AMMC-6408 [BOARDCOM]

6-18 GHz 1W Power Amplifier;
AMMC-6408
型号: AMMC-6408
厂家: Broadcom Corporation.    Broadcom Corporation.
描述:

6-18 GHz 1W Power Amplifier

文件: 总12页 (文件大小:589K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMMC-6408  
6-18 GHz 1W Power Amplifier  
Data Sheet  
Chip Size: 2000 x 2000 µm (78.5 x 78.5 mils)  
Chip Size Tolerance: ꢀ0 µm ( 0.4 mils)  
Chip Thickness: ꢀ00 ꢀ0 µm (4 0.4 mils)  
Pad Dimensions: ꢀ00 x ꢀ00 µm (4 0.4 mils)  
Description  
Features  
The AMMC-6408 MMIC is a broadband 1W power  
amplifier in a surface mount package designed for use  
in transmitters that operate in various frequency bands  
between 6GHz and 18GHz. At 8GHz, it provides 29 dBm  
•ꢀ Wide Frequency Range 6-18GHz  
•ꢀ Highly linear: OIP3=38dBm  
•ꢀ Integrated RF power detector  
of output power (P-1dB) and 20dB of small-signal gain •ꢀ ESD protection (40V MM, and 200V HBM)  
from a small easy-to-use device. This MMIC is optimized  
for linear operation with an output third order intercept  
point (OIP3) of 38dBm.  
•ꢀ Input port partially matched (For narrowband  
applications, customer may obtain optimum  
matching and gain with an additional matching  
circuit)  
Applications  
•ꢀ Specifications (Vdd=5V, Idq=650mA)  
•ꢀ Microwave Radio systems  
•ꢀ Frequency range 6 to 18 GHz  
•ꢀ Satellite VSAT, DBS Up/Down Link  
•ꢀ Small signal Gain of 18dB  
•ꢀ LMDS & Pt-Pt mmW Long Haul  
•ꢀ Return loss: Input: -3 dB, Output: -9 dB  
•ꢀ Broadband Wireless Access (including 802.16 and  
•ꢀ High Power: @ 8 GHz, P-1dB = 29 dBm  
802.20 WiMax)  
•ꢀ WLL and MMDS loops  
Attention: Observe Precautions for  
handling electrostatic sensitive devices.  
ESD Machine Model (Class A)  
ESD Human Body Model (Class0)  
Refer to Avago Application Note A0040R:  
Electro Discharge Damage and Control.  
Note: This MMIC uses depletion mode pHEMT devices.  
Negative supply is used for the DC gate biasing.  
Absolute Maximum Ratings  
Symbols  
Vd-Vg  
Vd  
Parameters  
Units  
V
Minimum  
Maximum  
8
Notes  
Drain to Gate Voltage  
Positive Supply Voltage  
Gate Supply Voltage  
Drain Current  
V
5.5  
Vg  
V
-2.5  
0.5  
Id  
mA  
W
TBD  
2
PD  
Power Dissipation  
3.5  
2 and 3  
Pin  
CW Input Power  
dBm  
°C  
20  
2
4
Tch  
Operating Channel Temp  
Storage Case Temp.  
Maximum Assembly Temp (30 sec max)  
+150  
-65 to +155  
+320  
Tstg  
Tmax  
Notes:  
°C  
°C  
1. Operation in excess of any one of these conditions may result in permanent damage to this device. Functional operation at or near these  
limitations will significantly reduce the lifetime of the device.  
2. Dissipated power PD is in any combination of DC voltage, Drain Current, input power and power delivered to the load.  
3. When operated at maximum PD with a base plate temperature of 85 °C, the median time to failure (MTTF) is significantly reduced.  
4. These ratings apply to each individual FET. The operating channel temperature will directly affect the device MTTF. For maximum life, it is  
recommended that junction temperatures (Tj) be maintained at the lowest possible levels. See MTTF vs. Tchannel Temperature Table.  
DC Specifications/ Physical Properties  
Symbol  
Parameters and Test Conditions  
Units  
Value  
Idq  
Drain Supply Current  
(Vdd=5 V, Vg set for Id Typical)  
mA  
650  
Vg  
Gate Supply Operating Voltage  
(Id(Q) = 650 (mA))  
V
-1.1  
22  
Rθjc  
Thermal Resistance[6]  
(Channel-to-Base Plate)  
°C/W  
°C  
Tch  
Channel Temperature  
150.6  
Notes:  
6. Channel-to-backside Thermal Resistance (θch-b) = 10°C/W at Tchannel (Tc) = 107°C as measured using infrared microscopy. Thermal Resistance  
at backside temperature (Tb) = 25°C calculated from measured data.  
Thermal Properties  
Parameter  
Test Conditions  
Value  
Maximum Power Dissipation  
Tbaseplate = 85°C  
PD = 3.5W  
Tchannel = 150°C  
Thermal Resistance (qjc)  
Vd = 5V  
qjc = 22°C/W  
Tchannel = 146°C  
Id = 650mA  
PD = 3.25W  
Tbaseplate = 75°C  
Thermal Resistance (qjc)  
Under RF Drive  
Vd = 5V  
qjc = 22°C/W  
Tchannel = 147°C  
Id = 810mA  
Pout = 29dBm  
Pd = 3.3W  
Tbaseplate = 85°C  
2
MTTF vs. Tchannel Temperature  
Operation  
Tj  
60% Confidence Level  
90% Confidence Level  
Point Data R=  
λ (ФIT)  
3511  
1298  
456  
152  
48  
MTTF (hrs)  
2.8E+05  
7.7E+05  
2.2E+06  
6.6E+06  
2.1E+07  
7.0E+07  
2.5E+08  
9.9E+08  
4.2E+09  
1.9E+10  
9.6E+10  
λ (ФIT)  
8822  
3260  
1147  
382  
120  
36  
MTTF (hrs)  
λ (ФIT)  
3831  
1416  
498  
166  
52  
MTTF (Yrs)  
2.6E+05  
7.1E+05  
2.0E+05  
6.0E+06  
1.9E+06  
6.5E+07  
2.3E+08  
9.1E+08  
3.8E+09  
1.7E+10  
8.8E+10  
150  
140  
130  
120  
110  
100  
90  
1.1E+05  
3.1E+05  
8.7E+05  
2.6E+06  
8.3E+06  
2.8E+07  
1.0E+08  
3.9E+08  
1.7E+09  
7.6E+09  
3.8E+10  
14  
15  
4
10  
4
80  
1
3
1
70  
0
1
0
60  
0
0
0
50  
0
0
0
[7,8,9]  
RF Specifications  
T = 25°C, V = 5V, I  
= 650mA, Z =50Ω  
o
A
dd  
d(Q)  
Symbol  
Freq  
Parameters and Test Conditions  
Operational Frequency  
Units  
GHz  
dB  
Minimum  
Typical  
Maximum  
6
18  
Gain  
Small-signal Gain S21[9,10]  
16  
26  
19  
29  
P-1dB  
Output Power at 1dB [9,10]  
Gain Compression[8]  
dBm  
P-3dB  
OIP3  
RLin  
Output Power at 3dB  
Gain Compression[9]  
dBm  
dBm  
29.5  
38  
Third Order Intercept Point;  
∆f=10MHz; Pin=-20dBm  
Input Return Loss[8]  
Output Return Loss[8]  
Reverse Isolation  
dB  
dB  
dB  
3
RLout  
9
Isolation  
Notes:  
45  
7. Small/Large -signal data measured in packaged form on a 2.4mm connecter based evaluation board at TA = 25°C.  
8. This final package part performance is verified by a functional test correlated to actual performance at one or more frequencies  
9. Pre-assembly into package performance verified 100% on-wafer published specifications at Frequencies=8, 12, and 17GHz  
3
Typical Performances  
Data obtained from 3.5-mm connector based test fixture, and this data is including connecter loss, and board loss.  
(TA = 25°C, Vdd =5 V, Idq = 650 mA, Zin = Zout = 50Ω)  
40  
35  
30  
25  
20  
15  
10  
5
0
0
S21[dB]  
S12[dB]  
-20  
-5  
-10  
-40  
-60  
-80  
-15  
-20  
S11[dB]  
S22[dB]  
0
2
4
6
8
10  
12  
14 16  
18  
20  
22  
2
4
6
8
10 12 14 16 18 20 22  
Frequency [GHz]  
Frequency [GHz]  
Figure ꢀ. Typical Gain and Reverse Isolation  
Figure 2. Typical Return Loss (Input and Output)  
10  
8
35  
30  
25  
20  
15  
10  
5
6
4
2
0
P-1 (dBm)  
PAE[%]@P-1  
P-3[dBm]  
PAE[%]@P-3  
0
6
7
8
9
10 11 12 13 14 15 16 17 18  
Frequency [GHz]  
4
6
8
10  
12  
14  
16  
18  
20  
Frequency [GHz]  
Figure 3. Typical Output Power (@P-ꢀ, P-3) and PAE and Frequency  
Figure 4. Typical Noise Figure  
40  
-24  
-28  
-32  
-36  
-40  
-44  
1000  
Pout(dBm)  
35  
PAE[%]  
30  
900  
Id(total)  
25  
20  
800  
15  
10  
700  
5
0
600  
4
6
8
10  
12  
14  
16  
18  
20  
-15  
-10  
-5  
0
5
10  
15  
Pin [dBm]  
Frequency [GHz]  
Figure 5. Typical Output Power, PAE, and Total Drain Current versus  
Input Power at 8GHz  
Figure 6. Typical IM3 level vs. Frequency at +20dBm output single  
carrier level (SCL)  
4
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
900  
850  
800  
750  
700  
650  
600  
550  
500  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
900  
850  
800  
750  
700  
650  
600  
550  
500  
IM3[dBc]  
Ids[mA]  
IM3[dBc]  
Ids[mA]  
4
6
8
10 12 14 16 18 20 22 24 26  
SCL [dBm]  
4
6
8
10 12 14 16 18 20 22 24 26  
SCL [dBm]  
Figure 7. Typical IM3 level and Ids vs. single carrier output level at 6GHz  
Figure 8. Typical IM3 level and Ids vs. single carrier output level at 8GHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
900  
850  
800  
750  
700  
650  
600  
550  
500  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
900  
850  
800  
750  
700  
650  
600  
550  
500  
IM3[dBc]  
Ids[mA]  
IM3[dBc]  
Ids[mA]  
4
6
8
10 12 14 16 18 20 22 24 26  
SCL [dBm]  
4
6
8
10 12 14 16 18 20 22 24 26  
SCL [dBm]  
Figure 9. Typical IM3 level and Ids vs. single carrier output level at ꢀ2GHz  
Figure ꢀ0. Typical IM3 level and Ids vs. single carrier output level at ꢀ4GHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
900  
850  
800  
750  
700  
650  
600  
550  
500  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
900  
850  
800  
750  
700  
650  
600  
550  
500  
IM3[dBc]  
Ids[mA]  
IM3[dBc]  
Ids[mA]  
4
6
8
10 12 14 16 18 20 22 24 26  
SCL [dBm]  
4
6
8
10 12 14 16 18 20 22 24 26  
SCL [dBm]  
Figure ꢀꢀ. Typical IM3 level and Ids vs. single carrier output level at ꢀ6GHz  
Figure ꢀ2. Typical IM3 level and Ids vs. single carrier output level at ꢀ8GHz  
5
25  
20  
15  
10  
5
0
-5  
-10  
-15  
S11_20  
S11_-40  
S11_85  
S21_20  
S21_-40  
S21_85  
-20  
-25  
0
5
10  
15  
20  
25  
4
6
8
10  
12  
14  
16  
18  
20  
Frequency[GHz]  
Frequency[GHz]  
Figure ꢀ3. Typical Sꢀꢀ over temperature  
Figure ꢀ4. Typical Gain over temperature  
32  
30  
28  
26  
0
-5  
-10  
-15  
S22_20  
24  
P- 1_85deg  
S22_-40  
-20  
P- 1_20deg  
22  
P- 1_-40deg  
S22_85  
-25  
20  
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
25  
Frequency[GHz]  
Frequency[GHz]  
Figure ꢀ5. Typical S22 over temperature  
Figure ꢀ6. Typical P-ꢀ over temperature  
6
[ꢀ]  
Typical Scattering Parameters ,  
(TA = 25°C, V =5 V, I = 650mA, Z = Z = 50Ω)  
dd  
dq  
in  
out  
Sꢀꢀ  
S2ꢀ  
Mag  
Sꢀ2  
S22  
Freq  
[GHz] dB  
Mag  
0.89  
0.84  
0.83  
0.79  
0.76  
0.76  
0.76  
0.78  
0.83  
0.87  
0.85  
0.73  
0.50  
0.27  
0.17  
0.37  
0.62  
0.69  
0.26  
0.47  
0.68  
0.77  
0.84  
0.92  
0.94  
Phase  
dB  
Phase  
dB  
Mag  
Phase  
dB  
Mag  
0.92  
0.89  
0.83  
0.86  
0.61  
0.36  
0.56  
0.57  
0.49  
0.41  
0.29  
0.31  
0.49  
0.45  
0.29  
0.08  
0.22  
0.28  
0.41  
0.80  
0.85  
0.85  
0.85  
0.85  
0.88  
Phase  
-51.38  
-106.38  
-148.41  
149.67  
102.57  
101.45  
91.13  
1
-0.98  
-80.89 -26.63 0.05  
-142.21 -12.58 0.23  
173.02 -13.18 0.22  
-149.73  
117.14  
-55.39  
109.98  
-10.22  
-132.19  
120.64  
33.98  
-66.01 5.01E-04 82.37  
-54.78 1.82E-03 -62.88  
-56.68 1.47E-03 73.25  
-57.34 1.36E-03 -176.84  
-56.51 1.49E-03 82.87  
-54.26 1.94E-03 -4.69  
-53.94 2.01E-03 -93.95  
-53.73 2.06E-03 -175.11  
-52.62 2.34E-03 112.21  
-50.54 2.97E-03 55.24  
-48.56 3.73E-03 -2.84  
-45.36 5.40E-03 -66.52  
-44.34 6.06E-03 -135.27  
-44.63 5.87E-03 150.30  
-43.78 6.47E-03 70.74  
-43.20 6.92E-03 -13.73  
-43.60 6.61E-03 -101.77  
-45.33 5.41E-03 141.97  
-42.29 7.68E-03 -60.99  
-48.32 3.84E-03 177.93  
-58.04 1.25E-03 133.54  
-60.28 9.69E-04 -167.20  
-53.26 2.17E-03 152.87  
-52.33 2.42E-03 100.99  
-55.59 1.66E-03 64.13  
-0.74  
-1.05  
-1.66  
-1.30  
-4.28  
-8.91  
-5.09  
-4.94  
-6.24  
-7.78  
-10.88  
-10.09  
-6.12  
-6.84  
-10.65  
-21.50  
-13.30  
-11.09  
-7.67  
-1.90  
-1.44  
-1.43  
-1.43  
-1.40  
-1.09  
2
-1.53  
-1.65  
-2.03  
-2.34  
-2.35  
-2.36  
-2.14  
-1.63  
-1.22  
-1.36  
-2.70  
-6.06  
-11.40  
-15.19  
-8.74  
-4.18  
-3.28  
-11.87  
-6.57  
-3.36  
-2.30  
-1.56  
-0.68  
-0.50  
3
4
136.42 -7.96  
112.17 10.21  
0.40  
3.24  
7.48  
8.66  
8.19  
7.58  
7.41  
8.25  
9.62  
9.88  
9.40  
8.87  
8.15  
7.00  
6.26  
3.79  
0.34  
5
6
91.21  
74.67  
60.18  
44.98  
25.72  
1.75  
17.48  
18.75  
18.27  
17.60  
17.40  
18.33  
7
8
62.98  
9
-40.91  
-108.19  
-174.84  
109.90  
28.25  
45.08  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
32.69  
28.56  
-26.91 19.67  
-57.44 19.89  
-98.95 19.46  
174.48 18.96  
103.71 18.22  
54.94  
37.90  
-52.18  
-134.19  
138.55  
45.40  
8.18  
-14.37  
-6.63  
54.74  
0.17  
16.91  
15.93  
72.25  
-57.17  
147.53  
26.24  
34.37  
-103.07 11.58  
42.09 -9.31  
109.95  
48.19  
-19.76 -24.98 0.06  
-75.71 -26.16 0.05  
-136.88 -31.52 0.03  
171.66 -44.35 0.01  
135.92 -54.20 0.00  
49.50  
12.31  
-0.95  
-20.28  
-60.80  
-112.04  
-165.45  
-94.80  
154.42  
113.23  
Note:  
1. This data represents package part performances, and does not contain test fixture losses.  
7
Biasing and Operation  
The recommended quiescent DC bias condition for  
The differential voltage between the Det-Ref and Det-Out  
pads can be correlated with the RF power emerging from  
the RF output port. The detected voltage is given by,  
optimum efficiency, performance, and reliability is V =5  
dd  
volts with V set for I =650 mA. Minor improvements in  
g
dd  
performance are possible depending on the application.  
The drain bias voltage range is 3 to 5V. A single DC gate  
supply connected to Vg will bias all gain stages. Muting  
can be accomplished by setting Vgg to the pinch-off  
V = (V - V ) - V  
ofs  
ref  
det  
where V is the voltage at the DET_R port, V is a  
ref  
det  
voltage at the DET_O port, V and is the zero-input-  
power offset voltage. There are three methods to  
ofs  
voltage V .  
p
calculate V  
:
A simplified schematic for the AMMC6408 MMIC die is  
shown in Figure 17. The MMIC die contains ESD and over  
ofs  
1. V  
can be measured before each detector  
ofs  
voltage protection diodes for V , Vd1, and Vd2 terminals.  
g
measurement (by removing or switching off the  
power source and measuring V - V ). This method  
In a finalized package form, Vd1 and Vd2 terminals are  
ref  
det  
commonly connected to the V terminal. The bonding  
dd  
gives an error due to temperature drift of less than  
0.01dB/50°C.  
diagram for the recommended assembly is shown in  
Figure 18. ESD diodes protect all possible ESD or over  
2. V  
can be measured at  
a single reference  
ofs  
voltage damages between V and ground, V and V ,  
gg  
gg  
dd  
temperature. The drift error will be less than 0.25dB.  
V
dd  
and ground. Typical ESD diode current versus diode  
voltage for 11-connected diodes in series is shown in  
Figure 19. Under the recommended DC quiescent biasing  
condition at V =5V, I =650mA, V =-1V, typical gate  
3. V can either be characterized over temperature and  
ofs  
stored in a lookup table, or it can be measured at two  
temperatures and a linear fit used to calculate V at  
ds  
ds  
gg  
ofs  
terminal current is approximately 0.3mA. If an active  
biasing technique is selected for the AMMC6408 MMIC  
PA DC biasing, the active biasing circuit must have more  
than 10-times higher internal current that the gate  
terminal current.  
any temperature. This method gives an error close to  
the method #1.  
The RF ports are AC coupled at the RF input to the first  
stage and the RF output of the final stage. No ground  
wires are needed since ground connections are made  
with plated through-holes to the backside of the device.  
An optional output power detector network is also  
provided.  
A
typical measured detector voltage  
versus output power at 18GHz is shown Figure 20.  
8
50  
Vd1  
Vg  
DQ  
Vd 2  
DET_O  
50  
50  
800 μm  
50  
800μm  
6.5μm  
10K  
200  
1K  
RFin  
RFout  
50  
50  
800μm  
10K  
800μm  
200  
50  
6.5μm  
DQ  
DET_R  
Vd 2  
50  
Vd1  
Vg  
Figure ꢀ7. Simplified schematic for the MMIC die  
9
Figure ꢀ8. AMMC-6408 Bonding Pad Locations  
20  
0.45  
0.4  
1
|Icomp(I_METER.AMP1,0)| (mA)  
Diode_current  
18  
16  
0.35  
0.3  
14  
12  
10  
0.25  
0.2  
0.1  
8
6
0.15  
0.1  
0.05  
0
4
2
0
0.01  
5
5.5  
6
6.5  
7
7.5  
8
5
10  
15  
20  
25  
30  
35  
Pout[dBm]  
Voltage (V)  
Figure ꢀ9. Typical ESD diode current versus diode voltage for ꢀꢀ-connected  
diodes in series  
Figure 20. Typical Detector Voltage and Output Power, Freq=ꢀ8GHz  
10  
5nH = ~ 10 mil length gold wire bond (0.7 to 1 mil diameter)  
Figure 2ꢀ. AMMC-6408 Bonding Diagram  
Ordering Information:  
AMMC-6408-W10 = 10 devices per tray  
AMMC-6408-W50 = 50 devices per tray  
11  
Names and Contents of the Toxic and Hazardous Substances or Elements in the Products  
Toxic and Hazardous Substances or Elements  
Part Name  
Mercury  
(Hg)  
Hg  
Cadmium  
(Cd)  
Cd  
Hexavalent  
(Cr(VI))  
Polybrominated  
biphenyl (PBB)  
PBB  
Lead  
(Pb)  
(Pb)  
Polybrominated  
diphenylether (PBDE)  
PBDE  
Cr(VI)  
100pF capacitor  
: indicates that the content of the toxic and hazardous substance in all the homogeneous materials of the part is  
below the concentration limit requirement as described in SJ/T 11363-2006.  
: indicates that the content of the toxic and hazardous substance in at least one homogeneous material of the part  
exceeds the concentration limit requirement as described in SJ/T 11363-2006.  
(The enterprise may further explain the technical reasons for the “x” indicated portion in the table in accordance with  
the actual situations.)  
SJ/T 11363-2006  
SJ/T 11363-2006  
“×”  
Note: EU RoHS compliant under exemption clause of “lead in electronic ceramic parts (e.g. piezoelectronic devices)”  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved.  
AV02-0667EN - December 16, 2011  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY