CS4373 [CIRRUS]

Low-power, High-performance Delta-Sigma Test DAC; 低功耗,高性能的Σ-Δ DAC测试
CS4373
型号: CS4373
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

Low-power, High-performance Delta-Sigma Test DAC
低功耗,高性能的Σ-Δ DAC测试

测试
文件: 总20页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS4373  
Low-power, High-performance ∆Σ Test DAC  
Features  
Description  
The CS4373 is a differential output digital-to-  
analog converter intended for high-resolution,  
low-frequency measurement systems. It is de-  
signed to work with the CS5376A and CS5378  
digital filters, the CS3301 and CS3302 high-pre-  
cision amplifiers, and the CS5371 or CS5372  
high-performance ∆Σ modulators.  
• Digital ∆Σ Input, Differential Analog Output  
• Selectable Differential Outputs (OUT , BUF )  
• Selectable Output Attenuation  
- 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64  
• User-programmable Test Modes  
- Differential  
- Common mode  
The CS4373 includes a set of multiplexed out-  
puts which provide a precision output (OUT±) for  
testing the electronics channel and a buffered  
output (BUF±) for in-circuit sensor tests. It is driv-  
en by a ∆Σ bitstream and the maximum analog  
output is differential 5 volts peak-to-peak. Distor-  
tion performance of the DAC is typically -118 dB  
THD from the precision output, and -100 dB THD  
from the buffered output. Noise performance is  
114 dB SNR over a 430 Hz bandwidth.  
• Output Voltage: 5 V  
Differential  
P-P  
• Outstanding Noise Performance  
- 114 dB SNR @ 430 Hz bandwidth  
• Low Total Harmonic Distortion  
- OUT±: -118 dB THD typical, -112 dB THD max  
- BUF±: -100 dB THD typical, -95 dB THD max  
• Low Power Consumption  
- Normal mode: 7.8 mA  
- Low power mode: 5.0 mA  
- Power down: 400 µA  
- Sleep mode: 2 µA  
The CS4373 has very low power consumption. In  
normal mode (LPWR=0; MCLK=2.048 MHz),  
power consumption is 40 mW; while in Low Pow-  
er mode (LPWR=1; MCLK=1.024 MHz), power  
consumption is 25 mW.  
• Power Supply Options  
- VA+ = +5 V;  
VA- = 0 V;  
VD = +3.3 V to +5 V  
- VA+ = +2.5 V; VA- = -2.5 V; VD = +3.3 V  
ORDERING INFORMATION  
See page 19.  
VA+  
MODE(0, 1, 2)  
ATT(0, 1, 2)  
Attenuator  
VD  
OUT+  
OUT-  
TDATA  
LPWR  
BUF+  
BUF-  
24-bit ∆Σ  
DAC  
CAP+  
CAP-  
Clock  
Generator  
MCLK  
SYNC  
VA-  
VREF+  
VREF-  
DGND  
Copyright © Cirrus Logic, Inc. 2005  
SEP ‘05  
DS577F1  
http://www.cirrus.com  
(All Rights Reserved)  
CS4373  
TABLE OF CONTENTS  
1. CHARACTERISTICS & SPECIFICATIONS ............................................................................. 4  
2. TERMINOLOGY ........................................................................................................................ 9  
3. GENERAL DESCRIPTION ..................................................................................................... 10  
4. ANALOG OUTPUTS ............................................................................................................... 10  
4.1 CAP+ / CAP- .................................................................................................................... 10  
4.2 OUT+ / OUT- ................................................................................................................... 10  
4.3 BUF+ / BUF- .................................................................................................................... 10  
5. DIGITAL FILTER INTERFACE ............................................................................................... 10  
5.1 Signal Bitstream Input - TDATA ....................................................................................... 10  
5.2 Master Clock - MCLK ....................................................................................................... 10  
5.3 Clock Sync Input - SYNC ................................................................................................. 11  
6. VOLTAGE REFERENCE ........................................................................................................ 11  
6.1 Voltage Reference Inputs ................................................................................................ 11  
6.2 Voltage Reference Configurations ................................................................................... 11  
6.3 VREF Input Impedance .................................................................................................... 11  
6.4 Gain Accuracy .................................................................................................................. 12  
6.5 Gain Drift .......................................................................................................................... 12  
7. TEST MODES ......................................................................................................................... 13  
7.1 Test Mode 0: Reserved .................................................................................................... 13  
7.2 Test Mode 1: Sensor Test Mode ...................................................................................... 13  
7.3 Test Mode 2: Electronics Test Mode ............................................................................... 14  
7.4 Test Mode 3: Sensor Test Mode ...................................................................................... 14  
7.5 Test Mode 4: Common Mode .......................................................................................... 14  
7.6 Test Mode 5: High Voltage/High Current Mode ............................................................... 14  
7.7 Test Mode 6: Reserved .................................................................................................... 14  
7.8 Test Mode 7: Sleep Mode ................................................................................................ 14  
8. ATTENUATION SETTINGS .................................................................................................... 15  
9. POWER MODES ..................................................................................................................... 15  
9.1 Normal Power Mode ........................................................................................................ 15  
9.2 Low Power Mode ............................................................................................................. 15  
9.3 Sleep Mode ...................................................................................................................... 15  
9.4 Power Down ..................................................................................................................... 15  
10. POWER SUPPLY ................................................................................................................ 15  
10.1 Power Supply Bypassing .............................................................................................. 15  
10.2 SCR Latch-up Considerations ...................................................................................... 15  
10.3 DC-DC Converter Considerations ................................................................................. 16  
10.4 Power Supply Rejection ................................................................................................ 16  
11. PIN DESCRIPTION ............................................................................................................... 17  
12. ORDERING INFORMATION ................................................................................................ 19  
13. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION .......................... 19  
14. REVISION HISTORY ........................................................................................................... 19  
15. PACKAGE DIMENSIONS ..................................................................................................... 20  
2
DS577F1  
CS4373  
LIST OF FIGURES  
Figure 2. Timing .............................................................................................................................. 7  
Figure 1. Rise and Fall Times ......................................................................................................... 7  
Figure 4. CS4373 System Connections.......................................................................................... 8  
Figure 5. 2.5 Voltage Reference Circuit........................................................................................ 11  
Figure 6. Test Mode 1................................................................................................................... 13  
Figure 7. Test Mode 4................................................................................................................... 13  
Figure 8. Test Mode 5................................................................................................................... 14  
LIST OF TABLES  
Table 1. Test Modes ..................................................................................................................... 13  
Table 2. Attenuator Selection........................................................................................................ 15  
Table 3. Attenuator Selection........................................................................................................ 18  
Table 4. Mode Selection ............................................................................................................... 18  
Contacting Cirrus Logic Support  
For all product questions and inquiries contact a Cirrus Logic Sales Representative.  
To find the one nearest to you, go to www.cirrus.com  
IMPORTANT NOTICE  
"Preliminary" product information describes products that are in production, but for which full characterization data is not yet available.  
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVIC-  
ES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD  
TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE  
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN  
SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS,  
CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS  
FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
DS577F1  
3
CS4373  
1. CHARACTERISTICS & SPECIFICATIONS  
Min / Max characteristics and specifications are guaranteed over all Operating Conditions.  
Typical characteristics and specifications are measured at nominal supply voltages and T = 25°C.  
A
DGND = 0 V. All voltages with respect to 0 V.  
Devices are connected as shown in Figure 4 on page 8 unless otherwise noted.  
Tests performed using the TBS bitstream at TBSGAIN = 0x4B8F2, unless otherwise noted.  
RECOMMENDED OPERATING CONDITIONS  
Parameter  
Positive Digital Power Supply  
Symbol  
Min  
Typ  
Max  
Unit  
VD  
3.135  
3.3  
5.25  
V
Positive Analog Power Supply  
Negative Analog Power Supply  
Voltage Reference  
Single Supply  
Dual Supplies  
VA+  
4.75  
2.375  
5
2.5  
5.25  
2.625  
V
V
Single Supply  
Dual Supplies  
VA-  
-0.25  
-2.625  
0
-2.5  
0.25  
-2.375  
V
V
Single Supply  
Dual Supply  
VREF  
-
-
2.5  
2.5  
-
-
V
V
Specified Temperature Range  
ANALOG CHARACTERISTICS  
T
-40  
-
+85  
°C  
A
Parameter  
Dynamic Performance  
Symbol  
Min  
Typ  
Max  
Unit  
SNR  
110  
114  
-
dB  
Dynamic Range (OUT±)  
Unloaded  
OUT  
SNR  
100  
100  
106  
106  
-
-
dB  
dB  
Dynamic Range (BUF±)  
Unloaded  
1 kload  
BUF  
THD  
-
-118  
-112  
dB  
Total Harmonic Distortion (OUT±)  
Total Harmonic Distortion (BUF±)  
Unloaded  
OUT  
THD  
-
-
-100  
-90  
-95  
-85  
dB  
dB  
Unloaded  
1 kload  
BUF  
Input Characteristics  
Bit Rate (TDATA)  
f
-
-
MCLK/8  
-
-
bits/sec  
Hz  
TDATA  
Full Scale Bandwidth  
BW  
200  
-20  
-
FS  
Wideband Max Amplitude  
One’s Density Input Range  
(Note 1)  
(Note 2)  
A
-
-
dBFS  
%
WB  
IR  
25  
75  
OD  
Notes: 1. Max amplitude for operation above 200 Hz is TBSGAIN = 0x0078E5.  
2. Specification guaranteed by design. These are the negative and positive full scale limits for the TDATA  
bitstream.  
4
DS577F1  
CS4373  
ANALOG CHARACTERISTICS (CONTINUED)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Analog Outputs  
Differential Output Level  
Absolute Accuracy  
Relative Accuracy  
Offset Error  
V
-
-
-
-
-
-
-
±1  
±0.2  
-
5
V
P-P  
DIF  
ABS  
REL  
VOS  
FSD  
VOD  
±2  
±1.8  
%FS  
%FS  
1
%FS  
Full Scale Drift  
(Note 3)  
(Note 3)  
5
-
ppm/°C  
µV/°C  
Offset Drift  
1
-
R
1
-
-
-
-
kΩ  
pF  
Analog Output Load at BUF±  
Load Resistance  
Load Capacitance  
L
100  
C
L
Voltage Reference Input  
VREF  
(Note 4, 5) VREF  
-
-
2.5  
-
-
V
V
VREF Current  
VREF  
120  
µA  
I
Power Supplies  
Power Supply Rejection  
DC Power Supply Currents  
(Note 6)  
PSRR  
90  
-
-
dB  
(Note 7 and 8)  
Normal Power Mode  
LPWR = 0; MCLK = 2.048 MHz  
Analog  
Digital  
VA  
VD  
-
-
7.8  
100  
-
-
mA  
µA  
Low Power Mode  
LPWR = 1; MCLK = 1.024 MHz  
Analog  
Digital  
VA  
VD  
-
-
5.0  
100  
-
-
mA  
µA  
Power Down Mode  
Sleep Mode  
Analog  
Digital  
VA  
VD  
-
-
400  
100  
-
-
µA  
µA  
Analog  
Digital  
VA  
VD  
-
-
2
2
-
-
µA  
µA  
3. Specification is for the parameter over the specified temperature range and is for the CS4373 only and  
does not include the effects of external components.  
4. A 2.5 V voltage reference results in the highest dynamic range and best signal-to-noise performance,  
though smaller reference voltages may be used.  
5. VREF is defined as {(VREF+) - (VREF-)} and Inputs must satisfy: VA- < VREF- < VREF+ < VA+  
6. Power Supply Rejection is tested by applying a 100 mV  
50 Hz signal to each supply.  
P-P  
7. All outputs unloaded. All digital inputs forced to VD or GND respectively. VA+ = 5 V; VA- = 0;  
VD+ = 3.3 V.  
8. In Low Power Mode LPWR = 1, the Master Clock MCLK is reduced to 1.024 MHz. This reduces the  
signal bandwidth by a factor of 2.  
DS577F1  
5
CS4373  
DIGITAL CHARACTERISTICS  
Parameter  
High-Level Input Voltage  
Low-Level Input Voltage  
Symbol  
Min  
0.6 * VD  
0.0  
Typ  
Max  
Unit  
V
V
-
-
VD  
0.8  
±10  
IH  
V
V
IL  
Input Leakage Current  
I
-
±1  
µA  
in  
ABSOLUTE MAXIMUM RATINGS  
CAUTION: Operation at or beyond these limits may result in permanent damage to the device. Normal operation  
is not guaranteed at these extremes.  
Parameter  
DC Power Supplies (Note 9, 10)  
Symbol  
Min  
Max  
Unit  
Positive Digital  
Positive Analog  
Negative Analog  
VD  
VA+  
VA-  
-0.3  
-0.3  
-3.3  
+6.8  
+6.8  
+0.3  
V
V
V
Input Current, Any Pin Except Supplies  
Input Current, Supplies  
Output Current  
(Note 11, 12)  
(Note 12)  
I
I
-
±10  
±50  
mA  
mA  
mA  
mW  
V
IN  
IN  
-
I
-
±25  
OUT  
Power Dissipation  
(Note 13)  
All Analog Pins  
All Digital Pins  
PDS  
-
(VA-) - 0.5  
-0.5  
500  
Analog Input Voltage  
V
V
(VA+) + 0.5  
(VD) + 0.5  
85  
INA  
IND  
Digital Input Voltage  
V
Ambient Operating Temperature  
Storage Temperature  
T
-40  
°C  
A
T
-65  
150  
°C  
stg  
9. VA+ and VA- must satisfy {(VA+) - (VA-)} < +6.8 V.  
10. VD and VA- must satisfy {(VD) - (VA-)} < +7.6 V.  
11. Includes continuous over-voltage conditions at the analog input (AIN) pins.  
12. Transient current of up to 100 mA can be safely tolerated without SCR latch-up.  
13. Total power dissipation, including all input and output currents.  
6
DS577F1  
CS4373  
SWITCHING CHARACTERISTICS  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MCLK Frequency  
(Note 14)  
Normal Power Mode  
Low Power Mode  
f
-
-
2.048  
1.024  
-
-
MHz  
MHz  
c
MCLK Duty Cycle  
DC  
40  
-
-
-
-
-
-
-
-
60  
300  
1
%
ps  
ns  
ns  
ns  
ns  
ns  
CLK  
MCLK Jitter (In-band or aliased in-band)  
MCLK Jitter (Out-of-band)  
CKJ  
IB  
CKJ  
-
OB  
Rise Times:  
Any Digital Input  
Any Digital Input  
t
-
50  
50  
-
rise  
Fall Times:  
t
-
fall  
SYNC Setup Time to MCLK falling  
SYNC Hold Time after MCLK falling  
(Note 15)  
t
20  
20  
mss  
msh  
t
-
Notes: 14. If MCLK is removed, the CS4373 enters a sleep mode state.  
15. SYNC latched on MCLK falling edge, data output on next MCLK rising edge.  
t
t
fall  
rise  
0.9*VD  
0.1*VD  
Figure 1. Rise and Fall Times  
MCLK  
(2.048 MHz)  
MSYNC  
t
0
TDATA  
(256 kHz)  
tmclk  
tmss  
tmsh  
tmsync  
ttdat  
Figure 2. Timing  
DS577F1  
7
CS4373  
INA-  
INA+  
MCLK  
MCLK  
OUTR+  
OUTF+  
INR1+  
INF1+  
MSYNC  
MSYNC  
INB-  
Differential  
Sensor  
0.02µF  
COG  
0.02µF  
COG  
CS3301/  
CS3302  
INB+  
MDATA1  
MFLAG1  
MDATA1  
MFLAG1  
OUTF-  
INF1-  
INR1-  
LPWR  
OUTR+  
GAIN0  
GAIN1  
GAIN2  
CS5372  
INA-  
INA+  
OUTR+  
OUTF+  
INR2+  
INF2+  
MDATA2  
MFLAG2  
MDATA2  
MFLAG2  
INB-  
Differential  
Sensor  
0.02µF  
COG  
0.02µF  
COG  
CS3301/  
CS3302  
INB+  
OUTF-  
INF2-  
INR2-  
LPWR  
OUTR+  
GAIN0  
GAIN1  
GAIN2  
LPWR  
CS5376A  
INA-  
INA+  
MCLK  
OUTR+  
OUTF+  
INR1+  
INF1+  
MSYNC  
INB-  
Differential  
Sensor  
0.02µF  
COG  
0.02µF  
COG  
CS3301/  
CS3302  
INB+  
MDATA1  
MFLAG1  
MDATA3  
MFLAG3  
OUTF-  
INF1-  
INR1-  
LPWR  
OUTR+  
GAIN0  
GAIN1  
GAIN2  
CS5372  
INA-  
INA+  
OUTR+  
OUTF+  
INR2+  
INF2+  
MDATA2  
MFLAG2  
MDATA4  
MFLAG4  
INB-  
Differential  
Sensor  
0.02µF  
COG  
0.02µF  
COG  
CS3301/  
CS3302  
INB+  
OUTF-  
INF2-  
INR2-  
LPWR  
OUTR+  
GAIN0  
GAIN1  
GAIN2  
LPWR  
VA+  
VD  
0.01µF  
0.01µF  
VA-  
VD  
MCLK  
10nF  
COG  
CAP+  
SYNC  
TDATA  
LPWR  
CAP-  
BUF+  
Switch  
Control  
BUF-  
CS4373  
MODE0  
MODE1  
MODE2  
OUT+  
OUT-  
VA+  
VA-  
10  
VREF+  
VREF-  
ATT0  
ATT1  
ATT2  
VREF  
VA-  
DGND  
100µF  
0.01µF  
VA-  
0.01µF  
Figure 4. CS4373 System Connections  
8
DS577F1  
CS4373  
2. TERMINOLOGY  
Dynamic Range (Signal-to-Noise Ratio) - Ratio of the rms magnitude of the theoretical full  
scale signal to the integrated rms noise from DC to 400 Hz. The following formula is used to  
calculate this value:  
(
rms magnitude of full scale signal  
SNR = 20log  
(
rms magnitude of noise floor  
Total Harmonic Distortion - Ratio of the power of the fundamental frequency to the sum of the  
powers of all harmonic frequencies from DC to 400 Hz. The following formula is used to cal-  
culate this value:  
(
sum of the powers of the harmonic frequencies  
THD = 10log  
(
power of the fundamental frequency  
Full Scale Bandwidth - The bandwidth in which the converter can generate a full scale signal  
while maintaining all performance specifications.  
Wideband Max Amplitude - The maximum amplitude of the output signal beyond the full scale  
band-width.  
Differential Output Level - The peak-to-peak voltage between the analog output pins of the  
converter.  
Absolute Accuracy - Variation in the measured output voltage from the theoretical output volt-  
age at each of the attenuation ranges. The following formula is used to calculate this value:  
|
( |  
measured attenuated voltage - theoretical attenuated voltage  
theoretical attenuated voltage  
•100%  
absolute accuracy =  
(
Relative Accuracy - Variation in the measured output voltage from the theoretical output volt-  
age (relative to measured full scale signal with no attenuation) at each of the attenuation  
ranges. The following formula is used to calculate this value:  
|
( |  
measured attenuated voltage - theoretical attenuated voltage  
theoretical attenuated voltage (relative to the measured full scale voltage)  
•100%  
relative accuracy =  
(
Offset Error - Variation from the theoretical common mode voltage generated by the convert-  
er. The following formula is used to calculate this value:  
|
( |  
measured offset  
theoretical full scale voltage  
•100%  
offset error =  
(
Full Scale Drift - The variation of the measured full scale voltage across the specified temper-  
ature range.  
Offset Drift - The variation in the measured offset voltage across the specified temperature  
range.  
DS577F1  
9
CS4373  
and CS3302 for multiple test modes (See  
Figure 4 on page 8 for typical connection).  
These outputs can be attenuated to match the  
gain ranges of the CS3301/3302 using ATT0,  
ATT1, and ATT2.  
3. GENERAL DESCRIPTION  
The CS4373 DAC is designed to fully verify the  
performance of the acquisition channel. Also,  
the input switching arrangements allows for  
verification of sensor source impedance and,  
in the case a moving-coil geophone, basic pa-  
rameters of the electro-mechanical transfer  
function.  
4.3 BUF+ / BUF-  
BUF± are buffered differential outputs used to  
test external sensors such as hydrophones or  
geophones. These outputs are also attenuat-  
ed internally with the ATT0, ATT1 and ATT2  
pins to match the gain ranges of the CS3301  
and CS3302 (See Figure 4 on page 8 for typi-  
cal connection).  
Test signals are typically generated by the  
CS5376A or CS5378 digital filter. The  
CS5376A/78 supplies TDATA with a ∆Σ bit-  
stream at a rate of MCLK/8. The DAC recon-  
structs the digital bitstream to analog.  
The full scale output voltage of the DAC  
matches the maximum input signal rating of  
the CS3301 and the CS3302 amplifier. A pas-  
sive, programmable attenuator provides out-  
put levels that matches all gain settings of  
CS3301 and CS3302 while preserving the S/N  
of the DAC.  
5. DIGITAL FILTER INTERFACE  
The CS4373 is designed to operate with the  
CS5376A or CS5378 digital filter. The  
CS5376A/78 generates the master clock  
(MCLK), the ∆Σ test bitstream (TDATA) and  
the synchronization signal input (SYNC). Each  
of these can be configured within the digital fil-  
ter to fit the application requirements.  
The DAC can be operated at full scale for sig-  
nal frequencies up to 200 Hz. For frequencies  
above 200 Hz the amplitude must be reduced  
to -20 dB with respect to full scale.  
5.1 Signal Bitstream Input - TDATA  
TDATA is the test bitstream input for the  
CS4373. It is a ∆Σ one’s density bitstream in-  
put at a rate of MCLK/8. The digital filter has a  
bitstream available on its TBSDATA pin. When  
used with the CS5376A/78, TDATA can be  
connected directly to TBSDATA for it’s bit-  
stream generation.  
4. ANALOG OUTPUTS  
4.1 CAP+ / CAP-  
The CS4373 DAC needs an anti-alias filter to  
function properly. The filter is constructed with  
resistors internal to the CS4373 and a capaci-  
tor connected the CAP+ and CAP- pins. This  
filter will eliminate out of band signals from the  
OUT± and BUF± outputs.  
5.2 Master Clock - MCLK  
For proper operation, the CS4373 must be  
provided with a CMOS compatible clock on the  
MCLK pin. MCLK must have less than 300 ps  
of in-band jitter to maintain full performance  
specifications.  
A 10 nF COG capacitor is required across  
CAP±; other types of capacitors, such as X7R,  
do not have the stability required. Using the  
10 nF COG sets the -3 dB corner of the output  
anti-alias filter to 40 kHz.  
When used with the CS5376A/78 digital filters,  
MCLK is automatically generated and is typi-  
cally 2.048 MHz or 1.024 MHz.  
4.2 OUT+ / OUT-  
The OUT± pins are high precision, high output  
impedance differential outputs designed to  
test external electronics within the chip set.  
These outputs directly interface to the CS3301  
10  
DS577F1  
CS4373  
5.3 Clock Sync Input - SYNC  
defined relative to the VA- supply (see  
Figure 5).  
To synchronize the timing of the digital input  
bitstream, the CS4373 uses a SYNC signal.  
When using the CS5376A/78 digital filters,  
SYNC is automatically generated from a  
SYNC signal input from the external system.  
The selected voltage reference should pro-  
duce less than 1 µVrms of noise in the mea-  
surement bandwidth on the VREF+ pin. The  
digital filter output word rate selection deter-  
mines the bandwidth over which voltage refer-  
ence noise affects the CS4373 dynamic  
range.  
The CS4373 SYNC input is rising edge trig-  
gered and resets the internal MCLK counter-  
divider.  
6.2 Voltage Reference Configurations  
6. VOLTAGE REFERENCE  
For a 2.5 V reference, the Linear Technology  
LT1019-2.5 voltage reference yields low  
enough noise if the output is filtered with a low  
pass RC filter as shown in Figure 5.  
6.1 Voltage Reference Inputs  
The CS4373 is designed to operate with a  
2.5 V voltage reference applied across the  
VREF+ and VREF- pins.  
6.3 VREF Input Impedance  
In a single supply power configuration the  
VREF+ pin should be connected to the voltage  
reference output, and the VREF- pin connect-  
ed to ground. In a dual supply power configu-  
ration the voltage reference should be  
powered from the VA+ and VA- supplies, with  
the VREF+ pin connected to the voltage refer-  
ence output and the VREF- pin connected to  
VA-. Because most 2.5 V voltage references  
require a power supply voltage greater than  
3 V to operate, when powering the voltage ref-  
erence from dual ±2.5 V supplies the refer-  
ence voltage into the VREF+ pin should be  
The switched-capacitor input architecture of  
the VREF+ pin causes the input current re-  
quired from the voltage reference to change  
any time MCLK is changed. The input imped-  
ance of the voltage reference input is calculat-  
ed similar to the analog signal input  
impedance as [1 / (f * C)] where f is the master  
clock frequency, MCLK, and C is the internal  
sampling capacitor. A 2.048 MHz MCLK yields  
a voltage reference input impedance of ap-  
proximately [1 / (2.048 MHz)*(20 pF)], or  
about 24 k.  
VA+  
µ
F
0.1  
10  
LT1019-2.5  
2.5V REF  
To VREF+  
µ
µ
F
0.1  
F
100  
+
To VREF-  
VA-  
µ
F
0.1  
Figure 5. 2.5 Voltage Reference Circuit  
DS577F1  
11  
CS4373  
6.4 Gain Accuracy  
be changed, the voltage reference should be  
buffered to have a low output impedance to  
minimize the effect of the resistive  
voltage divider.  
Gain accuracy of the CS4373 is affected by  
variations of the voltage reference input. A  
change in the voltage reference input imped-  
ance due to a change in MCLK could affect  
gain accuracy when using the higher source  
impedance configuration of Figure 5. The  
VREF+ pin input impedance and the external  
low-pass filter resistor create a voltage divider  
for the output reference voltage, reducing the  
effective voltage reference input. If gain error  
is to be minimized, especially when MCLK is to  
6.5 Gain Drift  
Gain drift of the CS4373 due to temperature  
does not include the temperature drift charac-  
teristics of the external voltage reference. Gain  
drift is not affected by the sample rate or by  
power supply variations.  
12  
DS577F1  
CS4373  
7.1 Test Mode 0: Reserved  
7. TEST MODES  
7.2 Test Mode 1: Sensor Test Mode  
The CS4373 has 7 test modes. The MODE0,  
MODE1, and MODE2 pins define which mode  
the part will operate. Table 1 lists the test  
mode options and corresponding MODE pin  
settings.  
This mode is used to test an external sensor  
such as a hydrophone or geophone. Both the  
BUF± and OUT± are active outputs; and im-  
pulse response, linearity, and sensor imped-  
ance can be measured in the Sensor Test  
Mode. See Figure 6 for a typical connection di-  
The following subsections explain the CS4373  
Test Mode Options:  
agram.  
.
MODE2 MODE1 MODE0  
Test Mode 0  
Test Mode 1  
Test Mode 2  
Test Mode 3  
Test Mode 4  
Test Mode 5  
Test Mode 6  
Test Mode 7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Sensor Test Mode (OUT± AND BUF±)  
Electronics Test (OUT± ONLY)  
Sensor Test (BUF± ONLY)  
Common Mode  
High Voltage/High Current Mode  
Reserved  
Sleep Mode  
Table 1. Test Modes  
C S 4 3 7 3  
C S 4 3 7 3  
CAP+  
CAP-  
CAP+  
CAP-  
10nF  
COG  
10nF  
COG  
R
R
BUF+  
BUF-  
R
R
BUF+  
BUF-  
Hydrophone  
or  
Geophone  
Hydrophone  
or  
Geophone  
OUT+  
OUT-  
OUT+  
OUT-  
C S 3 3 0 1 /  
C S 3 3 0 2  
C S 3 3 0 1 /  
C S 3 3 0 2  
INA+  
INA-  
INA+  
INA-  
INB+  
INB-  
INB+  
INB-  
Figure 7. Test Mode 4  
Figure 6. Test Mode 1  
DS577F1  
13  
CS4373  
By placing known resistances on both BUF+  
and BUF- (each side of the sensor) the voltage  
at the buffered outputs (BUF+ and BUF-) can  
be measured through the CS3301 or CS3302  
and compared to the voltage on the precision  
outputs (OUT+ and OUT-). From these mea-  
surements the leakage current of the sensor  
can be determined  
7.6 Test Mode 5: High Voltage/High  
Current Mode  
This mode allows connection of the OUT± pins  
to high voltage or high current electronics.  
Figure 8 shows a typical connection diagram  
for this operational mode. The CS3301 and  
CS3302 amplifiers can be used in the configu-  
ration as the precision buffers. When using the  
circuit in Figure 8, the gain of the circuit is de-  
fined as:  
Linearity can also be measured from the out-  
put of OUT±. And when connected to the digi-  
tal filter, a digital impulse bitstream can be fed  
directly to the CS4373 to test the impulse re-  
sponse of the system.  
V2  
V1  
2R1  
R2  
AV =  
= 1+  
(
)
7.3 Test Mode 2: Electronics Test Mode  
In this test mode, outputs BUF± are high-Z and  
only OUT± is available. BUF± become high im-  
pedance to protect any external sensors still  
connected. This mode can be used to test oth-  
er system electronics on the board. It should  
be noted that since only OUT± can be used in  
this mode, and OUT± are unbuffered outputs,  
OUT± can only be connected to a high imped-  
ance load, such as the CS3301 and CS3302  
amplifiers.  
CAP+  
CAP-  
10nF  
COG  
CS4373  
BUF+  
BUF-  
+
-
R1  
R2  
7.4 Test Mode 3: Sensor Test Mode  
OUT+  
OUT-  
High Current/  
High Voltage  
Electronics  
As opposed to Test Mode 1, in this mode  
BUF± are the only available outputs. This  
mode offers another option to test external cir-  
cuitry. While operating in Test Mode 3, OUT±  
are high impedance to ensure no interference.  
V2  
V1  
R1  
-
+
7.5 Test Mode 4: Common Mode  
Figure 8. Test Mode 5  
In this mode the system can be tested using a  
common mode output from both BUF± and  
OUT±. Figure 7 shows BUF± and OUT± con-  
nections internal to the CS4373. Again, since  
the OUT± pins are unbuffered, they must only  
be connected to a high impedance load, such  
as the CS3301 and CS3302.  
7.7 Test Mode 6: Reserved  
7.8 Test Mode 7: Sleep Mode  
In this mode the chip is put into a low power  
sleep mode (See Section 9, "Power Modes"  
on page 15 for more).  
14  
DS577F1  
CS4373  
high impedance state.  
8. ATTENUATION SETTINGS  
The DAC outputs can be attenuated to match  
the gain ranges of the CS3301 and CS3302  
amplifiers. Using pins ATT0, ATT1 and ATT2,  
the outputs of the DAC can be set to one of  
7 attenuation options. Table 2 shows each at-  
tenuation option.  
9.4 Power Down  
The CS4373 is automatically placed into pow-  
er down if MCLK is disabled. It is equipped  
with loss of clock detection circuitry to force  
power down if MCLK is removed. In power  
down the DAC is inactive and the analog out-  
puts are placed in a high impedance state.  
When used with the CS5376A or CS5378 the  
CS4373 will be in this state upon power-up  
since MCLK is disabled by default.  
Attenuation  
Selection  
ATT2  
ATT1  
ATT0  
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1/2  
1/4  
10. POWER SUPPLY  
1/8  
The CS4373 has one positive analog power  
supply pin, VA+, one negative analog power  
supply pin, VA-, one digital power supply pin,  
VD, and one digital ground pin, DGND. The  
analog and digital circuitry are separated inter-  
nally to enhance performance, therefore pow-  
er must be supplied to all three supply pins.  
The digital ground pin must be connected to  
system ground.  
1/16  
1/32  
1/64  
Reserved  
Table 2. Attenuator Selection  
9. POWER MODES  
Five power modes are available when using  
the CS4373. Normal, low power modes are  
operational modes; power down and sleep  
mode are non-operational standby modes.  
When used with the CS5376A or CS5378 dig-  
ital filter the maximum voltage differential be-  
tween the CS4373 digital supply, VD, and the  
I/O supplies, (VDD1, VDD2, VDDPAD) must  
be 0.3 V or less.  
9.1 Normal Power Mode  
The normal operational mode for the CS4373,  
LPWR=0 and MCLK=2.048 MHz, provides the  
best performance with low power consump-  
tion. This power mode is recommended when  
maximum performance is required.  
10.1 Power Supply Bypassing  
The analog supply pins, VA+, VA-, should be  
decoupled to system ground with a 0.1 µF ca-  
pacitor; while the digital supply pin, VD, should  
be decoupled to system ground with a 0.01 µF  
capacitor. Bypass capacitors can be X7R, tan-  
talum, or any other dielectric types.  
9.2 Low Power Mode  
The CS4373 has a low-power operational  
mode, LPWR = 1 and MCLK = 1.024 MHz,  
that reduces power consumption at the ex-  
pense of 3 dB SNR. This operational mode is  
recommended when minimizing power is more  
important than maximizing SNR.  
10.2 SCR Latch-up Considerations  
The VA- pin is tied to the CS4373 CMOS sub-  
strate and should always be connected to the  
most negative supply voltage to ensure SCR  
latch-up does not occur. In general, latch-up  
may occur when any pin voltage (including the  
analog inputs) is 0.7 V or more below VA-, or  
7.6 V or more above VA-.  
9.3 Sleep Mode  
When selecting Test Mode 7, the CS4373 will  
be put in a sleep mode in which the DAC is in-  
active. Each analog output is placed into a  
DS577F1  
15  
CS4373  
When using dual analog power supplies, it is  
recommended to connect the VA- power  
supply pin to system ground (DGND) using a  
reversed biased Schottky diode. This configu-  
ration clamps the VA- voltage a maximum of  
0.3 V above ground to ensure SCR latch-up  
does not occur during power up. If the VA+  
power supply ramps before the VA- supply,  
the VA- voltage could be pulled above ground  
through the CS4373. If the VA- supply is unin-  
tentionally pulled 0.7 V above the DGND pin,  
SCR latch-up can occur.  
frequencies” to appear in the measurement  
bandwidth. However this requires the source  
clock to remain jitter-free within the DC-DC  
converter circuitry. If clock jitter can occur with-  
in the DC-DC converter (as in a PLL-based ar-  
chitecture), it’s better to use a non-  
synchronous DC-DC converter whose switch-  
ing frequency is rejected by the digital filter.  
During PCB layout, do not place high-current  
DC-DC converters near sensitive analog com-  
ponents. Carefully routing a separate DC-DC  
“star” ground will help isolate noisy switching  
currents away from the sensitive analog com-  
ponents.  
10.3 DC-DC Converter Considerations  
Many low-frequency measurement systems  
are battery powered and utilize DC-DC con-  
verters to efficiently generate power supply  
voltages. To minimize interference effects, op-  
erate the DC-DC converter at a frequency  
which is rejected by the digital filter, or operate  
it synchronous to the MCLK rate.  
10.4 Power Supply Rejection  
Power supply rejection of the CS4373 is fre-  
quency dependent. The digital filter rejects  
power supply noise for frequencies above the  
filter corner frequency at 130 dB or greater.  
For frequencies between DC and the digital fil-  
ter corner frequency, power supply rejection is  
nearly constant at 90 dB.  
A synchronous DC-DC converter whose oper-  
ating frequency is derived from MCLK will the-  
oretically minimize the potential for “beat  
16  
DS577F1  
CS4373  
11.PIN DESCRIPTION  
Positive Capacitor Output  
Negative Capacitor Output  
Positive Buffered Output  
CAP+  
CAP-  
BUF+  
BUF-  
OUT+  
OUT-  
VA+  
LPWR  
MODE0  
MODE1  
MODE2  
ATT0  
Low Power Mode Enable  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
Mode Select  
2
Mode Select  
3
Negative Buffered Output  
Mode Select  
4
Positive High Precision Output  
Negative High Precision Output  
Positive Analog Power Supply  
Negative Analog Power Supply  
Attenuation Range Select  
Attenuation Range Select  
Attenuation Range Select  
Signal Bitstream Input  
Positive Digital Power Supply  
Digital Ground  
5
ATT1  
6
ATT2  
7
VA-  
TDATA  
VD  
8
Negative Voltage Reference VREF-  
Positive Voltage Reference VREF+  
9
DGND  
MCLK  
SYNC  
DNC  
10  
11  
12  
13  
14  
No Connect  
No Connect  
No Connect  
No Connect  
NC  
NC  
NC  
NC  
Master Clock Input  
Clock Sync Input  
Do Not Connect  
DNC  
Do Not Connect  
Pin Name  
Pin # I/O  
Pin Description  
CAP+, CAP- 1, 2  
BUF+, BUF- 3, 4  
OUT+, OUT- 5, 6  
O
O
O
I
External Capacitor Connection for Test DAC anti-alias filter  
Buffered Output from the Test DAC  
High precision output from the Test DAC  
VA+, VA-  
7, 8  
Power supply for the analog section. Refer to the Recommended Operating Conditions for appropri-  
ate voltages.  
VREF-,  
VREF+  
9, 10  
I
Voltage reference for the internal sampling circuits. Refer to the Recommended Operating Condi-  
tions for appropriate voltages.  
SYNC  
MCLK  
DGND  
VD  
17  
18  
19  
20  
I
I
I
I
Clock Sync Input - A low to high transition resets the internal clock phasing of the DAC.  
Master Clock Input - a CMOS compatible clock input for the DAC internal master clock.  
Digital Ground - Ground reference for the digital section.  
Power supply for the digital section. Refer to the Recommended Operating Conditions for appropri-  
ate voltages.  
LPWR  
TDATA  
28  
24  
I
I
Low Power Mode Select - When set high the CS4373 enters into a Low Power Mode. (See Section  
Section 9, "Power Modes" on page 15 for more on Power Modes)  
Test DAC Signal Bitstream Input.  
DS577F1  
17  
CS4373  
Pin Name  
Pin # I/O  
I
Pin Description  
ATT2, ATT1, 21,  
Attenuation Range Select - Selects the internal attenuation range as detailed in Table 3.  
ATT0  
22, 23  
Attenuation  
Selection  
ATT2  
ATT1  
ATT0  
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1/2  
1/4  
1/8  
1/16  
1/32  
1/64  
reserved  
Table 3. Attenuator Selection  
Mode Selection - Determines the operational mode (0 - 7) of the device as detailed in Table 4.  
MODE2,  
MODE1,  
MODE0  
25,  
26, 27  
I
Mode Selection  
Test Mode 0  
Test Mode 1  
Test Mode 2  
Test Mode 3  
Test Mode 4  
Test Mode 5  
Reserved  
Mode  
Reserved  
MODE2  
MODE1  
MODE0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Sensor Test  
OUT±  
BUF±  
Common Mode  
High Voltage  
Reserved  
Test Mode 7  
Chip Power Down  
Table 4. Mode Selection  
18  
DS577F1  
CS4373  
12.ORDERING INFORMATION  
Model  
Temperature  
Package  
CS4373-IS  
-40 to +85 °C  
28-pin SSOP  
13.ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION  
Model Number  
CS4373-IS  
Peak Reflow Temp  
MSL Rating*  
Max Floor Life  
240 °C  
2
365 Days  
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.  
14.REVISION HISTORY  
Revision  
PP1  
Date  
Changes  
MAR 2003  
SEP 2005  
Initial preliminary release.  
F1  
Final version. MSL data added.  
DS577F1  
19  
CS4373  
15.PACKAGE DIMENSIONS  
28L SSOP PACKAGE DRAWING  
N
D
E11  
A2  
A
E
A1  
b2  
e
L
END VIEW  
SEATING  
PLANE  
SIDE VIEW  
1
2 3  
TOP VIEW  
INCHES  
NOM  
--  
0.006  
0.069  
--  
0.4015  
0.307  
0.209  
0.026  
0.0354  
4°  
MILLIMETERS  
NOTE  
DIM  
A
A1  
A2  
b
D
E
E1  
e
L
MIN  
--  
MAX  
0.084  
0.010  
0.074  
0.015  
0.413  
0.323  
0.220  
0.030  
0.041  
8°  
MIN  
--  
NOM  
--  
0.15  
1.75  
--  
10.20  
7.80  
5.30  
0.65  
0.90  
4°  
MAX  
2.13  
0.25  
1.88  
0.38  
10.50  
8.20  
5.60  
0.75  
1.03  
8°  
0.002  
0.064  
0.009  
0.390  
0.291  
0.197  
0.022  
0.025  
0°  
0.05  
1.62  
0.22  
9.90  
7.40  
5.00  
0.55  
0.63  
0°  
2,3  
1
1
JEDEC #: MO-150  
Controlling Dimension is Millimeters  
Notes: 1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold  
mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per  
side.  
2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be  
0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not  
reduce dimension “b” by more than 0.07 mm at least material condition.  
3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.  
20  
DS577F1  

相关型号:

CS4373-IS

Low-power, High-performance Delta-Sigma Test DAC
CIRRUS

CS4373A

Low-power, High-performance Test DAC
CIRRUS

CS4373A-IS

D/A Converter, 1 Func, Serial Input Loading, PDSO28, SSOP-28
CIRRUS

CS4373A-ISZ

Low-power, High-performance Test DAC
CIRRUS

CS4382

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS

CS4382-BQ

D/A Converter, 1 Func, Serial Input Loading, PQFP48, MS-022, LQFP-48
CIRRUS

CS4382-KQ

D/A Converter, 1 Func, Serial Input Loading, PQFP48, MS-022, LQFP-48
CIRRUS

CS4382-KQZ

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS

CS4382-KQZR

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS

CS4382A

114 dB, 192 kHz 8-channel D/A Converter
CIRRUS

CS4382A-CQZ

114 dB, 192 kHz 8-channel D/A Converter
CIRRUS

CS4382A-CQZR

114 dB, 192 kHz 8-channel D/A Converter
CIRRUS