CLC2023IMP8X [EXAR]

Dual, Low Distortion, Low Offset, RRIO Amplifier;
CLC2023IMP8X
型号: CLC2023IMP8X
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

Dual, Low Distortion, Low Offset, RRIO Amplifier

文件: 总18页 (文件大小:1138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CLC2023  
Dual, Low Distortion, Low Offset, RRIO Amplifier  
FEATURES  
ꢀ■  
General Description  
6mV maximum input offset voltage  
ꢀ■  
0.00005% THD at 1kHz  
5.3nV/√Hz input voltage noise > 10kHz  
-90dB/-85dB HD2/HD3 at 100kHz, R = 100Ω  
<-100dB HD2 and HD3 at 10kHz, R = 1kΩ  
Rail-to-rail input and output  
55MHz unity gain bandwidth  
12V/μs slew rate  
-40°C to +125°C operating temperature  
range  
Fully specified at 3 and 5V supplies  
CLC2023: ROHS compliant MSOP-8,  
SOIC-8 package options  
The CLC2023 is a dual channel, high-performance, voltage feedback  
amplifier with low input voltage noise and ultra low distortion.The CLC2023  
offers 6mV maximum input offset voltage, 3.5nV/√Hz broadband input  
voltage noise, and 0.00005% THD at 1kHz. It also provides 55MHz gain  
bandwidth product and 12V/μs slew rate making them well suited for  
applications requiring precision DC performance and high AC performance.  
This high-performance amplifier also offers a rail-to-rail input and output,  
simplifying single supply designs and offering larger dynamic range  
possibilities. The input range extends beyond the rails by 300mV.  
ꢀ■  
ꢀ■  
ꢀ■  
ꢀ■  
ꢀ■  
ꢀ■  
ꢀ■  
L
L
ꢀ■  
ꢀ■  
The CLC2023 is designed to operate from 2.5V to 12V supplies and  
operate over the extended temperature range of -40°C to +125°.  
APPLICATIONS  
ꢀ■  
Active filters  
ꢀ■  
Sensor interface  
ꢀ■  
HIgh-speed transducer amp  
ꢀ■  
Medical instrumentation  
ꢀ■  
Probe equipment  
ꢀ■  
Test equipment  
ꢀ■  
Smoke detectors  
ꢀ■  
Hand-held analytic instruments  
ꢀ■  
Current sense applications  
Ordering Information - back page  
Crosstalk vs. Frequency  
Typical Application  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
+2.7  
6.8μF  
+
0.1μF  
In  
+
½
Out  
CLC2023  
-
RIN  
ROUT  
Vs = +/- 5V, RL = 150, VOUT = 2Vpp  
Rg  
0.01  
0.1  
1
Rf  
Frequency (MHz)  
© 2007-2014 Exar Corporation  
1 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
Absolute Maximum Ratings  
Operating Conditions  
Supply Voltage Range ................................................. 2.5V to 12V  
Operating Temperature Range ...............................-40°C to 125°C  
Junction Temperature ...........................................................150°C  
Storage Temperature Range...................................-65°C to 150°C  
Lead Temperature (Soldering, 10s) ......................................260°C  
Stresses beyond the limits listed below may cause  
permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect  
device reliability and lifetime.  
VS ................................................................................. 0V to +14V  
VIN ............................................................ -VS - 0.5V to +VS +0.5V  
Package Thermal Resistance  
θ
JA (MSOP-8) .................................................................. 200°C/W  
θ
JA (SOIC-8).....................................................................150°C/W  
Package thermal resistance (θJA), JEDEC standard, multi-layer  
test boards, still air.  
© 2007-2014 Exar Corporation  
2 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
Electrical Characteristics at +3V  
T = 25°C, V = +3V, R = 1kΩ, R = 1kΩ to V /2; G = 2; unless otherwise noted.  
A
S
f
L
S
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Frequency Domain Response  
GBWP  
UGBW  
-3dB Gain Bandwidth Product  
Unity Gain Bandwidth  
-3dB Bandwidth  
G = 10, V  
= 0.05V  
31  
50  
24  
3.3  
MHz  
MHz  
MHz  
MHz  
OUT  
pp  
V
V
V
= 0.05V , R = 0  
OUT  
OUT  
OUT  
pp  
pp  
f
BW  
BW  
= 0.05V  
= 2V  
SS  
LS  
Large Signal Bandwidth  
pp  
Time Domain  
t , t  
Rise and Fall Time  
Settling Time to 0.1%  
Overshoot  
V
V
V
= 2V step; (10% to 90%)  
= 2V step  
150  
78  
ns  
ns  
R
F
OUT  
OUT  
OUT  
t
S
OS  
SR  
= 2V step  
0.3  
11  
%
Slew Rate  
2V step  
V/μs  
Distortion/Noise Response  
2V , 10kHz, R = 1kΩ  
-98  
-85  
dBc  
dBc  
pp  
L
HD2  
2nd Harmonic Distortion  
2V , 100kHz, R = 100Ω  
pp  
L
2V , 10kHz, R = 1kΩ  
-95  
dBc  
pp  
L
HD3  
THD  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Input Voltage Noise  
Crosstalk  
2V , 100kHz, R = 100Ω  
-81  
dBc  
pp  
L
1V , 1kHz, G = 1, R = 2kΩ  
0.0005  
5.5  
%
pp  
L
>10kHz  
nV/√Hz  
nV/√Hz  
dB  
e
n
>100kHz  
1MHz  
3.9  
X
70  
TALK  
DC Performance  
V
Input Offset Voltage  
Average Drift  
0.088  
1.3  
mV  
μV/°C  
μA  
IO  
d
VIO  
I
Input Bias Current  
Average Drift  
-0.340  
0.8  
B
dI  
nA/°C  
μA  
B
I
Input Offset Current  
Power Supply Rejection Ratio  
Open Loop Gain  
Supply Current  
0.2  
OS  
PSRR  
DC  
100  
dB  
A
V
= V / 2  
104  
dB  
OL  
OUT  
S
I
per channel  
1.85  
mA  
S
Input Characteristics  
R
Input Resistance  
Non-inverting, G = 1  
30  
1.1  
MΩ  
pF  
V
IN  
IN  
C
Input Capacitance  
CMIR  
Common Mode Input Range  
Common Mode Rejection Ratio  
-0.3 to 3.3  
75  
CMRR  
DC, V  
= 0.5V to 2.5V  
dB  
CM  
Output Characteristics  
0.085 to  
2.80  
R = 150Ω  
V
V
L
V
Output Swing  
OUT  
0.04 to  
2.91  
R = 1kΩ  
L
I
I
Output Current  
+57, -47  
+65, -52  
mA  
mA  
OUT  
SC  
Short Circuit Current  
V
= V / 2  
OUT S  
© 2007-2014 Exar Corporation  
3 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
Electrical Characteristics at ±±V  
T = 25°C, V = 5V, R = 1kΩ, R = 1kΩ to GND; G = 2; unless otherwise noted.  
A
S
f
L
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Frequency Domain Response  
GBWP  
UGBW  
-3dB Gain Bandwidth Product  
Unity Gain Bandwidth  
-3dB Bandwidth  
G = 10, V  
= 0.05V  
35  
55  
25  
3.6  
MHz  
MHz  
MHz  
MHz  
OUT  
pp  
V
V
V
= 0.05V , R = 0  
OUT  
OUT  
OUT  
pp  
pp  
f
BW  
BW  
= 0.05V  
= 2V  
SS  
LS  
Large Signal Bandwidth  
pp  
Time Domain  
t , t  
Rise and Fall Time  
Settling Time to 0.1%  
Overshoot  
V
V
V
= 2V step; (10% to 90%)  
= 2V step  
125  
80  
ns  
ns  
R
F
OUT  
OUT  
OUT  
t
S
OS  
SR  
= 2V step  
0.3  
12  
%
Slew Rate  
4V step  
V/μs  
Distortion/Noise Response  
2V , 10kHz, R = 1kΩ  
-125  
-90  
dBc  
dBc  
pp  
L
HD2  
2nd Harmonic Distortion  
2V , 100kHz, R = 100Ω  
pp  
L
2V , 10kHz, R = 1kΩ  
-127  
-85  
dBc  
pp  
L
HD3  
THD  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Input Voltage Noise  
Crosstalk  
2V , 100kHz, R = 100Ω  
dBc  
pp  
L
1V , 1kHz, G = 1, R = 2kΩ  
0.00005  
5.3  
%
pp  
L
>10kHz  
nV/√Hz  
nV/√Hz  
dB  
e
n
>100kHz  
1MHz  
3.5  
X
70  
TALK  
DC Performance  
V
Input Offset Voltage  
Average Drift  
-6  
0.050  
1.3  
6
mV  
μV/°C  
μA  
IO  
d
VIO  
I
Input Bias Current  
Average Drift  
-2.6  
-0.30  
0.85  
0.2  
2.6  
0.7  
B
dI  
nA/°C  
μA  
B
I
Input Offset Current  
Power Supply Rejection Ratio  
Open Loop Gain  
Supply Current  
OS  
PSRR  
DC  
82  
95  
100  
115  
dB  
A
V
= V / 2  
dB  
OL  
OUT  
S
I
per channel  
2.2  
2.75  
mA  
S
Input Characteristics  
R
Input Resistance  
Non-inverting, G = 1  
30  
1
MΩ  
pF  
V
IN  
IN  
C
Input Capacitance  
CMIR  
Common Mode Input Range  
Common Mode Rejection Ratio  
5.3  
85  
CMRR  
DC, V  
= -3V to 3V  
70  
dB  
CM  
Output Characteristics  
-4.826 to  
4.534  
R = 150Ω  
V
V
L
V
Output Swing  
OUT  
-4.93 to  
4.85  
R = 1kΩ  
L
-4.7  
4.7  
I
I
Output Current  
+60, -48  
+65, -52  
mA  
mA  
OUT  
SC  
Short Circuit Current  
V
= V / 2  
OUT S  
© 2007-2014 Exar Corporation  
4 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
CLC2023 Pin Configuration  
CLC2023 Pin Assignments  
MSOP-8 / SOIC-8  
MSOP-8 / SOIC-8  
Pin No.  
Pin Name  
OUT1  
-IN1  
Description  
OUT1  
-IN1  
+IN1  
-Vs  
1
2
3
4
8
7
6
5
+Vs  
1
2
3
4
5
6
7
8
Output, channel 1  
Negative input, channel 1  
Positive input, channel 1  
Negative supply  
OUT2  
-IN2  
-
+IN1  
+
-
-V  
S
+
+IN2  
-IN2  
Positive input, channel 2  
Negative input, channel 2  
Output, channel 2  
+IN2  
OUT2  
+V  
Positive supply  
S
© 2007-2014 Exar Corporation  
5 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
Typical Performance Characteristics  
T = 25°C, V = 5V, R = 1kΩ, R = 1kΩ, G = 2; unless otherwise noted.  
A
S
f
L
Non-Inverting Frequency Response  
Inverting Frequency Response  
3
1
0
G = 1  
Rf = 0  
0
-1  
G = -1  
-2  
-3  
-4  
-5  
-6  
-7  
G = -2  
G = 2  
-3  
G = -5  
G = 5  
G = -10  
G = 10  
-6  
VOUT = 0.05Vpp  
VOUT = 0.05Vpp  
-9  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. C  
Frequency Response vs. C without R  
L
L
S
1
0
4
2
-1  
-2  
-3  
-4  
-5  
-6  
-7  
CL = 500pF  
Rs = 10Ω  
CL = 500pF  
0
CL = 1000pF  
Rs = 7.5Ω  
CL = 300pF  
-2  
CL = 3000pF  
Rs = 4Ω  
CL = 100pF  
-4  
CL = 50pF  
-6  
-8  
CL = 10pF  
VOUT = 0.05Vpp  
Rs = 0Ω  
VOUT = 0.05Vpp  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs.V  
Frequency Response vs. R  
L
OUT  
3
0
2
1
RL = 50Ω  
RL = 150Ω  
0
RL = 2.5KΩ  
VOUT = 1Vpp  
VOUT = 2Vpp  
VOUT = 4Vpp  
-1  
-2  
-3  
-4  
-5  
-6  
RL = 1KΩ  
-3  
-6  
-9  
VOUT = 0.05Vpp  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
© 2007-2014 Exar Corporation  
6 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
Typical Performance Characteristics  
T = 25°C, V = 5V, R = 1kΩ, R = 1kΩ, G = 2; unless otherwise noted.  
A
S
f
L
Non-Inverting Frequency Response at V = 3V  
Inverting Frequency Response at V = 3V  
S
S
1
3
G = 1  
Rf = 0  
0
-1  
0
G = -1  
-2  
-3  
-4  
-5  
-6  
-7  
G = -2  
G = 2  
G = -5  
-3  
G = 5  
G = -10  
G = 10  
-6  
VOUT = 0.05Vpp  
VOUT = 0.05Vpp  
-9  
0.1  
1
10  
100  
0.1  
1
10  
100  
100  
2.5  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs.V  
at V = 3V  
Frequency Response vs. R at V = 3V  
OUT  
S
L
S
3
2
RL = 50Ω  
RL = 150Ω  
1
0
0
RL = 2.5KΩ  
VOUT = 1Vpp  
-1  
-2  
-3  
-4  
-5  
-6  
RL = 1KΩ  
VOUT = 2Vpp  
VOUT = 2.5Vpp  
-3  
-6  
VOUT = 0.05Vpp  
-9  
0.1  
1
10  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
-3dB Bandwidth vs. Output Voltage at V = 3V  
-3dB Bandwidth vs. Output Voltage  
S
24  
21  
18  
15  
12  
9
24  
21  
18  
15  
12  
9
6
6
3
3
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VOUT (VPP)  
VOUT (VPP)  
© 2007-2014 Exar Corporation  
7 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
Typical Performance Characteristics  
T = 25°C, V = 5V, R = 1kΩ, R = 1kΩ, G = 2; unless otherwise noted.  
A
S
f
L
Open Loop Gain and Phase vs.  
CMIR  
0.5  
80  
60  
40  
0
-75  
0.4  
0.3  
0.2  
0.1  
0
PHASE  
-150  
-225  
-300  
-375  
-450  
-525  
20  
GAIN  
0
-20  
-40  
-60  
-0.1  
10  
100  
1,000  
10,000  
100,000  
1,000,000  
-6  
-4  
-2  
0
2
4
6
FREQ (KHz)  
Vcm(V)  
Input Voltage Noise  
CMIR at V = 3V  
S
0.5  
0.4  
0.3  
0.2  
0.1  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
-0.1  
0.0001  
0.001  
0.01  
0.1  
1
-1  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Frequency (MHz)  
Vcm(V)  
CMRR vs. Frequency  
PSRR vs. Frequency  
110  
100  
90  
110  
100  
90  
80  
70  
60  
50  
80  
70  
60  
50  
40  
0.001  
1000  
0  
1000  
0  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
© 2007-2014 Exar Corporation  
8 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
Typical Performance Characteristics  
T = 25°C, V = 5V, R = 1kΩ, R = 1kΩ, G = 2; unless otherwise noted.  
A
S
f
L
2nd Harmonic Distortion vs. R  
3rd Harmonic Distortion vs. R  
L
L
-50  
-50  
-60  
-60  
RL = 100Ω  
RL = 10KΩ  
-70  
-80  
-90  
-70  
RL = 100Ω  
-80  
-90  
RL = 10KΩ  
RL = 1KΩ  
RL = 500Ω  
RL = 1KΩ  
RL = 500Ω  
-100  
-110  
-100  
VOUT = 2Vpp  
VOUT = 2Vpp  
-110  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (KHz)  
Frequency (KHz)  
2nd Harmonic Distortion vs.V  
3rd Harmonic Distortion vs.V  
OUT  
OUT  
-40  
-30  
-40  
-50  
-50  
-60  
RF=RL=1K  
-60  
RF=RL=1K  
-70  
-80  
-70  
-80  
RF=RL=10K  
RF=RL=10K  
-90  
-90  
FREQ = 500KHz  
FREQ = 500KHz  
-100  
-100  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
6.5  
7.5  
8.5  
9.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
6.5  
7.5  
8.5  
9.5  
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
THD vs. Frequency  
-65  
-70  
-75  
-80  
-85  
-90  
VOUT = 1Vpp  
RL = 1K  
AV+1  
-95  
-100  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (kHz)  
© 2007-2014 Exar Corporation  
9 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
Typical Performance Characteristics  
T = 25°C, V = 5V, R = 1kΩ, R = 1kΩ, G = 2; unless otherwise noted.  
A
S
f
L
2nd Harmonic Distortion vs. R at V = 3V  
3rd Harmonic Distortion vs. R at V = 3V  
L
S
L
S
-40  
-40  
-50  
-50  
RL = 100Ω  
-60  
-60  
RL = 100Ω  
-70  
-70  
RL = 10KΩ  
RL = 1KΩ  
RL = 500Ω  
-80  
-80  
RL = 10KΩ  
RL = 1KΩ  
RL = 500Ω  
-90  
-90  
VOUT = 2Vpp  
VOUT = 2Vpp  
-100  
-100  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (KHz)  
Frequency (KHz)  
2nd Harmonic Distortion vs.V  
at V = 3V  
3rd Harmonic Distortion vs.V  
at V = 3V  
OUT  
S
OUT  
S
-40  
-40  
-50  
-60  
-50  
-60  
RF=RL=10K  
RF=RL=1K  
RF=RL=10K  
-70  
-80  
-70  
-80  
RF=RL=1K  
-90  
-90  
FREQ = 500KHz  
FREQ = 500KHz  
-100  
-100  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
THD vs. Frequency at V = 3V  
S
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
VOUT = 1Vpp  
RL = 1K  
AV+1  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (kHz)  
© 2007-2014 Exar Corporation  
10 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
Typical Performance Characteristics  
T = 25°C, V = 5V, R = 1kΩ, R = 1kΩ, G = 2; unless otherwise noted.  
A
S
f
L
Small Signal Pulse Response  
Small Signal Pulse Response at V = 3V  
S
0.75  
1.65  
0.5  
0.25  
0
1.6  
1.55  
1.5  
-0.25  
-0.5  
-0.75  
1.45  
1.4  
1.35  
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
Time (ns)  
Time (ns)  
Large Signal Pulse Response  
Large Signal Pulse Response at V = 3V  
S
6
3
2.5  
2
4
2
0
1.5  
1
-2  
-4  
-6  
0.5  
0
0
1
2
3
4
5
6
7
8
9
10  
0
0.5  
1
1.5  
2
Time (ns)  
Time (ns)  
© 2007-2014 Exar Corporation  
11 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
Where T  
environment.  
is the temperature of the working  
Application Information  
Ambient  
Basic Information  
In order to determine P , the power dissipated in the load  
needs to be subtracted from the total power delivered by the  
supplies.  
D
Figures 1 and 2 illustrate typical circuit configurations for  
non-inverting, inverting, and unity gain topologies for dual  
supply applications. They show the recommended bypass  
capacitor values and overall closed loop gain equations.  
P = P  
- P  
load  
D
supply  
+Vs  
6.8μF  
Supply power is calculated by the standard power equation.  
P
supply  
= V  
× I  
supply RMSsupply  
0.1μF  
V
= V - V  
S+ S-  
Input  
supply  
+
-
Output  
RL  
Power delivered to a purely resistive load is:  
0.1μF  
6.8μF  
Rf  
2
P
load  
= ((V  
)
)/Rload  
eff  
load RMS  
Rg  
G = 1 + (Rf/Rg)  
-Vs  
The effective load resistor (Rload ) will need to include the  
eff  
Figure 1: Typical Non-Inverting Gain Circuit  
effect of the feedback network. For instance,  
Rload in Figure 2 would be calculated as:  
eff  
+Vs  
R || (R + R )  
6.8μF  
L
f
g
These measurements are basic and are relatively easy to  
perform with standard lab equipment. For design purposes  
however, prior knowledge of actual signal levels and load  
impedance is needed to determine the dissipated power.  
R1  
0.1μF  
+
Output  
Rg  
Here, P can be found from  
Input  
-
D
RL  
P = P  
D
+ P  
- P  
Quiescent  
Dynamic load  
0.1μF  
Rf  
Quiescent power can be derived from the specified I values  
S
along with known supply voltage, V  
be calculated as above with the desired signal amplitudes  
using:  
. Load power can  
6.8μF  
G = - (Rf/Rg)  
-Vs  
supply  
For optimum input offset  
voltage set R1 = Rf || Rg  
Figure 2: Typical Inverting Gain Circuit  
(V  
)
)
= V  
/ √2  
peak  
load RMS  
( I  
= ( V  
)
/ Rload  
eff  
Power Dissipation  
load RMS  
load RMS  
Power dissipation should not be a factor when operating  
under the stated 500Ω load condition. However, applications  
with low impedance, DC coupled loads should be analyzed  
to ensure that maximum allowed junction temperature is  
not exceeded. Guidelines listed below can be used to verify  
that the particular application will not cause the device to  
operate beyond it’s intended operating range.  
The dynamic power is focused primarily within the output  
stage driving the load. This value can be calculated as:  
P
= (V - V  
)
× ( I )  
load RMS  
Dynamic  
S+  
load RMS  
Assuming the load is referenced in the middle of the power  
rails or V /2.  
Maximum power levels are set by the absolute maximum  
junction rating of 150°C. To calculate the junction  
supply  
temperature, the package thermal resistance value Theta  
JA  
(θ ) is used along with the total die power dissipation.  
Figure 3 shows the maximum safe power dissipation in  
the package vs. the ambient temperature for the packages  
available.  
JA  
T
= T  
+ (θ × P )  
Ambient JA D  
Junction  
© 2007-2014 Exar Corporation  
12 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
Overdrive Recovery  
1.5  
An overdrive condition is defined as the point when either  
one of the inputs or the output exceed their specified  
voltage range. Overdrive recovery is the time needed for the  
amplifier to return to its normal or linear operating point.The  
recovery time varies based on whether the input or output  
is overdriven and by how much the ranges are exceeded.  
The CLC2023 will typically recover in less than 20ns from  
an overdrive condition. Figure 5 shows the CLC2023 in an  
overdriven condition.  
SOIC-8  
1
0.5  
MSOP-8  
3
2
2
0
VIN = .8Vpp  
G = 5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2
Ambient Temperature (°C)  
1
Figure 3. Maximum Power Derating  
1
Input  
1
0
0
Driving Capacitive Loads  
Output  
-1  
-1  
-2  
-2  
-1  
-2  
-3  
Increased phase delay at the output due to capacitive loading  
can cause ringing, peaking in the frequency response, and  
possible unstable behavior. Use a series resistance, R ,  
between the amplifier and the load to help improve stability  
and settling performance. Refer to Figure 4.  
S
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
Time (us)  
Figure 5: Overdrive Recovery  
Input  
+
-
Rs  
Output  
CL  
RL  
Considerations for Offset and Noise Performance  
Offset Analysis  
Rf  
Rg  
There are three sources of offset contribution to consider;  
input bias current, input bias current mismatch, and input  
offset voltage. The input bias currents are assumed to be  
equal with and additional offset current in one of the inputs  
to account for mismatch. The bias currents will not affect  
Figure 4. Addition of R for Driving Capacitive Loads  
S
The CLC2023 is capable of driving up to 300pF directly, with  
no series resistance. Directly driving 500pF causes over  
4dB of frequency peaking, as shown in the plot on page 6.  
the offset as long as the parallel combination of R and R  
f
g
matches R . Refer to Figure 6.  
t
Table 1 provides the recommended R for various capacitive  
+V  
s
S
R
R
f
g
loads.The recommended R values result in ≤ 1dB peaking  
S
in the frequency response. The Frequency Response vs.  
C plots, on page 6, illustrate the response of the CLC2023.  
L
R
CLC2023  
+
t
IN  
CL (pF)  
RS (Ω)  
-3dB BW (MHz)  
R
L
500  
1000  
3000  
10  
7. 5  
4
27  
20  
15  
-V  
s
Figure 6: Circuit for Evaluating Offset  
Table 1: Recommended R vs. C  
S
L
The first place to start is to determine the source resistance.  
If it is very small an additional resistance may need to be  
added to keep the values of R and R to practical levels.  
For a given load capacitance, adjust R to optimize the  
S
tradeoff between settling time and bandwidth. In general,  
f
g
For this analysis we assume that R is the total resistance  
reducing R will increase bandwidth at the expense of  
t
S
present on the non-inverting input. This gives us one  
equation that we must solve:  
additional overshoot and ringing.  
© 2007-2014 Exar Corporation  
13 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
R = R ||R  
f
The complete equation can be simplified to:  
t
g
This equation can be rearranged to solve for R :  
2
2
)
g
2
o
v
= 3 4kT G RT + e G + 2 i RT  
(
)
(
)
(
n n  
R = (R * R ) / (R - R )  
g
t
f
f
t
The other consideration is desired gain (G) which is:  
G = (1 + R /R )  
It’s easy to see that the effect of amplifier voltage noise  
is proportionate to gain and will tend to dominate at large  
gains. The other terms will have their greatest impact at  
f
g
By plugging in the value for R we get  
g
large R values at lower gains.  
t
R = G * R  
f
t
And R can be written in terms of R and G as follows:  
g
t
Layout Considerations  
General layout and supply bypassing play major roles in  
high frequency performance. Exar has evaluation boards to  
use as a guide for high frequency layout and as an aid in  
device testing and characterization. Follow the steps below  
as a basis for high frequency layout:  
R = (G * R ) / (G - 1)  
g
t
The complete input offset equation is now only dependent  
on the voltage offset and input offset terms given by:  
2
)
2
ꢀ■  
Include 6.8µF and 0.1µF ceramic capacitors for power supply  
VI  
=
V
+ I RT  
(
(
)
OS  
IO  
OS  
decoupling  
ꢀ■  
Place the 6.8µF capacitor within 0.75 inches of the power pin  
And the output offset is:  
ꢀ■  
Place the 0.1µF capacitor within 0.1 inches of the power pin  
2
)
2
)
ꢀ■  
Remove the ground plane under and around the part,  
especially near the input and output pins to reduce parasitic  
capacitance  
VO  
= G ∗  
V
+ I RT  
(
(
OS  
IO  
OS  
ꢀ■  
Minimize all trace lengths to reduce series inductances  
Refer to the evaluation board layouts below for more  
information.  
Noise analysis  
The complete equivalent noise circuit is shown in Figure 7.  
R
R
f
g
Evaluation Board Information  
+ –  
+ –  
The following evaluation boards are available to aid in the  
testing and layout of these devices:  
R
CLC2023  
+
g
+ –  
+ –  
Evaluation Board #  
CEB006  
Products  
CLC2023 in SOIC-8  
CLC2023 in MSOP-8  
+
R
L
CEB010  
Figure 7: Complete Equivalent Noise Circuit  
Evaluation Board Schematics  
Evaluation board schematics and layouts are shown in  
Figures 8-12 These evaluation boards are built for dual-  
supply operation. Follow these steps to use the board in a  
single-supply application:  
The complete noise equation is given by:  
2
)
2
2
2
2
RF  
RF  
v
=
v
+
e
1 +  
+ i RT 1 +  
+ i RF  
(
o
orext  
n
bp  
bn  
RG  
RG  
1. Short -VS to ground.  
2. Use C3 and C4, if the -VS pin of the amplifier is not  
directly connected to the ground plane.  
Where V  
is given by:  
is the noise due to the external resistors and  
orext  
2
2
2
F
2
RF  
RF  
= e 1 +  
+ e ∗  
+ e  
v
o
n
G
RG  
RG  
© 2007-2014 Exar Corporation  
14 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
Figure 10. CEB006 Bottom View  
Figure 8. CEB006 & CEB010 Schematic  
Figure 11. CEB010 Top View  
Figure 9. CEB006 Top View  
Figure 12. CEB010 Bottom View  
© 2007-2014 Exar Corporation  
15 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
Mechanical Dimensions  
SOIC-8 Package  
© 2007-2014 Exar Corporation  
16 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
MSOP-8 Package  
© 2007-2014 Exar Corporation  
17 / 18  
exar.com/CLC2023  
Rev 1D  
CLC2023  
Ordering Information  
Part Number  
Package  
Green  
Operating Temperature Range  
Packaging  
CLC2023 Ordering Information  
CLC2023IMP8X  
MSOP-8  
MSOP-8  
Yes  
Yes  
N/A  
Yes  
Yes  
N/A  
-40°C to +125°C  
-40°C to +125°C  
N/A  
Tape & Reel  
Mini Tape & Reel  
N/A  
CLC2023IMP8MTR  
CLC2023IMP8EVB  
CLC2023ISO8X  
Evaluation Board  
SOIC-8  
-40°C to +125°C  
-40°C to +125°C  
N/A  
Tape & Reel  
Mini Tape & Reel  
N/A  
CLC2023ISO8MTR  
CLC2023ISO8EVB  
SOIC-8  
Evaluation Board  
Moisture sensitivity level for all parts is MSL-1.  
Revision History  
Revision  
Date  
Description  
Reformat into Exar data sheet template. Updated ordering information table to include MTR and EVB  
part numbers. Increased “I” temperature range from +85 to +125°C. Removed A” temp grade parts,  
since “I” is now equivalent. Updated thermal resistance numbers and package outline drawings.  
December  
2014  
1D (ECN 1451-06)  
For Further Assistance:  
Email: CustomerSupport@exar.com or HPATechSupport@exar.com  
Exar Technical Documentation: http://www.exar.com/techdoc/  
Exar Corporation Headquarters and Sales Offices  
48760 Kato Road  
Fremont, CA 94538 - USA  
Tel.: +1 (510) 668-7000  
Fax: +1 (510) 668-7001  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation  
assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free  
of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user’s specific application. While the information  
in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected  
to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation  
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR  
Corporation is adequately protected under the circumstances.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
© 2007-2014 Exar Corporation  
18 / 18  
exar.com/CLC2023  
Rev 1D  

相关型号:

CLC2023ISO8EVB

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2023ISO8MTR

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2023ISO8X

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2050

Low Power, 3V to 36V, Single, Dual, Quad Amplifiers
CADEKA

CLC2050ISO8X

Low Power, 3V to 36V, Single, Dual, Quad Amplifiers
CADEKA

CLC2057

Dual, Low Noise, Operational Amplifier
CADEKA

CLC2057ISO8X

Dual, Low Noise, Operational Amplifier
CADEKA

CLC2058

Dual 4V to 36V Amplifier
CADEKA

CLC2058ISO8X

Dual 4V to 36V Amplifier
CADEKA

CLC2058_10

Dual 4V to 36V Amplifier
CADEKA

CLC2059

Dual, Low Noise, 4V to 36V Amplifier
CADEKA

CLC2059ISO8X

Dual, Low Noise, 4V to 36V Amplifier
CADEKA