CDK1307DILP40 [CADEKA]

Ultra Low Power, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters (ADCs); 超低功耗, 20/40/ 65 / 80MSPS , 12月13日位模拟至数字转换器(ADC )
CDK1307DILP40
型号: CDK1307DILP40
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

Ultra Low Power, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters (ADCs)
超低功耗, 20/40/ 65 / 80MSPS , 12月13日位模拟至数字转换器(ADC )

转换器
文件: 总15页 (文件大小:1149K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE Data Sheet  
Amplify the Human Experience  
CDK1307  
Ultra Low Power, 20/40/65/80MSPS,  
12/13-bit Analog-to-Digital Converters (ADCs)  
F E A T U R E S  
General Description  
nꢀ  
13-bit resolution  
The CDK1307 is a high performance ultra low power Analog-to-Digital  
Converter (ADC). The ADC employs internal reference circuitry, a CMOS  
control interface and CMOS output data, and is based on a proprietary struc-  
ture. Digital error correction is employed to ensure no missing codes in the  
complete full scale range.  
nꢀ  
nꢀ  
20/40/65/80MSPS max sampling rate  
Ultra-Low Power Dissipation:  
19/33/50/60mW  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
72.4dB SNR at 8MHz FIN  
Internal reference circuitry  
1.8V core supply voltage  
1.7 – 3.6V I/O supply voltage  
Parallel CMOS output  
Two idle modes with fast startup times exist. The entire chip can either be  
put in Standby Mode or Power Down mode. The two modes are optimized to  
allow the user to select the mode resulting in the smallest possible energy  
consumption during idle mode and startup.  
40-pin QFN package  
Pin compatible with CDK1308  
The CDK1307 has a highly linear THA optimized for frequencies up to Nyquist.  
The differential clock interface is optimized for low jitter clock sources and  
supports LVDS, LVPECL, sine wave, and CMOS clock inputs.  
A P P L I C A T I O N S  
nꢀ  
Medical Imaging  
nꢀ  
Portable Test Equipment  
Functional Block Diagram  
nꢀ  
Digital Oscilloscopes  
nꢀ  
IF Communication  
Ordering Information  
Part Number  
Speed  
Package  
QFN-40  
QFN-40  
QFN-40  
QFN-40  
Pb-Free RoHS Compliant Operating Temperature Range Packaging Method  
CDK1307AILP40  
CDK1307BILP40  
CDK1307CILP40  
CDK1307DILP40  
20MSPS  
40MSPS  
65MSPS  
80MSPS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Tray  
Tray  
Tray  
Tray  
Moisture sensitivity level for all parts is MSL-3.  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
ADVANCE Data Sheet  
Pin Configuration  
QFN-40  
DVSS  
CM_EXT  
AVDD  
AVDD  
IP  
D_7  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
D_6  
D_5  
3
CLK_EXT  
OVDD  
OVDD  
ORNG  
D_4  
4
CDK1307  
5
QFN-40  
IN  
6
AVDD  
DVDDCLK  
CLKP  
7
8
D_3  
9
CLKN  
D_2  
10  
Pin Assignments  
Pin No.  
Pin Name  
Description  
0
Ground connection for all power domains. Exposed pad  
Digital and I/O-ring pre driver supply voltage, 1.8V  
Common Mode voltage output  
VSS  
1, 11, 16  
DVDD  
2
3, 4, 7  
5, 6  
8
CM_EXT  
AVDD  
Analog supply voltage, 1.8V  
IP, IN  
Analog input (non-inverting, inverting)  
DVDDCLK  
Clock circuitry supply voltage, 1.8V  
9
Clock input, non-inverting (format: LVDS, LVPECL, CMOS/TTL, Sine Wave)  
Clock input, inverting. For CMOS input on CLKP, Connect CLKN to ground  
CLKP  
CLKN  
10  
12  
CLK_EXT_EN CLK_EXT signal enabled when low (zero). Tristate when high.  
13  
DFRMT  
PD_N  
Data format selection. 0: Offset Binary, 1: Two's Complement  
14  
Full chip Power Down mode when Low. All digital outputs reset to zero. After chip power up  
always apply Power Down mode before using Active Mode to reset chip.  
15  
OE_N  
OVDD  
Output Enable. Tristate when high  
17, 18, 25,  
26, 36, 37  
I/O ring post-driver supply voltage. Voltage range 1.7 to 3.6V  
19  
20  
21  
22  
D_0  
D_1  
D_2  
D_3  
Output Data (LSB, 13-bit output or 1Vpp full scale range)  
Output Data LSB, 12-bit output 2Vpp full scale range)  
Output Data  
Output Data  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
2
ADVANCE Data Sheet  
Pin Assignments (Continued)  
Pin No.  
23  
Pin Name  
D_4  
Description  
Output Data  
24  
ORNG  
CLK_EXT  
D_5  
Out of Range flag. High when input signal is out of range  
27  
Output clock signal for data synchronization. CMOS levels  
28  
Output Data  
29  
D_6  
Output Data  
30  
D_7  
Output Data  
31  
D_8  
Output Data  
32  
D_9  
Output Data  
33  
D_10  
D_11  
D_12  
Output Data  
34  
Output Data (MSB for 1Vpp full scale range, see Reference Voltages section)  
Output Data (MSB for 2Vpp full scale range)  
35  
38, 39  
CM_EXTBC_1, Bias control bits for the buffer driving pin CM_EXT  
CM_EXTBC_0  
00: OFF  
10: 50μA  
10: 500μA 11: 1mA  
Sleep Mode when low  
40  
SLP_N  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
3
ADVANCE Data Sheet  
Absolute Maximum Ratings  
The safety of the device is not guaranteed when it is operated above the “Absolute Maximum Ratings. The device  
should not be operated at these “absolute” limits. Adhere to the “Recommended Operating Conditions” for proper device  
function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the  
operating conditions noted on the tables and plots.  
Parameter  
Min  
Max  
Unit  
AVDD  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
+2.3  
+2.3  
+0.3  
+3.9  
+3.9  
+2.3  
+3.9  
+3.9  
V
V
V
V
V
V
V
V
DVDD  
AVSS, DVSSCK, DVSS, OVSS  
OVDD, OVSS  
CLKP, CLKN  
Analog inputs and outpts (IPx, INx)  
Digital inputs  
Digital outputs  
Reliability Information  
Parameter  
Min  
Typ  
Max  
Unit  
Junction Temperature  
TBD  
°C  
°C  
°C  
Storage Temperature Range  
Lead Temperature (Soldering, 10s)  
-60  
+150  
TBD  
ESD Protection  
Product  
QFN-40  
Human Body Model (HBM)  
2kV  
Charged Device Model (CDM)  
TBD  
Recommended Operating Conditions  
Parameter  
Min  
-40  
Typ  
Max  
+85  
Unit  
°C  
Operating Temperature Range  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
4
ADVANCE Data Sheet  
Electrical Characteristics  
(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 20/40/65/80MSPS clock, 50% clock duty cycle,  
-1dBFS 8MHz input signal, 13-bit output, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DC Accuracy  
No Missing Codes  
Guaranteed  
TBD  
Offset Error  
Midscale offset  
mV  
%FS  
LSB  
LSB  
V
Gain Error  
Full scale range deviation from typical  
12-bit level  
-6  
-0.5  
-1  
6
0.5  
1
DNL  
Differential Non-Linearity  
Integral Non-Linearity  
Common Mode Voltage Output  
INL  
12-bit level  
VCMO  
VAVDD/2  
Analog Input  
VCMI  
Input Common Mode  
Analog input common mode voltage  
Differential input voltage range,  
VCM -0.1  
VCM +0.1  
V
2.0  
1.0  
Vpp  
Vpp  
Full Scale Range, Normal  
VFSR  
Differential input voltage range, 1V  
(see section Reference Voltages)  
Full Scale Range, Option  
Input Capacitance  
Bandwidth  
Differential input capacitance  
Input bandwidth, full power  
1.8  
pF  
500  
MHz  
Power Supply  
Supply voltage to all 1.8V domain pins.  
See Pin Configuration and Description  
1.7  
1.7  
1.8  
2.5  
2.0  
3.6  
V
V
AVDD,  
DVDD  
Core Supply Voltage  
I/O Supply Voltage  
Output driver supply voltage (OVDD).  
Must be higher than or equal to Core Supply  
OVDD  
Voltage (VOVDD ≥ VOCVDD  
)
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
5
ADVANCE Data Sheet  
Electrical Characteristics - CDK1307A  
(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 20MSPS clock, 50% clock duty cycle,  
-1dBFS 8MHz input signal, 13-bit output, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Performance  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
72.7  
72.6  
72.3  
72.0  
72.4  
72.0  
71.3  
71.4  
84.9  
88.7  
80.1  
85.5  
-97.6  
-100  
-101  
-95.7  
-94.6  
-88.7  
-80.1  
-96.8  
11.7  
11.7  
11.6  
11.6  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR  
Signal to Noise Ratio  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
SINAD  
SFDR  
HD2  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
Effective number of Bits  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
dBc  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
dBc  
dBc  
dBc  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
dBc  
dBc  
HD3  
dBc  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
bits  
bits  
ENOB  
bits  
FIN = 20MHz  
bits  
Power Supply  
AIDD  
Analog Supply Current  
Digital Supply Current  
7.8  
1.0  
1.7  
mA  
mA  
mA  
DIDD  
Digital core supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT enabled  
OIDD  
Output Driver Supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT disabled  
1.3  
mA  
Analog Power Dissipation  
Digital Power Dissipation  
14.0  
5.1  
mW  
mW  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
19.1  
mW  
Total Power Dissipation  
Power Down Dissipation  
Sleep Mode  
9.9  
9.2  
μW  
Power Dissipation, Sleep mode  
mW  
Clock Inputs  
Max. Conversion Rate  
Min. Conversion Rate  
20  
MSPS  
MSPS  
15  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
6
ADVANCE Data Sheet  
Electrical Characteristics - CDK1307B  
(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 40MSPS clock, 50% clock duty cycle,  
-1dBFS 8MHz input signal, 13-bit output, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Performance  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
73.2  
73.0  
72.5  
71.2  
72.1  
72.0  
71.7  
70.6  
81.3  
82.0  
81.6  
82.1  
-97.5  
-103  
-95.3  
-85.1  
-82.5  
-85.3  
-81.6  
-95.8  
11.7  
11.7  
11.6  
11.4  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR  
Signal to Noise Ratio  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
SINAD  
SFDR  
HD2  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
Effective number of Bits  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
dBc  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
dBc  
dBc  
dBc  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
dBc  
dBc  
HD3  
dBc  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
bits  
bits  
ENOB  
bits  
FIN = 30MHz  
bits  
Power Supply  
AIDD  
Analog Supply Current  
Digital Supply Current  
13.4  
1.7  
mA  
mA  
mA  
DIDD  
Digital core supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT enabled  
3.3  
OIDD  
Output Driver Supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT disabled  
2.4  
mA  
Analog Power Dissipation  
Digital Power Dissipation  
24.1  
9.1  
mW  
mW  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
33.2  
mW  
Total Power Dissipation  
Power Down Dissipation  
Sleep Mode  
9.7  
μW  
Power Dissipation, Sleep mode  
14.2  
mW  
Clock Inputs  
Max. Conversion Rate  
Min. Conversion Rate  
40  
MSPS  
MSPS  
20  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
7
ADVANCE Data Sheet  
Electrical Characteristics - CDK1307C  
(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 65MSPS clock, 50% clock duty cycle,  
-1dBFS 8MHz input signal, 13-bit output, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Performance  
FIN = 8MHz  
FIN = 20MHz  
FIN FS/2  
73.1  
72.2  
71.6  
70.4  
72.0  
71.8  
70.7  
69.6  
82.1  
84.8  
78.7  
79.6  
-97.3  
-101  
-90.4  
-91.1  
-84.2  
-90.2  
-78.7  
-89.7  
11.7  
11.6  
11.5  
11.3  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR  
Signal to Noise Ratio  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN FS/2  
SINAD  
SFDR  
HD2  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
Effective number of Bits  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN FS/2  
dBc  
dBc  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN FS/2  
dBc  
dBc  
dBc  
dBc  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN FS/2  
dBc  
dBc  
dBc  
HD3  
dBc  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN FS/2  
dBc  
bits  
bits  
ENOB  
bits  
FIN = 40MHz  
bits  
Power Supply  
AIDD  
Analog Supply Current  
Digital Supply Current  
20.4  
2.3  
mA  
mA  
mA  
DIDD  
Digital core supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT enabled  
5.1  
OIDD  
Output Driver Supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT disabled  
3.5  
mA  
Analog Power Dissipation  
Digital Power Dissipation  
36.7  
12.9  
mW  
mW  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
49.6  
mW  
Total Power Dissipation  
Power Down Dissipation  
Sleep Mode  
9.3  
μW  
Power Dissipation, Sleep mode  
20.4  
mW  
Clock Inputs  
Max. Conversion Rate  
Min. Conversion Rate  
65  
MSPS  
MSPS  
40  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
8
ADVANCE Data Sheet  
Electrical Characteristics - CDK1307D  
(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 80MSPS clock, 50% clock duty cycle,  
-1dBFS 8MHz input signal, 13-bit output, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Performance  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN FS/2  
72.4  
71.8  
71.0  
70.5  
70.7  
70.8  
70.2  
69.6  
78.2  
79.4  
79.1  
79.7  
-97.2  
-94.2  
-91.6  
-81.8  
-78.2  
-79.4  
-83.0  
-79.7  
11.5  
11.5  
11.4  
11.3  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR  
Signal to Noise Ratio  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN FS/2  
SINAD  
SFDR  
HD2  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
Effective number of Bits  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN FS/2  
dBc  
dBc  
dBc  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN FS/2  
dBc  
dBc  
dBc  
dBc  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN FS/2  
dBc  
dBc  
HD3  
dBc  
dBc  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN FS/2  
bits  
bits  
ENOB  
bits  
bits  
Power Supply  
AIDD  
Analog Supply Current  
Digital Supply Current  
24.5  
2.9  
mA  
mA  
mA  
DIDD  
Digital core supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT enabled  
6.1  
OIDD  
Output Driver Supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT disabled  
4.1  
mA  
Analog Power Dissipation  
Digital Power Dissipation  
44.1  
15.5  
mW  
mW  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
59.6  
mW  
Total Power Dissipation  
Power Down Dissipation  
Sleep Mode  
9.1  
μW  
Power Dissipation, Sleep mode  
24.1  
mW  
Clock Inputs  
Max. Conversion Rate  
Min. Conversion Rate  
80  
MSPS  
MSPS  
65  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
9
ADVANCE Data Sheet  
Digital and Timing Electrical Characteristics  
(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 20/40/65/80MSPS clock, 50% clock duty cycle,  
-1 dBFS input signal, 5pF capacitive load, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Clock Inputs  
Duty Cycle  
Compliance  
20  
80  
% high  
CMOS, LVDS, LVPECL, Sine Wave  
-200  
-800  
0.3  
200  
800  
mVpp  
mVpp  
V
Differential input swing  
Input Range  
Differential input swing, sine wave clock input  
Keep voltages within ground and voltage of OVDD  
Differential  
Input Common Mode Voltage  
Input Capacitance  
VOVDD -0.3  
1.7  
pF  
Timing  
TPD  
From Power Down Mode to Active Mode  
References has reached 99% of final value  
Start Up Time from Power Down  
900  
clk cycles  
TSLP  
TOVR  
TAP  
Start Up Time from Sleep  
Out Of Range Recovery Time  
Aperture Delay  
From Sleep Mode to Active Mode  
0.5  
1
μs  
clk cycles  
0.8  
<0.5  
12  
ns  
εRMS  
TLAT  
Aperture Jitter  
ps  
clk cycles  
ns  
Pipeline Delay  
5pF load on output bits (see timing diagram)  
10pF load on output bits (see timing diagram)  
See timing diagram  
4
TD  
Output Delay  
TBD  
ns  
TDC  
Output Delay Relative to CLK_EXT  
2
ns  
Logic Inputs  
VOVDD ≥ 3.0V  
2
V
V
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
VOVDD = 1.7V – 3.0V  
VOVDD ≥ 3.0V  
0.8 VOVDD  
0
0.8  
0.2 VOVDD  
10  
V
VOVDD = 1.7V – 3.0V  
0
V
IIH  
High Level Input Leakage Current  
Low Level Input Leakage Current  
Input Capacitance  
-10  
-10  
μA  
μA  
pF  
IIL  
10  
CI  
3
Logic Outputs  
VOH  
VOL  
High Level Output Voltage  
Low Level Output Voltage  
-0.1 +VOVDD  
V
V
0.1  
5
Post-driver supply voltage equal to pre-driver  
supply voltage VOVDD = VOCVDD  
Post-driver supply voltage above 2.25V (1)  
pF  
CL  
Max Capacitive Load  
10  
pF  
Note:  
(1) The outputs will be functional with higher loads. However, it is recommended to keep the load on output data bits as low as possible to keep dynamic currents  
and resulting switching noise at a minimum.  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
10  
ADVANCE Data Sheet  
N+4  
N+3  
N+5  
N+2  
N+1  
N
N-13  
CLK_EXT  
Figure 1. Timing Diagram  
Recommended Usage  
Analog Input  
DC-Coupling  
Figure 3 shows a recommended configuration for DC-  
coupling. Note that the common mode input voltage must  
be controlled according to specified values. Preferably, the  
CM_EXT output should be used as a reference to set the  
common mode voltage.  
The analog inputs to the CDK1307 is a switched capacitor  
track-and-hold amplifier optimized for differential opera-  
tion. Operation at common mode voltages at mid supply  
is recommended even if performance will be good for the  
ranges specified. The CM_EXT pin provides a voltage suit-  
able as common mode voltage reference. The internal  
buffer for the CM_EXT voltage can be switched off, and  
driving capabilities can be changed by using the CM_EXT-  
BC control input.  
The input amplifier could be inside a companion chip or  
it could be a dedicated amplifier. Several suitable single  
ended to differential driver amplifiers exist in the market.  
The system designer should make sure the specifications  
of the selected amplifier is adequate for the total system,  
and that driving capabilities comply with the CDK1307 in-  
put specifications.  
Figure 2 shows a simplified drawing of the input net-  
work. The signal source must have sufficiently low output  
impedance to charge the sampling capacitors within one  
clock cycle. A small external resistor (e.g. 22Ω) in series  
with each input is recommended as it helps reducing  
transient currents and dampens ringing behavior. A small  
differential shunt capacitor at the chip side of the resistors  
may be used to provide dynamic charging currents and  
may improve performance. The resistors form a low pass  
filter with the capacitor, and values must therefore be  
determined by requirements for the application.  
Ω
pF  
Ω
Figure 3. DC-Coupled Input  
Detailed configuration and usage instructions must be  
found in the documentation of the selected driver, and  
the values given in Figure 3 must be varied according to  
the recommendations for the driver.  
AC-Coupling  
A signal transformer or series capacitors can be used  
to make an AC-coupled input network. Figure 4 shows  
Figure 2. Input Configuration  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
11  
ADVANCE Data Sheet  
a recommended configuration using a transformer. Make  
sure that a transformer with sufficient linearity is selected,  
and that the bandwidth of the transformer is appropriate.  
The bandwidth should exceed the sampling rate of the  
ADC with at least a factor of 10. It is also important to  
keep phase mismatch between the differential ADC inputs  
small for good HD2 performance. This type of transformer  
coupled input is the preferred configuration for high fre-  
quency signals as most differential amplifiers do not have  
adequate performance at high frequencies. If the input  
signal is traveling a long physical distance from the signal  
source to the transformer (for example a long cable), kick-  
backs from the ADC will also travel along this distance. If  
these kick-backs are not terminated properly at the source  
side, they are reflected and will add to the input signal at  
the ADC input. This could reduce the ADC performance.  
To avoid this effect, the source must effectively terminate  
the ADC kick-backs, or the traveling distance should be  
very short. If this problem could not be avoided, the cir-  
cuit in Figure 6 can be used.  
Note that startup time from Sleep Mode and Power Down  
Mode will be affected by this filter as the time required  
to charge the series capacitors is dependent on the filter  
cut-off frequency.  
If the input signal has a long traveling distance, and the  
kick-backs from the ADC not are effectively terminated at  
thesignalsource,theinputnetworkofFigure6canbeused.  
The configuration is designed to attenuate the kickback  
from the ADC and to provide an input impedance that looks  
as resistive as possible for frequencies below Nyquist.  
Values of the series inductor will however depend on board  
design and conversion rate. In some instances a shunt ca-  
pacitor in parallel with the termination resistor (e.g. 33pF)  
may improve ADC performance further. This capacitor at-  
tenuate the ADC kick-back even more, and minimize the  
kicks traveling towards the source. However, the imped-  
ance match seen into the transformer becomes worse.  
33Ω  
220Ω  
33Ω  
120nH  
1:1  
33Ω  
R
T
RT  
47Ω  
pF  
68Ω  
optional  
120nH  
33Ω  
Figure 4. Transformer-Coupled Input  
Figure 6. Alternative Input Network  
Figure 5 shows AC-coupling using capacitors. Resistors  
from the CM_EXT output, R , should be used to bias the  
differential input signals to the correct voltage. The series  
CM  
Clock Input And Jitter Considerations  
Typically high-speed ADCs use both clock edges to gener-  
ate internal timing signals. In the CDK1307 only the rising  
edge of the clock is used. Hence, input clock duty cycles  
between 20% and 80% is acceptable.  
capacitor, C , form the high-pass pole with these resistors,  
I
and the values must therefore be determined based on  
the requirement to the high-pass cut-off frequency.  
The input clock can be supplied in a variety of formats.  
The clock pins are AC-coupled internally, and hence a wide  
common mode voltage range is accepted. Differential  
clock sources as LVDS, LVPECL or differential sine wave  
can be connected directly to the input pins. For CMOS  
inputs, the CLKN pin should be connected to ground, and  
the CMOS clock signal should be connected to CLKP. For  
differential sine wave clock input the amplitude must be  
Ω
pF  
Ω
Figure 5. AC-Coupled Input  
at least ±800mV .  
pp  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
12  
ADVANCE Data Sheet  
The quality of the input clock is extremely important for The timing is described in the Timing Diagram section.  
Note that the load or equivalent delay on CK_EXT always  
should be lower than the load on data outputs to ensure  
sufficient timing margins.  
high-speed, high-resolution ADCs. The contribution to SNR  
from clock jitter with a full scale signal at a given frequency  
is shown in the equation below:  
The digital outputs can be set in tristate mode by setting  
the OE_N signal high.  
SNR  
= 20 log (2 π F εt)  
jitter  
IN  
where F is the signal frequency, and εt is the total rms  
IN  
The CDK1307 employs digital offset correction. This means  
that the output code will be 4096 with shorted inputs.  
However, small mismatches in parasitics at the input can  
cause this to alter slightly. The offset correction also re-  
sults in possible loss of codes at the edges of the full scale  
range. With no offset correction, the ADC would clip in one  
end before the other, in practice resulting in code loss at  
the opposite end. With the output being centered digitally,  
the output will clip, and the out of range flags will be set,  
before max code is reached. When out of range flags are  
set, the code is forced to all ones for over-range and all  
zeros for under-range.  
jitter measured in seconds. The rms jitter is the total of all  
jitter sources including the clock generation circuitry, clock  
distribution and internal ADC circuitry.  
For applications where jitter may limit the obtainable per-  
formance, it is of utmost importance to limit the clock  
jitter. This can be obtained by using precise and stable  
clock references (e.g. crystal oscillators with good jitter  
specifications) and make sure the clock distribution is well  
controlled. It might be advantageous to use analog power  
and ground planes to ensure low noise on the supplies  
to all circuitry in the clock distribution. It is of utmost im-  
portance to avoid crosstalk between the ADC output bits  
and the clock and between the analog input signal and  
the clock since such crosstalk often results in harmonic  
distortion.  
Data Format Selection  
The output data are presented on offset binary form  
when DFRMT is low (connect to OV ). Setting DFRMT  
SS  
high (connect to OV ) results in 2’s complement output  
DD  
The jitter performance is improved with reduced rise and  
fall times of the input clock. Hence, optimum jitter per-  
formance is obtained with LVDS or LVPECL clock with fast  
edges. CMOS and sine wave clock inputs will result in  
slightly degraded jitter performance.  
format. Details are shown in Table 1 on page 14.  
The data outputs can be used in three different configurations.  
Normal mode:  
All 13-bits are used. MSB is D_12 and LSB is D_0. This  
mode gives optimum performance due to reduced quanti-  
zation noise.  
If the clock is generated by other circuitry, it should be re-  
timed with a low jitter master clock as the last operation  
before it is applied to the ADC clock input.  
12-bit mode:  
The LSB is left unconnected such that only 12 bits are  
used. MSB is D_12 and LSB is D_1. This mode gives slightly  
reduced performance, due to increased quantization noise.  
Digital Outputs  
Digital output data are presented on parallel CMOS form.  
The voltage on the OVDD pin set the levels of the CMOS  
outputs. The output drivers are dimensioned to drive a  
wide range of loads for OVDD above 2.25V, but it is rec-  
ommended to minimize the load to ensure as low transient  
switching currents and resulting noise as possible. In ap-  
plications with a large fanout or large capacitive loads, it  
is recommended to add external buffers located close to  
the ADC chip.  
Reduced full scale range mode:  
The full scale range is reduced from 2V to 1V which is  
pp  
pp  
equivalent to 6dB gain in the ADC frontend. MSB is D_11  
and LSB is D_0. Note that the codes will wrap around  
when exceeding the full scale range, and that out of range  
bits should be used to clamp output data. See section  
Reference Voltages for details. This mode gives slightly  
reduced performance.  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
13  
ADVANCE Data Sheet  
Table 1: Data Format Description for 2V Full Scale Range  
pp  
Output data: D_12 : D_0  
Output Data: D_12 : D_0  
(DFRMT = 1, 2’s complement)  
Differential Input Voltage (IP - IN)  
(DFRMT = 0, offset binary)  
1 1111 1111 1111  
1 0000 0000 0000  
0 1111 1111 1111  
0 0000 0000 0000  
1.0 V  
+0.24mV  
-0.24mV  
-1.0V  
0 1111 1111 1111  
0 0000 0000 0000  
1 1111 1111 1111  
1 0000 0000 0000  
Reference Voltages  
Operational Modes  
The operational modes are controlled with the PD_N and  
SLP_N pins. If PD_N is set low, all other control pins are  
overridden and the chip is set in Power Down mode. In  
this mode all circuitry is completely turned off and the  
internal clock is disabled. Hence, only leakage current  
contributes to the Power Down Dissipation. The startup  
time from this mode is longer than for other idle modes  
as all references need to settle to their final values before  
normal operation can resume.  
The reference voltages are internally generated and buff-  
ered based on a bandgap voltage reference. No external  
decoupling is necessary, and the reference voltages are  
not available externally. This simplifies usage of the ADC  
since two extremely sensitive pins, otherwise needed, are  
removed from the interface.  
If a lower full scale range is required the 13-bit output  
word provides sufficient resolution to perform digital scaling  
with an equivalent impact on noise compared to adjusting  
the reference voltages.  
The SLP_N bus can be used to power down each channel  
independently, or to set the full chip in Sleep Mode. In this  
mode internal clocking is disabled, but some low band-  
width circuitry is kept on to allow for a short startup time.  
However, Sleep Mode represents a significant reduction in  
supply current, and it can be used to save power even for  
short idle periods.  
A simple way to obtain 1.0V input range with a 12-bit  
pp  
output word is shown in the Table 2 below. Note that only  
2‘s complement output data are available in this mode  
and that out of range conditions must be determined  
based on a two bit output. The output code will wrap  
around when the code goes outside the full scale range.  
The out of range bits should be used to clamp the output  
data for overrange conditions.  
The input clock could be kept running in all idle modes.  
However, even lower power dissipation is possible in  
Power Down mode if the input clock is stopped. In this  
case it is important to start the input clock prior to en-  
abling active mode.  
Table 2: Data Format Description for 1V Full Scale Range  
pp  
Differential Input  
Voltage  
Output data: D_11:  
D_0 (DFRMT = 0)  
(2’s Complement)  
Output Data: D_11:  
Out of Range  
Out of Range  
(Use Logical AND Function for &)  
D_0 (DFRMT = 1)  
(Use Logical AND Function for &)  
(IP - IN)  
(2’s Complement)  
0111 1111 1111  
0111 1111 1111  
0000 0000 0000  
1111 1111 1111  
1000 0000 0000  
1000 0000 0000  
> 0.5V  
0.5V  
0111 1111 1111  
0111 1111 1111  
0000 0000 0000  
1111 1111 1111  
1000 0000 0000  
1000 0000 0000  
D_12 = 1 & D_11 = 1  
D_12 = 0 & D_11 = 1  
+0.24mV  
-0.24mV  
-0.5V  
< -0.5V  
D_12 = 0 & D_11 = 0  
D_12 = 1 & D_11 = 0  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
14  
ADVANCE Data Sheet  
Mechanical Dimensions  
QFN-40 Package  
D
Inches  
Typ  
0.0004  
0.023  
0.008 REF  
0.010  
Millimeters  
Typ  
0.01  
0.65  
0.2 REF  
0.25  
Symbol  
A
Min  
0.001  
Max  
0.035  
0.002  
0.028  
Min  
0.00  
Max  
0.9  
D2  
A
1
A
2
A
3
0.05  
0.7  
Pin 1 ID - Dia. 0.5  
(Top Side)  
1.14  
F
Pin 1 ID - Dia. R  
A
b
0.008  
0.013  
0.2  
0.32  
G
D
0.236 BSC  
0.226 BSC  
0.162  
0.016  
0.020 BSC  
6.00 BSC  
5.75 BSC  
4.10  
0.4  
0.50 BSC  
0.42  
0.2  
D
1
A3  
A1  
D
0.156  
0.012  
0.167  
0.020  
3.95  
0.3  
4.25  
0.5  
2
L
e
0.45  
Pin 0 Exposed Pad  
θ
1
0°  
12°  
0.024  
0°  
0.2  
0.24  
0.1  
12°  
0.6  
F
G
R
0.008  
0.0096  
0.004  
0.0168  
0.008  
NOTE:  
Package dimensions in millimeter unless otherwise noted.  
D
D2  
D1  
θ1  
L
e
b
A2  
For additional information regarding our products, please visit CADEKA at: cadeka.com  
CADEKA Headquarters Loveland, Colorado  
T: 970.663.5452  
T: 877.663.5452 (toll free)  
Amplify the Human Experience  
CADEKA, the CADEKA logo design, COMLINEAR and the COMLINEAR logo design are trademarks or registered trademarks of CADEKA  
Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.  
designed by  
CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any  
responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in  
writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights,  
copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.  
Copyright ©2008 by CADEKA Microcircuits LLC. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY