CDK2308DITQ64X [CADEKA]

Dual, 20/40/65/80MSPS, 10-bit Analog-to-Digital Converters; 双通道, 20/40/ 65 / 80MSPS , 10位模拟 - 数字转换器
CDK2308DITQ64X
型号: CDK2308DITQ64X
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

Dual, 20/40/65/80MSPS, 10-bit Analog-to-Digital Converters
双通道, 20/40/ 65 / 80MSPS , 10位模拟 - 数字转换器

转换器
文件: 总14页 (文件大小:1173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY Data Sheet  
Amplify the Human Experience  
CDK2308  
Dual, 20/40/65/80MSPS, 10-bit  
Analog-to-Digital Converters  
f E A t u R E s  
General Description  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
10-bit resolution  
The CDK2308 is a high performance, low power dual Analog-to-Digital Con-  
verters (ADC). The ADC employs internal reference circuitry, a CMOS control  
interface and CMOS output data, and is based on a proprietary structure.  
Digital error correction is employed to ensure no missing codes in the com-  
plete full scale range.  
20/40/65/80MSPS maximum sampling rate  
Ultra-low power dissipation: 24/43/65/78mW  
61.6dB SNR at 8MHz FIN  
Internal reference circuitry  
1.8V core supply voltage  
1.7V – 3.6V I/O supply voltage  
Parallel CMOS output  
Several idle modes with fast startup times exist. Each channel can indepen-  
dently be powered down and the entire chip can either be put in Standby  
Mode or Power Down mode. The different modes are optimized to allow the  
user to select the mode resulting in the smallest possible energy consumption  
during idle mode and startup.  
64-pin TQFP package  
Dual channel  
Pin compatible with CDK2307  
The CDK2308 has a highly linear THA optimized for frequencies up to Nyquist.  
The differential clock interface is optimized for low jitter clock sources and  
supports LVDS, LVPECL, sine wave and CMOS clock inputs.  
A P P L I c A t I o N s  
nꢀ  
Medical Imaging  
nꢀ  
Portable Test Equipment  
Functional Block Diagram  
nꢀ  
Digital Oscilloscopes  
nꢀ  
IF Communication  
CLK_EXT  
Ordering Information  
Part Number  
Speed  
Package  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
Pb-Free RoHS Compliant Operating Temperature Range Packaging Method  
CDK2308AITQ64  
CDK2308AITQ64X  
CDK2308BITQ64  
CDK2308BITQ64X  
CDK2308CITQ64  
CDK2308CITQ64X  
CDK2308DITQ64  
CDK2308DITQ64X  
20MSPS  
20MSPS  
40MSPS  
40MSPS  
65MSPS  
65MSPS  
80MSPS  
80MSPS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
Moisture sensitivity level for all parts is MSL-3.  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
PRELIMINARY Data Sheet  
Pin Configuration  
TQFP-64  
1
2
48  
47  
3
46  
4
45 N/C  
5
44 N/C  
6
43 N/C  
CDK2308  
7
42 CLK_EXT  
TQFP-64  
8
41  
40  
39  
38  
37  
36  
35  
34  
33  
9
10  
11  
12  
DVSSCLK  
13  
14  
15  
16  
DVDDCLK  
CLKP  
CLKN  
Pin Assignments  
Pin No.  
1, 18, 23  
2
Pin Name  
Description  
DVDD  
CM_EXT  
AVDD  
Digital and I/O-ring pre driver supply voltage, 1.8V  
Common Mode voltage output  
3, 9, 12  
4, 5, 8  
6, 7  
Analog supply voltage, 1.8V  
AVSS  
Analog ground  
IP0, IN0  
IP1, IN1  
DVSSCLK  
DVDDCLK  
CLKP  
Analog input Channel 0 (non-inverting, inverting)  
Analog input Channel 1 (non-inverting, inverting)  
Clock circuitry ground  
10, 11  
13  
14  
Clock circuitry supply voltage, 1.8V  
15  
Clock input, non-inverting (Format: LVDS, PECL, CMOS/TTL, Sine Wave)  
Clock input, inverting. For CMOS input on CLKP, bypass CLKN to ground with a 10nF capacitor  
Digital circuitry ground  
16  
CLKN  
17, 64  
19  
DVSS  
CLK_EXT_EN CLK_EXT signal enabled when low (zero). Tristate when high.  
20  
DFRMT  
PD_N  
OE_N_1  
OVDD  
OVSS  
Data format selection. 0: Offset Binary, 1: Two's Complement  
Full chip Power Down mode when Low. All digital outputs reset to zero.  
Output Enable Channel 0. Tristate when high  
I/O ring post-driver supply voltage. Voltage range 1.7V to 3.6V.  
Ground for I/O ring  
21  
22  
24, 41, 58  
25, 40, 57  
26  
NC  
No Connect  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
2
PRELIMINARY Data Sheet  
Pin Assignments (Continued)  
Pin No.  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
59  
Pin Name  
NC  
Description  
No Connect  
NC  
No Connect  
D1_0  
D1_1  
D1_2  
D1_3  
D1_4  
D1_5  
D1_6  
D1_7  
D1_8  
D1_9  
ORNG_1  
CLK_EXT  
NC  
Output Data Channel 1 (LSB)  
Output Data Channel 1  
Output Data Channel 1  
Output Data Channel 1  
Output Data Channel 1  
Output Data Channel 1  
Output Data Channel 1  
Output Data Channel 1  
Output Data Channel 1 (MSB for 1Vpp full scale range, see Reference Voltages section)  
Output Data Channel 1 (MSB for 2Vpp full scale range)  
Out of Range flag Channel 1. High when input signal is out of range  
Output clock signal for data synchronization. CMOS levels.  
No Connect  
NC  
No Connect  
NC  
No Connect  
D0_0  
D0_1  
D0_2  
D0_3  
D0_4  
D0_5  
D0_6  
D0_7  
D0_8  
D0_9  
ORNG_0  
OE_N_0  
Output Data Channel 0  
Output Data Channel 0  
Output Data Channel 0  
Output Data Channel 0  
Output Data Channel 0  
Output Data Channel 0  
Output Data Channel 0  
Output Data Channel 0  
Output Data Channel 0 (MSB for 1Vpp full scale range, see Reference Voltages section)  
Output Data Channel 0 (MSB for 2Vpp full scale range)  
Out of Range flag Channel 0. High when input signal is out of range.  
Output Enable Channel 0. Tristate when low.  
Bias control bits for the buffer driving pin CM_EXT  
CM_EXTBC_1,  
CM_EXTBC_0  
00: Off  
10: 500uA@50MSPS  
10: 50uA@50MSPS  
11: 1mA@50MSPS  
60, 61  
62, 63  
Sleep Mode  
00: Sleep Mode  
10: Channel 1 active  
SLP_N_1,  
SLP_N_0  
01: Channel 0 active  
11: Both channels active  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
3
PRELIMINARY Data Sheet  
Absolute Maximum Ratings  
The safety of the device is not guaranteed when it is operated above the “Absolute Maximum Ratings. The device  
should not be operated at these “absolute” limits. Adhere to the “Recommended Operating Conditions” for proper device  
function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the  
operating conditions noted on the tables and plots.  
Parameter  
Min  
Max  
Unit  
AVDD, AVSS  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
+2.3  
+2.3  
+0.3  
+3.9  
+3.9  
+2.3  
+3.9  
+3.9  
V
V
V
V
V
V
V
V
DVDD, DVSS  
AVSS, DVSSCK, DVSS, OVSS  
OVDD, OVSS  
CKP, CKN, DVSSCK  
Analog inputs and outpts (IPx, INx, AVSS)  
Digital inputs  
Digital outputs  
Reliability Information  
Parameter  
Min  
Typ  
Max  
Unit  
Junction Temperature  
Storage Temperature Range  
Lead Temperature (Soldering, 10s)  
Package Thermal Resistance  
64-Lead TQFP  
TBD  
°C  
°C  
°C  
-60  
+150  
TBD  
TBD  
°C/W  
Notes:  
Package thermal resistance (θ ), JDEC standard, multi-layer test boards, still air.  
JA  
ESD Protection  
Product  
TQFP-64  
Human Body Model (HBM)  
TBD  
TBD  
Charged Device Model (CDM)  
Recommended Operating Conditions  
Parameter  
Min  
-40  
Typ  
Max  
+85  
Unit  
°C  
Operating Temperature Range  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
4
PRELIMINARY Data Sheet  
Electrical Characteristics  
(AV =1.8V, DV =1.8V, DV  
=1.8V, OV =2.5V, 50MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal,  
DD  
DD  
DD  
DDCLK  
13-bit output, unless otherwise noted)  
symbꢀl  
Parameꢁer  
cꢀndiꢁiꢀnꢂ  
Min  
typ  
Max  
uniꢁꢂ  
DC Accuracy  
No Missing Codes  
Offset Error  
Guaranteed  
TBD  
Midscale offset  
mV  
%FS  
%FS  
LSB  
LSB  
V
Gain Error  
Full scale range deviation from typical  
Gain matching between channels  
12-bit level  
-6  
6
Gain Matching  
±0.05  
DLE  
Differential Non-Linearity  
Integral Non-Linearity  
Common Mode Voltage Output  
-1  
-1  
1
1
ILE  
12-bit level  
VCMO  
VAVDD/2  
Analog Input  
VCMI  
Input Common Mode  
Analog input common mode voltage  
Differential input voltage range,  
VCM -0.1  
VCM +0.1  
V
2.0  
1.0  
Vpp  
Vpp  
Full Scale Range, Normal  
VFSR  
Differential input voltage range, 1V  
(see section Reference Voltages)  
Full Scale Range, Option  
Input Capacitance  
Bandwidth  
Differential input capacitance  
Input bandwidth, full power  
1.8  
pF  
500  
MHz  
Power Supply  
AVDD, DVDD  
Supply voltage to all 1.8V domain pins.  
See Pin Configuration and Description  
1.7  
1.7  
1.8  
2.5  
1.9  
3.6  
V
V
Core Supply Voltage  
I/O Supply Voltage  
Output driver supply voltage (OVDD).  
Must be higher than or equal to Core Supply  
OVDD  
Voltage (VOVDD ≥ VOCVDD  
)
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
5
PRELIMINARY Data Sheet  
Electrical Characteristics - CDK2308A  
(AV =1.8V, DV =1.8V, DV  
=1.8V, OV =2.5V, 20MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal,  
DD  
DD  
DDCLK  
DD  
13-bit output, unless otherwise noted)  
symbꢀl  
Parameꢁer  
cꢀndiꢁiꢀnꢂ  
Min  
typ  
Max  
uniꢁꢂ  
Performance  
FIN = 2MHz  
FIN = 8MHz  
FIN = FS / 2  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN = FS / 2  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN = FS / 2  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN = FS / 2  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN = FS / 2  
FIN = 20MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN = FS / 2  
FIN = 20MHz  
61.7  
61.6  
61.6  
61.6  
61.7  
61.6  
60.5  
61.6  
84.1  
85.5  
70.3  
87.5  
-88.8  
-89.5  
-95.9  
-91.4  
-89.5  
-90.5  
-70.3  
-89.7  
10.0  
9.9  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR  
Signal to Noise Ratio  
SNDR  
SFDR  
HD2  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
HD3  
dBc  
dBc  
bits  
bits  
ENOB  
XTALK  
Effective number of Bits  
Crosstalk  
9.8  
bits  
9.9  
bits  
Signal crosstalk between channels, FIN1  
8MHz, FIN0 = 9.9MHz  
=
-105  
dBc  
Power Supply  
AIDD  
Analog Supply Current  
Digital Supply Current  
8.2  
1.7  
2.8  
mA  
mA  
mA  
DIDD  
Digital core supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz  
OIDD  
Output Driver Supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT disabled  
2.3  
mA  
Analog Power Dissipation  
Digital Power Dissipation  
14.8  
8.8  
mW  
mW  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
23.7  
mW  
Total Power Dissipation  
Power Down Dissipation  
Sleep Mode 1  
9.9  
15.2  
7.7  
µW  
mW  
mW  
Power Dissipation, Sleep mode one channel  
Power Dissipation, Sleep mode both channels  
Sleep Mode 2  
Clock Inputs  
Max. Conversion Rate  
Min. Conversion Rate  
20  
MSPS  
MSPS  
15  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
6
PRELIMINARY Data Sheet  
Electrical Characteristics - CDK2308B  
(AV =1.8V, DV =1.8V, DV  
=1.8V, OV =2.5V, 40MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal,  
DD  
DD  
DDCLK  
DD  
13-bit output, unless otherwise noted)  
symbꢀl  
Parameꢁer  
cꢀndiꢁiꢀnꢂ  
Min  
typ  
Max  
uniꢁꢂ  
Performance  
FIN = 2MHz  
FIN = 8MHz  
FIN = FS / 2  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN = FS / 2  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN = FS / 2  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN = FS / 2  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN = FS / 2  
FIN = 30MHz  
FIN = 2MHz  
FIN = 8MHz  
FIN = FS / 2  
FIN = 30MHz  
61.6  
61.6  
61.6  
61.5  
61.6  
61.6  
61.2  
61.4  
78.8  
82.3  
72.0  
82.5  
-87.9  
-92.0  
-84.8  
-88.8  
-81.8  
-85.7  
-72.0  
-83.9  
9.9  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR  
Signal to Noise Ratio  
SNDR  
SFDR  
HD2  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
HD3  
dBc  
dBc  
bits  
9.9  
bits  
ENOB  
XTALK  
Effective number of Bits  
Crosstalk  
9.9  
bits  
9.9  
bits  
Signal crosstalk between channels, FIN1  
8MHz, FIN0 = 9.9MHz  
=
-102  
dBc  
Power Supply  
AIDD  
Analog Supply Current  
Digital Supply Current  
14.4  
3.4  
mA  
mA  
mA  
DIDD  
Digital core supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz  
5.1  
OIDD  
Output Driver Supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT disabled  
4.2  
mA  
Analog Power Dissipation  
Digital Power Dissipation  
25.9  
16.6  
mW  
mW  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
42.5  
mW  
Total Power Dissipation  
Power Down Dissipation  
Sleep Mode 1  
9.7  
µW  
mW  
mW  
Power Dissipation, Sleep mode one channel  
Power Dissipation, Sleep mode both channels  
25.7  
11.3  
Sleep Mode 2  
Clock Inputs  
Max. Conversion Rate  
Min. Conversion Rate  
40  
MSPS  
MSPS  
20  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
7
PRELIMINARY Data Sheet  
Electrical Characteristics - CDK2308C  
(AV =1.8V, DV =1.8V, DV  
=1.8V, OV =2.5V, 65MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal,  
DD  
DD  
DDCLK  
DD  
13-bit output, unless otherwise noted)  
symbꢀl  
Parameꢁer  
cꢀndiꢁiꢀnꢂ  
Min  
typ  
Max  
uniꢁꢂ  
Performance  
FIN = 8MHz  
FIN = 20MHz  
FIN = FS / 2  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN = FS / 2  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN = FS / 2  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN = FS / 2  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN = FS / 2  
FIN = 40MHz  
FIN = 8MHz  
FIN = 20MHz  
FIN = FS / 2  
FIN = 40MHz  
61.6  
61.6  
61.5  
61.3  
61.6  
61.6  
60.4  
61.1  
80.6  
85.6  
66.4  
76.9  
-91.4  
-93  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR  
Signal to Noise Ratio  
SNDR  
SFDR  
HD2  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
dBc  
dBc  
dBc  
dBc  
dBc  
-83.8  
-90.7  
-80.6  
-86.4  
-66.4  
-76.9  
9.9  
dBc  
dBc  
dBc  
dBc  
HD3  
dBc  
dBc  
bits  
9.9  
bits  
ENOB  
XTALK  
Effective number of Bits  
Crosstalk  
9.7  
bits  
9.9  
bits  
Signal crosstalk between channels, FIN1  
8MHz, FIN0 = 9.9MHz  
=
-97.0  
dBc  
Power Supply  
AIDD  
Analog Supply Current  
Digital Supply Current  
22.0  
5.2  
mA  
mA  
mA  
DIDD  
Digital core supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz  
7.9  
OIDD  
Output Driver Supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT disabled  
6.4  
mA  
Analog Power Dissipation  
Digital Power Dissipation  
39.6  
25.4  
mW  
mW  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
65.0  
mW  
Total Power Dissipation  
Power Down Dissipation  
Sleep Mode 1  
9.3  
µW  
mW  
mW  
Power Dissipation, Sleep mode one channel  
Power Dissipation, Sleep mode both channels  
38.2  
15.7  
Sleep Mode 2  
Clock Inputs  
Max. Conversion Rate  
Min. Conversion Rate  
65  
MSPS  
MSPS  
40  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
8
PRELIMINARY Data Sheet  
Electrical Characteristics - CDK2308D  
(AV =1.8V, DV =1.8V, DV  
=1.8V, OV =2.5V, 80MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal,  
DD  
DD  
DDCLK  
DD  
13-bit output, unless otherwise noted)  
symbꢀl  
Parameꢁer  
cꢀndiꢁiꢀnꢂ  
Min  
typ  
Max  
uniꢁꢂ  
Performance  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN = FS / 2  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN = FS / 2  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN = FS / 2  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN = FS / 2  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN = FS / 2  
FIN = 8MHz  
FIN = 20MHz  
FIN = 30MHz  
FIN = FS / 2  
61.6  
61.2  
61.3  
61.3  
61.3  
60.7  
61.0  
58.7  
74.8  
73.9  
74.7  
61.7  
-88.5  
-95.0  
-88.9  
-79.0  
-74.8  
-75.0  
-74.7  
-61.7  
9.9  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR  
Signal to Noise Ratio  
SNDR  
SFDR  
HD2  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
HD3  
dBc  
dBc  
bits  
9.8  
bits  
ENOB  
XTALK  
Effective number of Bits  
Crosstalk  
9.8  
bits  
9.5  
bits  
Signal crosstalk between channels, FIN1  
8MHz, FIN0 = 9.9MHz  
=
-95.0  
dBc  
Power Supply  
AIDD  
Analog Supply Current  
Digital Supply Current  
26.5  
6.1  
mA  
mA  
mA  
DIDD  
Digital core supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz  
9.5  
OIDD  
Output Driver Supply  
2.5V output driver supply, sine wave input,  
FIN = 1MHz, CLK_EXT disabled  
7.6  
mA  
Analog Power Dissipation  
Digital Power Dissipation  
47.7  
30.0  
mW  
mW  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
OVDD = 2.5V, 5pF load on output bits,  
FIN = 1MHz, CLK_EXT disabled  
77.7  
mW  
Total Power Dissipation  
Power Down Dissipation  
Sleep Mode 1  
9.1  
µW  
mW  
mW  
Power Dissipation, Sleep mode one channel  
Power Dissipation, Sleep mode both channels  
46.1  
18.3  
Sleep Mode 2  
Clock Inputs  
Max. Conversion Rate  
Min. Conversion Rate  
80  
MSPS  
MSPS  
65  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
9
PRELIMINARY Data Sheet  
Digital and Timing Electrical Characteristics  
(AV =1.8V, DV =1.8V, DV  
=1.8V, OV =2.5V, 50 MSPS clock, 50% clock duty cycle, -1 dBFS input signal,  
DD  
DD  
DDCLK  
DD  
5pF capacitive load, unless otherwise noted)  
symbꢀl  
Parameꢁer  
cꢀndiꢁiꢀnꢂ  
Min  
typ  
Max  
uniꢁꢂ  
Clock Inputs  
Duty Cycle  
Compliance  
20  
80  
% high  
CMOS, LVDS, LVPECL, Sine Wave  
-200  
-800  
0.3  
200  
800  
mVpp  
mVpp  
V
Differential input swing  
Input Range  
Differential input swing, sine wave clock input  
Keep voltages within ground and voltage of OVDD  
Differential  
Input Common Mode Voltage  
Input Resistance  
VOVDD -0.3  
TBD  
1.7  
kΩ  
Input Capacitance  
pF  
Differential  
Timing  
TPD  
From Power Down Mode to References has  
eached 99% of final value  
Start Up Time Active Mode  
580  
clk cycles  
TSLP  
TOVR  
TAP  
Start Up Time Mode  
Out Of Range Recovery Time  
Aperture Delay  
From Sleep Mode to Active  
0.5  
4
µs  
clk cycles  
ns  
0.8  
12  
4
TLAT  
Pipeline Delay  
clk cycles  
ns  
5pF load on output bits  
10pF load on output bits  
Relative to CLK_EXT  
TD  
Output Delay (see timing diagram)  
Output Delay (see timing diagram)  
TBD  
ns  
TDC  
2
ns  
Logic Inputs  
VOVDD ≥ 3.0V  
2
V
V
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
VOVDD = 1.7V – 3.0V  
VOVDD ≥ 3.0V  
0.8 VOVDD  
0
0.8  
0.2 VOVDD  
10  
V
VOVDD = 1.7V – 3.0V  
0
V
IIH  
High Level Input Leakage Current  
Low Level Input Leakage Current  
Input Capacitance  
-10  
-10  
µA  
µA  
pF  
IIL  
10  
CI  
3
Logic Outputs  
VOH  
VOL  
High Level Output Voltage  
Low Level Output Voltage  
-0.1 +VOVDD  
V
V
0.1  
5
Post-driver supply voltage equal to pre-driver  
supply voltage VOVDD = VOCVDD  
Post-driver supply voltage above 2.25V (1)  
pF  
CL  
Max Capacitive Load  
10  
pF  
Nꢀꢁe:  
(1) The outputs will be functional with higher loads. However, it is recommended to keep the load on output data bits as low as possible to keep dynamic currents  
and resulting switching noise at a minimum.  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
10  
PRELIMINARY Data Sheet  
+F4  
+F1  
+F  
+F2  
+F0  
+
N-13  
N-10  
N-9  
N-8  
N-12  
N-11  
CLK_EXT  
Figure 1. Timing Diagram  
Recommended Usage  
Analog Input  
DC-Coupling  
Figure 3 shows a recommended configuration for DC-  
coupling. Note that the common mode input voltage must  
be controlled according to specified values. Preferably, the  
CM_EXT output should be used as a reference to set the  
common mode voltage.  
The analog inputs to the CDK2308 is a switched capacitor  
track-and-hold amplifier optimized for differential opera-  
tion. Operation at common mode voltages at mid sup-  
ply is recommended even if performance will be good for  
the ranges specified. The CM_EXT pin provides a voltage  
suitable as common mode voltage reference. The internal  
buffer for the CM_EXT voltage can be switched off, and  
driving capabilities can be changed by using the CM_EXT-  
BC control input.  
The input amplifier could be inside a companion chip or  
it could be a dedicated amplifier. Several suitable single  
ended to differential driver amplifiers exist in the market.  
The system designer should make sure the specifications  
of the selected amplifier is adequate for the total system,  
and that driving capabilities comply with the CDK2308  
input specifications.  
Figure 2 shows a simplified drawing of the input network.  
The signal source must have sufficiently low output imped-  
ance to charge the sampling capacitors within one clock  
cycle. A small external resistor (e.g. 22Ω) in series with  
each input is recommended as it helps reducing transient  
currents and dampens ringing behavior. A small differential  
shunt capacitor at the chip side of the resistors may be  
used to provide dynamic charging currents and may im-  
prove performance. The resistors form a low pass filter  
with the capacitor, and values must therefore be deter-  
mined by requirements for the application.  
Ω
pF  
Ω
Figure 3. DC-Coupled Input  
Detailed configuration and usage instructions must be  
found in the documentation of the selected driver.  
AC-Coupling  
A signal transformer or series capacitors can be used to  
make an AC-coupled input network. Figure 4 shows a  
recommended configuration using a transformer. Make  
sure that a transformer with sufficient linearity is selected,  
Figure 2. Input Configuration  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
11  
PRELIMINARY Data Sheet  
and that the bandwidth of the transformer is appropriate.  
The bandwidth should exceed the sampling rate of the  
ADC with at least a factor of 10. It is also important to  
keep phase mismatch between the differential ADC inputs  
small for good HD2 performance. This type of transformer  
coupled input is the preferred configuration for high fre-  
quency signals as most differential amplifiers do not have  
adequate performance at high frequencies. Magnetic  
coupling between the transformers and PCB traces may  
impact channel crosstalk, and must hence be taken into  
account during PCB layout.  
Note that startup time from Sleep Mode and Power Down  
Mode will be affected by this filter as the time required  
to charge the series capacitors is dependent on the filter  
cut-off frequency.  
If the input signal has a long traveling distance, and the  
kick-backs from the ADC not are effectively terminated  
at the signal source, the input network of figure 8 can  
be used. The configuration in figure 8 is designed to at-  
tenuate the kickback from the ADC and to provide an in-  
put impedance that looks as resistive as possible for fre-  
quencies below Nyquist. Values of the series inductor will  
however depend on board design and conversion rate.  
In some instances a shunt capacitor in parallel with the  
termination resistor (e.g. 33pF) may improve ADC per-  
formance further. This capacitor attenuate the ADC kick-  
back even more, and minimize the kicks traveling towards  
the source. However, the impedance match seen into the  
transformer becomes worse.  
If the input signal is traveling a long physical distance  
from the signal source to the transformer (for example a  
long cable), kick-backs from the ADC will also travel along  
this distance. If these kick-backs are not terminated prop-  
erly at the source side, they are reflected and will add to  
the input signal at the ADC input. This could reduce the  
ADC performance. To avoid this effect, the source must  
effectively terminate the ADC kick-backs, or the traveling  
distance should be very short. If this problem could not be  
avoided, the circuit in Figure 6 can be used.  
33Ω  
220Ω  
33Ω  
120nH  
1:1  
33Ω  
R
T
pF  
68Ω  
optional  
RT  
47Ω  
120nH  
33Ω  
Figure 6. Alternative Input Network  
Figure 4. Transformer-Coupled Input  
Figure 5 shows AC-coupling using capacitors. Resistors  
from the CM_EXT output, RCM, should be used to bias the  
differential input signals to the correct voltage. The series  
capacitor, CI, form the high-pass pole with these resistors,  
and the values must therefore be determined based on  
the requirement to the high-pass cut-off frequency.  
Clock Input And Jitter Considerations  
Typicallyhigh-speedADCsusebothclockedgestogenerate  
internal timing signals. In the CDK2308 only the rising  
edge of the clock is used. Hence, input clock duty cycles  
between 20% and 80% is acceptable.  
The input clock can be supplied in a variety of formats.  
The clock pins are AC-coupled internally, and hence a wide  
common mode voltage range is accepted. Differential  
clock sources as LVDS, LVPECL or differential sine wave  
can be connected directly to the input pins. For CMOS  
inputs, the CLKN pin should be connected to ground, and  
the CMOS clock signal should be connected to CLKP. For  
differential sine wave clock input the amplitude must be  
Ω
pF  
Ω
at least 1V .  
Figure 5. AC-Coupled Input  
pp  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
12  
PRELIMINARY Data Sheet  
The quality of the input clock is extremely important for The CDK2308 employs digital offset correction. This means  
that the output code will be 4096 with the positive and  
negative inputs shorted together(zero differential). How-  
ever, small mismatches in parasitics at the input can cause  
this to alter slightly. The offset correction also results in  
possible loss of codes at the edges of the full scale range.  
With “NO” offset correction, the ADC would clip in one  
end before the other, in practice resulting in code loss at  
the opposite end. With the output being centered digitally,  
the output will clip, and the out of range flags will be set,  
before max code is reached. When out of range flags are  
set, the code is forced to all ones for over-range and all  
zeros for under-range.  
high-speed, high-resolution ADCs. The contribution to SNR  
from clock jitter with a full scale signal at a given frequency  
is shown in equation 1.  
SNR  
= 20 log (2 π F εt)  
jitter  
IN  
where F is the signal frequency, and εt is the total rms  
IN  
jitter measured in seconds. The rms jitter is the total of all  
jitter sources including the clock generation circuitry, clock  
distribution and internal ADC circuitry.  
For applications where jitter may limit the obtainable per-  
formance, it is of utmost importance to limit the clock jitter.  
This can be obtained by using precise and stable clock refer-  
ences (e.g. crystal oscillators with good jitter specifications)  
and make sure the clock distribution is well controlled. It  
might be advantageous to use analog power and ground  
planes to ensure low noise on the supplies to all circuitry  
Data Format Selection  
The output data are presented on offset binary form  
when DFRMT is low (connect to OV ). Setting DFRMT  
SS  
high (connect to OV ) results in 2’s complement output  
DD  
in the clock distribution. It is of utmost importance to avoid format. Details are shown in Table 1 on page 14.  
crosstalk between the ADC output bits and the clock and  
Reference Voltages  
between the analog input signal and the clock since such  
crosstalk often results in harmonic distortion.  
The reference voltages are internally generated and buff-  
ered based on a bandgap voltage reference. No external  
decoupling is necessary, and the reference voltages are  
not available externally. This simplifies usage of the ADC  
since two extremely sensitive pins, otherwise needed, are  
removed from the interface.  
The jitter performance is improved with reduced rise and  
fall times of the input clock. Hence, optimum jitter per-  
formance is obtained with LVDS or LVPECL clock with fast  
edges. CMOS and sine wave clock inputs will result in  
slightly degraded jitter performance.  
If the clock is generated by other circuitry, it should be  
retimed with a low jitter master clock as the last operation  
before it is applied to the ADC clock input.  
Operational Modes  
The operational modes are controlled with the PD_N and  
SLP_N pins. If PD_N is set low, all other control pins are  
overridden and the chip is set in Power Down mode. In this  
mode all circuitry is completely turned off and the internal  
clock is disabled. Hence, only leakage current contributes  
to the Power Down Dissipation. The startup time from this  
mode is longer than for other idle modes as all references  
need to settle to their final values before normal operation  
can resume.  
Digital Outputs  
Digital output data are presented on parallel CMOS form.  
The voltage on the OV pin set the levels of the CMOS  
DD  
outputs. The output drivers are dimensioned to drive  
a wide range of loads for OV above 2.25V, but it is rec-  
DD  
ommended to minimize the load to ensure as low tran-  
sient switching currents and resulting noise as possible. In  
applications with a large fanout or large capacitive loads,  
it is recommended to add external buffers located close to  
the ADC chip.  
The SLP_N bus can be used to power down each channel  
independently, or to set the full chip in Sleep Mode. In this  
mode internal clocking is disabled, but some low band-  
width circuitry is kept on to allow for a short startup time.  
However, Sleep Mode represents a significant reduction in  
supply current, and it can be used to save power even for  
short idle periods.  
The timing is described in the Timing Diagram section.  
Note that the load or equivalent delay on CLK_EXT always  
should be lower than the load on data outputs to ensure  
sufficient timing margins.  
The input clock should be kept running in all idle modes.  
However, even lower power dissipation is possible in Power  
Down mode if the input clock is stopped. In this case it is  
important to start the input clock prior to enabling active mode.  
The digital outputs can be set in tristate mode by setting  
the OE_N signal high.  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
13  
PRELIMINARY Data Sheet  
Table 1: Data Format Description for 2V Full Scale Range  
pp  
Output data: Dx_9 : Dx_0  
(DFRMT = 0, offset binary)  
Output Data: Dx_9 : Dx_0  
(DFRMT = 1, 2’s complement)  
Differential Input Voltage (IPx - INx)  
1.0 V  
+0.24mV  
-0.24mV  
-1.0V  
11 1111 1111  
01 1111 1111  
00 0000 0000  
11 1111 1111  
10 0000 0000  
10 0000 0000  
01 1111 1111  
00 0000 0000  
Mechanical Dimensions  
TQFP-64 Package  
Inches  
Millimeters  
Symbol  
A
Min  
0.002  
0.037  
Typ  
0.039  
0.472 BSC  
0.393 BSC  
0.472 BSC  
0.393 BSC  
Max  
0.047  
0.006  
0.041  
Min  
0.05  
0.95  
Typ  
Max  
0.15  
1.05  
A
A
1
1.00  
2
D
12.00 BSC  
10.00 BSC  
12.00 BSC  
10.00 BSC  
D
1
E
E
1
R
R
0.003  
0.003  
0°  
0.008  
7°  
0.08  
0.08  
0°  
0.20  
7°  
2
3.5°  
3.5°  
1
θ
θ
θ
θ
c
L
0°  
11°  
11°  
0.004  
0.018  
12°  
12°  
0°  
12°  
12°  
0.20  
13°  
13°  
1
2
3
13°  
13°  
0.008  
0.030  
11°  
11°  
0.09  
0.45  
0.24  
0.75  
L
0.039 REF  
1.00 REF  
0.20  
0.520 BSC  
7.50  
7.50  
0.20  
0.20  
0.08  
0.08  
1
S
b
e
D
E
aaa  
bbb  
ccc  
0.008  
0.007  
0.20  
0.17  
0.27  
0.008  
0.020 BSC  
0.295  
0.295  
0.008  
0.008  
0.003  
0.003  
0.011  
2
2
ddd  
NOTE:  
1. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side.  
D1 and E1 are maxmum plastic body size dimensions including mold mismatch.  
2. Dimension b does not include dambar protrusion. Allowable dambar protrusion shall not cause  
the lead width to exceed the maximum b dimension by more than 0.08mm.  
3. Dambar can not be located on the lower radius or the foot. Minimum space between protrusion  
and an adjacent lead is 0.07mm for 0.4mm and 0.5mm pitch packages.  
For additional information regarding our products, please visit CADEKA at: cadeka.com  
cADEKA Headqꢃarꢁerꢂ Loveland, Colorado  
T: 970.663.5452  
T: 877.663.5452 (toll free)  
Amplify the Human Experience  
CADEKA, the CADEKA logo design, COMLINEAR and the COMLINEAR logo design are trademarks or registered trademarks of CADEKA  
Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.  
designed by  
CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any  
responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in  
writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights,  
copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.  
Copyright ©2008 by CADEKA Microcircuits LLC. All rights reserved.  

相关型号:

CDK2308_09

Dual, 20/40/65/80MSPS, 10-bit Analog-to-Digital Converters
CADEKA

CDK3400

10-bit, 100/150MSPS, Triple Video DACs
CADEKA

CDK3400CTQ48

10-bit, 100/150MSPS, Triple Video DACs
CADEKA

CDK3400CTQ48Y

10-bit, 100/150MSPS, Triple Video DACs
CADEKA

CDK3401

10-bit, 100/150MSPS, Triple Video DACs
CADEKA

CDK3401CTQ48

10-bit, 100/150MSPS, Triple Video DACs
CADEKA

CDK3401CTQ48Y

10-bit, 100/150MSPS, Triple Video DACs
CADEKA

CDK3402

8-bit, 100/150MSPS, Triple Video DACs
CADEKA

CDK3402CTQ48

8-bit, 100/150MSPS, Triple Video DACs
CADEKA

CDK3402CTQ48Y

8-bit, 100/150MSPS, Triple Video DACs
CADEKA

CDK3403

8-bit, 100/150MSPS, Triple Video DACs
CADEKA

CDK3403CTQ48

8-bit, 100/150MSPS, Triple Video DACs
CADEKA