CDK1308CILP40 [CADEKA]

Ultra Low Power, 20/40/65/80MSPS, 10-bit Analog-to-Digital Converters (ADCs); 超低功耗, 20/40/ 65 / 80MSPS , 10位模拟至数字转换器(ADC )
CDK1308CILP40
型号: CDK1308CILP40
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

Ultra Low Power, 20/40/65/80MSPS, 10-bit Analog-to-Digital Converters (ADCs)
超低功耗, 20/40/ 65 / 80MSPS , 10位模拟至数字转换器(ADC )

转换器
文件: 总14页 (文件大小:1060K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE Data Sheet  
Amplify the Human Experience  
CDK1308  
Ultra Low Power, 20/40/65/80MSPS,  
10-bit Analog-to-Digital Converters (ADCs)  
F E A T U R E S  
General Description  
nꢀ  
10-bit resolution  
The CDK1308 is a high performance ultra low power analog-to-digital  
converter (ADC). The ADC employs internal reference circuitry, a CMOS  
control interface and CMOS output data, and is based on a proprietary  
structure. Digital error correction is employed to ensure no missing codes in  
the complete full scale range.  
nꢀ  
nꢀ  
20/40/65/80MSPS max sampling rate  
Ultra-Low Power Dissipation:  
15/25/38/46mW  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
61.6dB SNR at 8MHz FIN  
Internal reference circuitry  
1.8V core supply voltage  
1.7 – 3.6V I/O supply voltage  
Parallel CMOS output  
Two idle modes with fast startup times exist. The entire chip can either be  
put in Standby Mode or Power Down mode. The two modes are optimized to  
allow the user to select the mode resulting in the smallest possible energy  
consumption during idle mode and startup.  
40-pin QFN package  
Pin compatible with CDK1307  
The CDK1308 has a highly linear THA optimized for frequencies up to Nyquist.  
The differential clock interface is optimized for low jitter clock sources and  
supports LVDS, LVPECL, sine wave, and CMOS clock inputs.  
A P P L I C A T I O N S  
nꢀ  
Medical Imaging  
nꢀ  
Portable Test Equipment  
Functional Block Diagram  
nꢀ  
Digital Oscilloscopes  
nꢀ  
IF Communication  
10  
Ordering Information  
Part Number  
Speed  
Package  
QFN-40  
QFN-40  
QFN-40  
QFN-40  
Pb-Free RoHS Compliant Operating Temperature Range Packaging Method  
CDK1308AILP40  
CDK1308BILP40  
CDK1308CILP40  
CDK1308DILP40  
20MSPS  
20MSPS  
65MSPS  
80MSPS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Tray  
Tray  
Tray  
Tray  
Moisture sensitivity level for all parts is MSL-3.  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
ADVANCE Data Sheet  
Pin Configuration  
QFN-40  
DVSS  
CM_EXT  
AVDD  
AVDD  
IP  
D_4  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
D_3  
D_2  
3
CLK_EXT  
OVDD  
OVDD  
ORNG  
D_1  
4
CDK1308  
5
QFN-40  
IN  
6
AVDD  
DVDDCLK  
CLKP  
7
8
D_0  
9
CLKN  
NC  
10  
Pin Assignments  
Pin No.  
Pin Name  
Description  
0
Ground connection for all power domains. Exposed pad  
Digital and I/O-ring pre driver supply voltage, 1.8V  
Common Mode voltage output  
VSS  
1, 11, 16  
DVDD  
2
3, 4, 7  
5, 6  
8
CM_EXT  
AVDD  
Analog supply voltage, 1.8V  
IP, IN  
Analog input (non-inverting, inverting)  
DVDDCLK  
Clock circuitry supply voltage, 1.8V  
9
Clock input, non-inverting (format: LVDS, LVPECL, CMOS/TTL, Sine Wave)  
Clock input, inverting. For CMOS input on CLKP, connect CLKN to ground  
CLKP  
CLKN  
10  
12  
CLK_EXT_EN CLK_EXT signal enabled when low (zero). Tristate when high.  
13  
DFRMT  
PD_N  
Data format selection. 0: Offset Binary, 1: Two's Complement  
14  
Full chip Power Down mode when Low. All digital outputs reset to zero. After chip power up  
always apply Power Down mode before using Active Mode to reset chip.  
15  
OE_N  
OVDD  
Output Enable. Tristate when high  
17, 18, 25,  
26, 36, 37  
I/O ring post-driver supply voltage. Voltage range 1.7 to 3.6V  
19  
20  
21  
22  
NC  
NC  
NC  
Output Data  
D_0  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
2
ADVANCE Data Sheet  
Pin Assignments (Continued)  
Pin No.  
23  
Pin Name  
D_1  
Description  
Output Data  
24  
ORNG  
CK_EXT  
D_2  
Out of Range flag. High when input signal is out of range  
27  
Output clock signal for data synchronization. CMOS levels  
28  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data (MSB)  
29  
D_3  
30  
D_4  
31  
D_5  
32  
D_6  
33  
D_7  
34  
D_8  
35  
D_9  
38, 39  
CM_EXTBC_1, Bias control bits for the buffer driving pin CM_EXT  
CM_EXTBC_0  
00: OFF  
10: 50μA  
10: 500μA 11: 1mA  
Sleep Mode when low  
40  
SLP_N  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
3
ADVANCE Data Sheet  
Absolute Maximum Ratings  
The safety of the device is not guaranteed when it is operated above the “Absolute Maximum Ratings. The device  
should not be operated at these “absolute” limits. Adhere to the “Recommended Operating Conditions” for proper device  
function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the  
operating conditions noted on the tables and plots.  
Parameter  
Min  
Max  
Unit  
AVDD  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
+2.3  
+2.3  
+0.3  
+3.9  
+3.9  
+2.3  
+3.9  
+3.9  
V
V
V
V
V
V
V
V
DVDD  
AVSS, DVSSCK, DVSS, OVSS  
OVDD  
CLKP, CLKN  
Analog inputs and outpts (IPx, INx)  
Digital inputs  
Digital outputs  
Reliability Information  
Parameter  
Min  
Typ  
Max  
Unit  
Junction Temperature  
TBD  
°C  
°C  
°C  
Storage Temperature Range  
Lead Temperature (Soldering, 10s)  
-60  
+150  
TBD  
ESD Protection  
Product  
QFN-40  
Human Body Model (HBM)  
2kV  
Charged Device Model (CDM)  
TBD  
Recommended Operating Conditions  
Parameter  
Min  
-40  
Typ  
Max  
+85  
Unit  
°C  
Operating Temperature Range  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
4
ADVANCE Data Sheet  
Electrical Characteristics  
(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 20/40/65/80MSPS clock, 50% clock duty cycle,  
-1dBFS 8MHz input signal, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DC Accuracy  
No Missing Codes  
Guaranteed  
TBD  
Offset Error  
Midscale offset  
mV  
%FS  
LSB  
LSB  
V
Gain Error  
Full scale range deviation from typical  
-6  
6
DNL  
Differential Non-Linearity  
Integral Non-Linearity  
Common Mode Voltage Output  
-0.3  
-0.6  
0.3  
0.6  
INL  
VCMO  
VAVDD/2  
Analog Input  
VCMI  
Input Common Mode  
Analog input common mode voltage  
Differential input voltage range  
Differential input capacitance  
Input bandwidth, full power  
VCM -0.1  
500  
VCM +0.1  
V
2.0  
1.8  
Vpp  
pF  
VFSR  
Full Scale Range  
Input Capacitance  
Bandwidth  
MHz  
Power Supply  
Supply voltage to all 1.8V domain pins.  
See Pin Configuration and Description  
1.7  
1.7  
1.8  
2.5  
2.0  
3.6  
V
V
AVDD,  
DVDD  
Core Supply Voltage  
I/O Supply Voltage  
Output driver supply voltage (OVDD).  
Must be higher than or equal to Core Supply  
OVDD  
Voltage (VOVDD ≥ VOCVDD  
)
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
5
ADVANCE Data Sheet  
Electrical Characteristics - CDK1308A  
(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 20MSPS clock, 50% clock duty cycle,  
-1dBFS 8MHz input signal, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Performance  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
61.7  
61.6  
61.6  
61.6  
61.7  
61.6  
60.5  
61.6  
84.1  
85.5  
70.3  
87.5  
-88.8  
-89.5  
-95.9  
-91.4  
-89.5  
-90.5  
-70.3  
-89.7  
10.0  
9.9  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR  
Signal to Noise Ratio  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
SINAD  
SFDR  
HD2  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
Effective number of Bits  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
dBc  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
dBc  
dBc  
dBc  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
dBc  
dBc  
HD3  
dBc  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
bits  
bits  
ENOB  
9.8  
bits  
FIN = 20MHz  
9.9  
bits  
Power Supply  
AIDD  
Analog Supply Current  
Digital Supply Current  
5.6  
1.0  
mA  
mA  
mA  
DIDD  
Digital core supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT enabled  
1.7  
OIDD  
Output Driver Supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT disabled  
1.2  
mA  
Analog Power Dissipation  
Digital Power Dissipation  
10.1  
4.8  
mW  
mW  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
14.9  
mW  
Total Power Dissipation  
Power Down Dissipation  
Sleep Mode  
9.9  
7.7  
μW  
Power Dissipation, Sleep mode  
mW  
Clock Inputs  
Max. Conversion Rate  
Min. Conversion Rate  
20  
MSPS  
MSPS  
15  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
6
ADVANCE Data Sheet  
Electrical Characteristics - CDK1308B  
(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 40MSPS clock, 50% clock duty cycle,  
-1dBFS 8MHz input signal, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Performance  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
61.6  
61.6  
61.6  
61.5  
61.6  
61.6  
61.2  
61.4  
78.8  
82.3  
72.0  
82.5  
-87.9  
-92.0  
-84.8  
-88.8  
-81.8  
-85.7  
-72.0  
-83.9  
9.9  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR  
Signal to Noise Ratio  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
SINAD  
SFDR  
HD2  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
Effective number of Bits  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
dBc  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
dBc  
dBc  
dBc  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
dBc  
dBc  
HD3  
dBc  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN FS/2  
dBc  
bits  
9.9  
bits  
ENOB  
9.9  
bits  
FIN = 30MHz  
9.9  
bits  
Power Supply  
AIDD  
Analog Supply Current  
Digital Supply Current  
9.3  
1.7  
3.1  
mA  
mA  
mA  
DIDD  
Digital core supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT enabled  
OIDD  
Output Driver Supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT disabled  
2.2  
mA  
Analog Power Dissipation  
Digital Power Dissipation  
16.7  
8.6  
mW  
mW  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
25.3  
mW  
Total Power Dissipation  
Power Down Dissipation  
Sleep Mode  
9.7  
μW  
Power Dissipation, Sleep mode  
11.3  
mW  
Clock Inputs  
Max. Conversion Rate  
Min. Conversion Rate  
40  
MSPS  
MSPS  
20  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
7
ADVANCE Data Sheet  
Electrical Characteristics - CDK1308C  
(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 65MSPS clock, 50% clock duty cycle,  
-1dBFS 8MHz input signal, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Performance  
FIN = 8MHz  
FIN = 20MHz  
FIN FS/2  
61.6  
61.6  
61.5  
61.3  
61.6  
61.6  
60.4  
61.1  
80.6  
85.6  
66.4  
76.9  
-91.4  
-93.0  
-83.8  
-90.7  
-80.6  
-86.4  
-66.4  
-76.9  
9.9  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR  
Signal to Noise Ratio  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN FS/2  
SINAD  
SFDR  
HD2  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
Effective number of Bits  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN FS/2  
dBc  
dBc  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN FS/2  
dBc  
dBc  
dBc  
dBc  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN FS/2  
dBc  
dBc  
dBc  
HD3  
dBc  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN FS/2  
dBc  
bits  
9.9  
bits  
ENOB  
9.7  
bits  
FIN = 40MHz  
9.9  
bits  
Power Supply  
AIDD  
Analog Supply Current  
Digital Supply Current  
13.8  
2.6  
mA  
mA  
mA  
DIDD  
Digital core supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT enabled  
4.9  
OIDD  
Output Driver Supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT disabled  
3.4  
mA  
Analog Power Dissipation  
Digital Power Dissipation  
24.8  
13.2  
mW  
mW  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
38.0  
mW  
Total Power Dissipation  
Power Down Dissipation  
Sleep Mode  
9.3  
μW  
Power Dissipation, Sleep mode  
15.7  
mW  
Clock Inputs  
Max. Conversion Rate  
Min. Conversion Rate  
65  
MSPS  
MSPS  
40  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
8
ADVANCE Data Sheet  
Electrical Characteristics - CDK1308D  
(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 80MSPS clock, 50% clock duty cycle,  
-1dBFS 8MHz input signal, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Performance  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN FS/2  
61.6  
61.2  
61.3  
61.3  
61.3  
60.7  
61.0  
58.7  
74.8  
73.9  
74.7  
61.7  
-88.5  
-95.0  
-88.9  
-79.0  
-74.8  
-75.0  
-74.7  
-61.7  
9.9  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR  
Signal to Noise Ratio  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN FS/2  
SINAD  
SFDR  
HD2  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
Effective number of Bits  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN FS/2  
dBc  
dBc  
dBc  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN FS/2  
dBc  
dBc  
dBc  
dBc  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN FS/2  
dBc  
dBc  
HD3  
dBc  
dBc  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN FS/2  
bits  
9.8  
bits  
ENOB  
9.8  
bits  
9.5  
bits  
Power Supply  
AIDD  
Analog Supply Current  
Digital Supply Current  
16.5  
3.3  
mA  
mA  
mA  
DIDD  
Digital core supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT enabled  
5.9  
OIDD  
Output Driver Supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT disabled  
4.1  
mA  
Analog Power Dissipation  
Digital Power Dissipation  
29.7  
16.2  
mW  
mW  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
45.9  
mW  
Total Power Dissipation  
Power Down Dissipation  
Sleep Mode  
9.1  
μW  
Power Dissipation, Sleep mode  
18.3  
mW  
Clock Inputs  
Max. Conversion Rate  
Min. Conversion Rate  
80  
MSPS  
MSPS  
65  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
9
ADVANCE Data Sheet  
Digital and Timing Electrical Characteristics  
(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 20/40/65/80MSPS clock, 50% clock duty cycle,  
-1 dBFS input signal, 5pF capacitive load, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Clock Inputs  
Duty Cycle  
Compliance  
20  
80  
% high  
CMOS, LVDS, LVPECL, Sine Wave  
-200  
-800  
0.3  
200  
800  
mVpp  
mVpp  
V
Differential input swing  
Input Range  
Differential input swing, sine wave clock input  
Keep voltages within ground and voltage of OVDD  
Differential  
Input Common Mode Voltage  
Input Capacitance  
VOVDD -0.3  
1.7  
pF  
Timing  
TPD  
From Power Down Mode to Active Mode  
References has reached 99% of final value  
Start Up Time from Power Down  
900  
clk cycles  
TSLP  
TOVR  
TAP  
Start Up Time from Sleep  
Out Of Range Recovery Time  
Aperture Delay  
From Sleep Mode to Active Mode  
0.5  
1
μs  
clk cycles  
0.8  
<0.5  
12  
ns  
εRMS  
TLAT  
Aperture Jitter  
ps  
clk cycles  
ns  
Pipeline Delay  
5pF load on output bits (see timing diagram)  
10pF load on output bits (see timing diagram)  
See timing diagram  
4
TD  
Output Delay  
TBD  
ns  
TDC  
Output Delay Relative to CLK_EXT  
2
ns  
Logic Inputs  
VOVDD ≥ 3.0V  
2
V
V
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
VOVDD = 1.7V – 3.0V  
VOVDD ≥ 3.0V  
0.8 VOVDD  
0
0.8  
0.2 VOVDD  
10  
V
VOVDD = 1.7V – 3.0V  
0
V
IIH  
High Level Input Leakage Current  
Low Level Input Leakage Current  
Input Capacitance  
-10  
-10  
μA  
μA  
pF  
IIL  
10  
CI  
3
Logic Outputs  
VOH  
VOL  
High Level Output Voltage  
Low Level Output Voltage  
-0.1 +VOVDD  
V
V
0.1  
5
Post-driver supply voltage equal to pre-driver  
supply voltage VOVDD = VOCVDD  
Post-driver supply voltage above 2.25V (1)  
pF  
CL  
Max Capacitive Load  
10  
pF  
Note:  
(1) The outputs will be functional with higher loads. However, it is recommended to keep the load on output data bits as low as possible to keep dynamic currents  
and resulting switching noise at a minimum.  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
10  
ADVANCE Data Sheet  
N+4  
N+3  
N+5  
N+2  
N+1  
N
N-13  
CLK_EXT  
Figure 1. Timing Diagram  
Recommended Usage  
Analog Input  
DC-Coupling  
Figure 3 shows a recommended configuration for DC-  
coupling. Note that the common mode input voltage must  
be controlled according to specified values. Preferably, the  
CM_EXT output should be used as a reference to set the  
common mode voltage.  
The analog inputs to the CDK1308 is a switched capacitor  
track-and-hold amplifier optimized for differential opera-  
tion. Operation at common mode voltages at mid supply  
is recommended even if performance will be good for the  
ranges specified. The CM_EXT pin provides a voltage suit-  
able as common mode voltage reference. The internal  
buffer for the CM_EXT voltage can be switched off, and  
driving capabilities can be changed by using the CM_EXT-  
BC control input.  
The input amplifier could be inside a companion chip or  
it could be a dedicated amplifier. Several suitable single  
ended to differential driver amplifiers exist in the market.  
The system designer should make sure the specifications  
of the selected amplifier is adequate for the total system,  
and that driving capabilities comply with the CDK1308  
input specifications.  
Figure 2 shows a simplified drawing of the input net-  
work. The signal source must have sufficiently low output  
impedance to charge the sampling capacitors within one  
clock cycle. A small external resistor (e.g. 22Ω) in series  
with each input is recommended as it helps reducing tran-  
sient currents and dampens ringing behavior. A small dif-  
ferential shunt capacitor at the chip side of the resistors  
may be used to provide dynamic charging currents and  
may improve performance. The resistors form a low pass  
filter with the capacitor, and values must therefore be de-  
termined by requirements for the application.  
Ω
pF  
Ω
Figure 3. DC-Coupled Input  
Detailed configuration and usage instructions must be  
found in the documentation of the selected driver, and  
the values given in Figure 3 must be varied according to  
the recommendations for the driver.  
AC-Coupling  
A signal transformer or series capacitors can be used  
to make an AC-coupled input network. Figure 4 shows  
Figure 2. Input Configuration  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
11  
ADVANCE Data Sheet  
a recommended configuration using a transformer. Make  
sure that a transformer with sufficient linearity is selected,  
and that the bandwidth of the transformer is appropriate.  
The bandwidth should exceed the sampling rate of the  
ADC with at least a factor of 10. It is also important to  
keep phase mismatch between the differential ADC inputs  
small for good HD2 performance. This type of transformer  
coupled input is the preferred configuration for high fre-  
quency signals as most differential amplifiers do not have  
adequate performance at high frequencies. If the input  
signal is traveling a long physical distance from the signal  
source to the transformer (for example a long cable), kick-  
backs from the ADC will also travel along this distance. If  
these kick-backs are not terminated properly at the source  
side, they are reflected and will add to the input signal at  
the ADC input. This could reduce the ADC performance.  
To avoid this effect, the source must effectively terminate  
the ADC kick-backs, or the traveling distance should be  
very short. If this problem could not be avoided, the cir-  
cuit in Figure 6 can be used.  
Note that startup time from Sleep Mode and Power Down  
Mode will be affected by this filter as the time required  
to charge the series capacitors is dependent on the filter  
cut-off frequency.  
Iftheinputsignalhasalongtravelingdistance,andthekick-  
backs from the ADC not are effectively terminated at the  
signal source, the input network of Figure 6 can be used.  
The configuration is designed to attenuate the kickback  
from the ADC and to provide an input impedance that looks  
as resistive as possible for frequencies below Nyquist.  
Values of the series inductor will however depend on board  
design and conversion rate. In some instances a shunt  
capacitorinparallelwiththeterminationresistor(e.g.33pF)  
may improve ADC performance further. This capacitor  
attenuate the ADC kick-back even more, and minimize the  
kicks traveling towards the source. However, the imped-  
ance match seen into the transformer becomes worse.  
33Ω  
220Ω  
33Ω  
120nH  
1:1  
33Ω  
R
T
RT  
47Ω  
pF  
68Ω  
optional  
120nH  
33Ω  
Figure 4. Transformer-Coupled Input  
Figure 6. Alternative Input Network  
Figure 5 shows AC-coupling using capacitors. Resistors  
from the CM_EXT output, R , should be used to bias the  
CM  
Clock Input And Jitter Considerations  
differential input signals to the correct voltage. The series  
capacitor, CI, form the high-pass pole with these resistors,  
and the values must therefore be determined based on  
the requirement to the high-pass cut-off frequency.  
Typically high-speed ADCs use both clock edges to gener-  
ate internal timing signals. In the CDK1308 only the rising  
edge of the clock is used. Hence, input clock duty cycles  
between 20% and 80% is acceptable.  
The input clock can be supplied in a variety of formats.  
The clock pins are AC-coupled internally, and hence a wide  
common mode voltage range is accepted. Differential  
clock sources as LVDS, LVPECL or differential sine wave  
can be connected directly to the input pins. For CMOS  
inputs, the CLKN pin should be connected to ground, and  
the CMOS clock signal should be connected to CLKP. For  
differential sine wave clock input the amplitude must be  
Ω
pF  
Ω
Figure 5. AC-Coupled Input  
at least ±800mV .  
pp  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
12  
ADVANCE Data Sheet  
The quality of the input clock is extremely important for The voltage on the OVDD pin set the levels of the CMOS  
high-speed, high-resolution ADCs. The contribution to SNR  
from clock jitter with a full scale signal at a given frequency  
is shown in the equation below:  
outputs. The output drivers are dimensioned to drive a  
wide range of loads for OVDD above 2.25V, but it is rec-  
ommended to minimize the load to ensure as low transient  
switching currents and resulting noise as possible. In ap-  
plications with a large fanout or large capacitive loads, it  
is recommended to add external buffers located close to  
the ADC chip.  
SNR  
= 20 log (2 π F εt)  
jitter  
IN  
where F is the signal frequency, and εt is the total rms  
IN  
jitter measured in seconds. The rms jitter is the total of all  
jitter sources including the clock generation circuitry, clock  
distribution and internal ADC circuitry.  
The timing is described in the Timing Diagram section.  
Note that the load or equivalent delay on CK_EXT always  
should be lower than the load on data outputs to ensure  
sufficient timing margins.  
For applications where jitter may limit the obtainable per-  
formance, it is of utmost importance to limit the clock  
jitter. This can be obtained by using precise and stable  
clock references (e.g. crystal oscillators with good jitter  
specifications) and make sure the clock distribution is  
well controlled. It might be advantageous to use analog  
power and ground planes to ensure low noise on the sup-  
plies to all circuitry in the clock distribution. It is of utmost  
importance to avoid crosstalk between the ADC output bits  
and the clock and between the analog input signal and  
the clock since such crosstalk often results in harmonic  
distortion.  
The digital outputs can be set in tristate mode by setting  
the OE_N signal high.  
The CDK1308 employs digital offset correction. This means  
that the output code will be 4096 with shorted inputs.  
However, small mismatches in parasitics at the input  
can cause this to alter slightly. The offset correction also  
results in possible loss of codes at the edges of the full  
scale range. With no offset correction, the ADC would clip  
in one end before the other, in practice resulting in code  
loss at the opposite end. With the output being centered  
digitally, the output will clip, and the out of range flags will  
be set, before max code is reached. When out of range  
flags are set, the code is forced to all ones for over-range  
and all zeros for under-range.  
The jitter performance is improved with reduced rise and  
fall times of the input clock. Hence, optimum jitter per-  
formance is obtained with LVDS or LVPECL clock with fast  
edges. CMOS and sine wave clock inputs will result in  
slightly degraded jitter performance.  
If the clock is generated by other circuitry, it should be re-  
timed with a low jitter master clock as the last operation  
before it is applied to the ADC clock input.  
Data Format Selection  
The output data are presented on offset binary form  
when DFRMT is low (connect to OV ). Setting DFRMT  
SS  
Digital Outputs  
high (connect to OV ) results in 2’s complement output  
DD  
format. Details are shown in Table 1 below.  
Digital output data are presented on parallel CMOS form.  
Table 1: Data Format Description for 2V Full Scale Range  
pp  
Output data: D_9 : D_0  
(DFRMT = 0, offset binary)  
Output Data: D_9 : D_0  
(DFRMT = 1, 2’s complement)  
Differential Input Voltage (IP - IN)  
1.0 V  
+0.24mV  
-0.24mV  
-1.0V  
11 1111 1111  
10 0000 0000  
01 1111 1111  
00 0000 0000  
01 1111 1111  
00 0000 0000  
11 1111 1111  
10 0000 0000  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
13  
ADVANCE Data Sheet  
tributes to the Power Down Dissipation. The startup time  
from this mode is longer than for Sleep Mode as all refer-  
ences need to settle to their final values before normal  
operation can resume.  
Reference Voltages  
The reference voltages are internally generated and buff-  
ered based on a bandgap voltage reference. No external  
decoupling is necessary, and the reference voltages are  
not available externally. This simplifies usage of the ADC  
since two extremely sensitive pins, otherwise needed, are  
removed from the interface.  
The SLP_N signal can be used to set the full chip in Sleep  
Mode. In this mode internal clocking is disabled, but some  
low bandwidth circuitry is kept on to allow for a short  
startup time. However, Sleep Mode represents a signifi-  
cant reduction in supply current, and it can be used to  
save power even for short idle periods.  
Operational Modes  
The operational modes are controlled with the PD_N and  
SLP_N pins. If PD_N is set low, all other control pins are  
overridden and the chip is set in Power Down mode. In  
this mode all circuitry is completely turned off and the in-  
ternal clock is disabled. Hence, only leakage current con-  
The input clock should be kept running in all idle modes.  
However, even lower power dissipation is possible in Power  
Down mode if the input clock is stopped. In this case it is  
important to start the input clock prior to enabling active mode.  
Mechanical Dimensions  
QFN-40 Package  
D
Inches  
Typ  
0.0004  
0.023  
0.008 REF  
0.010  
Millimeters  
Typ  
0.01  
0.65  
0.2 REF  
0.25  
Symbol  
A
Min  
0.001  
Max  
0.035  
0.002  
0.028  
Min  
0.00  
Max  
0.9  
D2  
A
1
A
2
A
3
0.05  
0.7  
Pin 1 ID - Dia. 0.5  
(Top Side)  
1.14  
F
Pin 1 ID - Dia. R  
A
b
0.008  
0.013  
0.2  
0.32  
G
D
0.236 BSC  
0.226 BSC  
0.162  
0.016  
0.020 BSC  
6.00 BSC  
5.75 BSC  
4.10  
0.4  
0.50 BSC  
0.42  
0.2  
D
1
A3  
A1  
D
0.156  
0.012  
0.167  
0.020  
3.95  
0.3  
4.25  
0.5  
2
L
e
0.45  
Pin 0 Exposed Pad  
θ
1
0°  
12°  
0.024  
0°  
0.2  
0.24  
0.1  
12°  
0.6  
F
G
R
0.008  
0.0096  
0.004  
0.0168  
0.008  
NOTE:  
Package dimensions in millimeter unless otherwise noted.  
D
D2  
D1  
θ1  
L
e
b
A2  
For additional information regarding our products, please visit CADEKA at: cadeka.com  
CADEKA Headquarters Loveland, Colorado  
T: 970.663.5452  
T: 877.663.5452 (toll free)  
Amplify the Human Experience  
CADEKA, the CADEKA logo design, COMLINEAR and the COMLINEAR logo design are trademarks or registered trademarks of CADEKA  
Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.  
designed by  
CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any  
responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in  
writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights,  
copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.  
Copyright ©2008 by CADEKA Microcircuits LLC. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY