HLMP-EL2B-XYKXX [BOARDCOM]

New T-1¾ (5mm) Extra High Brightness AlInGaP LED Lamps;
HLMP-EL2B-XYKXX
型号: HLMP-EL2B-XYKXX
厂家: Broadcom Corporation.    Broadcom Corporation.
描述:

New T-1¾ (5mm) Extra High Brightness AlInGaP LED Lamps

文件: 总11页 (文件大小:385K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HLMP-EGxx, HLMP-EHxx, HLMP-ELxx  
New T-1¾ (5mm) Extra High Brightness AlInGaP LED Lamps  
Data Sheet  
Description  
Features  
These Precision Optical Performance AlInGaP LEDs  
provide superior light output for excellent readability in  
sunlight and are extremely reliable. AlInGaP LED tech-  
nology provides extremely stable light output over long  
periods of time. Precision Optical Performance lamps  
utilize the aluminum indium gallium phosphide (AlInGaP)  
technology.  
Viewing angle: 15°, 23°, 30°  
High luminous output  
•ꢀ Colors:  
590nm Amber  
615nm Red Orange  
626nm Red  
•ꢀ Package options:  
With or without lead standoff  
These LED lamps are untinted, T-1¾ packages incorpo-  
rating second generation optics producing well defined  
spatial radiation patterns at specific viewing cone angles.  
•ꢀ Superior resistance to moisture  
These lamps are made with an advanced optical grade  
epoxy offering superior high temperature and high  
moisture resistance performance in outdoor signal and  
sign application. The maximum LED junction tempera-  
ture limit of +130°C enables high temperature operation  
in bright sunlight conditions. The epoxy contains both  
uv-a and uv-b inhibitors to reduce the effects of long  
term exposure to direct sunlight.  
•ꢀ Untinted for 15°, 23° and 30° lamps  
Applications  
•ꢀꢀ Traffic management:  
-
-
-
-
Traffic signals  
Pedestrian signals  
Work zone warning lights  
Variable message signs  
Benefits  
Solar Power signs  
•ꢀꢀ Superior performance for outdoor environments  
•ꢀꢀ Suitable for auto-insertion onto PC board  
Commercial outdoor advertising  
-
Signs  
-
Marquees  
1
Package Dimension  
A: Non-standoff  
5.00 0.20  
(0.197 0.008)  
5.00 0.20  
(0.197 0.008)  
1.14 0.20  
(0.045 0.008)  
8.71 0.20  
(0.343 0.008)  
8.71 0.20  
(0.343 0.008)  
d
1.14 0.20  
(0.045 0.008)  
2.35 (0.093)  
MAX.  
0.70 (0.028)  
MAX.  
1.50 0.15  
(0.059 0.006)  
31.60  
MIN.  
31.60  
(1.244)  
MIN.  
(1.244)  
0.70 (0.028)  
MAX.  
CATHODE  
LEAD  
CATHODE  
LEAD  
0.50 0.10  
(0.020 0.004)  
0.50 0.10  
(0.020 0.004)  
SQ. TYP.  
SQ. TYP.  
1.00  
MIN.  
1.00  
(0.039)  
MIN.  
(0.039)  
5.80 0.20  
(0.228 0.008)  
5.80 0.20  
(0.228 0.008)  
CATHODE  
FLAT  
CATHODE  
FLAT  
2.54 0.38  
(0.100 0.015)  
2.54 0.38  
(0.100 0.015)  
Viewing Angle  
d
15°  
12.39 0.25  
(0.476 0.010)  
23° & 30°  
11.96 0.25  
(0.459 0.010)  
Notes:  
1. All dimensions are in millimeters (inches)  
2. Leads are mild steel with tin plating.  
3. The epoxy meniscus is 1.21mm max  
4. For Identification of polarity after the  
leads are trimmed off, please refer to the  
illustration below:  
CATHODE  
ANODE  
2
Device Selection Guide  
Typical viewing  
Luminous Intensity  
Color and Dominant  
Wavelength (nm),  
Lamps without Standoff  
on leads  
(Package drawing A)  
Lamps with Standoff  
on leads  
(Package drawing B)  
[1,2,5]  
Iv (mcd)  
at 20 mA  
Angle  
[4]  
[3]  
2θ (Deg)  
Typ  
Min  
Max  
1/2  
15°  
Amber 590  
HLMP-EL1A-Z1Kxx  
HLMP-EL1A-Z1LDD  
HLMP-EG1A-Z10xx  
HLMP-EH1A-Z10DD  
HLMP-EL2A-XYKxx  
HLMP-EL2A-XYLDD  
HLMP-EG2A-XY0xx  
HLMP-EH2A-XY0DD  
HLMP-EL3A-WXKxx  
HLMP-EL3A-WXLDD  
HLMP-EG3A-WX0xx  
HLMP-EH3A-WX0xx  
HLMP-EL1B-Z1Kxx  
HLMP-EL1B-Z1LDD  
HLMP-EG1B-Z10DD  
HLMP-EH1B-Z10DD  
HLMP-EL2B-XYKxx  
HLMP-EL2B-XYLDD  
HLMP-EG2B-XY0xx  
HLMP-EH2B-XY0DD  
HLMP-EL3B-WXKxx  
HLMP-EL3B-WXLDD  
HLMP-EG3B-WX0xx  
HLMP-EH3B-WX0DD  
12000  
12000  
12000  
12000  
7200  
7200  
7200  
7200  
5500  
5500  
5500  
5500  
21000  
21000  
21000  
21000  
12000  
12000  
12000  
12000  
9300  
Red 626  
Red Orange 615  
Amber 590  
23°  
Red 626  
Red Orange 615  
Amber 590  
30°  
9300  
Red 626  
9300  
Red Orange 615  
9300  
Notes:  
1. The luminous intensity is measured on the mechanical axis of the lamp package and it is tested with pulsing condition.  
2. The optical axis is closely aligned with the package mechanical axis.  
3. Dominant wavelength, λ , is derived from the CIE Chromaticity Diagram and represents the color of the lamp.  
d
4.  
θ is the off-axis angle where the luminous intensity is half the on-axis intensity.  
½
5. Tolerance for each bin limit is 15ꢀ  
Part Numbering System  
HLMP – E x xx - x x x xx  
Mechanical Options  
00: Bulk packaging  
DD : Ammo Pack  
Color Bin Selections  
0 : Full color distribution  
K : Color Bin 2 & 4  
L : Color Bin 4 & 6  
Maximum Intensity Bin  
Refer to Device Selection Guide  
Minimum Intensity Bin  
Refer to Device Selection Guide  
Viewing Angle and Lead Standoꢀs  
1A: 15° without lead standoꢀ  
1B: 15° with lead standoꢀ  
2A: 23° without lead standoꢀ  
2B: 23° with lead standoꢀ  
3A: 30° without lead standoꢀ  
3B: 30° with lead standoꢀ  
Color  
G : Red 626nm  
L : Amber 590nm  
H: Red Orange 615nm  
Note: Please refer to AB 5337 for complete information on part numbering system.  
3
Absolute Maximum Ratings  
TJ = 25°C  
Parameter  
Red/ Amber/ Red Orange  
Unit  
mA  
mA  
mA  
mW  
V
DC Forward Current [2]  
Peak Forward Current  
Average forward current  
Power Dissipation  
50  
100 [1]  
30  
120  
Reverse Voltage  
5
Operating Temperature Range  
Storage Temperature Range  
-40 to +100  
-40 to +100  
°C  
°C  
Notes:  
1. Duty Factor 30ꢀ, frequency 1KHz.  
2. Derate linearly as shown in Figure 4  
Electrical / Optical Characteristics  
T = 25°C  
J
Parameter  
Symbol  
Min  
Typ.  
Max  
Units  
Test Conditions  
Forward Voltage  
IF = 20 mA  
Amber/ Red / Red Orange  
VF  
VR  
ld  
1.8  
5
2.1  
2.4  
V
Reverse Voltage  
Dominant Wavelength [1]  
V
IR = 100 μA  
IF = 20 mA  
nm  
Amber  
Red  
Red Orange  
584.5  
618.0  
612.0  
590.0  
626.0  
615.0  
594.5  
630.0  
619.0  
Peak Wavelength  
Amber  
lPEAK  
nm  
nm  
Peak of Wavelength of  
Spectral Distribution  
at IF = 20 mA  
594  
634  
621  
Red  
Red Orange  
Spectral Halfwidth  
Amber  
Δl1/2  
13  
14  
14  
Red  
Red Orange  
Thermal resistance  
Luminous Efficacy [2]  
Amber  
RqJ-PIN  
240  
°C/W  
lm/W  
LED junction to anode lead  
ηv  
Emitted Luminous Flux/  
Emitted Radiant Flux  
500  
200  
265  
Red  
Red Orange  
Luminous Flux  
Amber  
Red  
Red Orange  
Luminous Efficiency [3]  
Amber  
Φv  
ηe  
mlm  
IF = 20 mA  
2100  
2300  
2300  
lm/W  
nm/°C  
Emitted Luminous  
Flux/Electrical Power  
50  
55  
55  
Red  
Red Orange  
Thermal coefficient of ld  
IF = 20 mA ;  
Amber  
Red  
Red Orange  
0.08  
0.05  
0.07  
+25°C ≤ TJ ≤ +100°C  
Notes:  
1. The dominant wavelength, λ is derived from the CIE Chromaticity Diagram referenced to Illuminant E. Tolerance for each color of dominant  
d
wavelength is +/- 0.5nm.  
2. The radiant intensity, I in watts per steradian, maybe found from the equation I = I / η where Iv is the luminous intensity in candela and η is  
e
e
v
V
V
the luminous efficacy in lumens/ watt.  
η = Φ /I x V where Φ is the emitted luminous flux, I is electrical forward current and V is the forward voltage.  
e v F F v F F  
3.  
4
100  
80  
60  
40  
20  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Red Orange  
Red  
Amber  
0
1
2
3
500  
550  
600  
WAVELENGTH - nm  
650  
FORWARD VOLTAGE-V  
Figure 1. Relative Intensity vs Peak Wavelength  
Figure 2. Forward Current vs Forward Voltage  
60  
50  
40  
30  
20  
10  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
TA - AMBIENT TEMPERATURE - C  
DC FORWARD CURRENT - mA  
Figure 3. Relative Luminous Intensity vs Forward Current  
Figure 4. Maximum Forward Current vs Ambient Temperature  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-90  
-60  
-30  
0
30  
60  
90  
-90  
-60  
-30  
0
30  
60  
90  
ANGULAR DISPLACEMENT-DEGREE  
ANGULAR DISPLACEMENT-DEGREE  
Figure 5.Radiation Pattern for 15° Viewing Angle Lamp  
Figure 6. Radiation Pattern for 23° Viewing Angle Lamp  
5
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-90  
-60  
-30  
0
30  
60  
90  
ANGULAR DISPLACEMENT-DEGREE  
Figure 7. Radiation Pattern for 30° Viewing Angle Lamp  
Relative Light Output vs Junction Temperature  
10.0  
Red Orange  
Red  
Amber  
1.0  
0.1  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
TJ - JUNCTION TEMPERATURE - °C  
Relative Forward Voltage vs Junction Temperature  
0.20  
0.15  
Red Orange  
Red  
0.10  
Amber  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
TJ - JUNCTION TEMPERATURE - °C  
6
Intensity Bin Limit Table (1.3:1 Iv bin ratio)  
Intensity (mcd) at 20mA  
Red Color Range  
Min  
Dom  
Max  
Dom  
X min  
Y Min  
X max  
Y max  
Bin  
V
Min  
Max  
618  
630  
0.6872  
0.6690  
0.3126  
0.3149  
0.6890  
0.7080  
0.2943  
0.2920  
4200  
5500  
7200  
9300  
12000  
16000  
5500  
7200  
9300  
12000  
16000  
21000  
W
X
Tolerance for each bin limit is 0.5nm  
Y
Amber Color Range  
Z
Min  
Dom  
Max  
Dom  
1
Bin  
Xmin  
Ymin  
Xmax Ymax  
Tolerance for each bin limit is 15ꢀ  
2
587  
589.5  
0.5570 0.4420 0.5670 0.4250  
0.5530 0.4400 0.5720 0.4270  
0.5720 0.4270 0.5820 0.4110  
0.5670 0.4250 0.5870 0.4130  
0.5870 0.4130 0.5950 0.3980  
0.5820 0.4110 0.6000 0.3990  
VF Bin Table (V at 20mA)  
4
6
589.5  
592  
592  
Bin ID  
VD  
Min  
1.8  
2.0  
2.2  
Max  
2.0  
2.2  
2.4  
594.5  
VA  
Tolerance for each bin limit is 0.5nm  
VB  
Tolerance for each bin limit is 0.05V  
Red Orange Color Range  
Min  
Dom  
Max  
Dom  
Xmin  
Ymin  
Xmax  
Ymax  
612  
619  
0.6712  
0.3280  
0.6887  
0.3109  
0.6716  
0.3116  
0.6549  
0.3282  
Tolerance for each bin limit 0.5nm  
Note:  
All bin categories are established for classification of products. Products  
may not be available in all bin categories. Please contact Avago  
representative for further information.  
Avago Color Bin on CIE 1931 Chromaticity Diagram  
0.460  
0.440  
0.420  
2
Amber  
4
6
0.400  
0.380  
0.360  
0.340  
0.320  
0.300  
0.280  
Red Orange  
Red  
0.500  
0.550  
0.600  
0.650  
0.700  
0.750  
0.800  
X
7
Precautions:  
Lead Forming:  
Note:  
The leads of an LED lamp may be preformed or cut to  
1. PCB with different size and design (component density) will have  
different heat mass (heat capacity). This might cause a change in  
temperature experienced by the board if same wave soldering  
setting is used. So, it is recommended to re-calibrate the soldering  
profile again before loading a new type of PCB.  
2. Avago Technologies’ high brightness LED are using high efficiency  
LED die with single wire bond as shown below. Customer is advised  
to take extra precaution during wave soldering to ensure that the  
maximum wave temperature does not exceed 260°C and the solder  
contact time does not exceeding 5sec. Over-stressing the LED  
during soldering process might cause premature failure to the LED  
due to delamination.  
length prior to insertion and soldering on PC board.  
For better control, it is recommended to use proper  
tool to precisely form and cut the leads to applicable  
length rather than doing it manually.  
If manual lead cutting is necessary, cut the leads after  
the soldering process. The solder connection forms a  
mechanical ground which prevents mechanical stress  
due to lead cutting from traveling into LED package.  
This is highly recommended for hand solder operation,  
as the excess lead length also acts as small heat sink.  
Avago Technologies LED Configuration  
Soldering and Handling:  
Care must be taken during PCB assembly and  
soldering process to prevent damage to the LED  
component.  
LED component may be effectively hand soldered  
to PCB. However, it is only recommended under  
unavoidable circumstances such as rework. The closest  
manual soldering distance of the soldering heat  
source (soldering iron’s tip) to the body is 1.59mm.  
Soldering the LED using soldering iron tip closer than  
1.59mm might damage the LED.  
Anode  
Note: Electrical connection between bottom surface of LED die and  
the lead frame is achieved through conductive paste.  
Any alignment fixture that is being applied during  
wave soldering should be loosely fitted and should  
not apply weight or force on LED. Non metal material  
is recommended as it will absorb less heat during  
wave soldering process.  
1.59mm  
ESD precaution must be properly applied on the  
soldering station and personnel to prevent ESD  
damage to the LED component that is ESD sensitive.  
Do refer to Avago application note AN 1142 for details.  
The soldering iron used should have grounded tip to  
ensure electrostatic charge is properly grounded.  
Note: In order to further assist customer in designing jig accurately  
that fit Avago Technologies’ product, 3D model of the product is  
available upon request.  
At elevated temperature, LED is more susceptible to  
mechanical stress. Therefore, PCB must allowed to cool  
down to room temperature prior to handling, which  
includes removal of alignment fixture or pallet.  
Recommended soldering condition:  
If PCB board contains both through hole (TH) LED and  
other surface mount components, it is recommended  
that surface mount components be soldered on the  
top side of the PCB. If surface mount need to be on the  
bottom side, these components should be soldered  
using reflow soldering prior to insertion the TH LED.  
Wave Soldering Manual Solder  
[1, 2]  
Dipping  
Pre-heat temperature 105 °C Max.  
-
Preheat time  
Peak temperature  
Dwell time  
60 sec Max  
260 °C Max.  
5 sec Max.  
-
260 °C Max.  
5 sec Max  
Recommended PC board plated through holes (PTH)  
size for LED component leads.  
Note:  
1) Above conditions refers to measurement with thermocouple  
mounted at the bottom of PCB.  
2) It is recommended to use only bottom preheaters in order to reduce  
thermal stress experienced by LED.  
LED component  
lead size  
Plated through  
hole diameter  
Diagonal  
0.45 x 0.45 mm  
0.636 mm  
0.98 to 1.08 mm  
(0.018x 0.018 inch) (0.025 inch)  
0.50 x 0.50 mm 0.707 mm  
(0.020x 0.020 inch) (0.028 inch)  
(0.039 to 0.043 inch)  
Wave soldering parameters must be set and  
maintained according to the recommended  
temperature and dwell time. Customer is advised  
to perform daily check on the soldering profile to  
ensure that it is always conforming to recommended  
soldering conditions.  
1.05 to 1.15 mm  
(0.041 to 0.045 inch)  
Over-sizing the PTH can lead to twisted LED after  
clinching. On the other hand under sizing the PTH can  
cause difficulty inserting the TH LED.  
8
Refer to application note AN5334 for more information about soldering and handling of high brightness TH LED lamps.  
Example of Wave Soldering Temperature Profile for TH LED  
260 °C Max  
Recommended solder:  
Sn63 (Leaded solder alloy)  
SAC305 (Lead free solder alloy)  
Flux: Rosin flux  
Solder bath temperature: 255°C 5°C  
(maximum peak temperature = 260°C)  
105 °C Max  
Dwell time: 3.0 sec - 5.0 sec  
(maximum = 5sec)  
60sec Max  
Note: Allow for board to be sufficiently  
cooled to room temperature before  
exerting mechanical force.  
TIME (sec)  
Ammo Packs Drawing  
Note: The ammo-packs drawing is applicable for packaging option –DD & -ZZ and regardless standoff or non-standoff  
9
Packaging Box for Ammo Packs  
Note: The dimension for ammo pack is applicable for the device with standoff and without standoff.  
Packaging Label:  
(i) Avago Mother Label: (Available on packaging box of ammo pack and shipping box)  
STANDARD LABEL LS0002  
RoHS Compliant  
(1P) Item: Part Number  
e3  
max temp 260C  
(Q) QTY: Quantity  
(1T) Lot: Lot Number  
LPN:  
CAT: Intensity Bin  
BIN: Refer to below information  
(9D)MFG Date: Manufacturing Date  
(P) Customer Item:  
(V) Vendor ID:  
(9D) Date Code: Date Code  
Made In: Country of Origin  
DeptID:  
10  
(ii) Avago Baby Label (Only available on bulk packaging)  
RoHS Compliant  
e3  
max temp 260C  
Lamps Baby Label  
(1P) PART #: Part Number  
(1T) LOT #: Lot Number  
(9D)MFG DATE: Manufacturing Date  
QUANTITY: Packing Quantity  
C/O: Country of Origin  
Customer P/N:  
CAT: Intensity Bin  
Supplier Code:  
BIN: Refer to below information  
DATECODE: Date Code  
Acronyms and Definition:  
BIN:  
Example:  
(i) Color bin only or VF bin only  
(i) Color bin only or VF bin only  
BIN: 2 (represent color bin 2 only)  
(Applicable for part number with color bins but  
without VF bin OR part number with VF bins and no  
color bin)  
BIN: VB (represent VF bin “VBonly)  
(ii) Color bin incorporate with VF Bin  
BIN: 2VB  
OR  
(ii) Color bin incorporated with VF Bin  
VB: VF bin “VB”  
(Applicable for part number that have both color  
bin and VF bin)  
2: Color bin 2 only  
DISCLAIMER: AVAGO’S PRODUCTS AND SOFTWARE ARE NOT SPECIFICALLY DESIGNED, MANUFACTURED OR AUTHORIZED FOR SALE  
AS PARTS, COMPONENTS OR ASSEMBLIES FOR THE PLANNING, CONSTRUCTION, MAINTENANCE OR DIRECT OPERATION OF A NUCLEAR  
FACILITY OR FOR USE IN MEDICAL DEVICES OR APPLICATIONS. CUSTOMER IS SOLELY RESPONSIBLE, AND WAIVES ALL RIGHTS TO MAKE  
CLAIMS AGAINST AVAGO OR ITS SUPPLIERS, FOR ALL LOSS, DAMAGE, EXPENSE OR LIABILITY IN CONNECTION WITH SUCH USE.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2014 Avago Technologies. All rights reserved.  
AV02-1687EN - November 5, 2014  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY