HLMP-EH25-QT000 [BOARDCOM]

Precision Optical Performance AlInGaP II LED Lamps;
HLMP-EH25-QT000
型号: HLMP-EH25-QT000
厂家: Broadcom Corporation.    Broadcom Corporation.
描述:

Precision Optical Performance AlInGaP II LED Lamps

光电
文件: 总13页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HLMP-ELxx, HLMP-EHxx, HLMP-EDxx  
Precision Optical Performance AlInGaP II LED Lamps  
Data Sheet  
Description  
Features  
Well defined spatial radiation patterns  
Viewing angles: 15°, 23°, 30°  
High luminous output  
Precision Optical Performance AlInGaP II (aluminum indi-  
um gallium phosphide) LEDs offer superior light output  
for excellent readability in sunlight and dependable per-  
formance. The AlInGaP II technology provides extremely  
stable light output over long periods of time.  
Colors:  
592 nm Amber  
617 nm Reddish-Orange  
630 nm Red  
3
These LED lamps are untinted, nondiffused, T-1 / pack-  
4
ages incorporating second generation optics which pro-  
duce well defined radiation patterns at specific viewing  
cone angles.  
High operating temperature:  
T
JLED  
=+130°C  
These lamps are made with an advanced optical grade  
epoxy offering superior high temperature and high  
moisture resistance performance in outdoor signal and  
sign applications. The maximum LED junction tempera-  
ture limit of +130°C enables high temperature operation  
in bright sunlight conditions. The epoxy contains both  
uv-a and uv-b inhibitors to reduce the effects of long  
term exposure to direct sunlight.  
Superior resistance to moisture  
Applications  
Traffic management:  
Traffic signals  
Work zone warning lights  
Variable message signs  
Commercial outdoor advertising:  
Signs  
Marquees  
Benefits  
Viewing angles match traffic management require-  
ments  
Automotive:  
Exterior and interior lights  
Colors meet automotive and traffic signal specifica-  
tions  
Superior light output performance in outdoor environ-  
ments  
Suitable for autoinsertion into PC boards  
3
T-1 / (5 mm) Precision Optical Performance AlInGaP II LED Lamps  
4
Selection Guide  
Luminous  
Intensity Iv (mcd)  
@ I(f) = 20 mA  
Typical Viewing Color and  
[3,4,5]  
Angle  
Dominant  
Wavelength  
1
2q /  
Lamps Without Standoffs  
(Outline Drawing A)  
Lamps With Standoffs  
(Outline Drawing B)  
2
[2]  
[1]  
(Deg.)  
(nm), Typ.  
Min.  
Max.  
15°  
Amber 592  
HLMP-EL16-S0000  
HLMP-EL16-TW000  
HLMP-EL16-UX000  
HLMP-EL16-UXR00  
HLMP-EL16-VW000  
HLMP-EL16-VX400  
HLMP-EL16-VY000  
HLMP-EL16-VYR00  
HLMP-EL16-VYK00  
HLMP-EL16-VYS00  
HLMP-EL18-S0000  
1900  
2500  
3200  
3200  
4200  
7200  
4200  
4200  
4200  
4200  
2500  
3200  
4200  
1900  
2500  
2500  
3200  
3200  
4200  
7200  
9300  
9300  
7200  
21000  
12000  
12000  
12000  
12000  
7200  
9300  
9300  
HLMP-EL18-UX000  
HLMP-EL18-VY000  
HLMP-EL18-VYR00  
HLMP-EL18-VYS00  
HLMP-EH18-UX000  
Red-Orange 617 HLMP-EH16-TW000  
HLMP-EH16-UX000  
HLMP-EH16-VX0DD  
Red 630  
HLMP-ED16-S0000  
HLMP-ED16-TW000  
HLMP-ED18-S0000  
HLMP-ED18-TW000  
HLMP-ED18-TWT00  
HLMP-ED18-UX000  
HLMP-ED18-UXT00  
HLMP-ED18-VX000  
7200  
7200  
9300  
9300  
9300  
HLMP-ED16-UX000  
HLMP-ED16-UXT00  
HLMP-ED16-VX000  
Notes:  
1. Dominant Wavelength, λ , is derived from the CIE Chromaticity Diagram and represents the color of the lamp.  
d
2. ꢀq is the off-axis angle where the luminous intensity is one half the on-axis intensity.  
1/2  
3. The luminous intensity is measured on the mechanical axis of the lamp package.  
4. The optical axis is closely aligned with the package mechanical axis.  
5. Tolerance for each intensity bin limit is 15ꢀ.  
2
3
T-1 / (5 mm) Precision Optical Performance AlInGaP II Led Lamps (Continued)  
4
Selection Guide  
Luminous  
Intensity Iv (mcd)  
@ I(f) = 20 mA  
Typical Viewing Color and  
[3,4,5]  
Angle  
Dominant  
Wavelength  
(nm), Typ.  
1
2q /  
Lamps Without Standoffs  
(Outline Drawing A)  
Lamps With Standoffs  
(Outline Drawing B)  
2
[2]  
[1]  
(Deg.)  
Min.  
Max.  
23°  
Amber 592  
HLMP-EL25-Q0000  
HLMP-EL27-Q0000  
HLMP-EL27-QTR00  
HLMP-EL27-RU000  
1150  
1150  
1500  
1900  
1900  
1900  
1900  
2500  
2500  
2500  
2500  
3200  
1150  
1900  
2500  
3200  
3200  
1900  
2500  
2500  
3200  
4200  
4200  
5500  
5500  
5500  
7200  
7200  
7200  
7200  
9300  
3200  
5500  
7200  
9300  
9300  
5500  
7200  
7200  
HLMP-EL25-RU000  
HLMP-EL25-SU000  
HLMP-EL25-SVK00  
HLMP-EL25-SV000  
HLMP-EL25-SVR00  
HLMP-EL25-TW000  
HLMP-EL25-TWR00  
HLMP-EL25-TWK00  
HLMP-EL25-TWS00  
HLMP-EL25-UX000  
HLMP-EL27-SV000  
HLMP-EL27-SVR00  
HLMP-EL27-TW000  
HLMP-EL27-TWR00  
Red-Orange 617 HLMP-EH25-QT000  
HLMP-EH25-SV000  
HLMP-EH27-QT000  
HLMP-EH27-TW000  
HLMP-EH25-TW000  
Red 630  
HLMP-ED25-RU000  
HLMP-ED25-RUT00  
HLMP-ED25-SV000  
HLMP-ED25-TW000  
HLMP-ED25-TWT00  
HLMP-ED27-SV000  
HLMP-ED27-TW000  
HLMP-ED27-TWT00  
Notes:  
1. Dominant Wavelength, λ , is derived from the CIE Chromaticity Diagram and represents the color of the lamp.  
d
2. ꢀq is the off-axis angle where the luminous intensity is one half the on-axis intensity.  
1/2  
3. The luminous intensity is measured on the mechanical axis of the lamp package.  
4. The optical axis is closely aligned with the package mechanical axis.  
5. Tolerance for each intensity bin limit is 15ꢀ.  
3
3
T-1 / (5 mm) Precision Optical Performance AlInGaP II Led Lamps (Continued)  
4
Selection Guide  
Luminous  
Intensity Iv (mcd)  
@ I(f) = 20 mA  
Typical Viewing Color and  
[3,4,5]  
Angle  
Dominant  
Wavelength  
1
2q /  
Lamps Without Standoffs  
(Outline Drawing A)  
Lamps With Standoffs  
(Outline Drawing B)  
2
[2]  
[1]  
(Deg.)  
(nm), Typ.  
Min.  
Max.  
30°  
Amber 592  
HLMP-EL31-P0000  
HLMP-EL31-QT000  
HLMP-EL31-QTR00  
HLMP-EL31-SV000  
HLMP-EL31-SVK00  
HLMP-EL31-SVR00  
HLMP-EL31-STR00  
HLMP-EL31-SUK00  
HLMP-EL31-SUS00  
HLMP-EL31-SUR00  
HLMP-EL31-SVK00  
HLMP-EL31-SVS00  
880  
HLMP-EL33-QT000  
HLMP-EL33-SV000  
HLMP-EL33-SVR00  
1150  
1150  
1900  
1900  
1900  
1900  
1900  
1900  
1900  
1900  
1900  
1150  
1500  
1900  
1150  
1150  
1900  
1900  
1500  
1500  
1900  
1900  
3200  
3200  
5500  
5500  
5500  
3200  
4200  
4200  
4200  
5500  
5500  
3200  
4200  
5500  
Red-Orange 617 HLMP-EH31-QT000  
HLMP-EH33-RU000  
HLMP-EH33-SV000  
HLMP-ED33-Q0000  
HLMP-EH31-SV000  
Red 630  
HLMP-ED31-Q0000  
HLMP-ED31-QTT00  
HLMP-ED31-ST000  
HLMP-ED31-SUT00  
HLMP-ED31-RU000  
HLMP-ED31-RUT00  
HLMP-ED31-SV000  
HLMP-ED31-SVT00  
3200  
3200  
4200  
4200  
4200  
5500  
5500  
HLMP-ED33-RUT00  
HLMP-ED33-SV000  
HLMP-ED33-SVT00  
Notes:  
1. Dominant Wavelength, λ , is derived from the CIE Chromaticity Diagram and represents the color of the lamp.  
d
2. ꢀq is the off-axis angle where the luminous intensity is one half the on-axis intensity.  
1/2  
3. The luminous intensity is measured on the mechanical axis of the lamp package.  
4. The optical axis is closely aligned with the package mechanical axis.  
5. Tolerance for each intensity bin limit is 15ꢀ.  
4
Part Numbering System  
HLMP- x x xx - x x x xx  
Mechanical Options  
00: Bulk Packaging  
DD: Ammo Pack  
YY: Flexi-Bin, Bulk Packaging  
ZZ: Flexi-Bin; Ammo Pack  
Color Bin & V Selections  
F
0: No color bin limitation  
4: Amber color bin 4 only  
K: Amber color bins 2 and 4 only  
L: Color bins 4 and 6  
R: Amber color bins 1, 2, 4, and 6 with V max of 2.6 V  
F
S: Amber color bins 2 and 4 with V max of 2.6 V  
F
T: Red color with V max of 2.6 V  
F
U: Amber color bin 4 with V max of 2.6 V  
F
W: Color bins 2, 4 and 6 with V max of 2.6 V  
F
Y: Color bins 4 and 6 with V max of 2.6 V  
F
Maximum Intensity Bin  
0: No Iv bin limitation  
Minimum Intensity Bin  
Viewing Angle and Lead Standoffs  
16: 15 degree without lead standoffs  
18: 15 degree with lead standoffs  
25: 23 degree without lead standoffs  
27: 23 degree with lead standoffs  
31: 30 degree without lead standoffs  
33: 30 degree with lead standoffs  
Color  
D: 630 nm Red  
H: 617 nm Red-Orange  
L: 592 nm Amber  
Package  
E: 5 mm Round  
Note: Please refer to AB 5337 for complete information on part numbering system.  
5
Package Dimensions  
A
B
5.00 0.20  
(0.197 0.008)  
5.00 0.20  
(0.197 0.008)  
1.14 0.20  
(0.045 0.008)  
8.71 0.20  
(0.343 0.008)  
8.71 0.20  
(0.343 0.008  
d
1.14 0.20  
(0.045 0.008)  
2.35 (0.093)  
MAX.  
31.60  
(1.244)  
31.60  
MIN.  
MIN.  
0.70 (0.028)  
MAX.  
(1.244)  
1.50 0.15  
(0.059 0.006)  
0.70 (0.028)  
MAX.  
PART NO.  
d
HLMP-EX18-xxxxx  
12.60 0.18  
(0.496 0.007)  
CATHODE  
LEAD  
CATHODE  
LEAD  
HLMP-EX27-xxxxx  
HLMP-EX33-xxxxx  
11.33 0.25  
(0.446 0.010)  
11.99 0.25  
(0.472 0.010)  
0.50 0.10  
(0.020 0.004)  
0.50 0.10  
(0.020 0.004)  
SQ. TYP.  
SQ. TYP.  
1.00  
(0.039)  
1.00  
(0.039)  
MIN.  
MIN.  
5.80 0.20  
(0.228 0.008)  
5.80 0.20  
(0.228 0.008)  
CATHODE  
FLAT  
CATHODE  
FLAT  
2.54 0.38  
(0.100 0.015)  
2.54 0.38  
(0.100 0.015)  
Absolute Maximum Ratings at T = 25°C  
A
[1,2,3]  
DC Forward Current  
Peak Pulsed Forward Current  
..................................................................................... 50 mA  
[2,3]  
.......................................................................100 mA  
Average Forward Current ...................................................................................... 30 mA  
Reverse Voltage (I = 100 µA)........................................................................................ 5 V  
R
LED Junction Temperature....................................................................................... 130°C  
Operating Temperature .........................................................................-40°C to +100°C  
Storage Temperature ..............................................................................-40°C to +100°C  
Notes:  
1. Derate linearly as shown in Figure 4.  
2. For long term performance with minimal light output degradation, drive currents between  
10 mA and 30 mA are recommended. For more information on recommended drive condi-  
tions, please refer to Application Brief I-024 (5966-3087E).  
3. Please contact your sales representative about operating currents below 10 mA.  
6
Electrical/Optical Characteristics at T = 25°C  
A
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Forward Voltage  
IF = 20 mA  
Amber (λd = 592 nm)  
Red-Orange (λd = 617 nm)  
Red (λd = 630 nm)  
2.3  
2.35  
2.4  
VF  
VR  
2.6[1]  
V
V
Reverse Voltage  
5
20  
IR = 100 µA  
Peak Wavelength  
Amber  
Red-Orange  
Red  
Peak of Wavelength of  
Spectral Distribution  
at IF = 20 mA  
594  
623  
639  
λPEAK  
λ1/2  
ts  
nm  
nm  
ns  
Spectral Halfwidth  
17  
Wavelength Width at Spectral Distrib-  
ution 1/2 Power Point at IF = 20 mA  
Speed of Response  
20  
Exponential Time  
Constant, e-t/t  
s
Capacitance  
C
40  
pF  
VF = 0, f = 1 MHz  
Thermal Resistance  
RQJ-PIN  
240  
°C/W  
LED Junction-to-Cathode Lead  
Luminous Efficacy[2]  
Amber  
Red-Orange  
Red  
Emitted Luminous  
Power/Emitted Radiant Power  
at If = 20 mA  
500  
235  
155  
hv  
lm/W  
mlm  
Luminous Flux  
j
V
1000  
IF = 20 mA  
Luminous Efficiency [3]  
Amber  
h
e
Emitted  
Luminous Flux/  
Electrical Power  
22  
22  
21  
Red-Orange  
Red  
lm/W  
Notes:  
1. For options -xxRxx, -xxSxx, -xxTxx, -xxUxx, -xxWxx, -xxYxx, max forward voltage (Vf) is 2.6 V. Refer to Vf bin table.  
2. The radiant intensity, I , in watts per steradian, may be found from the equation I = I /h , where I is the luminous intensity in candelas and h  
e
e
v
v
v
v
is the luminous efficacy in lumens/watt.  
3. h = j / I x V , where j is the emitted luminous flux, I is electrical forward current and V is the forward voltage.  
e
V
F
F
V
F
F
1.0  
60  
50  
40  
30  
20  
10  
0
RED-ORANGE  
RED  
AMBER  
0.5  
AMBER  
RED  
2.5  
0
550  
600  
650  
700  
0
0.5  
1.0  
1.5  
2.0  
3.0  
WAVELENGTH – nm  
FORWARD VOLTAGE – V  
Figure 1. Relative Intensity vs. Peak Wavelength.  
Figure 2a. Forward Current vs. Forward Voltage for  
Option -xxRxx, -xxSxx, -xxTxx, -xxUxx, -xxWxx and  
-xxYxx.  
7
100  
90  
80  
70  
60  
50  
40  
30  
2.5  
2.0  
1.5  
1.0  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
RED & RED-ORANGE  
RED  
AMBER  
AMBER  
2.5  
0.5  
0
20  
10  
0
0
0
10  
20  
30  
40  
50  
0
20  
40  
60  
80  
100  
120  
1.0  
1.5  
2.0  
3.0  
FORWARD CURRENT – mA  
T
– AMBIENT TEMPERATURE – C  
V
– FORWARD VOLTAGE – V  
A
F
Figure 2b. Forward Current vs. Forward Voltage.  
Figure 3. Relative Luminous Intensity vs. Forward  
Current.  
Figure 4. Maximum Forward Current vs. Ambient Tem-  
perature. Derating Based on T = 130°C.  
JMAX  
1.0  
0.8  
0.6  
0.4  
0.2  
0
-100  
-50  
0
50  
100  
ANGULAR DISPLACEMENT – DEGREES  
Figure 5. Representative Spatial Radiation Pattern for 15° Viewing Angle Lamps.  
1.0  
0.8  
0.6  
0.4  
0.2  
0
-100  
-50  
0
50  
100  
ANGULAR DISPLACEMENT – DEGREES  
Figure 6. Representative Spatial Radiation Pattern for 23° Viewing Angle Lamps.  
8
1.0  
0.8  
0.6  
0.4  
0.2  
0
-100  
-50  
0
50  
100  
ANGULAR DISPLACEMENT – DEGREES  
Figure 7. Representative Spatial Radiation Pattern for 30° Viewing Angle Lamps.  
10  
RED-ORANGE  
1
RED  
AMBER  
0.1  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
JUNCTION TEMPERATURE – C  
Figure 8. Relative light output vs. junction temperature  
Amber Color Bin Limits  
(nm at 20 mA)  
Intensity Bin Limits  
(mcd at 20 mA)  
[2]  
Vf Bin Table  
Bin Name  
Bin Name  
Min.  
Max.  
Bin Name  
Min.  
Max.  
Min.  
2.0  
2.2  
2.4  
Max.  
2.2  
1
2
4
6
584.5  
587.0  
589.5  
592.0  
587.0  
589.5  
592.0  
594.5  
P
880  
1150  
1500  
1900  
2500  
3200  
4200  
5500  
7200  
9300  
12000  
16000  
VA  
VB  
VC  
Q
R
S
1150  
1500  
1900  
2500  
3200  
4200  
5500  
7200  
9300  
12000  
2.4  
2.6  
Tolerance for each bin limit is 0.05 V.  
T
Tolerance for each bin limit is 0.5 nm.  
U
V
W
X
Y
Z
Notes:  
1. Bin categories are established for classifi-  
cation of products. Products may not be  
available in all bin categories.  
2. Vf Bin table only available for those part  
number with options -xxRxx, -xxSxx, -xx-  
Txx, -xxUxx, -xxWxx, -xxYxx.  
Tolerance for each bin limit is 15ꢀ.  
9
Note:  
Precautions:  
Lead Forming:  
1. PCB with different size and design (component density) will have  
different heat mass (heat capacity). This might cause a change in  
temperature experienced by the board if same wave soldering  
setting is used. So, it is recommended to re-calibrate the soldering  
profile again before loading a new type of PCB.  
The leads of an LED lamp may be preformed or cut to  
length prior to insertion and soldering on PC board.  
2. Avago Technologies’ high brightness LED are using high efficiency  
LED die with single wire bond as shown below. Customer is advised  
to take extra precaution during wave soldering to ensure that the  
maximum wave temperature does not exceed 250°C and the solder  
contact time does not exceeding 3sec. Over-stressing the LED  
during soldering process might cause premature failure to the LED  
due to delamination.  
For better control, it is recommended to use proper  
tool to precisely form and cut the leads to applicable  
length rather than doing it manually.  
If manual lead cutting is necessary, cut the leads after  
the soldering process. The solder connection forms  
a mechanical ground which prevents mechanical  
stress due to lead cutting from traveling into LED  
package. This is highly recommended for hand solder  
operation, as the excess lead length also acts as small  
heat sink.  
Avago Technologies LED configuration  
Soldering and Handling:  
CaremustbetakenduringPCBassemblyandsoldering  
process to prevent damage to the LED component.  
CATHODE  
LED component may be effectively hand soldered  
to PCB. However, it is only recommended under  
unavoidable circumstances such as rework. The  
closest manual soldering distance of the soldering  
heat source (soldering iron’s tip) to the body is  
1.59mm. Soldering the LED using soldering iron tip  
closer than 1.59mm might damage the LED.  
Note: Electrical connection between bottom surface of LED die and  
the lead frame is achieved through conductive paste.  
Any alignment fixture that is being applied during  
wave soldering should be loosely fitted and should  
not apply weight or force on LED. Non metal material  
is recommended as it will absorb less heat during  
wave soldering process.  
1.59mm  
At elevated temperature, LED is more susceptible to  
mechanical stress. Therefore, PCB must allowed to  
cool down to room temperature prior to handling,  
which includes removal of alignment fixture or pallet.  
ESD precaution must be properly applied on the  
soldering station and personnel to prevent ESD  
damage to the LED component that is ESD sensitive.  
Do refer to Avago application note AN 1142 for details.  
The soldering iron used should have grounded tip to  
ensure electrostatic charge is properly grounded.  
If PCB board contains both through hole (TH) LED and  
other surface mount components, it is recommended  
that surface mount components be soldered on the  
top side of the PCB. If surface mount need to be on the  
bottom side, these components should be soldered  
using reflow soldering prior to insertion the TH LED.  
Recommended soldering condition:  
Wave  
Soldering  
Manual Solder  
Dipping  
[1, 2]  
Recommended PC board plated through holes (PTH)  
Pre-heat temperature 105 °C Max.  
-
size for LED component leads.  
Preheat time  
Peak temperature  
Dwell time  
60 sec Max  
250 °C Max.  
3 sec Max.  
-
LED component  
lead size  
Plated through  
hole diameter  
260 °C Max.  
5 sec Max  
Diagonal  
0.45 x 0.45 mm  
0.636 mm  
0.98 to 1.08 mm  
(0.018x 0.018 inch) (0.025 inch) (0.039 to 0.043 inch)  
Note:  
1. Above conditions refers to measurement with thermocouple  
mounted at the bottom of PCB.  
2. It is recommended to use only bottom preheaters in order to reduce  
thermal stress experienced by LED.  
0.50 x 0.50 mm 0.707 mm 1.05 to 1.15 mm  
(0.020x 0.020 inch) (0.028 inch) (0.041 to 0.045 inch)  
Over-sizing the PTH can lead to twisted LED after  
clinching. On the other hand under sizing the PTH can  
cause difficulty inserting the TH LED.  
Wave soldering parameters must be set and  
maintained according to the recommended  
temperature and dwell time. Customer is advised  
to perform daily check on the soldering profile to  
ensure that it is always conforming to recommended  
soldering conditions.  
10  
Refer to application note AN5334 for more information about soldering and handling of high brightness TH LED lamps.  
Example of Wave Soldering Temperature Profile for TH LED  
Recommended solder:  
LAMINAR WAVE  
HOT AIR KNIFE  
Sn63 (Leaded solder alloy)  
TURBULENT WAVE  
SAC305 (Lead free solder alloy)  
250  
200  
150  
100  
50  
Flux: Rosin ꢀux  
Solder bath temperature:  
245°C 5°C (maximum peaꢁ  
temperature = 250°C)  
Dwell time: 1.5 sec - 3.0 sec  
(maximum = 3sec)  
Note: Allow for board to be  
suꢂciently cooled to room  
temperature before exerting  
mechanical force.  
PREHEAT  
0
90  
100  
30  
40  
80  
10  
20  
60  
70  
50  
TIME (SECONDS)  
Ammo Pack Drawing  
6.35 1.30  
(0.25 0.0512)  
12.70 1.00  
(0.50 0.0394)  
CATHODE  
20.50 1.00  
(0.807 0.039)  
9.125 0.625  
(0.3593 0.0246)  
18.00 0.50  
(0.7087 0.0197)  
A
A
4.00 0.20  
(0.1575 0.008)  
12.70 0.30  
(0.50 0.0118)  
TYP.  
VIEW A–A  
0.70 0.20  
(0.0276 0.0079)  
ALL DIMENSIONS IN MILLIMETERS (INCHES).  
NOTE: THE AMMO-PACKS DRAWING IS APPLICABLE FOR PACKAGING OPTION -DD & -ZZ AND REGARDLESS OF STANDOFF OR NON-STANDOFF.  
11  
Packaging Box for Ammo Packs  
LABEL ON  
THIS SIDE  
OF BOX.  
FROM LEFT SIDE OF BOX,  
ADHESIVE TAPE MUST BE  
FACING UPWARD.  
O
+
N
G
L
A
O
S
E
A
C
V
N
E
I
D
A
H
O
G
O
A
E
D
O
C
E
H
T
A
T
C
ANODE LEAD LEAVES  
THE BOX FIRST.  
L
E
B
A
L
R
E
H
T
O
M
NOTE: THE DIMENSION FOR AMMO PACK IS APPLICABLE FOR THE DEVICE WITH STANDOFF AND WITHOUT STANDOFF.  
Packaging Label:  
(i) Avago Mother Label: (Available on packaging box of ammo pack and shipping box)  
STANDARD LABEL LS0002  
RoHS Compliant  
(1P) Item: Part Number  
e3  
max temp 250C  
(Q) QTY: Quantity  
(1T) Lot: Lot Number  
LPN:  
CAT: Intensity Bin  
BIN: Refer to below information  
(9D)MFG Date: Manufacturing Date  
(P) Customer Item:  
(V) Vendor ID:  
(9D) Date Code: Date Code  
Made In: Country of Origin  
DeptID:  
12  
(ii) Avago Baby Label (Only available on bulk packaging)  
RoHS Compliant  
e3  
max temp 250C  
Lamps Baby Label  
(1P) PART #: Part Number  
(1T) LOT #: Lot Number  
(9D)MFG DATE: Manufacturing Date  
QUANTITY: Packing Quantity  
C/O: Country of Origin  
Customer P/N:  
CAT: Intensity Bin  
Supplier Code:  
BIN: Refer to below information  
DATECODE: Date Code  
Acronyms and Definition:  
BIN:  
Example:  
(i) Color bin only or VF bin only  
(i) Color bin only or VF bin only  
BIN: 2 (represent color bin 2 only)  
(Applicable for part number with color bins but  
without VF bin OR part number with VF bins and  
no color bin)  
BIN: VB (represent VF bin “VBonly)  
(ii) Color bin incorporate with VF Bin  
BIN: 2VB  
OR  
(ii) Color bin incorporated with VF Bin  
VB: VF bin “VB”  
(Applicable for part number that have both color  
bin and VF bin)  
2: Color bin 2 only  
DISCLAIMER: AVAGO’S PRODUCTS AND SOFTWARE ARE NOT SPECIFICALLY DESIGNED, MANUFACTURED OR AUTHORIZED FOR SALE  
AS PARTS, COMPONENTS OR ASSEMBLIES FOR THE PLANNING, CONSTRUCTION, MAINTENANCE OR DIRECT OPERATION OF A NUCLE-  
AR FACILITY OR FOR USE IN MEDICAL DEVICES OR APPLICATIONS. CUSTOMER IS SOLELY RESPONSIBLE, AND WAIVES ALL RIGHTS TO  
MAKE CLAIMS AGAINST AVAGO OR ITS SUPPLIERS, FOR ALL LOSS, DAMAGE, EXPENSE OR LIABILITY IN CONNECTION WITH SUCH USE.  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2014 Avago Technologies. All rights reserved. Obsoletes AVO1-0701EN  
AV02-342EN - July 18, 2014  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY