CAT512JTE13 [CATALYST]

8-Bit Dual Digital POT with Independent Reference Inputs; 8位双通道数字电位器具有独立的基准输入
CAT512JTE13
型号: CAT512JTE13
厂家: CATALYST SEMICONDUCTOR    CATALYST SEMICONDUCTOR
描述:

8-Bit Dual Digital POT with Independent Reference Inputs
8位双通道数字电位器具有独立的基准输入

电位器
文件: 总10页 (文件大小:74K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Advanced Information  
CAT512  
8-Bit Dual Digital POT with Independent Reference Inputs  
FEATURES  
APPLICATIONS  
Output settings retained without power  
Independent Reference Inputs  
Automated product calibration.  
Remote control adjustment of equipment  
Output range includes both supply rails  
Programming voltage generated on-chip  
2 independently addressable outputs  
Serial µP interface  
Offset, gain and zero adjustments in Self-  
Calibrating and Adaptive Control systems.  
Tamper-proof calibrations.  
Single supply operation: 2.7V-5.5V  
DESCRIPTION  
Control of the CAT512 is accomplished with a simple 3  
wire serial interface. A Chip Select pin allows several  
CAT512's to share a common serial interface and com-  
munications back to the host controller is via a single  
serial data line thanks to the CAT512’s Tri-Stated Data  
Output pin. A RDY/BSYoutput working in concert with  
aninternallowvoltagedetectorsignalsproperoperation  
of EEPROM Erase/Write cycle.  
TheCAT512isadual8-BitMemoryDACdesignedasan  
electronic replacement for mechanical potentiometers  
and trim pots. Intended for final calibration of products  
such as camcorders, fax machines and cellular tele-  
phones on automated high volume production lines and  
systems capable of self calibration, it is also well suited  
for applications were equipment requiring periodic ad-  
justment is either difficult to access or located in a  
hazardous environment.  
The CAT512 operates from a single 3–5 volt power  
supply. The high voltage required for EEPROM Erase/  
Write operations is generated on-chip.  
TheCAT512offers2independentlyprogrammableDACs  
each having its own reference inputs and each capable  
of rail to rail output swing. Output settings, stored non-  
volatile EEPROM memory, are not lost when the device  
is powered down and are automatically reinstated when  
power is returned. Each output can be dithered to test  
new output values without effecting the stored settings  
and stored settings can be read back without disturbing  
the DAC’s output.  
The CAT512 is available in the 0°C to 70°C Commercial  
and –40°C to +85°C Industrial operating temperature  
ranges and offered in 14-pin plastic DIP and Surface  
mount packages.  
FUNCTIONAL DIAGRAM  
PIN CONFIGURATION  
V
DD  
1
DIP Package (P)  
SOIC Package (J)  
6
3
7
RDY/BSY  
SERIAL DATA OUTPUT  
DO  
PROGRAM  
CONTROL  
PROG  
H1  
H2  
1
2
3
4
5
14  
13  
12  
11  
10  
9
H1  
H2  
V
V
V
V
1
2
3
4
5
14  
13  
12  
11  
V
V
V
V
DD  
REF  
DD  
REF  
14  
V
H1  
1
REF  
EEPROM  
CLK  
CLK  
REF  
REF  
12  
9
V
LATCH  
DAC 1  
OUT  
1
1
OUT  
OUT  
RDY/BSY  
RDY/BSY  
V
L1  
REF  
2
4
CLK  
CS  
DI  
V
2
V
2
CS  
DI  
CS  
DI  
DATA  
CONTROLLER  
OUT  
OUT  
CAT512  
CAT512  
L2  
L2  
10  
V
V
V
V
REF  
REF  
13  
11  
10  
REF  
REF  
V
H2  
2
REF  
5
EEPROM  
LATCH  
L1  
L1  
9
DO  
6
7
DO  
6
7
V
DAC 2  
OUT  
V
L2  
8
GND  
PROG  
8
GND  
REF  
PROG  
H.V.  
CHARGE  
PUMP  
CAT512  
8
GND  
© 2000 by Catalyst Semiconductor, Inc.  
Characteristics subject to change without notice  
1
CAT512  
Advanced Information  
ABSOLUTE MAXIMUM RATINGS  
Operating Ambient Temperature  
Supply Voltage*  
Commercial (‘C’ suffix) .................... 0°C to +70°C  
Industrial (‘I’ suffix)...................... – 40°C to +85°C  
Junction Temperature ..................................... +150°C  
Storage Temperature ....................... –65°C to +150°C  
Lead Soldering (10 sec max) .......................... +300°C  
VDD to GND ......................................0.5V to +7V  
Inputs  
CLK to GND............................0.5V to VDD +0.5V  
CS to GND..............................0.5V to VDD +0.5V  
DI to GND ...............................0.5V to VDD +0.5V  
RDY/BSY to GND ...................0.5V to VDD +0.5V  
PROG to GND ........................0.5V to VDD +0.5V  
VREFH to GND ........................0.5V to VDD +0.5V  
VREFL to GND .........................0.5V to VDD +0.5V  
Outputs  
*StressesabovethoselistedunderAbsoluteMaximumRatings  
may cause permanent damage to the device. Absolute  
Maximum Ratings are limited values applied individually while  
other parameters are within specified operating conditions,  
and functional operation at any of these conditions is NOT  
implied.Deviceperformanceandreliabilitymaybeimpairedby  
exposure to absolute rating conditions for extended periods of  
time.  
D0 to GND...............................0.5V to VDD +0.5V  
VOUT 1– 2 to GND...................0.5V to VDD +0.5V  
RELIABILITY CHARACTERISTICS  
Symbol  
Parameter  
Min  
Max  
Units  
Test Method  
(1)  
VZAP  
ESD Susceptibility  
Latch-Up  
2000  
100  
Volts  
mA  
MIL-STD-883, Test Method 3015  
JEDEC Standard 17  
(1)(2)  
ILTH  
Notes:  
1. This parameter is tested initially and after a design or process change that affects the parameter.  
2. Latch-up protection is provided for stresses up to 100mA on address and data pins from –1V to V + 1V.  
CC  
DC ELECTRICAL CHARACTERISTICS: VDD = +2.7V to +5.5V, VREFH = VDD, VREFL = 0V, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Resolution  
8
Bits  
Accuracy  
INL  
Integral Linearity Error  
ILOAD = 250 nA, TR = C  
TR = I  
0.6  
0.6  
± 1  
± 1  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
ILOAD = 1 µA,  
TR = C  
TR = I  
1.2  
1.2  
DNL  
Differential Linearity Error  
ILOAD = 250 nA, TR = C  
TR = I  
0.25  
0.25  
0.5  
± 0.5  
± 0.5  
ILOAD = 1 µA,  
TR = C  
TR = I  
0.5  
Logic Inputs  
IIH  
Input Leakage Current  
Input Leakage Current  
High Level Input Voltage  
Low Level Input Voltage  
VIN = VDD  
VIN = 0V  
2
10  
–10  
VDD  
0.8  
µA  
µA  
V
IIL  
VIH  
VIL  
0
V
References  
VRH  
VREFH Input Voltage Range  
VREFL Input Voltage Range  
VREFH–VREFL Resistance  
Input Resistance Match  
2.7  
GND  
VDD  
VDD -2.7  
V
VRL  
V
ZIN  
28K  
± 0.5  
%
VIN / RIN  
± 1  
Logic Outputs  
VOH  
VOL  
High Level Output Voltage  
Low Level Output Voltage  
IOH = – 40 µA  
VDD–0.3  
V
V
V
IOL = 1 mA, VDD = +5V  
IOL = 0.4 mA, VDD = +3V  
0.4  
0.4  
8/00  
2
CAT512  
Units  
Advanced Information  
DC ELECTRICAL CHARACTERISTICS (Cont.):  
VDD = +2.7V to +5.5V, VREFH = VDD, VREFL = 0V, unless otherwise specified  
Symbol Parameter  
Analog Output  
Conditions  
Min  
Typ  
Max  
FSO  
ZSO  
IL  
Full-Scale Output Voltage  
VR = VREFH – VREF  
L
L
0.99 VR  
0.995 VR  
V
Zero-Scale Output Voltage  
DAC Output Load Current  
DAC Output Impedance  
VR = VREFH – VREF  
0.005 VR 0.01 VR  
V
µA  
1
ROUT  
VDD = VREFH = +5V  
VDD = VREFH = +3V  
ILOAD = 1 µA  
100K  
150K  
1
PSSR  
Power Supply Rejection  
LSB / V  
Temperature  
TCO  
VOUT Temperature Coefficient  
VDD = +5V, ILOAD = 250nA  
VREFH= +5V, VREFL = 0V  
200  
µV/ °C  
TCREF  
Temperature Coefficient of  
VREF Resistance  
VREFH to VREF  
L
700  
ppm / °C  
Power Supply  
IDD1  
IDD2  
Supply Current (Read)  
Normal Operating  
VDD = 5V  
40  
1.2  
.6  
50  
2.0  
1.2  
5.5  
µA  
mA  
mA  
V
Supply Current (Write)  
VDD = 3V  
VDD  
Operating Voltage Range  
2.7  
AC ELECTRICAL CHARACTERISTICS:  
VDD = +2.7V to +5.5V, VREFH = VDD, VREFL = 0V, unless otherwise specified  
Symbol Parameter  
Digital  
Conditions  
Min  
Typ  
Max  
Units  
tCSMIN  
tCSS  
tCSH  
tDIS  
Minimum CS Low Time  
150  
100  
0
400  
400  
4
150  
150  
5
ns  
ns  
CS Setup Time  
CS Hold Time  
ns  
DI Setup Time  
CL = 100 pF,  
50  
ns  
see note 1  
tDIH  
DI Hold Time  
50  
ns  
tDO1  
tDO0  
tHZ  
Output Delay to 1  
Output Delay to 0  
Output Delay to High-Z  
Output Delay to Low-Z  
Erase/Write Cycle Time  
PROG Setup Time  
Minimum Pulse Width  
Minimum CLK High Time  
Minimum CLK Low Time  
Clock Frequency  
ns  
ns  
ns  
tLZ  
ns  
tBUSY  
tPS  
ms  
ns  
150  
700  
500  
300  
DC  
1
tPROG  
ns  
tCLK  
tCLK  
fC  
H
ns  
L
ns  
MHz  
Analog  
tDS  
DAC Settling Time to 1 LSB  
CLOAD = 10 pF, VDD = +5V  
CLOAD = 10 pF, VDD = +3V  
3
6
10  
10  
µs  
µs  
Pin Capacitance  
CIN  
Input Capacitance  
Output Capacitance  
VIN = 0V, f = 1 MHz(2)  
VOUT = 0V, f = 1 MHz2)  
8
6
pF  
pF  
COUT  
Notes: 1. All timing measurements are defined at the point of signal crossing V / 2.  
DD  
2. These parameters are periodically sampled and are not 100% tested.  
8/00  
3
CAT512  
Advanced Information  
A. C. TIMING DIAGRAM  
t
1
2
3
4
5
o
t
H
CLK  
CLK  
t
t
L
t
CSH  
CSS  
CLK  
CS  
t
CSMIN  
t
DIS  
DI  
t
DIH  
t
DO0  
t
LZ  
DO  
t
HZ  
t
DO1  
PROG  
t
PS  
t
PROG  
RDY/BSY  
t
BUSY  
t
1
2
3
4
5
o
8/00  
4
CAT512  
Advanced Information  
PIN DESCRIPTION  
DAC addressing is as follows:  
Pin  
Name  
Function  
DAC OUTPUT  
A0  
0
A1  
1
1
2
3
4
5
6
7
VDD  
Power supply positive  
Clock input pin  
V
1
2
OUT  
OUT  
CLK  
RDY/BSY  
CS  
V
1
1
Ready/Busy output  
Chip select  
DI  
Serial data input pin  
Serial data output pin  
DO  
PROG  
EEPROM Programming Enable  
Input  
8
GND  
Power supply ground  
9
VREFL1  
VREFL2  
Minimum DAC 1 output voltage  
Minimum DAC 2 output voltage  
DAC 2 output  
10  
11  
12  
13  
14  
VOUT  
VOUT  
2
1
DAC 1 output  
VREFH2  
VREFH1  
Maximum DAC 2 output voltage  
Maximum DAC 1 output voltage  
DEVICE OPERATION  
CHIP SELECT  
The CAT512 is a dual 8-bit Digital to Analog Converter  
(DAC) whose outputs can be programmed to any one of  
256 individual voltage steps. Once programmed, these  
output settings are retained in non-volatile EEPROM  
memoryandwillnotbelostwhenpowerisremovedfrom  
the chip. Upon power up the DACs return to the settings  
stored in EEPROM memory. Each DAC can be written  
to and read from independently without effecting the  
output voltage during the read or write cycle. Each  
output can also be adjusted without altering the stored  
output setting, which is useful for testing new output  
settings before storing them in memory.  
Chip Select (CS) enables and disables the CAT512’s  
readandwriteoperations. WhenCSishighdatamaybe  
read to or from the chip, and the Data Output (DO) pin is  
active. Data loaded into the DAC control registers will  
remain in effect until CS goes low. Bringing CS to a logic  
low returns all DAC outputs to the settings stored in  
EEPROM memory and switches DO to its high imped-  
ance Tri-State mode.  
Because CS functions like a reset the CS pin has been  
desensitized with a 30 ns to 90 ns filter circuit to prevent  
noise spikes from causing unwanted resets and the loss  
of volatile data.  
DIGITAL INTERFACE  
CLOCK  
The CAT512 employs a standard 3 wire serial control  
interface consisting of Clock (CLK), Chip Select (CS)  
and Data In (DI) inputs. For all operations, address and  
data are shifted in LSB first. In addition, all digital data  
must be preceded by a logic “1” as a start bit. The DAC  
address and data are clocked into the DI pin on the  
clock’s rising edge. When sending multiple blocks of  
information a minimum of two clock cycles is required  
between the last block sent and the next start bit.  
The CAT512’s clock controls both data flow in and out of  
the IC and EEPROM memory cell programming. Serial  
data is shifted into the DI pin and out of the DO pin on the  
clock’srisingedge. Whileitisnotnecessaryfortheclock  
to be running between data transfers, the clock must be  
operating in order to write to EEPROM memory, even  
though the data being saved may already be resident in  
the DAC control register.  
No clock is necessary upon system power-up. The  
CAT512’s internal power-on reset circuitry loads data  
from EEPROM to the DACs without using the external  
clock.  
Multiple devices may share a common input data line by  
selectively activating the CS control of the desired IC.  
Data Outputs (DO) can also share a common line  
because the DO pin is Tri-Stated and returns to a high  
impedance when not in use.  
8/00  
5
CAT512  
Advanced Information  
As data transfers are edge triggered clean clock transi-  
tionsarenecessarytoavoidfalselyclockingdataintothe  
control registers. Standard CMOS and TTL logic fami-  
lies work well in this regard and it is recommended that  
any mechanical switches used for breadboarding or  
device evaluation purposes be debounced by a flip-flop  
or other suitable debouncing circuit.  
itshighimpedanceTri-StatemodewhenCSreturnslow.  
Tri-Stating the DO pin allows several 512s to share a  
single serial data line and simplifies interfacing multiple  
512s to a microprocessor.  
WRITING TO MEMORY  
Programming the CAT512’s EEPROM memory is ac-  
complished through the control signals: Chip Select  
(CS) and Program (PROG). With CS high, a start bit  
followedbyatwobitDACaddressandeightdatabitsare  
clockedintotheDACcontrolregisterviatheDIpin. Data  
enters on the clock’s rising edge. The DAC output  
changes to its new setting on the clock cycle following  
D7, the last data bit.  
V
REF  
VREF, the voltage applied between pins VREFH&VREFL,  
sets the DAC’s Zero to Full Scale output range where  
VREFL=ZeroandVREFH=FullScale. VREF canspanthe  
full power supply range or just a fraction of it. In typical  
applications VREFH &VREFL are connected across the  
power supply rails. When using less than the full supply  
voltage be mindfull of the limits placed on VREFH and  
VREFL as specified in the "References" section of DC  
"Electrical Characteristics".  
Programming is accomplished by bringing PROG high  
sometimeafterthestartbitandatleast150nspriortothe  
rising edge of the clock cycle immediately following the  
D7 bit. Two clock cycles after the D7 bit the DAC control  
register will be ready to receive the next set of address  
and data bits. The clock must be kept running through-  
out the programming cycle. Internal control circuitry  
takes care of generating and ramping up the program-  
mingvoltagefordatatransfertotheEEPROMcells. The  
CAT512’s EEPROM memory cells will endure over  
1,000,000writecyclesandwillretaindataforaminimum  
of 100 years without being refreshed.  
READY/BUSY  
Whensavingdatatonon-volatileEEPROMmemory,the  
Ready/Busy ouput (RDY/BSY) signals the start and  
durationoftheEEPROMerase/writecycle.Uponreceiv-  
ing a command to store data (PROG goes high) RDY/  
BSY goes low and remains low until the programming  
cycle is complete. During this time the CAT512 will  
ignore any data appearing at DI and no data will be  
output on DO.  
READING DATA  
RDY/BSY is internally ANDed with a low voltage detec-  
tor circuit monitoring VDD. If VDD is below the minimum  
value required for EEPROM programming, RDY/BSY  
willremainhighfollowingtheprogramcommandindicat-  
ing a failure to record the desired data in non-volatile  
memory.  
Each time data is transferred into a DAC control register  
currently held data is shifted out via the D0 pin, thus in  
every data transaction a read cycle occurs. Note,  
however, that the reading process is destructive. Data  
must be removed from the register in order to be read.  
Figure 2 depicts a Read Only cycle in which no change  
occurs in the DAC’s output. This feature allows µPs to  
poll DACs for their current setting without disturbing the  
output voltage but it assumes that the setting being read  
isalsostoredinEEPROMsothatitcanberestoredatthe  
end of the read cycle. In Figure 2 CS returns low before  
the13th clockcyclecompletes. IndoingsotheEEPROM’s  
DATA OUTPUT  
Data is output serially by the CAT512, LSB first, via the  
Data Out (DO) pin following the reception of a start bit  
and two address bits by the Data Input (DI). DO  
becomes active whenever CS goes high and resumes  
Figure 1. Writing to Memory  
Figure 2. Reading from Memory  
t
1
2
3
4
5
6
7
8
9
10 11 12  
N
N+1 N+2  
t
1
2
3
4
5
6
7
8
9
10 11 12  
o
o
CS  
DI  
CS  
DI  
NEW DAC DATA  
1
A0 A1 D0 D1 D2 D3 D4 D5 D6 D7  
CURRENT DAC DATA  
1
A0 A1  
CURRENT DAC DATA  
DO  
DO  
PROG  
D0 D1 D2 D3 D4 D5 D6 D7  
D0 D1 D2 D3 D4 D5 D6 D7  
PROG  
RDY/BSY  
RDY/BSY  
CURRENT  
DAC VALUE  
DAC  
OUTPUT  
CURRENT  
DAC VALUE  
NEW  
DAC VALUE  
NEW  
DAC VALUE  
DAC  
OUTPUT  
NON-VOLATILE  
NON-VOLATILE  
VOLATILE  
NON-VOLATILE  
8/00  
6
CAT512  
Advanced Information  
Figure 3. Temporary Change in Output  
setting is reloaded into the DAC control register. Since  
this value is the same as that which had been there  
previously no change in the DACs output is noticed.  
Had the value held in the control register been different  
from that stored in EEPROM then a change would occur  
at the read cycles conclusion.  
t
1
2
3
4
5
6
7
8
9
10 11 12  
N
N+1 N+2  
o
CS  
DI  
NEW DAC DATA  
1
A0 A1 D0 D1 D2 D3 D4 D5 D6 D7  
TEMPORARILY CHANGE OUTPUT  
CURRENT DAC DATA  
TheCAT512allowstemporarychangesinDACsoutput  
to be made without disturbing the settings retained in  
EEPROM memory. This feature is particularly useful  
when testing for a new output setting and allows for user  
adjustment of preset or default values without losing the  
original factory settings.  
D0 D1 D2 D3 D4 D5 D6 D7  
DO  
PROG  
RDY/BSY  
DAC  
OUTPUT  
CURRENT  
DAC VALUE  
NEW  
DAC VALUE  
CURRENT  
DAC VALUE  
Figure 3 shows the control and data signals needed to  
effect a temporary output change. DAC settings may be  
changed as many times as required and can be made to  
any of the two DACs in any order or sequence. The  
temporarysetting(s)remainineffectlongasCSremains  
high. WhenCSreturnslowalltwoDACswillreturntothe  
output values stored in EEPROM memory.  
NON-VOLATILE  
VOLATILE  
NON-VOLATILE  
When it is desired to save a new setting acquired using  
this feature, the new value must be reloaded into the  
DAC control register prior to programming. This is be-  
cause the CAT512s internal control circuitry discards  
from the programming register the new data two clock  
cycles after receiving it if no PROG signal is received.  
APPLICATION CIRCUITS  
+5V  
+5V  
R
I
R
F
+15V  
+15V  
V
V
H
V
V
H
L
DD  
REF  
DD  
REF  
V
V
OUT  
OUT  
CONTROL  
& DATA  
CONTROL  
& DATA  
+
CAT512  
OP 07  
+
CAT512  
OP 07  
DAC  
-15V  
-15V  
GND  
V
REF  
L
GND  
V
REF  
R
F
V
= V  
DAC  
OUT  
V
= (1 + –––) V  
OUT  
R
I
Buffered DAC Output  
Amplified DAC Output  
+5V  
DAC INPUT  
DAC OUTPUT  
ANALOG  
OUTPUT  
V
R
R
F
i
I
CODE  
V
= ——— (V - V  
) + V  
ZERO  
DAC  
FS  
ZERO  
255  
+15V  
V
= 0.99 V  
V
= 5V  
F
FS  
REF  
= 0.01 V  
REF  
R = R  
V
V
H
L
DD  
REF  
V
OUT  
MSB LSB  
1111 1111  
V
I
ZERO  
REF  
) + .01 V  
CONTROL  
& DATA  
255  
—— (.98 V  
= .990 V  
REF  
V
= +4.90V  
+
CAT512  
REF  
REF  
OUT  
OP 07  
255  
-15V  
128  
GND  
V
REF  
1000 0000  
0111 1111  
0000 0001  
—— (.98 V  
) + .01 V  
REF  
= .502 V  
REF  
V
= +0.02V  
= -0.02V  
= -4.86V  
REF  
OUT  
255  
127  
—— (.98 V  
) + .01 V  
REF  
= .498 V  
REF  
V
V
R
V
=
(
R ) -V  
F
R +  
255  
REF  
OUT  
OUT  
DAC  
F
I
F
I
1
R
—— (.98 V  
) + .01 V  
REF  
= .014 V  
REF  
V
I
255  
REF  
OUT  
For R =R  
I
0
0000 0000 —— (.98 V  
) + .01 V  
REF  
= .010 V  
REF  
V
= -4.90V  
V
= 2V -V  
REF  
OUT  
OUT  
DAC I  
255  
Bipolar DAC Output  
8/00  
7
CAT512  
Advanced Information  
APPLICATION CIRCUITS (Cont.)  
+5V  
V
+V  
REF  
V
REF  
R
= —————  
C
256 1 µA  
*
V
H
DD  
REF  
+5V  
V
REF  
Fine adjust gives ± 1 LSB change in V  
OFFSET  
V
REF  
2
127R  
V
H
V
C
when V =  
OFFSET  
———  
DD  
REF  
FINE ADJUST  
DAC  
+
(+V  
) - (V  
)
REF  
OFFSET  
127R  
C
R
= ———————————  
C
FINE ADJUST  
DAC  
1 µA  
+
(-V  
) + (V  
)
REF  
OFFSET  
R
= ———————————  
o
1 µA  
R
C
COARSE ADJUST  
DAC  
+V  
R
C
V
OFFSET  
COARSE ADJUST  
DAC  
+
GND  
V
L
REF  
+V  
-V  
R
o
V
OFFSET  
+
-V  
REF  
GND  
V
L
REF  
Coarse-Fine Offset Control by Averaging DAC Outputs  
for Single Power Supply Systems  
Coarse-Fine Offset Control by Averaging DAC Outputs  
for Dual Power Supply Systems  
28 - 32V  
V+  
I > 2 mA  
15K  
10 µF  
1N5231B  
5.1V  
V
= 5.000V  
REF  
V
V
H
L
DD  
REF  
V
V
H
DD  
REF  
10K  
CONTROL  
& DATA  
LT 1029  
CA  
T
5
1
2
CONTROL  
& DATA  
+
MPT3055EL  
CAT512  
LM 324  
4.02 K  
GND  
V
REF  
L
GND  
V
REF  
OUTPUT  
10 µF  
35V  
0 - 25V  
@ 1A  
1.00K  
Digitally Trimmed Voltage Reference  
Digitally Controlled Voltage Reference  
8/00  
8
CAT512  
Advanced Information  
APPLICATION CIRCUITS (Cont.)  
+5V  
2.2K  
V
V
REF  
4.7 µA  
DD  
LM385-2.5  
+15V  
I
= 2 - 255 mA  
1 mA steps  
SINK  
DAC  
+
2N7000  
+5V  
10K  
10K  
391W  
391W  
CONTROL  
& DATA  
CAT512  
DAC  
+
5 µA steps  
2N7000  
3.9K  
GND  
V
L
5 meg  
10K  
5 meg  
REF  
10K  
TIP 30  
+
-15V  
Current Sink with 4 Decades of Resolution  
+15V  
51K  
+
TIP 29  
10K  
10K  
+5V  
V
V
H
DD  
REF  
5 meg  
5 meg  
391W  
391W  
DAC  
CONTROL  
& DATA  
C
A
T5  
1
2
BS170P  
3.9K  
1 mA steps  
+
5 meg  
5 meg  
DAC  
GND  
V
L
REF  
BS170P  
5 µA steps  
+
LM385-2.5  
-15V  
I
= 2 - 255 mA  
SOURCE  
Current Source with 4 Decades of Resolution  
8/00  
9
CAT512  
Advanced Information  
ORDERING INFORMATION  
Prefix  
Device #  
Suffix  
-TE13  
CAT  
512  
J
I
Optional  
Company ID  
Product  
Number  
Package  
P: PDIP  
J: SOIC  
Tape & Reel  
TE13:  
2000/Reel  
Temperature Range  
Blank = Commercial (0˚C to +70˚C)  
I = Industrial (-40˚C to +85˚C)  
Notes:  
(1) The device used in the above example is a CAT512JI-TE13 (SOIC, Industrial Temperature, Tape & Reel)  
8/00  
10  

相关型号:

CAT512PITE13

8-Bit Dual Digital POT with Independent Reference Inputs
CATALYST

CAT512PTE13

8-Bit Dual Digital POT with Independent Reference Inputs
CATALYST

CAT513

8-Bit Dual Digital POT
CATALYST

CAT5132

15 Volt Digitally Programmable Potentiometer (DPP) with 128 Taps and 2-wire Interface
CATALYST

CAT5132

16 Volt Digitally Programmable Potentiometer (DPP) with 128 Taps and I2C Interface
ONSEMI

CAT5132GZ-100TE13

15 Volt Digitally Programmable Potentiometer (DPP) with 128 Taps and 2-wire Interface
CATALYST

CAT5132GZ-10TE13

15 Volt Digitally Programmable Potentiometer (DPP) with 128 Taps and 2-wire Interface
CATALYST

CAT5132GZ-50TE13

15 Volt Digitally Programmable Potentiometer (DPP) with 128 Taps and 2-wire Interface
CATALYST

CAT5132R-100TE13

15 Volt Digitally Programmable Potentiometer (DPP) with 128 Taps and 2-wire Interface
CATALYST

CAT5132R-10TE13

15 Volt Digitally Programmable Potentiometer (DPP) with 128 Taps and 2-wire Interface
CATALYST

CAT5132R-50TE13

15 Volt Digitally Programmable Potentiometer (DPP) with 128 Taps and 2-wire Interface
CATALYST

CAT5132RI-10

Digital Potentiometer, 1 Func, 10000ohm, 2-wire Serial Control Interface, 128 Positions, PDSO10, MSOP-10
CATALYST