AMMC-6530-W50 [BOARDCOM]

5–30 GHz Image Reject Mixer;
AMMC-6530-W50
型号: AMMC-6530-W50
厂家: Broadcom Corporation.    Broadcom Corporation.
描述:

5–30 GHz Image Reject Mixer

文件: 总8页 (文件大小:785K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMMC-6530  
5–30 GHz Image Reject Mixer  
Vg  
drain  
Data Sheet  
IF1  
IF2  
Vg  
gate  
Chip Size: 1300 x 1400 µm  
Chip Size Tolerance: 10 µm ( 0.4 mils)  
Chip Thickness: 100 10 µm (4 0.4 mils)  
Description  
Features  
Broad Band Performance 5–30 GHz  
Low Conversion Loss of 8 dB  
High Image Rejection of 15–20 dB  
Good 3rd Order Intercept of +18 dBm  
Single -1V, no current Supply Bias  
Avago’s AMMC-6530 is an image reject mixer that  
operates from 5 to 30 GHz. The cold channel FET mixer  
is designed to be an easy-to-use component for any  
chip and wire application. It can be used drain pumped  
for low conversion loss applications, or when gate  
pumped the mixer can provide high linearity for SSB  
up-conversion. An external 90-degree hybrid is used  
to achieve image rejection and a -1V voltage reference  
is needed. Intended applications include microwave  
radios, 802.16, VSAT, and satellite receivers. Since this  
one mixer can cover several bands, the AMMC-6530  
can reduce part inventory. The integrated mixer elimi-  
nates complex tuning and assembly processes typically  
required by hybrid (discrete-FET or diode) mixers. For  
improved reliability and moisture protection, the die is  
passivated at the active areas.  
Applications  
Microwave Radio Systems  
Satellite VSAT, DBS Up/Down Link  
LMDS & Pt-Pt mmW Long Haul  
Broadband Wireless Access (including 802.16 and  
802.20 WiMax)  
WLL and MMDS loops  
Absolute Maximum Ratings[1]  
Symbol Parameters/Conditions  
Units  
Min.  
Max.  
Vg  
Gate Supply Voltage  
V
0
-3  
Pin  
CW Input Power  
dBm  
°C  
25  
Tch  
Tstg  
Tmax  
Operating Channel Temperature  
Storage Case Temperature  
Max. Assembly Temp (60 sec max)  
+150  
+150  
+300  
°C  
-65  
°C  
Note:  
1. Operation in excess of any one of these conditions may result in permanent  
damage to this device.  
Attention: Observe precautions for  
handling electrostatic sensitive devices.  
ESD Machine Model (Class A)  
ESD Human Body Model (Class 0)  
Refer to Avago Application Note A004R:  
Electrostatic Discharge Damage and Control.  
AMMC-6530 DC Specifications/Physical Properties[1]  
Symbol  
Parameters and Test Conditions  
Units  
Typ.  
Ig  
Gate Supply Current  
mA  
0
(under any RF power drive and temperature)  
Vg  
Gate Supply Operating Voltage  
V
-1V  
Note:  
1. Ambient operational temperature TA=25°C unless otherwise noted.  
AMMC-6530 Typical Performance[2, 3] (TA= 25°C, Vg= -1V, IF frequency = 1 GHz, Zo=50 Ω)  
Symbol  
Parameters and Test Conditions  
Units  
Gate Pumped  
Drain Pumped  
FRF  
FLO  
FIF  
RF Frequency Range  
LO Frequency Range  
IF Frequency Range  
GHz  
GHz  
GHz  
5 – 30  
5 – 30  
DC – 5  
5 – 30  
5 – 30  
DC – 5  
Down Conversion  
Up Conversion  
Down Conversion  
PLO  
LO Port Pumping Power  
RF to IF Conversion Gain  
RF Port Return Loss  
dBm  
dB  
>10  
-10  
5
>0  
-15  
5
>10  
-8  
CG  
RL_RF  
RL_LO  
RL_IF  
IR  
dB  
10  
5
LO Port Return Loss  
IF Port Return Loss  
dB  
10  
10  
15  
22  
25  
15  
18  
10  
10  
15  
25  
25  
15  
dB  
10  
15  
22  
25  
15  
10  
Image Rejection Ratio  
LO to RF Port Isolation  
LO to IF Port Isolation  
RF to IF Port Isolation  
dB  
LO-RF Iso.  
LO-IF Iso.  
RF-IF Iso.  
IIP3  
dB  
dB  
dB  
Input IP3, Fdelta=100 MHz,  
Prf = -10 dBm, Plo = 15 dBm  
dBm  
P-1  
Input Port Power at 1dB gain  
compression point, Plo=+10 dBm  
dBm  
dB  
8
0
NF  
Noise Figure  
10  
12  
Notes:  
2. Small/Large signal data measured in a fully de-embedded test fixture form TA = 25°C.  
3. Specifications are derived from measurements in a 50Ω test environment.  
AMMC-6530 RF Specifications in Drain Pumped Test Configuration[4, 5, 6]  
(TA= 25°C, Vg= -1.0V, PLO= +10 dBm, Zo =50 Ω)  
Symbol  
Parameters and Test Conditions  
Units  
Min  
Typ.  
Max  
CG  
Conversion Gain  
f = 7 GHz  
f = 18 GHz  
f = 28 GHz  
dB  
dB  
dB  
-12.0  
-10.0  
-12.5  
-10.5  
-8.0  
-10.0  
IR  
Image Rejection Ratio  
dB  
-23.5 -18  
Notes:  
4. Performance verified 100% on-wafer.  
5. 100% on-wafer RF testing is done at RF frequency = 7, 18, and 28 GHz; IF frequency = 2 GHz.  
6. The external 90 degree hybrid coupler is from M/A-COM: PN 2032-6344-00. Frequency 1.0–  
2.0 GHz.  
2
AMMC-6530 Typical Performance under Gate Pumped Down Conversion Operation  
(TA = 25°C, Vg = -1V, Zo = 50Ω)  
RF  
Vg  
drain  
LSB  
USB  
IF1  
IF2  
gate  
Vg  
Note: The external 90° hybrid coupler is from M/A-  
COM: PN 2032-6344-00. Frequency is 1.0 – 2.0 GHz.  
-1V  
LO  
Highly linear down conversion or up conversion mixer application (Gate pumped mixer operation)  
0
-5  
0
-5  
15  
10  
5
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
0
USB(dB)  
LSB(dB)  
USB(dB)  
LSB(dB)  
-5  
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 2. Conversion Gain with IF  
terminated for Low Side Conversion  
LO=+10 dBm, IF=1 GHz.  
Figure 1. Conversion Gain with IF  
terminated for High Side Conversion  
LO=+10 dBm, IF=1 GHz.  
Figure 3. RF Port Input Power P-1dB.  
LO=+10 dBm, IF=1 GHz.  
25  
20  
15  
10  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
-25  
Plo=15(dBm)  
Plo=10(dBm)  
5
0
5
10  
15  
20  
25 30  
5
10  
15  
20  
25  
30  
-10  
-5  
0
5
10  
15  
20  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
LO POWER (dBm)  
Figure 5. Input 3rd Order Intercept Point.  
IF=1 GHz.  
Figure 4. Noise Figure.  
LO=+7 dBm, IF=1 GHz.  
Figure 6. Conversion Gain vs. LO Power.  
RF=21 GHz (-20 dBm), LO=20 GHz.  
3
AMMC-6530 Typical Performance under Gate Pumped Down Conversion Operation  
(TA = 25°C, Vg = -1V, Zo=50Ω  
)
0
0
-5  
-5  
-10  
-15  
-10  
-15  
-20  
Conv. Gain (dB)  
Return Loss (dB)  
-20  
0
1
2
3
4
5
6
-2  
-1.5  
-1  
-0.5  
FREQUENCY (GHz)  
Vg (V)  
Figure 7. Conversion Gain and Match vs.  
IF Frequency. RF=20 GHz, LO=10 dBm.  
Figure 8. Conversion Gain vs. Gate Voltage.  
RF=20 GHz, LO=10 dBm.  
0
60  
50  
40  
30  
RF  
LO  
-5  
-10  
-15  
-20  
20  
RF-IF  
LO-IF  
LO-RF  
10  
0
0
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. RF & LO Return Loss. LO=10 dBm.  
Figure 10. Isolation. LO=+10 dBm, IF=1 GHz.  
4
AMMC-6530 Typical Performance under Gate Pumped Up Conversion Operation  
(TA = 25°C, Vg = -1V, Zo=50Ω  
)
LO  
-1V  
Vg  
gate  
LSB  
USB  
IF2  
IF1  
drain  
Vg  
RF  
0
-5  
0
USB (dB)  
LSB (dB)  
USB (dB)  
-5  
LSB (dB)  
-10  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-50  
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. Up-conversion Gain wth IF  
terminated for High Side Conversion.  
LO=+5 dBm, IF=+5 dBm, IF=1 GHz.  
Figure 11. Up-conversion Gain with IF  
terminated for Low Side Conversion.  
LO=+5 dBm, IF=+5 dBm, IF=1 GHz.  
0
-5  
-5  
-7  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-9  
-11  
-13  
-15  
5
10  
15  
20  
25  
30  
0
2
4
6
8
10 12 14 16 18 20  
FREQUENCY (GHz)  
PLO=PIF (dB)  
Figure 13. LO-RF Up-conversion Isolation.  
Figure 14. Up-conversion Gain vs. Pumping  
Power. LO power=IF power, IF=1 GHz,  
RF=25 GHz.  
5
AMMC-6530 Typical Performance under Drain Pumped Down Conversion Operation  
(TA = 25°C, Vg = -1V, Zo = 50Ω  
)
LO  
Vg  
drain  
USB  
LSB  
IF1  
IF2  
gate  
Vg  
Note: The external 90° hybrid coupler is from M/A-  
COM: PN 2032-6344-00. Frequency is 1.0 – 2.0 GHz.  
RF  
-1V  
Low conversion loss mixer configuration (Drain pumped mixer operation)  
0
-5  
0
-5  
15  
10  
5
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
0
USB (dB)  
LSB (dB)  
USB(dBm)  
LSB(dBm)  
-5  
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. Conversion Gain with IF  
terminated for Low Side Conversion.  
LO=+10 dBm, IF=1 GHz.  
Figure 16. Conversion Gain with IF  
terminated for High Side Conversion.  
LO=+10 dBm, IF=1 GHz.  
Figure 17. RF Port Input Power P-1dB.  
LO=+10 dBm, IF=1 GHz.  
25  
0
-5  
20  
15  
10  
5
Plo=10(dBm)  
Plo=15(dBm)  
20  
15  
10  
5
-10  
-15  
-20  
-25  
0
0
5
10  
15  
Flo (dB)  
20  
25  
30  
-10  
-5  
0
5
10  
15  
20  
5
10  
15  
20  
25  
30  
LO POWER (dBm)  
FREQUENCY (GHz)  
Figure 19. Input 3rd Order Intercept Point.  
IF=1 GHz.  
Figure 20. Conversion Gain vs. LO power.  
RF=21 GHz (-20 dBm), LO=20 GHz.  
Figure 18. Noise Figure. LO=+7 dBm, IF=1 GHz.  
6
Biasing and Operation  
The recommended DC bias condition for optimum  
performance, and reliability is Vg = -1 volts. This can  
be applied to either of the two Vg connections as they  
are internally connected. There is no current consump-  
tion for the gate biasing because the FET mixer was  
designed for passive operation. For down conversion,  
the AMMC-6530 may be configured in a low loss or high  
linearity application. In a low loss configuration, the  
LO is applied through the drain. In this configuration,  
the AMMC-6530 is a “drain pumped mixer. For higher  
linearity applications, the LO is applied through the gate.  
In this configuration, the AMMC-6530 is a “gate pumped  
mixer” (or Resistive mixer). The mixer is also suitable for  
up-conversion applications under the gate pumped  
mixer operation shown on page 5.  
Please note that the image rejection and isolation per-  
formance is dependent on the selection of the low Figure 21. Simplified MMIC Schematic.  
frequency quadrature hybrid. The performance speci-  
fication of the low frequency quadrature hybrid as well  
as the phase balance and VSWR of the interface to the  
AMMC-6530 will affect the overall mixer performance.  
Assembly Techniques  
The backside of the MMIC chip is RF ground. For mi-  
crostrip applications the chip should be attached directly  
to the ground plane (e.g. circuit carrier or heatsink) using  
electrically conductive epoxy[1, 2]  
.
For best performance, the topside of the MMIC should be  
brought up to the same height as the circuit surround-  
ing it. This can be accomplished by mounting a gold  
plate metal shim (same length and width as the MMIC)  
under the chip which is of correct thickness to make the  
chip and adjacent circuit the same height. The amount of  
epoxy used for the chip and/or shim attachment should  
be just enough to provide a thin fillet around the bottom  
perimeter of the chip or shim. The ground plane should  
be free of any residue that may jeopardize electrical or  
mechanical attachment.  
Figure 22. AMMC-6530 Bond Pad locations.  
The location of the RF bond pads is shown in Figure  
7
23. Note that all the RF input and output ports are in a  
Ground-Signal-Ground configuration.  
The chip is 100 µm thick and should be handled with  
care.  
RF connections should be kept as short as reasonable  
This MMIC has exposed air bridges on the top surface  
to minimize performance degradation due to undesir- and should be handled by the edges or with a custom  
able series inductance. A single bond wire is normally collet (do not pick up the die with a vacuum on die  
sufficient for signal connections, however double  
bonding with 0.7 mil gold wire or use of gold mesh is  
recommended for best performance, especially near the  
high end of the frequency band. Thermosonic wedge  
bonding is the preferred method for wire attachment to  
the bond pads.  
center).  
This MMIC is also static sensitive and ESD precautions  
should be taken.  
Notes:  
1. Ablebond 84-1 LM1 silver epoxy is recommended.  
2. Eutectic attach is not recommended and may jeopardize reliability  
of the device.  
Gold mesh can be attached using a 2 mil round tracking  
tool and a tool force of approximately 22 grams and a  
ultrasonic power of roughly 55 dB for a duration of 76 8  
mS. The guided wedge at an untrasonic power level of  
64 dB can be used for 0.7 mil wire. The recommended  
wire bond stage temperature is 150 2°C. Caution should  
be taken to not exceed the Absolute Maximum Rating  
for assembly temperature and time.  
Part Number Ordering Information  
Part Number  
Devices per Container  
AMMC-6530-W10  
AMMC-6530-W50  
10  
50  
Gnd  
IF1  
LO/RF  
IF2  
Vg  
RF/LO  
Figure 23. AMMC-6530 Assembly Diagram.  
For product information and a complete list of distributors, please go to our web site:  
www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2008 Avago Technologies. All rights reserved. Obsoletes 5989-3945EN  
AV02-1293EN - July 30, 2008  

相关型号:

AMMC-6545

18 to 45 GHz Sub - Harmonic Mixer LO Frequency: 9-24GHz
AVAGO

AMMC-6545-W10

18 to 45 GHz Sub - Harmonic Mixer LO Frequency: 9-24GHz
AVAGO

AMMC-6545-W50

18 to 45 GHz Sub - Harmonic Mixer LO Frequency: 9-24GHz
AVAGO

AMMC-6550

15 to 50 GHz Image Rejection Mixer
BOARDCOM

AMMC-6550-W10

15 to 50 GHz Image Rejection Mixer
BOARDCOM

AMMC-6550-W50

15 to 50 GHz Image Rejection Mixer
BOARDCOM

AMMC002ANP-150

Flash Card, 2MX8, 150ns
SPANSION

AMMC002AWP

2, 4, or 8 Megabyte 5.0 Volt-only Flash Miniature Card
AMD

AMMC004ANP-150

Flash Card, 4MX8, 150ns
SPANSION

AMMC004AWP

2, 4, or 8 Megabyte 5.0 Volt-only Flash Miniature Card
AMD

AMMC008ANP-150

Flash Card, 8MX8, 150ns
SPANSION

AMMC008AWP

2, 4, or 8 Megabyte 5.0 Volt-only Flash Miniature Card
AMD