CLC2011IMP8X [CADEKA]

Low Power, Low Cost, Rail-to-Rail I/O Amplifiers; 低功耗,低成本,轨到轨输入/输出放大器
CLC2011IMP8X
型号: CLC2011IMP8X
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

Low Power, Low Cost, Rail-to-Rail I/O Amplifiers
低功耗,低成本,轨到轨输入/输出放大器

放大器
文件: 总16页 (文件大小:2674K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Advance Data Sheet  
Amplify the Human Experience  
Comlinear® CLC1011, CLC2011, CLC4011  
Low Power, Low Cost, Rail-to-Rail I/O Amplifiers  
F E A T U R E S  
General Description  
n
136μA supply current  
The COMLINEAR CLC1011 (single), CLC2011 (dual), and CLC4011 (quad) are  
n
n
4.9MHz bandwidth  
ultra-low cost, low power, voltage feedback amplifiers. At 5V, the CLCx011  
family uses only 160μA of supply current per amplifier and are designed to  
operate from a supply range of 2.5V to 5.5V (±1.25 to ±2.75). The input volt-  
age range exceeds the negative and positive rails.  
Output swings to within 20mV of either  
rail  
n
Input voltage range exceeds the rail by  
>250mV  
n
n
n
n
n
5.3V/μs slew rate  
The CLCx011 family of amplifiers offer high bipolar performance at a low  
CMOS prices. They offer superior dynamic performance with 4.9MHz small  
signal bandwidths and 5.3V/μs slew rates. The combination of low power,  
high bandwidth, and rail-to-rail performance make the CLCx011 amplifiers  
well suited for battery-powered communication/computing systems  
21nV/√Hz input voltage noise  
16mA output current  
Fully specified at 2.7V and 5V supplies  
CLC1011: Pb-free SOT23-5, SC70-5,  
SOIC-8  
n
n
CLC2011: Pb-free SOIC-8, MSOP-8  
CLC4011: Pb-free SOIC-14. TSSOP-14  
Typical Performance Examples  
A P P L I C A T I O N S  
Large Signal Frequency Response  
Output Swing vs. Load  
n
Portable/battery-powered applications  
1.35  
R
= 10kΩ  
L
V
= 5V  
s
n
PCMCIA, USB  
R
= 1kΩ  
V
= 1V  
pp  
L
o
n
Mobile communications, cell phones,  
pagers  
R
= 75Ω  
L
n
ADC buffer  
0
R
= 100Ω  
L
n
Active filters  
V
= 4V  
pp  
o
R
= 200Ω  
L
n
Portable test instruments  
R
= 75/100Ω  
L
V
= 2V  
pp  
o
n
Notebooks and PDA’s  
n
Signal conditioning  
-1.35  
0.01  
0.1  
1
10  
-2.0  
0
2.0  
n
Medical Equipment  
Frequency (MHz)  
Input Voltage (0.4V/div)  
n
Portable medical instrumentation  
Ordering Information  
Part Number  
Package  
SC70-5  
Pb-Free  
RoHS Compliant  
Operating Temperature Range Packaging Method  
CLC1011ISC5X*  
CLC1011IST5X*  
CLC2011ISO8X*  
CLC2011IMP8X*  
CLC4011ISO14X*  
CLC4011ITP14X*  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Reel  
Reel  
Reel  
Reel  
Reel  
Reel  
SOT23-5  
SOIC-8  
MSOP-8  
SOIC-14  
TSSOP-14  
Moisture sensitivity level for all parts is MSL-1. *Advance Information.  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
Advance Data Sheet  
CLC1011 Pin Assignments  
CLC1011 Pin Configuration  
Pin No.  
Pin Name  
OUT  
Description  
1
2
3
4
5
Output  
-V  
Negative supply  
Positive input  
Negative input  
Positive supply  
S
OUT  
-V  
1
2
3
5
4
+V  
S
+IN  
-IN  
-
+
S
-IN  
+IN  
+V  
S
CLC2011 Pin Configuration  
CLC2011 Pin Configuration  
Pin No.  
Pin Name  
OUT1  
-IN1  
Description  
1
2
3
4
5
6
7
8
Output, channel 1  
Negative input, channel 1  
Positive input, channel 1  
Negative supply  
1
2
3
4
8
+V  
S
OUT1  
-IN1  
+IN1  
7
OUT2  
-IN2  
-V  
S
6
5
+IN1  
+IN2  
-IN2  
Positive input, channel 2  
Negative input, channel 2  
Output, channel 2  
Positive supply  
+IN2  
-V  
S
OUT2  
+V  
S
CLC4011 Pin Configuration  
CLC4011 Pin Configuration  
Pin No.  
Pin Name  
OUT1  
-IN1  
Description  
1
2
Output, channel 1  
Negative input, channel 1  
Positive input, channel 1  
Positive supply  
1
2
3
4
14  
13  
12  
11  
10  
9
3
+IN1  
OUT1  
-IN1  
OUT4  
-IN4  
4
+V  
S
5
+IN2  
-IN2  
Positive input, channel 2  
Negative input, channel 2  
Output, channel 2  
+IN1  
+VS  
+IN4  
-VS  
6
7
OUT2  
OUT3  
-IN3  
8
Output, channel 3  
5
6
7
+IN2  
+IN3  
-IN3  
9
Negative input, channel 3  
Positive input, channel 3  
Negative supply  
-IN2  
10  
11  
12  
13  
14  
+IN3  
8
OUT2  
-V  
S
OUT3  
+IN4  
-IN4  
Positive input, channel 4  
Negative input, channel 4  
Output, channel 4  
OUT4  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
2
Advance Data Sheet  
Absolute Maximum Ratings  
The safety of the device is not guaranteed when it is operated above the “Absolute Maximum Ratings. The device  
should not be operated at these “absolute” limits. Adhere to the “Recommended Operating Conditions” for proper de-  
vice function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the  
operating conditions noted on the tables and plots.  
Parameter  
Min  
0
Max  
6
Unit  
Supply Voltage  
V
V
Input Voltage Range  
Continuous Output Current  
-V -0.5V  
s
+V +0.5V  
s
-30  
30  
mA  
Reliability Information  
Parameter  
Min  
-65  
Typ  
Max  
Unit  
Junction Temperature  
Storage Temperature Range  
Lead Temperature (Soldering, 10s)  
Package Thermal Resistance  
5-Lead SC70  
175  
150  
260  
°C  
°C  
°C  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
5-Lead SOT23  
8-Lead SOIC  
8-Lead MSOP  
14-Lead SOIC  
14-Lead TSSOP  
Notes:  
Package thermal resistance (q ), JDEC standard, multi-layer test boards, still air.  
JA  
ESD Protection  
Product  
SC70-5  
SOT23-5  
SOIC-8  
MSOP-8  
SOIC-14  
TSSOP-14  
Human Body Model (HBM)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Charged Device Model (CDM)  
Recommended Operating Conditions  
Parameter  
Min  
Typ  
Max  
Unit  
Operating Temperature Range  
-40  
2.5  
+85  
5.5  
°C  
V
Supply Voltage Range  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
3
Advance Data Sheet  
Electrical Characteristics at +2.7V  
T = 25°C, V = +2.7V, R = R =5kΩ, R = 10kΩ to V /2, G = 2; unless otherwise noted.  
A
s
f
g
L
S
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Frequency Domain Response  
UGBWSS  
BWSS  
Unity Gain -3dB Bandwidth  
-3dB Bandwidth  
G = +1, VOUT = 0.02Vpp  
G = +2, VOUT = 0.2Vpp  
G = +2, VOUT = 2Vpp  
4.9  
3.7  
1.4  
2.2  
MHz  
MHz  
MHz  
MHz  
BWLS  
Large Signal Bandwidth  
Gain Bandwdith Product  
GBWP  
G = +11, VOUT = 0.2Vpp  
Time Domain Response  
tR, tF  
OS  
Rise and Fall Time  
VOUT = 1V step; (10% to 90%)  
VOUT = 1V step  
163  
<1  
ns  
%
Overshoot  
Slew Rate  
SR  
1V step  
5.3  
V/µs  
Distortion/Noise Response  
HD2  
2nd Harmonic Distortion  
VOUT = 1Vpp, 10kHz  
VOUT = 1Vpp, 10kHz  
VOUT = 1Vpp, 10kHz  
> 10kHz  
-72  
-72  
0.03  
21  
dBc  
dBc  
HD3  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Input Voltage Noise  
THD  
%
en  
nV/√Hz  
DC Performance  
VIO  
dVIO  
Ib  
Input Offset Voltage (1)  
-6  
0.5  
5
6
mV  
µV/°C  
nA  
Average Drift  
Input Bias Current (1)  
Average Drift  
90  
32  
83  
90  
136  
420  
dIb  
PSRR  
AOL  
IS  
pA/°C  
dB  
Power Supply Rejection Ratio (1)  
Open-Loop Gain  
DC  
55  
VOUT = VS / 2  
per channel  
dB  
Supply Current (1)  
190  
μA  
Input Characteristics  
RIN  
CIN  
Input Resistance  
Non-inverting  
12  
2
MΩ  
Input Capacitance  
pF  
-0.25 to  
2.95  
CMIR  
Common Mode Input Range  
V
CMRR  
Common Mode Rejection Ratio (1)  
DC  
55  
81  
dB  
Output Characteristics  
0.06 to  
2.64  
0.02 to  
2.68  
RL = 10kΩ to VS / 2 (1)  
RL = 1kΩ to VS / 2  
RL = 200Ω to VS / 2  
V
V
0.05 to  
2.63  
VOUT  
Output Voltage Swing  
0.11 to  
2.52  
V
IOUT  
Output Current  
±16  
mA  
Notes:  
1. 100% tested at 25°C  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
4
Advance Data Sheet  
Electrical Characteristics at +5V  
T = 25°C, V = +5V, R = R =5kΩ, R = 10kΩ to V /2, G = 2; unless otherwise noted.  
A
s
f
g
L
S
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Frequency Domain Response  
UGBWSS  
BWSS  
Unity Gain -3dB Bandwidth  
-3dB Bandwidth  
G = +1, VOUT = 0.02Vpp  
G = +2, VOUT = 0.2Vpp  
G = +2, VOUT = 2Vpp  
4.3  
3.0  
2.3  
2.0  
MHz  
MHz  
MHz  
MHz  
BWLS  
Large Signal Bandwidth  
Gain Bandwdith Product  
GBWP  
G = +11, VOUT = 0.2Vpp  
Time Domain Response  
tR, tF  
OS  
Rise and Fall Time  
VOUT = 1V step; (10% to 90%)  
VOUT = 1V step  
110  
<1  
9
ns  
%
Overshoot  
Slew Rate  
SR  
1V step  
V/µs  
Distortion/Noise Response  
HD2  
2nd Harmonic Distortion  
VOUT = 1Vpp, 10kHz  
VOUT = 1Vpp, 10kHz  
VOUT = 1Vpp, 10kHz  
> 10kHz  
-73  
-75  
0.03  
22  
dBc  
dBc  
HD3  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Input Voltage Noise  
THD  
%
en  
nV/√Hz  
DC Performance  
VIO  
dVIO  
Ib  
Input Offset Voltage (1)  
-8  
1.5  
15  
8
mV  
µV/°C  
nA  
Average Drift  
Input Bias Current (1)  
Average Drift  
90  
450  
dIb  
PSRR  
AOL  
IS  
40  
pA/°C  
dB  
Power Supply Rejection Ratio (1)  
Open-Loop Gain  
DC  
40  
60  
VOUT = VS / 2  
per channel  
80  
dB  
Supply Current (1)  
160  
235  
μA  
Input Characteristics  
RIN  
CIN  
Input Resistance  
Non-inverting  
12  
2
MΩ  
Input Capacitance  
pF  
-0.25 to  
5.25  
CMIR  
Common Mode Input Range  
V
CMRR  
Common Mode Rejection Ratio (1)  
DC  
58  
85  
dB  
Output Characteristics  
0.08 to  
4.92  
0.04 to  
4.96  
RL = 10kΩ to VS / 2 (1)  
RL = 1kΩ to VS / 2  
RL = 200Ω to VS / 2  
V
V
0.07 to  
4.9  
VOUT  
Output Voltage Swing  
0.14 to  
4.67  
V
IOUT  
Output Current  
±30  
mA  
Notes:  
1. 100% tested at 25°C  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
5
Advance Data Sheet  
Typical Performance Characteristics  
T = 25°C, V = +2.7V, R = R =5kΩ, R = 10kΩ to V /2, G = 2; unless otherwise noted.  
A
s
f
g
L
S
Non-Inverting Frequency Response at V = 5V  
Inverting Frequency Response at V = 5V  
S
S
V
= 0.2V  
V
= 0.2V  
o
pp  
o
pp  
G = 1  
R = 0  
f
G = 2  
R = 5kΩ  
R = 5kΩ  
f
f
R = 5kΩ  
f
R = 5kΩ  
f
R = 5kΩ  
f
G = 5  
R = 5kΩ  
f
R = 5kΩ  
f
0.01  
0.1  
0.01  
0.1  
1
10  
1
10  
Frequency (MHz)  
Frequency (MHz)  
Non-Inverting Frequency Response  
Inverting Frequency Response  
V
= 0.2V  
R = 5kΩ  
G = 1  
R = 0  
f
o
pp  
f
G = 2  
R = 5kΩ  
G = -2  
f
G = -1  
R = 5kΩ  
f
G = -10  
G = -5  
G = 5  
R = 5kΩ  
f
0.01  
0.1  
0.01  
0.1  
1
10  
1
10  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. C  
Frequency Response vs. R  
L
L
V
= 0.05V  
C
R
o
L
= 100Ω  
s
C
R
L
s
= 0Ω  
R
= 1kΩ  
R
= 10kΩ  
L
L
C
L
R
= 0Ω  
s
R
= 200Ω  
C
L
R
L
= 0Ω  
s
+
Rs  
R
= 50Ω  
L
-
CL RL  
5kΩ  
5kΩ  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency (MHz)  
Frequency (MHz)  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
6
Advance Data Sheet  
Typical Performance Characteristics  
T = 25°C, V = +2.7V, R = R =5kΩ, R = 10kΩ to V /2, G = 2; unless otherwise noted.  
A
s
f
g
L
S
Frequency Response vs. V  
Open Loop Gain & Phase vs. Frequency  
OUT  
140  
V
= 5V  
V = 5V  
s
s
R
= 10kΩ  
L
120  
No load  
V
= 1V  
pp  
o
100  
80  
0
60  
40  
20  
0
-45  
-90  
-135  
-180  
V
= 4V  
pp  
o
V
= 2V  
pp  
o
R
= 10kΩ  
No load  
L
-20  
100 101 102 103 104 105 106 107 108  
Frequency (Hz)  
0.01  
0.1  
1
10  
Frequency (MHz)  
2nd Harmonic Distortion vs. V  
3rd Harmonic Distortion vs. V  
OUT  
OUT  
-20  
-30  
-40  
-50  
-60  
-20  
-30  
-40  
50kHz  
-50  
100kHz  
50kHz  
100kHz  
-60  
20kHz  
50kHz  
-70  
-70  
10kHz  
10kHz, 20kHz  
-80  
-80  
10kHz  
-90  
-90  
0.5  
1
0.5  
1
1.5  
2
2.5  
1.5  
2
2.5  
Output Amplitude (V )  
Output Amplitude (V )  
pp  
pp  
2nd & 3rd Harmonic Distortion  
Input Voltage Noise  
-20  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 1V  
pp  
o
R
= 200Ω  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
L
R
= 1kΩ  
L
R
= 200Ω  
L
R
= 10kΩ  
L
R
= 1kΩ  
L
R
= 10kΩ  
L
0
0
20  
0.1k  
40  
60  
80  
100  
1k  
10k  
100k  
1M  
Frequency (kHz)  
Frequency (Hz)  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
7
Advance Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = R =150Ω, R = 150Ω, G = 2; unless otherwise noted.  
A
s
f
g
L
CMRR  
PSRR  
0
0
-10  
-20  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
10  
100  
10  
1000  
10000  
100000  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
Output Swing vs. Load  
Pulse Response vs. Common Mode Voltage  
1.35  
R
= 10kΩ  
L
R
= 1kΩ  
L
R
= 75Ω  
L
0
R
= 100Ω  
L
R
= 200Ω  
L
R
= 75/100Ω  
L
-1.35  
-2.0  
0
2.0  
Input Voltage (0.4V/div)  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
8
Advance Data Sheet  
Power Dissipation  
Application Information  
Power dissipation should not be a factor when operating  
under the stated 10k ohm load condition. However, ap-  
plications with low impedance, DC coupled loads should  
be analyzed to ensure that maximum allowed junction  
temperature is not exceeded. Guidelines listed below can  
be used to verify that the particular application will not  
cause the device to operate beyond it’s intended operat-  
ing range.  
General Description  
The CLCx011 family of amplifiers are single supply, general  
purpose, voltage-feedback amplifiers. They are fabricated  
on a complimentary bipolar process, feature a rail-to-rail in-  
put and output, and are unity gain stable.  
Basic Operation  
Figures 1, 2, and 3 illustrate typical circuit configurations for  
non-inverting, inverting, and unity gain topologies for dual  
supply applications. They show the recommended bypass  
capacitor values and overall closed loop gain equations.  
Maximum power levels are set by the absolute maximum  
junction rating of 150°C. To calculate the junction tem-  
perature, the package thermal resistance value Theta  
JA  
) is used along with the total die power dissipation.  
JA  
+Vs  
6.8μF  
T
= T + (Ө × P )  
Ambient JA D  
Junction  
Where T  
is the temperature of the working environment.  
Ambient  
0.1μF  
Input  
+
-
In order to determine P , the power dissipated in the load  
needs to be subtracted from the total power delivered by  
the supplies.  
D
Output  
RL  
0.1μF  
6.8μF  
Rf  
P = P  
- P  
load  
D
supply  
Rg  
Supply power is calculated by the standard power equa-  
tion.  
G = 1 + (Rf/Rg)  
-Vs  
P
= V  
× I  
supply  
supply RMS supply  
Figure 1. Typical Non-Inverting Gain Circuit  
+Vs  
V
= V - V  
S+ S-  
supply  
6.8μF  
Power delivered to a purely resistive load is:  
R1  
2
P
= ((V  
)
)/Rload  
eff  
0.1μF  
load  
LOAD RMS  
+
Output  
Rg  
The effective load resistor (Rload ) will need to include  
eff  
Input  
-
RL  
the effect of the feedback network. For instance,  
0.1μF  
Rf  
Rload in figure 3 would be calculated as:  
eff  
6.8μF  
G = - (Rf/Rg)  
-Vs  
R || (R + R )  
L
f
g
For optimum input offset  
voltage set R1 = Rf ||Rg  
These measurements are basic and are relatively easy to  
perform with standard lab equipment. For design purpos-  
es however, prior knowledge of actual signal levels and  
load impedance is needed to determine the dissipated  
Figure 2. Typical Inverting Gain Circuit  
+Vs  
6.8μF  
power. Here, P can be found from  
D
P = P  
+ P  
- P  
D
Quiescent  
Dynamic Load  
0.1μF  
Input  
+
Quiescent power can be derived from the specified I val-  
S
Output  
ues along with known supply voltage, V  
. Load power  
Supply  
-
RL  
can be calculated as above with the desired signal ampli-  
tudes using:  
0.1μF  
(V  
)
= V  
/ √2  
LOAD RMS  
PEAK  
6.8μF  
G = 1  
-Vs  
( I  
)
= ( V  
)
/ Rload  
LOAD RMS  
LOAD RMS eff  
Figure 3. Unity Gain Circuit  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
9
Advance Data Sheet  
The dynamic power is focused primarily within the output  
and possible unstable behavior. Use a series resistance, R ,  
S
stage driving the load. This value can be calculated as:  
between the amplifier and the load to help improve stability  
and settling performance. Refer to Figure 6.  
P
= (V - V  
)
× ( I )  
LOAD RMS  
DYNAMIC  
S+  
LOAD RMS  
Assuming the load is referenced in the middle of the pow-  
er rails or V /2.  
Input  
+
-
Rs  
Output  
supply  
CL  
RL  
Figure 4 shows the maximum safe power dissipation in  
the package vs. the ambient temperature for the pack-  
ages available.  
Rf  
Rg  
Figure 6. Addition of R for Driving  
S
Capacitive Loads  
Table 1 provides the recommended R for various capaci-  
S
tive loads. The recommended R values result in approxi-  
S
mately <1dB peaking in the frequency response. The Fre-  
quency Response vs. C plot, on page 6, illustrates the  
L
response of the CLCx011.  
C (pF)  
L
R (Ω)  
S
-3dB BW (kHz)  
10pF  
20pF  
50pF  
100pF  
0
0
2.2  
2.4  
2.5  
2
0
100  
Figure 4. Maximum Power Derating  
Input Common Mode Voltage  
Table 1: Recommended R vs. C  
S
L
For a given load capacitance, adjust R to optimize the  
S
The common mode input range extends to 250mV below  
ground and to 250mV above Vs, in single supply opera-  
tion. Exceeding these values will not cause phase reversal.  
However, if the input voltage exceeds the rails by more  
than 0.5V, the input ESD devices will begin to conduct. The  
output will stay at the rail during this overdrive condition.  
If the absolute maximum input voltage (700mV beyond ei-  
ther rail) is exceeded, externally limit the input current to  
±5mA as shown in Figure 5.  
tradeoff between settling time and bandwidth. In general,  
reducing R will increase bandwidth at the expense of ad-  
S
ditional overshoot and ringing.  
Overdrive Recovery  
An overdrive condition is defined as the point when ei-  
ther one of the inputs or the output exceed their specified  
voltage range. Overdrive recovery is the time needed for  
the amplifier to return to its normal or linear operating  
point. The recovery time varies, based on whether the  
input or output is overdriven and by how much the range  
is exceeded. The CLCx011 will typically recover in less  
than 50ns from an overdrive condition. Figure 7 shows the  
CLC1011 in an overdriven condition.  
10k  
Input  
Output  
Figure 5. Circuit for Input Current Protection  
Driving Capacitive Loads  
Increased phase delay at the output due to capacitive load-  
ing can cause ringing, peaking in the frequency response,  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
10  
Advance Data Sheet  
Evaluation Board Schematics  
Evaluation board schematics and layouts are shown in Fig-  
ures 8-14. These evaluation boards are built for dual- sup-  
ply operation. Follow these steps to use the board in a  
single-supply application:  
1. Short -Vs to ground.  
2. Use C3 and C4, if the -V pin of the amplifier is not  
S
directly connected to the ground plane.  
Figure 7. Overdrive Recovery  
Layout Considerations  
General layout and supply bypassing play major roles in  
high frequency performance. CaDeKa has evaluation  
boards to use as a guide for high frequency layout and as  
an aid in device testing and characterization. Follow the  
steps below as a basis for high frequency layout:  
• Include 6.8µF and 0.1µF ceramic capacitors for power  
supply decoupling  
• Place the 6.8µF capacitor within 0.75 inches of the power pin  
• Place the 0.1µF capacitor within 0.1 inches of the power pin  
• Remove the ground plane under and around the part,  
especially near the input and output pins to reduce para-  
sitic capacitance  
Figure 8. CEB002 Schematic  
• Minimize all trace lengths to reduce series inductances  
Refer to the evaluation board layouts below for more in-  
formation.  
Evaluation Board Information  
The following evaluation boards are available to aid in the  
testing and layout of these devices:  
Evaluation Board #  
CEB011  
CEB002  
CEB006  
CEB010  
Products  
CLC1011 in SC70  
CLC1011 in SOT23  
CLC2011 in SOIC  
CLC2011 in MSOP  
CLC4011 in SOIC  
CLC4011 in TSSOP  
CEB018  
CEB017  
Figure 9. CEB002 Top View  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
11  
Advance Data Sheet  
Figure 10. CEB002 Bottom View  
Figure 12. CEB006 Top View  
Figure 13. CEB006 Bottom View  
Figure 11. CEB006 Schematic  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
12  
Advance Data Sheet  
Figure 16. CEB018 Bottom View  
Figure 14. CEB018 Schematic  
Figure 15. CEB018 Top View  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
13  
Advance Data Sheet  
Mechanical Dimensions  
SOT23-5 Package  
SOIC-8 Package  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
14  
Advance Data Sheet  
Mechanical Dimensions continued  
SOIC-14 Package  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
15  
Advance Data Sheet  
For additional information regarding our products, please visit CADEKA at: cadeka.com  
CADEKA Headquarters Loveland, Colorado  
T: 970.663.5452  
T: 877.663.5452 (toll free)  
CADEKA, the CADEKA logo design, COMLINEAR, the COMLINEAR logo design, and ARCTIC are trademarks or registered trademarks of  
CADEKA Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.  
CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any  
responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in  
writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights,  
copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.  
Amplify the Human Experience  
Copyright ©2009 by CADEKA Microcircuits LLC. All rights reserved.  

相关型号:

CLC2011ISO8EVB

Low Power, Low Cost, Rail-to-Rail I/O Amplifiers
EXAR

CLC2011ISO8MTR

Operational Amplifier, 2 Func, BIPolar, PDSO8, SOIC-8
EXAR

CLC2011ISO8X

Low Power, Low Cost, Rail-to-Rail I/O Amplifiers
CADEKA

CLC2011ISO8X

Operational Amplifier, 2 Func, BIPolar, PDSO8, SOIC-8
EXAR

CLC2023

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2023IMP8EVB

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2023IMP8MTR

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2023IMP8X

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2023ISO8EVB

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2023ISO8MTR

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2023ISO8X

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2050

Low Power, 3V to 36V, Single, Dual, Quad Amplifiers
CADEKA