CAT28C64BNA-15T [CATALYST]

64K-Bit CMOS PARALLEL E2PROM; 64K位CMOS并行E2PROM
CAT28C64BNA-15T
型号: CAT28C64BNA-15T
厂家: CATALYST SEMICONDUCTOR    CATALYST SEMICONDUCTOR
描述:

64K-Bit CMOS PARALLEL E2PROM
64K位CMOS并行E2PROM

存储 内存集成电路 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总12页 (文件大小:60K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CAT28C64B  
64K-Bit CMOS PARALLEL E2PROM  
FEATURES  
Fast Read Access Times:  
Commercial, Industrial and Automotive  
– 120/150ns  
Temperature Ranges  
Low Power CMOS Dissipation:  
– Active: 25 mA Max.  
Automatic Page Write Operation:  
– 1 to 32 Bytes in 5ms  
– Standby: 100 µA Max.  
– Page Load Timer  
Simple Write Operation:  
End of Write Detection:  
– Toggle Bit  
– On-Chip Address and Data Latches  
– Self-Timed Write Cycle with Auto-Clear  
DATA Polling  
Fast Write Cycle Time:  
100,000 Program/Erase Cycles  
100 Year Data Retention  
– 5ms Max.  
CMOS and TTL Compatible I/O  
Hardware and Software Write Protection  
DESCRIPTION  
The CAT28C64B is manufactured using Catalyst’s ad-  
vancedCMOSfloatinggatetechnology. Itisdesignedto  
endure 100,000 program/erase cycles and has a data  
retentionof100years.ThedeviceisavailableinJEDEC-  
approved28-pinDIP,28-pinTSOP,28-pinSOIC,or,32-  
pin PLCC package .  
The CAT28C64B is a fast, low power, 5V-only CMOS  
Parallel E2PROM organized as 8K x 8-bits. It requires a  
simple interface for in-system programming. On-chip  
address and data latches, self-timed write cycle with  
auto-clear and VCC power up/down write protection  
eliminate additional timing and protection hardware.  
DATA Polling and Toggle status bits signal the start and  
end of the self-timed write cycle. Additionally, the  
CAT28C64B features hardware and software write pro-  
tection.  
BLOCK DIAGRAM  
8,192 x 8  
E2PROM  
ARRAY  
ROW  
DECODER  
ADDR. BUFFER  
A –A  
5
12  
& LATCHES  
INADVERTENT  
WRITE  
PROTECTION  
HIGH VOLTAGE  
GENERATOR  
32 BYTE PAGE  
REGISTER  
V
CC  
CE  
OE  
WE  
CONTROL  
LOGIC  
I/O BUFFERS  
DATA POLLING  
AND  
TIMER  
TOGGLE BIT  
I/O –I/O  
0
7
ADDR. BUFFER  
& LATCHES  
A –A  
COLUMN  
DECODER  
0
4
5094 FHD F02  
Doc. No. 25006-0A 2/98 P-1  
© 1999 by Catalyst Semiconductor, Inc.  
Characteristics subject to change without notice  
1
CAT28C64B  
PIN CONFIGURATION  
DIP Package (P)  
SOIC Package (J, K)  
NC  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
WE  
NC  
1
28  
27  
V
CC  
WE  
A
2
12  
A
2
12  
A
3
NC  
7
6
5
4
3
2
1
0
0
1
2
A
A
3
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
NC  
7
6
5
4
3
2
1
0
0
1
2
A
4
A
A
A
8
4
A
A
A
8
A
5
9
A
5
9
A
6
11  
A
6
11  
A
7
OE  
A
A
7
OE  
A
A
8
10  
A
8
10  
A
9
CE  
A
9
CE  
I/O  
A
10  
11  
12  
13  
14  
I/O  
7
A
10  
11  
12  
13  
14  
7
I/O  
I/O  
I/O  
V
I/O  
I/O  
I/O  
I/O  
6
5
4
3
I/O  
I/O  
I/O  
V
I/O  
I/O  
I/O  
I/O  
6
5
4
3
SS  
SS  
TSOP Package (8mm x 13.4mm) (T13)  
PLCC Package (N)  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
OE  
1
2
3
4
5
6
7
8
A
10  
4
3 2 1 32 31 30  
A
A
A
NC  
CE  
I/O  
I/O  
I/O  
I/O  
I/O  
11  
9
8
5
29  
28  
27  
26  
25  
24  
23  
22  
21  
A
A
A
A
A
A
A
A
A
A
6
5
4
3
2
1
0
8
7
6
5
4
3
6
7
8
9
9
11  
WE  
V
NC  
OE  
A
CC  
NC  
GND  
TOP VIEW  
A
A
A
6
9
I/O  
2
I/O  
1
I/O  
0
12  
7
10  
11  
12  
13  
10  
10  
11  
12  
13  
14  
CE  
A
A
A
A
0
A
1
A
2
5
4
3
NC  
I/O  
I/O  
I/O  
7
6
0
14 15 16 17 18 19 20  
28C64B F03  
5094 FHD F01  
PIN FUNCTIONS  
Pin Name  
Function  
Address Inputs  
Pin Name  
WE  
Function  
Write Enable  
5 V Supply  
A0–A12  
I/O0–I/O7  
CE  
Data Inputs/Outputs  
Chip Enable  
VCC  
VSS  
Ground  
OE  
Output Enable  
NC  
No Connect  
Doc. No. 25006-0A 2/98 P-1  
2
CAT28C64B  
*COMMENT  
ABSOLUTE MAXIMUM RATINGS*  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
These are stress ratings only, and functional operation  
of the device at these or any other conditions outside of  
those listed in the operational sections of this specifica-  
tion is not implied. Exposure to any absolute maximum  
rating for extended periods may affect device perfor-  
mance and reliability.  
Temperature Under Bias ................. –55°C to +125°C  
Storage Temperature....................... –65°C to +150°C  
Voltage on Any Pin with  
Respect to Ground(2) ........... –2.0V to +VCC + 2.0V  
VCC with Respect to Ground ............... –2.0V to +7.0V  
Package Power Dissipation  
Capability (Ta = 25°C)................................... 1.0W  
Lead Soldering Temperature (10 secs) ............ 300°C  
Output Short Circuit Current(3) ........................ 100 mA  
RELIABILITY CHARACTERISTICS  
Symbol  
Parameter  
Endurance  
Min.  
105  
Max.  
Units  
Cycles/Byte  
Years  
Test Method  
(1)  
NEND  
MIL-STD-883, Test Method 1033  
MIL-STD-883, Test Method 1008  
MIL-STD-883, Test Method 3015  
JEDEC Standard 17  
(1)  
TDR  
Data Retention  
ESD Susceptibility  
Latch-Up  
100  
(1)  
VZAP  
2000  
100  
Volts  
(1)(4)  
ILTH  
mA  
MODE SELECTION  
Mode  
CE  
WE  
OE  
L
I/O  
DOUT  
DIN  
Power  
ACTIVE  
ACTIVE  
ACTIVE  
STANDBY  
ACTIVE  
Read  
L
L
H
Byte Write (WE Controlled)  
Byte Write (CE Controlled)  
Standby, and Write Inhibit  
Read and Write Inhibit  
H
L
X
H
H
DIN  
H
X
X
High-Z  
High-Z  
H
CAPACITANCE T = 25°C, f = 1.0 MHz, V  
= 5V  
A
CC  
Symbol  
Test  
Max.  
10  
Units  
pF  
Conditions  
(1)  
CI/O  
Input/Output Capacitance  
Input Capacitance  
VI/O = 0V  
VIN = 0V  
(1)  
CIN  
6
pF  
Note:  
(1) This parameter is tested initially and after a design or process change that affects the parameter.  
(2) The minimum DC input voltage is –0.5V. During transitions, inputs may undershoot to –2.0V for periods of less than 20 ns. Maximum DC  
voltage on output pins is V +0.5V, which may overshoot to V +2.0V for periods of less than 20 ns.  
CC  
CC  
(3) Output shorted for no more than one second. No more than one output shorted at a time.  
(4) Latch-up protection is provided for stresses up to 100mA on address and data pins from –1V to V +1V.  
CC  
Doc. No. 25006-0A 2/98 P-1  
3
CAT28C64B  
D.C. OPERATING CHARACTERISTICS  
VCC = 5V ±10%, unless otherwise specified.  
Limits  
Symbol  
Parameter  
Min. Typ.  
Max.  
Units  
Test Conditions  
CE = OE = VIL,  
f = 1/tRC min, All I/O’s Open  
CE = OE = VILC  
ICC  
VCC Current (Operating, TTL)  
30  
mA  
(1)  
ICCC  
VCC Current (Operating, CMOS)  
25  
mA  
,
f = 1/tRC min, All I/O’s Open  
ISB  
VCC Current (Standby, TTL)  
VCC Current (Standby, CMOS)  
1
mA  
CE = VIH, All I/O’s Open  
(2)  
ISBC  
100  
µA  
CE = VIHC,  
All I/O’s Open  
ILI  
Input Leakage Current  
Output Leakage Current  
–10  
–10  
10  
10  
µA  
µA  
VIN = GND to VCC  
ILO  
VOUT = GND to VCC,  
CE = VIH  
(2)  
VIH  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Write Inhibit Voltage  
2
VCC +0.3  
0.8  
V
V
V
V
V
(1)  
VIL  
–0.3  
2.4  
VOH  
VOL  
VWI  
IOH = –400µA  
0.4  
IOL = 2.1mA  
3.5  
Note:  
(1) V  
(2) V  
= –0.3V to +0.3V.  
ILC  
= V –0.3V to V +0.3V.  
IHC  
CC  
CC  
Doc. No. 25006-0A 2/98 P-1  
4
CAT28C64B  
A.C. CHARACTERISTICS, Read Cycle  
CC = 5V ±10%, unless otherwise specified.  
V
28C64B-12  
28C64B-15  
Symbol  
tRC  
Parameter  
Read Cycle Time  
Min. Max. Min. Max. Units  
120  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCE  
CE Access Time  
120  
120  
60  
150  
150  
70  
tAA  
Address Access Time  
OE Access Time  
tOE  
(1)  
tLZ  
CE Low to Active Output  
OE Low to Active Output  
CE High to High-Z Output  
OE High to High-Z Output  
Output Hold from Address Change  
0
0
0
0
(1)  
tOLZ  
(1)(2)  
tHZ  
50  
50  
50  
50  
(1)(2)  
tOHZ  
(1)  
tOH  
0
0
Figure 1. A.C. Testing Input/Output Waveform(3)  
2.4 V  
2.0 V  
0.8 V  
INPUT PULSE LEVELS  
0.45 V  
REFERENCE POINTS  
5096 FHD F03  
Figure 2. A.C. Testing Load Circuit (example)  
1.3V  
1N914  
3.3K  
DEVICE  
UNDER  
TEST  
OUT  
C
= 100 pF  
L
C
INCLUDES JIG CAPACITANCE  
L
5096 FHD F04  
Note:  
(1) This parameter is tested initially and after a design or process change that affects the parameter.  
(2) Output floating (High-Z) is defined as the state when the external data line is no longer driven by the output buffer.  
(3) Input rise and fall times (10% and 90%) < 10 ns.  
Doc. No. 25006-0A 2/98 P-1  
5
CAT28C64B  
A.C. CHARACTERISTICS, Write Cycle  
V
CC = 5V ±10%, unless otherwise specified.  
28C64B-12  
28C64B-15  
Symbol  
tWC  
Parameter  
Min. Max. Min. Max. Units  
Write Cycle Time  
Address Setup Time  
Address Hold Time  
CE Setup Time  
5
5
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
µs  
tAS  
0
100  
0
0
100  
0
tAH  
tCS  
tCH  
CE Hold Time  
0
0
(2)  
tCW  
CE Pulse Time  
110  
0
110  
0
tOES  
tOEH  
OE Setup Time  
OE Hold Time  
0
0
(2)  
tWP  
WE Pulse Width  
Data Setup Time  
Data Hold Time  
110  
60  
0
110  
60  
0
tDS  
tDH  
(1)  
tINIT  
Write Inhibit Period After Power-up  
Byte Load Cycle Time  
5
10  
5
10  
(1)(3)  
tBLC  
.05  
100  
.05  
100  
Note:  
(1) This parameter is tested initially and after a design or process change that affects the parameter.  
(2) A write pulse of less than 20ns duration will not initiate a write cycle.  
(3) A timer of duration t  
max. begins with every LOW to HIGH transition of WE. If allowed to time out, a page or byte write will begin;  
BLC  
however a transition from HIGH to LOW within t  
max. stops the timer.  
BLC  
Doc. No. 25006-0A 2/98 P-1  
6
CAT28C64B  
Byte Write  
DEVICE OPERATION  
A write cycle is executed when both CE and WE are low,  
and OE is high. Write cycles can be initiated using either  
WE or CE, with the address input being latched on the  
falling edge of WE or CE, whichever occurs last. Data,  
conversely, is latched on the rising edge of WE or CE,  
whichever occurs first. Once initiated, a byte write cycle  
automatically erases the addressed byte and the new  
data is written within 5 ms.  
Read  
Data stored in the CAT28C64B is transferred to the data  
bus when WE is held high, and both OE and CE are held  
low. The data bus is set to a high impedance state when  
either CE or OE goes high. This 2-line control architec-  
ture can be used to eliminate bus contention in a system  
environment.  
Figure 3. Read Cycle  
t
RC  
ADDRESS  
CE  
t
CE  
t
OE  
OE  
V
IH  
t
WE  
LZ  
t
OHZ  
t
t
HZ  
DATA VALID  
t
OH  
OLZ  
HIGH-Z  
DATA OUT  
DATA VALID  
t
AA  
28C64B F06  
Figure 4. Byte Write Cycle [WE Controlled]  
t
WC  
ADDRESS  
t
t
AH  
AS  
t
t
CH  
CS  
CE  
OE  
WE  
t
t
t
OEH  
OES  
WP  
t
BLC  
HIGH-Z  
DATA OUT  
DATA IN  
DATA VALID  
DS  
t
t
DH  
5096 FHD F06  
Doc. No. 25006-0A 2/98 P-1  
7
CAT28C64B  
Page Write  
(which can be loaded in any order) during the first and  
subsequent write cycles. Each successive byte load  
cycle must begin within tBLC MAX of the rising edge of the  
preceding WE pulse. There is no page write window  
The page write mode of the CAT28C64B (essentially an  
extended BYTE WRITE mode) allows from 1 to 32 bytes  
of data to be programmed within a single E2PROM write  
cycle. This effectively reduces the byte-write time by a  
factor of 32.  
limitation as long as WE is pulsed low within tBLC MAX  
.
Upon completion of the page write sequence, WE must  
stay high a minimum of tBLC MAX for the internal auto-  
matic program cycle to commence. This programming  
cycle consists of an erase cycle, which erases any data  
that existed in each addressed cell, and a write cycle,  
whichwritesnewdatabackintothecell. Apagewritewill  
only write data to the locations that were addressed and  
will not rewrite the entire page.  
FollowinganinitialWRITEoperation(WEpulsedlow,for  
tWP, and then high) the page write mode can begin by  
issuing sequential WE pulses, which load the address  
anddatabytesintoa32bytetemporarybuffer. Thepage  
address where data is to be written, specified by bits A5  
to A12, is latched on the last falling edge of WE. Each  
byte within the page is defined by address bits A0 to A4  
Figure 5. Byte Write Cycle [CE Controlled]  
t
WC  
ADDRESS  
t
t
t
BLC  
AS  
AH  
t
CW  
CE  
OE  
WE  
t
OEH  
t
OES  
t
t
CH  
CS  
HIGH-Z  
DATA OUT  
DATA IN  
DATA VALID  
DS  
t
t
DH  
5094 FHD F07  
Figure 6. Page Mode Write Cycle  
OE  
CE  
WE  
t
t
BLC  
WP  
ADDRESS  
I/O  
t
WC  
LAST BYTE  
BYTE n+2  
BYTE 0 BYTE 1  
BYTE 2  
8
BYTE n  
BYTE n+1  
5096 FHD F10  
Doc. No. 25006-0A 2/98 P-1  
CAT28C64B  
DATA Polling  
Toggle Bit  
DATA polling is provided to indicate the completion of  
write cycle. Once a byte write or page write cycle is  
initiated, attempting to read the last byte written will  
output the complement of that data on I/O7 (I/O0–I/O6  
are indeterminate) until the programming cycle is com-  
plete. Upon completion of the self-timed write cycle, all  
I/O’s will output true data during a read cycle.  
In addition to the DATA Polling feature, the device offers  
an additional method for determining the completion of  
a write cycle. While a write cycle is in progress, reading  
data from the device will result in I/O6 toggling between  
one and zero. However, once the write is complete, I/O6  
stops toggling and valid data can be read from the  
device.  
Figure 7. DATA Polling  
ADDRESS  
CE  
WE  
t
OEH  
t
OES  
t
OE  
OE  
t
WC  
= X  
I/O  
D
IN  
= X  
D
D
= X  
OUT  
7
OUT  
28C64B F10  
Figure 8. Toggle Bit  
WE  
CE  
OE  
t
OEH  
t
OES  
t
OE  
(1)  
(1)  
I/O  
6
t
WC  
28C64B F11  
Note:  
(1) Beginning and ending state of I/O is indeterminate.  
6
Doc. No. 25006-0A 2/98 P-1  
9
CAT28C64B  
HARDWARE DATA PROTECTION  
(4) Noise pulses of less than 20 ns on the WE or CE  
inputs will not result in a write cycle.  
The following is a list of hardware data protection fea-  
tures that are incorporated into the CAT28C64B.  
SOFTWARE DATA PROTECTION  
(1) VCC sense provides for write protection when VCC  
falls below 3.5V min.  
The CAT28C64B features a software controlled data  
protectionschemewhich, onceenabled, requiresadata  
algorithmtobeissuedtothedevicebeforeawritecanbe  
performed. The device is shipped from Catalyst with the  
softwareprotectionNOTENABLED(theCAT28C64Bis  
in the standard operating mode).  
(2) A power on delay mechanism, tINIT (see AC charac-  
teristics), provides a 5 to 10 ms delay before a write  
sequence, after VCC has reached 3.5V min.  
(3) Write inhibit is activated by holding any one of OE  
low, CE high or WE high.  
Figure 9. Write Sequence for Activating Software  
Data Protection  
Figure 10. Write Sequence for Deactivating  
Software Data Protection  
WRITE DATA:  
ADDRESS:  
AA  
WRITE DATA:  
ADDRESS:  
AA  
1555  
1555  
WRITE DATA:  
ADDRESS:  
55  
WRITE DATA:  
ADDRESS:  
55  
0AAA  
0AAA  
WRITE DATA:  
ADDRESS:  
A0  
WRITE DATA:  
ADDRESS:  
80  
1555  
1555  
WRITE DATA:  
ADDRESS:  
AA  
SOFTWARE DATA  
PROTECTION ACTIVATED  
(1)  
1555  
WRITE DATA:  
XX  
WRITE DATA:  
ADDRESS:  
55  
TO ANY ADDRESS  
0AAA  
WRITE LAST BYTE  
TO  
LAST ADDRESS  
WRITE DATA:  
ADDRESS:  
20  
1555  
28C64B F12  
5094 FHD F09  
Note:  
(1) Write protection is activated at this point whether or not any more writes are completed. Writing to addresses must occur within t  
Max., after SDP activation.  
BLC  
Doc. No. 25006-0A 2/98 P-1  
10  
CAT28C64B  
Toactivatethesoftwaredataprotection,thedevicemust  
besentthreewritecommandstospecificaddresseswith  
specific data (Figure 9). This sequence of commands  
(along with subsequent writes) must adhere to the page  
writetimingspecifications(Figure11).Oncethisisdone,  
all subsequent byte or page writes to the device must be  
preceded by this same set of write commands. The data  
protection mechanism is activated until a deactivate  
sequence is issued regardless of power on/off transi-  
tions. This gives the user added inadvertent write pro-  
tection on power-up in addition to the hardware protec-  
tion provided.  
To allow the user the ability to program the device with  
an E2PROM programmer (or for testing purposes) there  
is a software command sequence for deactivating the  
data protection. The six step algorithm (Figure 10) will  
reset the internal protection circuitry, and the device will  
return to standard operating mode (Figure 12 provides  
reset timing). After the sixth byte of this reset sequence  
has been issued, standard byte or page writing can  
commence.  
Figure 11. Software Data Protection Timing  
t
WC  
DATA  
ADDRESS  
AA  
1555  
55  
0AAA  
A0  
1555  
BYTE OR  
PAGE  
CE  
WRITES  
ENABLED  
t
t
BLC  
WP  
WE  
5094 FHD F13  
Figure 12. Resetting Software Data Protection Timing  
t
DATA  
ADDRESS  
AA  
1555  
55  
0AAA  
80  
1555  
AA  
1555  
55  
0AAA  
20  
1555  
WC  
SDP  
RESET  
CE  
DEVICE  
UNPROTECTED  
WE  
5094 FHD F14  
ORDERING INFORMATION  
Prefix  
Device #  
Suffix  
CAT  
28C64B  
N
I
-15  
T
Product  
Number  
Temperature Range  
Tape & Reel  
T: 500/Reel  
Blank = Commercial (0˚C to +70˚C)  
I = Industrial (-40˚C to +85˚C)  
A = Automotive (-40˚ to +105˚C)*  
Package  
Optional  
Company  
ID  
Speed  
12: 120ns  
15: 150ns  
P: PDIP  
J: SOIC (JEDEC)  
K: SOIC (EIAJ)  
N: PLCC  
T13: TSOP (8mmx13.4mm)  
* -40˚C to +125˚C is available upon request  
28C64B F15  
Notes:  
(1) The device used in the above example is a CAT28C64BNI-15T (PLCC, Industrial temperature, 150 ns Access Time, Tape & Reel).  
Doc. No. 25006-0A 2/98 P-1  
11  
CAT28C64B  
Doc. No. 25006-0A 2/98 P-1  
12  

相关型号:

ETC

CAT28C64BNA-90T

64K-Bit CMOS PARALLEL EEPROM
CATALYST

CAT28C64BNA-90T

8KX8 EEPROM 5V, 90ns, PQCC32, PLASTIC, LCC-32
ONSEMI

CAT28C64BNI-12

64K-Bit CMOS PARALLEL E2PROM
CATALYST

CAT28C64BNI-12

8KX8 EEPROM 5V, 120ns, PQCC32, PLASTIC, LCC-32
ONSEMI

CAT28C64BNI-12T

64K-Bit CMOS PARALLEL E2PROM
CATALYST

CAT28C64BNI-12T

暂无描述
ONSEMI

CAT28C64BNI-12TE13

IC 8K X 8 EEPROM 5V, 120 ns, PQCC32, PLASTIC, LCC-32, Programmable ROM
ONSEMI

CAT28C64BNI-12TE7

EEPROM, 8KX8, 120ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32
CATALYST

CAT28C64BNI-12TE7

8KX8 EEPROM 5V, 120ns, PQCC32, PLASTIC, LCC-32
ONSEMI

CAT28C64BNI-15

64K-Bit CMOS PARALLEL E2PROM
CATALYST

CAT28C64BNI-15

8KX8 EEPROM 5V, 150ns, PQCC32, PLASTIC, LCC-32
ONSEMI