CDK1306CTQ32 [CADEKA]

10-bit, 40 MSPS 160mW A/D Converter; 10位, 40 MSPS 160MW A / D转换器
CDK1306CTQ32
型号: CDK1306CTQ32
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

10-bit, 40 MSPS 160mW A/D Converter
10位, 40 MSPS 160MW A / D转换器

转换器
文件: 总11页 (文件大小:1296K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
Amplify the Human Experience  
CDK1306  
10-bit, 40 MSPS 160mW A/D Converter  
f e a t u r e s  
General Description  
nꢀ  
40 MSPS converter  
The CDK1306 is a 10-bit, low power analog-to-digital converter capable  
of minimum word rates of 40 MSPS. The on-chip track-and-hold function  
assures very good dynamic performance without the need for external  
components. The input drive requirements are minimized due to the CDK1306  
low input capacitance of only 5pF.  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
160mW power dissipation  
On-chip track-and-hold  
Single +5V power supply  
TTL/CMOS outputs  
5pF input capacitance  
Tri-state output buffers  
Power dissipation is extremely low at only 160mW typical at 40 MSPS with  
a power supply of +5.0V. The digital outputs are +3V or +5V, and are user  
selectable. The CDK1306 is pin-compatible with an entire family of 10-bit,  
CMOS converters (CDK1304/05/06), which simplifies upgrades. The CDK1306  
hasincorporatedproprietarycircuitdesign*andCMOSprocessingtechnologies  
to achieve its advanced performance. Inputs and outputs are TTL/CMOS-  
compatible to interface with TTL/CMOS logic systems. Output data format is  
straight binary.  
High ESD protection: 3,500V minimum  
Selectable +3V or +5V logic I/O  
a p p l i c a t i o n s  
nꢀ  
All high-speed applications where low  
power dissipation is required  
nꢀ  
Video imaging  
nꢀ  
Medical imaging  
nꢀ  
Radar receivers  
The CDK1306 is available in 28-lead SOIC and 32-lead small (7mm square)  
TQFP packages over the commercial temperature range.  
nꢀ  
IR imaging  
nꢀ  
Digital communications  
Block Diagram  
Ordering Information  
Part Number  
Package  
SOIC-28  
SOIC-28  
TQFP-32  
TQFP-32  
Pb-Free  
Yes  
RoHS Compliant  
Operating Temperature Range Packaging Method  
CDK1306CSO28  
CDK1306CSO28_Q  
CDK1306CTQ32  
CDK1306CTQ32_Q  
Yes  
No  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
Rail  
Rail  
Rail  
Rail  
No  
Yes  
Yes  
No  
No  
Moisture sensitivity level for SOIC-28 is MSL-1 and TQFP is MSL-3.  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
Data Sheet  
Pin Configuration  
SOIC-28  
TQFP-32  
CDK1306  
CDK1306  
Pin Assignments  
SOIC-28  
TQFP-32  
Pin Name  
Description  
1,8  
2
3,4,28,29  
AGND  
VRHF  
VRHS  
VRLS  
VRLF  
VCAL  
VIN  
Analog Ground  
30  
31  
32  
1
Reference High Force  
Reference High Sense  
Reference Low Sense  
Reference Low Force  
Calibration Reference  
Analog Input  
3
5
6
9
5
7
2
10  
11  
12  
13  
15  
6,7  
8,9  
10,11  
12  
14  
AVDD  
DVDD  
DGND  
CLK  
Analog VDD  
Digital VDD  
Digital Ground  
Input Clock ƒCLK = FS (TTL)  
Output Enable  
EN  
16-20,  
23-27  
15-19,  
22-26  
D0-D9  
Tri-State Data Output, (D0 = LSB)  
28  
14  
22  
21  
4
27  
13  
21  
20  
D10  
DAV  
Tri-State Output Overrange  
Data Valid Output  
OVDD  
OGND  
N/C  
Digital Output Supply  
Digital Output Ground  
No Connect  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
2
Data Sheet  
Absolute Maximum Ratings  
The safety of the device is not guaranteed when it is operated above the “Absolute Maximum Ratings. The device  
should not be operated at these “absolute” limits. Adhere to the “Recommended Operating Conditions” for proper device  
function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the  
operating conditions noted on the tables and plots.  
Parameter  
Min  
Max  
Unit  
Supply Voltages  
AVDD  
+6  
+6  
V
V
DVDD  
Input Voltages  
Analog input  
VRef  
-0.5  
0
AV  
+0.5  
V
V
DD  
AV  
DD  
CLK input  
V
V
DD  
AVDD – DVDD  
AGND – DGND  
Digital Outputs  
-100  
-100  
100  
100  
10  
mV  
mV  
mA  
Reliability Information  
Parameter  
Min  
Typ  
Typ  
Max  
Unit  
Storage Temperature Range  
-65  
+150  
°C  
Recommended Operating Conditions  
Parameter  
Min  
0
Max  
Unit  
Operating Temperature Range  
+70  
+175  
+300  
°C  
°C  
°C  
Junction Temperature Range  
Lead Temperature (soldering 10 seconds)  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
3
Data Sheet  
Electrical Characteristics  
(T = T to T , AV = DV = OV = +5V, V = 0 to 4V, ƒ = 40 MSPS, V  
= 4V, V  
= 0V; unless otherwise noted)  
Min  
A
Max  
DD  
DD  
DD  
IN  
clk  
RHS  
RLS  
symbꢀꢁ  
pꢂꢃꢂmꢄꢅꢄꢃ  
cꢀꢆdꢇꢅꢇꢀꢆꢈ  
Mꢇꢆ  
tyꢉ  
Mꢂx  
uꢆꢇꢅꢈ  
Resolution  
10  
bits  
DC Performance  
DLE  
ILE  
Differential Linearity Error(1)  
Integral Linearity Error(1)  
No Missing Codes  
-0.5  
-1.0  
+0.5  
+1.0  
LSB  
LSB  
Guaranteed  
Analog Input  
Input Voltage Range(1)  
Input Resistance(2)  
Input Capacitance  
Input Bandwidth  
Gain Error  
VRLS  
50  
VRHS  
V
kΩ  
5
pF  
Small Signal  
Small Signal  
250  
MHz  
LSB  
LSB  
±2.0  
±2.0  
Offset Error  
Reference Input  
Resistance(1)  
200  
400  
150  
600  
Ω
Bandwidth  
MHz  
(2)  
VRLS  
0
2.0  
V
V
(2)  
VRHS  
3.0  
AVDD  
VRHS VRLS  
4.0  
90  
75  
V
Voltage Range  
Δ (VRHF VRHS  
)
mV  
mV  
Δ (VRLS VRLF  
)
Reference Settling Time  
VRHS  
VRLS  
15  
20  
CLK Cycle  
CLK Cycle  
Conversion Characteristics  
Maximum Conversion Rate(1)  
40  
2
MHz  
MHz  
Minimum Conversion Rate(2)  
Pipeline Delay (Latency)(2)  
Aperture Delay Time  
12  
CLK Cycle  
ns  
4.0  
15  
Aperture Jitter Time  
pspp  
Dynamic Performance  
ƒIN = 3.58MHz  
ƒIN = 10.3MHz  
ƒIN = 3.58MHz(1)  
ƒIN = 10.3MHz(1)  
ƒIN = 3.58MHz(1)  
9 distortion bins from 1024 pt FFT  
ƒIN = 10.3MHz(1)  
9 distortion bins from 1024 pt FFT  
ƒIN = 3.58MHz(1)  
9.2  
8.8  
58  
Bits  
Bits  
dB  
ENOB  
SNR  
Effective Number of Bits  
56  
55  
Signal-to-Noise Ratio w/o Harmonics  
Total Harmonic Distortion  
57  
dB  
,
61  
56  
63  
58  
dB  
dB  
THD  
,
54  
53  
57  
55  
dB  
dB  
dB  
deg  
%
SINAD  
SFDR  
Signal-to-Noise and Distortion  
ƒIN = 10.3MHz(1)  
Spurious Free Dynamic Range  
Differential Phase  
ƒIN = 1MHz  
64  
±0.3  
±0.3  
Differential Gain  
nꢀꢅꢄꢈ:  
1. 100% production tested at +25°C.  
2. Parameter is guaranteed (but not tested) by design and characterization data.  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
4
Data Sheet  
Electrical Characteristics  
(T = T to T , AV = DV = OV = +5V, V = 0 to 4V, ƒ = 40 MSPS, V  
= 4V, V  
= 0V; unless otherwise noted)  
Min  
A
Max  
DD  
DD  
DD  
IN  
clk  
RHS  
RLS  
symbꢀꢁ  
pꢂꢃꢂmꢄꢅꢄꢃ  
cꢀꢆdꢇꢅꢇꢀꢆꢈ  
Mꢇꢆ  
tyꢉ  
Mꢂx  
uꢆꢇꢅꢈ  
Digital Inputs  
Logic “1“ Voltage(1)  
Logic “0“ Voltage(1)  
Maximum Input Current Low(1)  
2.0  
V
0.8  
+10  
+10  
V
-10  
-10  
μA  
μA  
pF  
Maximum Input Current High(1)  
Input Capacitance  
+5  
Digital Outputs  
Logic “1“ Voltage(1)  
Logic “0“ Voltage(1)  
Rise Time  
IOH = 0.5mA  
IOL = 1.6mA  
15pF load  
3.5  
V
0.4  
V
TR  
TF  
10  
10  
10  
22  
ns  
ns  
ns  
ns  
Fall Time  
15pF load  
20pF load, TA = 25°C  
50pF load over temp  
Output Enable to Data Output Delay  
Power Supply Requirements  
OVDD  
3.0  
5.0  
5.25  
5.25  
22  
V
V
Digital Voltage Supply(2)  
DVDD  
AVDD  
AIDD  
DIDD  
4.75  
4.75  
5.0  
5.0  
14  
V
mA  
mA  
mW  
Digital Voltage Current(1)  
Power Dissipation(1)  
18  
23  
160  
225  
nꢀꢅꢄꢈ:  
1. 100% production tested at +25°C.  
2. Parameter is guaranteed (but not tested) by design and characterization data.  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
5
Data Sheet  
iꢆꢅꢄgꢃꢂꢁ lꢇꢆꢄꢂꢃꢇꢅy eꢃꢃꢀꢃ (ile)  
Specification Definitions  
Linearity error refers to the deviation of each individual  
code (normalized) from a straight line drawn from –FS  
through +FS. The deviation is measured from the edge of  
each particular code to the true straight line.  
aꢉꢄꢃꢅꢊꢃꢄ Dꢄꢁꢂy  
Aperture delay represents the point in time, relative to  
the rising edge of the CLOCK input, that the analog input  
is sampled.  
oꢊꢅꢉꢊꢅ Dꢄꢁꢂy  
aꢉꢄꢃꢅꢊꢃꢄ Jꢇꢅꢅꢄꢃ  
Time between the clock’s triggering edge and output data  
valid.  
The variations in aperture delay for successive samples.  
Dꢇꢋꢋꢄꢃꢄꢆꢅꢇꢂꢁ Gꢂꢇꢆ (DG)  
ovꢄꢃvꢀꢁꢅꢂgꢄ rꢄꢌꢀvꢄꢃy tꢇmꢄ  
A signal consisting of a sine wave superimposed on vari-  
ous DC levels is applied to the input. Differential gain is  
the maximum variation in the sampled sine wave ampli-  
tudes at these DC levels.  
The time required for the ADC to recover to full accuracy  
after an analog input signal 125% of full scale is reduced  
to 50% of the full-scale value.  
sꢇgꢆꢂꢁ-tꢀ-nꢀꢇꢈꢄ rꢂꢅꢇꢀ (snr)  
Dꢇꢋꢋꢄꢃꢄꢆꢅꢇꢂꢁ phꢂꢈꢄ (Dp)  
The ratio of the fundamental sinusoid power to the total  
noise power. Harmonics are excluded.  
A signal consisting of a sine wave superimposed on vari-  
ous DC levels is applied to the input. Differential phase is  
the maximum variation in the sampled sine wave phases  
at these DC levels.  
sꢇgꢆꢂꢁ-tꢀ-nꢀꢇꢈꢄ aꢆd Dꢇꢈꢅꢀꢃꢅꢇꢀꢆ (sinaD)  
The ratio of the fundamental sinusoid power to the total  
noise and distortion power.  
eꢋꢋꢄꢌꢅꢇvꢄ nꢊmbꢄꢃ oꢋ Bꢇꢅꢈ (enoB)  
SINAD = 6.02N + 1.76, where N is equal to the effective  
number of bits.  
tꢀꢅꢂꢁ Hꢂꢃmꢀꢆꢇꢌ Dꢇꢈꢅꢀꢃꢅꢇꢀꢆ (tHD)  
The ratio of the total power of the first 9 harmonics to the  
power of the measured sinusoidal signal.  
N = SINAD – 1.76  
6.02  
iꢆꢉꢊꢅ Bꢂꢆdwꢇdꢅh  
sꢉꢊꢃꢇꢀꢊꢈ fꢃꢄꢄ Dyꢆꢂmꢇꢌ rꢂꢆgꢄ (sfDr)  
Small signal (50mV) bandwidth (3dB) of analog input stage.  
The ratio of the fundamental sinusoidal amplitude to the  
single largest harmonic or spurious signal.  
Dꢇꢋꢋꢄꢃꢄꢆꢅꢇꢂꢁ lꢇꢆꢄꢂꢃꢇꢅy eꢃꢃꢀꢃ (Dle)  
Error in the width of each code from its theoretical value.  
N
(Theoretical = V /2 )  
FS  
Figure 1. Timing Diagram 1  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
6
Data Sheet  
Table 1. Timing Parameters  
Dꢄꢈꢌꢃꢇꢉꢅꢇꢀꢆ  
Conversion Time  
CLK Period  
sym Mꢇꢆ tyꢉ Mꢂx uꢆꢇꢅꢈ  
tC  
tCLK  
40  
ns  
ns  
%
%
ns  
tCLK  
tCH  
tCL  
CLK High Duty Cycle  
CLK Low Duty Cycle  
40  
50  
50  
17  
60  
60  
40  
CLK to Output Delay  
(15pF load)  
tOD  
CLK to DAV  
tS  
10  
ns  
Figure 2. Timing Diagram 2  
CDK1306  
Figure 3. Typical Interface Circuit Diagram  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
7
Data Sheet  
n
n
Since only 16 comparators are used, a huge power  
savings is realized.  
Typical Interface Circuit  
Very few external components are required to achieve  
the stated device performance. Figure 3 shows the typical  
interface requirements when using the CDK1306 in normal  
circuit operation. The following sections provide  
descriptions of the major functions and outline critical  
performance criteria to consider for achieving the optimal  
device performance.  
The auto-zero operation is done using a closed loop  
system that uses multiple samples of the comparator’s  
response to a reference zero.  
n
The auto-calibrate operation, which calibrates the gain  
of the MSB reference and the LSB reference, is also done  
with a closed loop system. Multiple samples of the gain  
error are integrated to produce a calibration voltage for  
each ADC section.  
Power Supplies And Grounding  
Cadekasuggeststhatboththedigitalandtheanalogsupply  
voltages on the CDK1306 be derived from a single analog  
supply as shown in Figure 3. A separate digital supply  
should be used for all interface circuitry. Cadeka suggests  
using this power supply configuration to prevent a pos-  
sible latch-up condition on powerup.  
n
Capacitive displacement currents, which can induce  
sampling error, are minimized since only one comparator  
samples the input during a clock cycle.  
n
The total input capacitance is very low since sections of  
theconverterthatarenotsamplingthesignalareisolated  
from the input by transmission gates.  
Operating Description  
The general architecture for the CMOS ADC is shown in the  
Block Diagram. The design contains 16 identical successive  
approximation ADC sections, all operating in parallel, a 16-  
phase clock generator, an 11-bit 16:1 digital output multi-  
plexer, correction logic, and a voltage reference generator  
that provides common reference levels for each ADC section.  
Voltage Reference  
The CDK1306 requires the use of a single external volt-  
age reference for driving the high side of the reference  
ladder. It must be within the range of 3V to 5V. The lower  
side of the ladder is typically tied to AGND (0.0V), but  
can be run up to 2.0V with a second reference. The analog  
input voltage range will track the total voltage difference  
The high sample rate is achieved by using multiple SAR  
ADC sections in parallel, each of which samples the input  
signal in sequence. Each ADC uses 16 clock cycles to  
complete a conversion. The clock cycles are allocated as  
shown in Table 2.  
measured between the ladder sense lines, V  
and V  
.
RHS  
RLS  
Force and sense taps are provided to ensure accurate and  
stable setting of the upper and lower ladder sense line  
voltages across part-to-part and temperature variations.  
By using the configuration shown in Figure 4, offset and  
gain errors of less than ±2 LSB can be obtained.  
Table 2. Clock Cycles  
cꢁꢀꢌk  
oꢉꢄꢃꢂꢅꢇꢀꢆ  
Reference zero sampling  
1
2
In cases where wider variations in offset and gain can  
Auto-zero comparison  
Auto-calibrate comparison  
Input sample  
be tolerated, V  
can be tied directly to V , and AGND  
RHF  
REF  
3
can be tied directly to V  
as shown in Figure 5. Decouple  
RLF  
4
force and sense lines to AGND with a 0.01μF capacitor  
(chip cap preferred) to minimize high-frequency noise  
injection.  
5-15  
16  
11-bit SAR conversion  
Data transfer  
If this simplified configuration is used, the following con-  
siderations should be taken into account. The reference  
ladder circuit shown in Figure 5 is a simplified representa-  
tion of the actual reference ladder with force and sense  
taps shown. Due to the actual internal structure of the  
The 16-phase clock, which is derived from the input clock,  
synchronizes these events. The timing signals for adjacent  
ADC sections are shifted by one clock cycle so that the an-  
alog input is sampled on every cycle of the input clock by  
exactly one ADC section. After 16 clock periods, the tim-  
ing cycle repeats. The latency from analog input sample  
to the corresponding digital output is 12 clock cycles.  
ladder, the voltage drop from V  
lent to the voltage drop from V  
to V  
to V  
is not equiva-  
RHS  
RHF  
.
RLF  
RLS  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
8
Data Sheet  
a specific case. V  
of 4.0V is applied to V , and V  
RHF RLF  
REF  
is tied to AGND. A 90mV drop is seen at V  
(= 3.91V),  
RHS  
and a 75mV increase is seen at V  
(= 0.075V).  
RLS  
Analog Input  
V
V
is the analog input. The input voltage range is from  
IN  
to V  
(typically 4.0V) and will scale proportionally  
RLS  
RHS  
with respect to the voltage reference. (See Voltage Refer-  
ence section.)  
The drive requirements for the analog inputs are very  
minimal when compared to most other converters due to  
the CDK1306 extremely low input capacitance of only 5pF  
and very high input resistance of 50kΩ.  
The analog input should be protected through a series  
resistor and diode clamping circuit as shown in Figure 6.  
Figure 4. Ladder Force/Sense Circuit  
Figure 6. Recommended Input Protection Circuit  
Calibration  
The CDK1306 uses an auto-calibration scheme to ensure  
10-bit accuracy over time and temperature. Gain and  
offset errors are continually adjusted to 10-bit accuracy  
during device operation. This process is completely trans-  
parent to the user.  
Upon powerup, the CDK1306 begins its calibration  
algorithm. In order to achieve the calibration accuracy  
required, the offset and gain adjustment step size is a  
fraction of a 10-bit LSB. Since the calibration algorithm  
is an oversampling process, a minimum of 10,000 clock  
cycles are required. This results in a minimum calibration  
time upon powerup of 250μs (for a 40MHz clock). Once  
calibrated, the CDK1306 remains calibrated over time and  
temperature.  
Figure 5. Reference Ladder Circuit  
Typically, the top side voltage drop for V  
equal:  
to V  
will  
will  
RHF  
RHS  
V
– V  
= 2.25 % of (V – V ) (typical)  
RHF RLF  
RHF  
RHS  
and the bottom side voltage drop for V  
equal:  
to V  
RLF  
RLS  
Since the calibration cycles are initiated on the rising edge  
of the clock, the clock must be continuously applied for  
the CDK1306 to remain in calibration.  
V
– V  
= 1.9 % of (V  
– V ) (typical)  
RLS  
RLF  
RHF RLF  
Figure 5 shows an example of expected voltage drops for  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
9
Data Sheet  
Input Protection  
Digital Outputs  
All I/O pads are protected with an on-chip protection circuit  
shown in Figure 7. This circuit provides ESD robustness to  
3.5kV and prevents latch-up under severe discharge con-  
ditions without degrading analog transition times.  
The digital outputs (D0–D10) are driven by a separate  
supply (OVDD) ranging from +3 V to +5 V. This feature  
makes it possible to drive the CDK1306 TTL/CMOS com-  
patible outputs with the user’s logic system supply. The  
format of the output data (D0–D9) is straight binary. (See  
Table 3.) The outputs are latched on the rising edge of  
CLK. These outputs can be switched into a tri-state mode  
by bringing EN high.  
Table 3. Output Data Information  
Analog Input  
+F.S. + 1/2 LSB  
+F.S. –1/2 LSB  
+1/2 F.S.  
Overrange D10  
Output Code D9-D0  
1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1Ø  
ØØ ØØØØ ØØØØ  
0 0 0 0 0 0 0 0 0 Ø  
0 0 0 0 0 0 0 0 0 0  
1
0
0
0
0
+1/2 LSB  
0.0V  
(Ø indicates the flickering bit between logic 0 and 1.)  
Overrange Output  
Figure 7. On-Chip Protection Circuit  
TheOverrangeOutput(D10)isanindicationthattheanalog  
input signal has exceeded the positive fullscale input volt-  
age by 1 LSB. When this condition occurs, D10 will switch  
to logic 1. All other data outputs (D0 to D9) will remain at  
logic 1 as long as D10 remains at logic 1.  
Power Supply Sequencing Considerations  
All logic inputs should be held low until power to the de-  
vice has settled to the specific tolerances. Avoid power  
decoupling networks with large time constants that could  
delay VDD power to the device.  
This feature makes it possible to include the CDK1306 in  
higher resolution systems.  
Clock Input  
Evaluation Board  
The CDK1306 is driven from a single-ended TTL-input  
clock. Because the pipelined architecture operates on the  
rising edge of the clock input, the device can operate over  
a wide range of input clock duty cycles without degrading  
the dynamic performance.  
The TBD evaluation board is available to aid designers in  
demonstrating the full performance of the CDK1306. This  
board includes a reference circuit, clock driver circuit, out-  
put data latches, and an on-board reconstruction of the  
digital data. An application note describing the operation  
of this board, as well as information on the testing of the  
CDK1306, is also available. Contact the factory for price  
and availability.  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
10  
Data Sheet  
Mechanical Dimensions  
SOIC-28 Package  
Inches  
Millimeters  
Symbol  
Min  
Max  
Min  
Max  
18.01  
0.28  
A
B
C
D
E
F
G
H
I
0.699  
0.005  
0.050 Typ  
0.018 Typ  
0.0077  
0.090  
0.031  
0.396  
0.286  
0.709  
0.011  
17.75  
0.13  
1.27 BSC  
0.46 BSC  
0.20  
2.29  
0.79  
10.06  
7.26  
I
H
0.0083  
0.096  
0.039  
0.416  
0.292  
0.21  
2.44  
0.99  
10.57  
7.42  
A
F
B
C
D
H
G
E
TQFP-32 Package  
A
B
Inches  
Millimeters  
G
H
Symbol  
Min  
Max  
Min  
Max  
9.20  
7.10  
9.20  
7.10  
A
B
C
D
E
F
G
H
I
0.346  
0.272  
0.346  
0.272  
0.362  
0.280  
0.362  
0.280  
8.80  
6.90  
8.80  
6.90  
0.031 Typ  
0.80 BSC  
0.012  
0.053  
0.002  
0.037  
0.016  
0.057  
0.006  
0.041  
0.007  
7°  
0.30  
1.35  
0.05  
0.95  
0.40  
1.45  
0.15  
1.05  
0.17  
7°  
C
D
J
K
L
0°  
0°  
I
0.020  
0.030  
0.50  
0.75  
J
E
F
K
L
For additional information regarding our products, please visit CADEKA at: cadeka.com  
caDeKa Hꢄꢂdqꢊꢂꢃꢅꢄꢃꢈ Loveland, Colorado  
T: 970.663.5452  
T: 877.663.5452 (toll free)  
Amplify the Human Experience  
CADEKA, the CADEKA logo design, COMLINEAR and the COMLINEAR logo design are trademarks or registered trademarks of CADEKA  
Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.  
CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any  
responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in  
writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights,  
copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.  
Copyright ©2008 by CADEKA Microcircuits LLC. All rights reserved.  

相关型号:

CDK1306CTQ32_Q

10-bit, 40 MSPS 160mW A/D Converter
CADEKA

CDK1307

Ultra Low Power, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters (ADCs)
CADEKA

CDK1307AILP40

Ultra Low Power, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters (ADCs)
CADEKA

CDK1307BILP40

Ultra Low Power, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters (ADCs)
CADEKA

CDK1307CILP40

Ultra Low Power, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters (ADCs)
CADEKA

CDK1307DILP40

Ultra Low Power, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters (ADCs)
CADEKA

CDK1307EILP40

Ultra Low Power, 10/20/40/65/80/100MSPS, 12/13-bit Analog-to-Digital Converters (ADCs)
CADEKA

CDK1307ILP40

Ultra Low Power, 10/20/40/65/80/100MSPS, 12/13-bit Analog-to-Digital Converters (ADCs)
CADEKA

CDK1307_09

Ultra Low Power, 10/20/40/65/80/100MSPS, 12/13-bit Analog-to-Digital Converters (ADCs)
CADEKA

CDK1308

Ultra Low Power, 20/40/65/80MSPS, 10-bit Analog-to-Digital Converters (ADCs)
CADEKA

CDK1308AILP40

Ultra Low Power, 20/40/65/80MSPS, 10-bit Analog-to-Digital Converters (ADCs)
CADEKA

CDK1308BILP40

Ultra Low Power, 20/40/65/80MSPS, 10-bit Analog-to-Digital Converters (ADCs)
CADEKA