10  
-15  
-20  
-25  
1750 1800 1850 1900 1950 2000 2050 2100  
1750 1800  
1850 1900 1950 2000  
Frequency (MHz)  
2050 2100  
Frequency (MHz)  
Figure 8. Antenna Port Return Loss  
Figure 7. Tx–Rx Isolation  
ACMD-7403 Typical Performance at T = 25°C  
c
0
-5  
0
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-15  
-20  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
3700  
3720  
3740  
3760  
3780  
3800  
3820  
Frequency (GHz)  
Frequency (MHz)  
Figure 9. Tx–Ant and Ant–Rx Wideband Insertion Loss  
Figure 10. Tx–Ant Rejection at Tx Second Harmonic  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
Frequency (GHz)  
Frequency (GHz)  
Figure 11. Tx–Ant Low Frequency Rejection  
Figure 12. Ant–Rx Low Frequency Rejection  
1
1
0.8  
0.8  
1.5  
1.5  
0.6  
0.6  
2
2
0.4  
0.4  
3
3
4
4
5
5
10  
20  
10  
20  
50  
50  
0.2  
0.4  
0.6  
0.8  
1
1.5  
2
3
4
5
10 20 50  
0.2  
0.4  
0.6  
0.8  
1
1.5  
2
3
4
5
10 20 50  
-50  
-20  
-50  
-20  
-10  
-10  
-5  
-4  
-5  
-4  
-3  
-3  
-0.4  
-0.4  
-2  
-2  
-0.6  
-0.6  
-1.5  
-1.5  
-0.8  
-0.8  
-1  
-1  
Figure 14. Rx Port Impedance in Rx Band  
Figure 13. Tx Port Impedance in Tx Band  
1
1
0.8  
0.8  
1.5  
1.5  
0.6  
0.6  
2
2
0.4  
0.4  
3
3
4
5
4
5
10  
20  
10  
20  
50  
50  
0.2  
0.4  
0.6  
0.8  
1
1.5  
2
3
4
5
10 20 50  
0.2  
0.4  
0.6  
0.8  
1
1.5  
2
3
4
5
10 20 50  
-50  
-20  
-50  
-20  
-10  
-10  
-5  
-4  
-5  
-4  
-3  
-3  
-0.4  
-0.4  
-2  
-2  
-0.6  
-0.6  
-1.5  
-1.5  
-0.8  
-0.8  
-1  
-1  
Figure 15. Ant Port Impedance in Tx Band  
Figure 16. Ant Port Impedance in Rx Band  
2.80  
3.0  
MAX  
1.2  
MAX  
1.40  
0.33  
ANT  
+
0.25  
PRODUCT  
MARKING  
SIGNAL VIA  
(2 PLS)  
3.0  
MAX  
0.35  
0.35  
TX  
RX  
PACKAGE  
ORIENTATION  
2.45  
0.43  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
Notes:  
0.25  
0.30  
1. Dimensions in millimeters  
Tolerance: X.X ± 0.1 mm  
X.XX ± 0.05 mm  
0.075  
0.25  
Angles 45°, unless otherwise noted  
2. Dimensions nominal unless otherwise noted  
3. I/O Pads (3 ea)  
Size: 0.35 X 0.35 mm  
Spacing to ground metal: 0.30 mm  
4. Signal Vias (2 ea), Ø 0.25; covered with 0.40 Ø solder mask.  
Shown for reference only. PCB metal under  
signal via does not need to be voided.  
0.05  
0.30  
0.05  
5. Contact areas are gold plated  
0.075  
DETAIL OF IO PAD AREA  
Figure 17. Package Outline Drawing  
PACKAGE  
ORIENTATION  
-
H = ACMD 7403  
FB = Avago ID  
Y = Year  
RX  
TX  
WW = Work Week  
DC = Date Code  
NNNN = Lot Number  
ANT  
Figure 18. Product Marking  
Ø 0.30 VIA ARRAY  
HORIZ PITC H = 0.40  
VERT PITC H = 0.40  
0.25  
0.30  
Ant  
0.25 0.30  
2.28  
G
0.35  
Tx  
Rx  
G
0.35  
2.10  
Figure 20. ACMD-7403 Superposed on PCB Layout  
Notes:  
1. Dimensions in mm  
2. Transmission line Gap (G) adjusted for Zo = 50 ohms  
3. I/O Pads (3 ea) 0.35 X 0.35, corner chamfer 0.03  
4. Ground vias positioned to maximize port-to-port isolation  
5. Preferred Tx connection on buried metal layer  
Figure 19. PCB Layout  
> 0.30  
TYP  
0.45  
0.45  
2.90  
0.20  
0.20  
2.90  
Figure 22. ACMD-7403 Superposed on Solder Mask  
> 0.30  
TYP  
Figure 21. Recommended Solder Mask  
A PCB layout using the principles illustrated in Figure 19  
is recommended to optimize performance of the ACMD-  
7403.  
The latter is especially useful, not only to maintain Tx-Rx  
isolation of the duplexer, but also to prevent leakage of  
the Tx signal into other components that could result in  
the creation of intermodulation products and degrada-  
tion of overall system performance.  
It is particularly important to maximize isolation between  
the Tx connection to the duplexer and the Rx port. High  
isolation is achieved by: (1) maintaining a continuous  
ground plane around the duplexer mounting area, (2)  
surrounding the I/O ports with sufficient ground vias to  
enclose the connections in a “Faraday cage, and (3) pref-  
erably routing the Tx trace in a different metal layer than  
the Rx.  
A sufficient number of vias should be used to ensure  
excellent RF grounding as well as good heat sinking for  
the device.  
Note:  
The two signal vias shown in Fig 17 are covered with solder mask and it  
is not necessary to void the ground plane under them.  
STENCIL  
BOUNDARY  
0.20  
0.10  
0.10  
2.80  
Figure 24. Solder Stencil Overlaid on ACMD-7403 Bottom Metal Pattern  
2.80  
Stencil Opening ID  
I/O pad areas  
All other openings  
Notes:  
Qty  
3
Width (mm) Length (mm)  
0.35  
0.50  
0.35  
0.50  
9
1. Chamfer or radius all corners 0.05 mm min  
2. Stencil openings aligned to Boundary rectangle or center lines  
3. Non-I/O pad stencil openings aligned to 0.52 x 0.55 grid  
(i.e., spacing between openings: 0.2 vertical, 0.5 horizontal)  
Figure 23. Recommended Solder Stencil  
Figure 25. SMD Tape Packing  
Figure 26. Unit Orientation in Tape  
Figure 27. Reel Drawing, Front View  
10  
Figure 28. Reel Drawing, Back View  
300  
250  
200  
150  
100  
50  
Package Moisture Sensitivity  
Feature  
Test Method  
Performance  
Moisture Sensitivity Level  
(MSL) at 260°C  
JESD22-A113D Level 3  
Tested profile shown.  
0
0
50  
100  
150  
200  
250  
300  
Time, seconds  
Figure 29. Verified SMT Solder Profile  
Ordering Information  
Part Number  
No. of Devices  
Container  
ACMD-7403-BLK  
ACMD-7403-TR1  
25  
Anti-static Bag  
7-inch Reel  
1000  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © ꢀ00ꢃ-ꢀ00ꢆ Avago Technologies Limited. All rights reserved.  
AV0ꢀ-0ꢄꢀꢅEN - April 10, ꢀ00ꢆ  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY