CS4954 [CIRRUS]

NTSC/PAL Digital Video Encoder; NTSC / PAL数字视频编码器
CS4954
型号: CS4954
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

NTSC/PAL Digital Video Encoder
NTSC / PAL数字视频编码器

编码器
文件: 总56页 (文件大小:892K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS4954  
CS4955  
NTSC/PAL Digital Video Encoder  
Features  
Description  
The CS4954/5 provides full conversion from digital video  
formats YCbCr or YUV into NTSC and PAL Composite,  
Y/C (S-video) and RGB, or YUV analog video. Input for-  
mats can be 27 MHz 8-bit YUV, 8-bit YCbCr, or ITU  
R.BT656 with support for EAV/SAV codes. Video output  
can be formatted to be compatible with NTSC-M, NTSC-  
J, PAL-B,D,G,H,I,M,N, and Combination N systems.  
Closed Caption is supported in NTSC. Teletext is sup-  
ported for NTSC and PAL.  
l Six DACs providing simultaneous composite,  
S-video, and RGB or Component YUV  
outputs  
l Programmable DAC output currents for low  
imped-ance (37.5 ) and high impedance  
(150 ) loads.  
l Multi-standard support for NTSC-M, NTSC-  
JAPAN, PAL (B, D, G, H, I, M, N,  
Combination N)  
l ITU R.BT656 input mode supporting  
EAV/SAV codes and CCIR601 Master/Slave  
input modes  
Six 10-bit DACs provide two channels for an S-Video  
output port, one or two composite video outputs, and  
three RGB or YUV outputs. Two-times oversampling re-  
duces the output filter requirements and guarantees no  
DAC-related modulation components within the speci-  
fied bandwidth of any of the supported video standards.  
l Programmable HSYNC and VSYNC timing  
l Multistandard Teletext (Europe, NABTS,  
WST) support  
l VBI encoding support  
l Wide-Screen Signaling (WSS) support, EIA-J  
Parallel or high-speed I2C compatible control interfaces are  
provided for flexibility in system design. The parallel interface  
doubles as a general purpose I/O port when the CS4954/5 is  
in I2C mode to help conserve valuable board area.  
CPX1204  
ORDERING INFORMATION  
l NTSC closed caption encoder with interrupt  
l CS4955 supports Macrovision copy  
CS4954-CQ  
CS4955-CQ  
48-pin TQFP  
48-pin TQFP  
protection Version 7  
l Host interface configurable  
for parallel or I C  
compatible operation  
l On-chip voltage reference  
VAA  
2
CLK  
Output  
Interpolate  
LPF  
10-Bit  
DAC  
I2C Interface  
C
SCL  
SDA  
8
Control  
Registers  
10-Bit  
Chroma Amplifier  
Chroma Modulate  
Burst Insert  
Σ
PDAT[7:0]  
RD  
CVBS  
DAC  
Host  
Parallel  
generator  
WR  
10-Bit  
DAC  
Interface  
Y
R
G
B
ADDR  
l +3.3 V or +5 V operation,  
CMOS, low-power modes,  
tri-state DACs  
XTAL_IN  
XTAL_OUT  
10-Bit  
DAC  
Color Sub-carrier Synthesizer  
Chroma Interpolate  
10-Bit  
DAC  
YCbCr to RBG  
LPF  
U,V  
Teletext  
Encoder  
TTXDAT  
TTXRQ  
Color Space  
Converter  
10-Bit  
DAC  
8
Y
Video Formatter  
VD[7:0]  
Luma Interpolate  
Luma Amplifier  
HSYNC  
VSYNC  
FIELD  
INT  
Voltage  
Reference  
VREF  
ISET  
Video Timing  
Generator  
Current  
Reference  
Y
Y
Sync Insert  
RESET  
RGB  
RGB  
DGND  
TEST  
This document contains information for a new product.  
Cirrus Logic reserves the right to modify this product without notice.  
Preliminary Product Information  
Cirrus Logic, Inc.  
APR ‘99  
DS278PP4  
Copyright Cirrus Logic, Inc. 1999  
P.O. Box 17847, Austin, Texas 78760  
(512) 445 7222 FAX: (512) 445 7581  
http://www.crystal.com  
(All Rights Reserved)  
1
CS4954 CS4955  
TABLE OF CONTENTS  
1. CHARACTERISTICS AND SPECIFICATIONS ..................................................................5  
AC & DC PARAMETRIC SPECIFICATIONS ......................................................................5  
RECOMMENDED OPERATING CONDITIONS .....................................................................5  
DC CHARACTERISTICS ....................................................................................................5  
AC CHARACTERISTIC .......................................................................................................7  
TIMING CHARACTERISTICS .............................................................................................8  
2. ADDITIONAL CS4954/5 FEATURES ...............................................................................10  
3. CS4954 INTRODUCTION .................................................................................................10  
4. FUNCTIONAL DESCRIPTION .........................................................................................10  
4.1. Video Timing Generator .........................................................................................10  
4.2. Video Input Formatter .............................................................................................11  
4.3. Color Subcarrier Synthesizer ..................................................................................11  
4.4. Chroma Path ..........................................................................................................11  
4.5. Luma Path ..............................................................................................................12  
4.6. RGB Path and Component YUV Path ....................................................................12  
4.7. Digital to Analog Converters ...................................................................................12  
4.8. Voltage Reference ..................................................................................................13  
4.9. Current Reference ..................................................................................................13  
4.10. Host Interface .........................................................................................................13  
4.11. Closed Caption Services ........................................................................................13  
4.12. Teletext Services ....................................................................................................14  
4.13. Wide-Screen Signaling Support and CGMS ...........................................................14  
4.14. VBI Encoding ..........................................................................................................14  
4.15. Control Registers ....................................................................................................14  
4.16. Testability ...............................................................................................................14  
5. OPERATIONAL DESCRIPTION .......................................................................................14  
5.1. Reset Hierarchy ......................................................................................................14  
5.2. Video Timing ...........................................................................................................15  
5.2.1. Slave Mode Input Interface ..........................................................................15  
5.2.2. Master Mode Input Interface ........................................................................15  
5.2.3. Vertical Timing .............................................................................................16  
5.2.4. Horizontal Timing .........................................................................................16  
5.2.5. NTSC Interlaced ..........................................................................................16  
5.2.6. PAL Interlaced .............................................................................................16  
5.2.7. Progressive Scan .........................................................................................17  
5.2.8. NTSC Progressive Scan ..............................................................................17  
5.2.9. PAL Progressive Scan .................................................................................18  
5.3. ITU-R.BT656 ..........................................................................................................18  
5.4. Digital Video Input Modes .......................................................................................21  
5.5. Multi-standard Output Format Modes .....................................................................21  
5.6. Subcarrier Generation ............................................................................................21  
5.7. Subcarrier Compensation .......................................................................................21  
5.8. Closed Caption Insertion ........................................................................................22  
5.9. Programmable H-sync and V-sync .........................................................................22  
5.10. Wide Screen Signaling (WSS) and CGMS .............................................................23  
Contacting Cirrus Logic Support  
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:  
http://www.cirrus.com/corporate/contacts/  
Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product infor-  
mation describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information  
contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of  
any kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights  
of third parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of  
this publication may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or  
otherwise) without the prior written consent of Cirrus Logic, Inc. Items from any Cirrus Logic website or disk may be printed for use by the user. However, no  
part of the printout or electronic files may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical,  
photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc.Furthermore, no part of this publication may be used as a basis for manufacture  
or sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing  
in this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trade-  
marks and service marks can be found at http://www.cirrus.com.  
2
DS278PP4  
CS4954 CS4955  
5.11. Teletext Support .....................................................................................................23  
5.12. Color Bar Generator ...............................................................................................25  
5.13. VBI encoding ..........................................................................................................25  
5.14. Super White/Super Black support ..........................................................................26  
5.15. Interrupts ................................................................................................................26  
5.16. General Purpose I/O Port .......................................................................................26  
6. FILTER RESPONSES ......................................................................................................27  
7. ANALOG ..........................................................................................................................30  
7.1. Analog Timing ........................................................................................................30  
7.2. VREF ......................................................................................................................30  
7.3. ISET .......................................................................................................................30  
7.4. DACs ......................................................................................................................30  
7.4.1. Luminance DAC ..........................................................................................30  
7.4.2. Chrominance DAC ......................................................................................30  
7.4.3. CVBS DAC ..................................................................................................31  
7.4.4. Red DAC .....................................................................................................31  
7.4.5. Green DAC ..................................................................................................31  
7.4.6. Blue DAC .....................................................................................................31  
8. PROGRAMMING ..............................................................................................................32  
8.1. Host Control Interface ............................................................................................32  
8.1.1. I2C Interface ................................................................................................32  
8.1.2. 8-bit Parallel Interface .................................................................................33  
8.2. Register Description ...............................................................................................34  
8.2.1. Control Registers .........................................................................................34  
9. BOARD DESIGN AND LAYOUT CONSIDERATIONS ....................................................50  
9.1. Power and Ground Planes .....................................................................................50  
9.2. Power Supply Decoupling ......................................................................................50  
9.3. Digital Interconnect ................................................................................................50  
9.4. Analog Interconnect ...............................................................................................50  
9.5. Analog Output Protection .......................................................................................51  
9.6. ESD Protection .......................................................................................................51  
9.7. External DAC Output Filter .....................................................................................51  
10. PIN DESCRIPTION .........................................................................................................53  
11. PACKAGE DRAWING ......................................................................................................55  
DS278PP4  
3
CS4954 CS4955  
TABLE OF FIGURES  
1. Video Pixel Data and Control Port Timing .........................................................................7  
2. I2C Host Port Timing ..........................................................................................................8  
3. Reset Timing ......................................................................................................................9  
4. ITU R.BT601 Input Slave Mode Horizontal Timing ..........................................................15  
5. ITU R.BT601 Input Master Mode Horizontal Timing ........................................................15  
6. Vertical Timing .................................................................................................................17  
7. NTSC Video Interlaced Timing ........................................................................................18  
8. PAL Video Interlaced Timing ...........................................................................................19  
9. NTSC Video Non-Interlaced Progressive Scan Timing ...................................................20  
10. PAL Video Non-Interlaced Progressive Scan Timing ......................................................20  
11. CCIR656 Input Mode Timing ...........................................................................................21  
12. Teletext Timing (Pulsation Mode) ....................................................................................24  
13. Teletext Timing (Window Mode) ......................................................................................24  
14. 1.3 Mhz Chrominance low-pass filter transfer characteristic ...........................................27  
15. 1.3 Mhz Chrominance low-pass filter transfer characterstic (passband) .........................27  
16. 650 kHz Chrominance low-pass filter transfer characteristic ...........................................27  
17. 650 kHz Chrominance low-pass filter transfer characteristic (passband) ........................27  
18. Chrominance output interpolation filter transfer characteristic (passband) ......................28  
19. Luminance interpolation filter transfer characteristic .......................................................28  
20. Luminance interpolation filter transfer characterstic (passband) .....................................28  
21. Chrominance interpolation filter transfer characteristic for RGB datapath .......................28  
22. Chroma Interpolator for RGB Datapath when rgb_bw=1 (Reduced Bandwidth) .............29  
23. Chroma Interpolator for RGB Datapath when rgb_bw=1 (Reduced Bandwidth) .............29  
24. Chroma Interpolator for RGB Datapath when rgb_bw=0 -3 dB .......................................29  
25. Chroma Interpolator for RGB Datapath when rgb_bw=0 (Full Scale) ..............................29  
26. I2C Protocol .....................................................................................................................32  
27. 8-bit Parallel Host Port Timing: Read-Write/Write-Read Cycle ........................................33  
28. 8-bit Parallel Host Port Timing: Address Read Cycle ......................................................33  
29. 8-bit Parallel Host Port Timing: Address Write Cycle .......................................................34  
30. External Low Pass Filter C2 should be chosen so that C1 = C2 + Ccable .........................51  
31. Typical Connection Diagram ............................................................................................52  
4
DS278PP4  
CS4954 CS4955  
1. CHARACTERISTICS AND SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS  
AC & DC PARAMETRIC SPECIFICATIONS (AGND,DGND = 0 V, all voltages with respect to 0 V  
)
Parameter  
Symbol  
Min  
-0.3  
-10  
-50  
-0.3  
-0.3  
-55  
-65  
Max  
6.0  
Units  
V
Power Supply  
VAA/VDD  
Input Current Per Pin (Except Supply Pins)  
Output Current Per Pin (Except Supply Pins)  
Analog Input Voltage  
10  
mA  
mA  
V
+50  
VAA + 0.3  
VDD + 0.3  
+ 125  
+ 150  
Digital Input Voltage  
V
Ambient Temperature Power Applied  
Storage Temperature  
°C  
°C  
WARNING: Operating beyond these limits can result in permanent damage to the device. Normal operation is not  
guaranteed at these extremes.  
RECOMMENDED OPERATING CONDITIONS (AGND,DGND = 0 V, all voltages with respect to 0 V.)  
Parameter  
Power Supplies: Digital Analog  
Symbol  
Min  
Typ  
Max  
Units  
VAA/VDD  
3.15  
4.75  
3.3  
5.0  
3.45  
5.25  
V
Operating Ambient Temperature  
Note: Operation outside the ranges is not recommended.  
TA  
0
+ 25  
+ 70  
°C  
DC CHARACTERISTICS (TA = 25° C; VAA, VDD = 5 V; GNDA, GNDD = 0 V.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Digital Inputs  
High level Input Voltage  
V [7:0], PDAT [7:0], Hsync/Vsync/Field/CLKIN  
High Level Input Voltage I2C  
VIH  
VIH  
2.2  
-
-
VDD+0.3  
-
V
V
0.7 VDD  
Low level Input Voltage All Inputs  
Input Leakage Current  
-
-
-0.3  
-10  
-
-
0.8  
V
+10  
µA  
Digital Outputs  
High Level Output Voltage lo = -4 mA  
Low level Output Voltage lo = 4 mA  
Low Level Output Voltage SDA pin only, lo = 6mA  
Output Leakage Current High -Z Digital Outputs  
VOH  
VOL  
VOL  
-
2.4  
-
-
-
-
-
VDD  
0.4  
V
V
-
0.4  
V
-10  
+ 10  
µA  
DS278PP4  
5
CS4954 CS4955  
DC CHARACTERISTICS (Continued)  
Parameter  
Analog Outputs  
Symbol  
Min  
Typ  
Max  
Units  
Full Scale Output Current CVBS/Y/C/R/G/B  
Full Scale Output Current CVBS/Y/C/R/G/B  
LSB Current CVBS/Y/C/R/G/B  
LSB Current CVBS/Y/C/R/G/B  
DAC-to DAC Matching  
Output Compliance  
(Notes 1, 2, 3)  
(Notes 1, 2, 4)  
(Notes 1, 2, 3)  
(Notes 1, 2, 4)  
(Note 1)  
IO  
IO  
32.9  
34.7  
8.68  
33.9  
8.48  
2
36.5  
9.13  
35.7  
8.92  
-
mA  
mA  
µA  
µA  
%
8.22  
IB  
32.2  
IB  
8.04  
MAT  
VOC  
-
0
-
(Note 1)  
-
+ 1.4  
-
V
Output Impedance  
(Note 1) ROUT  
(Note 1) COUT  
(Note 1) ODEL  
15  
-
kΩ  
pF  
ns  
Output Capacitance  
-
30  
DAC Output Delay  
-
4
12  
DAC Rise/Fall Time  
(Note 1, 5)  
TRF  
-
2.5  
5
ns  
Voltage Reference  
Reference Voltage Output  
Reference Input Current  
Power Supply  
VOV  
UVC  
1.170 1.232  
1.294  
10  
V
(Note 1)  
-
-
uA  
Supply Voltage  
VAA, VDD 3.15  
4.75  
3.3  
5.0  
3.45  
5.25  
V
Digital Supply Current  
IAA1  
IAA2  
-
-
-
70  
100  
60  
-
mA  
mA  
Analog Supply  
Low-Z  
High-Z  
(Note 6)  
(Note 7)  
-
-
Analog Supply  
IAA3  
mA  
Power Supply Rejection Ratio  
Static Performance  
DAC Resolution  
PSRR  
0.02  
0.05  
%/%  
(Note 1)  
(Note 1)  
(Note 1)  
-
-
10  
+ 1  
+ 2  
Bits  
LSB  
LSB  
Differential Non-Linearity  
Integral Non-Linearity  
Dynamic Performance  
Differential Gain  
DNL  
INL  
-1  
- 2  
+ 0.5  
+ 1  
(Note 1)  
(Note 1)  
(Note 1)  
DG  
DP  
-
-
2
5
+ 2  
2
%
°
Differential Phase  
+ 0. 5  
Hue Accuracy  
HA  
-
-
-
°
Signal to Noise Ratio  
Saturation Accuracy  
SNR  
SAT  
70  
-
-
dB  
%
(Note 1)  
1
2
Notes: 1. Values are by characterization only  
2. Output current levels with ISET = 4 K, VREF = 1.232 V.  
3. DACs are set to low impedance mode  
4. DACs are set to high impedance mode  
5. Times for black-to-white-level and white-to-black-level transitions.  
6. Low-Z - 3 dacs on  
7. High-Z - 6 dacs on  
6
DS278PP4  
 
 
 
 
 
 
 
CS4954 CS4955  
AC CHARACTERISTIC  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Pixel Input and Control Port (Figure 1)  
Clock Pulse High Time  
Tch  
Tcl  
14.82 18.52 22.58  
14.82 18.52 22.58  
ns  
ns  
ns  
ns  
ns  
Clock Pulse Low Time  
Clock to Data Set-up Time  
Clock to Data Hold Time  
Tisu  
Tih  
6
0
-
-
-
-
-
-
Clock to Data Output Delay  
Toa  
17  
CLK  
Tisu  
Tch Tcl  
V[7:0]  
Tih  
HSYNC/VSYNC  
(Inputs)  
Toa  
HSYNC/VSYNC  
CB/FIELD/INT  
(Outputs)  
Figure 1. Video Pixel Data and Control Port Timing  
DS278PP4  
7
 
CS4954 CS4955  
TIMING CHARACTERISTICS  
Parameter  
I2C Host Port Timing (Figure 2)  
SCL Frequency  
Symbol  
Min  
Typ  
Max  
Units  
Fclk  
Tsph  
Tspl  
Tsh  
100  
0.1  
0.7  
100  
100  
50  
1000  
KHz  
µs  
µs  
ns  
ns  
ns  
Clock Pulse High Time  
Clock Pulse Low Time  
Hold Time (Start Cond.)  
Setup Time (Start Cond.)  
Data Setup Time  
Tssu  
Tsds  
Tsr  
Rise Time  
1
µs  
µs  
ns  
ns  
ns  
ns  
Fall Time  
Tsf  
0.3  
Setup Time (Stop Cond.)  
Bus Free Time  
Tss  
100  
100  
0
Tbuf  
Tdh  
Tvdo  
Data Hold Time  
SCL Low to Data Out Valid  
600  
Tds  
Tsh  
Tsh  
Tss  
Tdh  
Tbu  
SDA  
Tsr  
Tsph  
Tvdo  
SCL  
Tspi  
Tsi  
Figure 2. I2C Host Port Timing  
Tssu  
8
DS278PP4  
 
CS4954 CS4955  
TIMING CHARACTERISTICS(Continued)  
Parallel Host Port Timing (Figure 27, 28, 29)  
Read Cycle Time  
Trd  
Trpw  
Tas  
60  
30  
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Read Pulse Width  
Address Setup Time  
-
Read Address Hold Time  
Read Data Access Time  
Read Data Hold Time  
Trah  
Trda  
Trdh  
Twr  
10  
-
-
40  
50  
-
10  
60  
40  
8
Write Recovery Time  
Write Pulse Width  
Twpw  
Twds  
Twdh  
Trec  
Twac  
-
Write Data Setup Time  
Write Data Hold Time  
-
3
-
Write-Read/Read-Write Recovery Time  
Address from Write Hold Time  
Reset Timing (Figure 3)  
Reset Pulse Width  
50  
0
-
-
Tres  
100  
ns  
RESET*  
Tres  
Figure 3. Reset Timing  
DS278PP4  
9
 
CS4954 CS4955  
The CS4954/5 is completely configured and con-  
trolled via an 8-bit host interface port or an I C  
compatible serial interface. This host port provides  
access and control of all CS4954/5 options and fea-  
tures, such as closed caption insertion, interrupts,  
etc.  
2. ADDITIONAL CS4954/5 FEATURES  
2
Five programmable DAC output combinations,  
including YUV and second composite  
Optional progressive scan @ MPEG2 field rates  
Stable color subcarrier for MPEG2 systems  
General purpose input and output pins  
Individual DAC power-down capability  
On-chip color bar generator  
In order to lower overall system costs, the  
CS4954/5 provides an internal voltage reference  
that eliminates the requirement for an external, dis-  
crete, three-pin voltage reference.  
Supports RS170A and ITU R.BT601 compos-  
ite output timing  
In ISO MPEG-2 system configurations, the  
CS4954/5 can be augmented with a common color-  
burst crystal to provide a stable color subcarrier  
given an unstable 27 MHz clock input. The use of  
the crystal is optional, but the facility to connect  
one is provided for MPEG-2 environments in  
which the system clock frequency variability is too  
wide for accurate color sub-carrier generation.  
HSYNC and VSYNC output in ITU R.BT656  
mode  
Teletext encoding selectable on two composite  
and S-video signals  
Programmable saturation, SCH Phase, hue,  
brightness and contrast  
4. FUNCTIONAL DESCRIPTION  
Device power-down capability  
In the following subsections, the functions of the  
CS4954/5 will be described. The descriptions refer  
to the device elements shown in the block diagram  
on the cover page.  
Super White and Super Black support  
3. CS4954 INTRODUCTION  
The CS4954/5 is a complete multi-standard digital  
video encoder implemented in current CMOS tech-  
nology. The device can operate at 5 V as well as at  
3.3 V. ITU R.BT601- or ITU R.BT656-compliant  
digital video input is converted into NTSC-M,  
NTSC-J, PAL-B, PAL-D, PAL-G, PAL-H, PAL-I,  
PAL-M, PAL-N, or PAL-N Argentina-compatible  
analog video. The CS4954/5 is designed to con-  
nect, without glue logic, to MPEG1 and MPEG2  
digital video decoders.  
4.1. Video Timing Generator  
All timing generation is accomplished via a  
27 MHz input applied to the CLK pin. The  
CS4954/5 can also accept a signal from an optional  
color burst crystal on the XTAL_IN &  
XTAL_OUT pins. See the section, Color Subcarri-  
er Synthesizer, for further details.  
The Video Timing Generator is responsible for or-  
chestrating most of the other modules in the device.  
It operates in harmony with external sync input  
timing, or it can provide external sync timing out-  
puts. It automatically disables color burst on appro-  
priate scan lines and automatically generates  
serration and equalization pulses on appropriate  
scan lines.  
Two 10-bit DAC outputs provide high quality S-  
Video analog output while another 10-bit DAC si-  
multaneously generates composite analog video. In  
addition, there are three more DACs to provide si-  
multaneous analog RGB or analog YUV outputs.  
The CS4954/5 will accept 8-bit YCbCr or 8-bit  
YUV input data.  
10  
DS278PP4  
CS4954 CS4955  
The CS4954/5 is designed to function as a video  
CLK input (27 MHz). Color burst accuracy and  
timing master or video timing slave. In both Master stability are limited by the accuracy of the 27 MHz  
and Slave Modes, all timing is sampled and assert-  
ed with the rising edge of the CLK pin.  
input. If the frequency varies, then the color burst  
frequency will also vary accordingly.  
In most cases, the CS4954/5 will serve as the video  
timing master. HSYNC, VSYNC, and FIELD are  
For environments in which the CLK input varies or  
jitters unacceptably, a local crystal frequency refer-  
configured as outputs in Master Mode. HSYNC or ence can be used on the XTAL_IN and  
FIELD can also be defined as a composite blanking  
output signal in Master Mode. In Master Mode, the  
XTAL_OUT pins. In this instance, the input CLK is  
continuously compared with the external crystal ref-  
timing of HSYNC, VSYNC, FIELD and Compos- erence input and the internal timing of the CS4954/5  
ite Blank (CB) signals is programmable. Exact hor- is automatically adjusted so that the color burst fre-  
izontal and vertical display timing is addressed in quency remains within tolerance.  
the Operational Description section.  
Controls are provided for phase adjustment of the  
In Slave Mode, HSYNC and VSYNC are typically burst to permit color adjustment and phase com-  
configured as input pins and are used to initialize  
independent vertical and horizontal timing genera- CS4954/5 via a 10-bit Hue Control Register  
tors upon their respective falling edges. HSYNC (HUE_LSB and H_MSB). Burst amplitude control  
and VSYNC timing must conform to the ITU- is also made available to the host via the 8-bit burst  
pensation. Chroma hue control is provided by the  
R BT.601 specifications.  
amplitude register (SC_AMP).  
The CS4954/5 also provides a ITU R.BT656 Slave  
Mode in which the video input stream contains  
EAV and SAV codes. In this case, proper HSYNC  
and VSYNC timing are extracted automatically  
without any inputs other than the V [7:0]. ITU  
R.BT656 input data is sampled with the leading  
edge of CLK.  
4.4. Chroma Path  
The Video Input Formatter delivers 4:2:2 YUV  
outputs into separate chroma and luma data paths.  
The chroma path will be discussed here.  
The chroma output of the Video Input Formatter is  
directed to a chroma low-pass 19-tap FIR filter.  
The filter bandwidth is selected (or the filter can be  
bypassed) via the CONTROL_1 Register. The  
passband of the filter is either 650 KHz or 1.3 MHz  
and the passband ripple is less than or equal to  
0.05 dB. The stopband for the 1.3 MHz selection  
begins at 3 MHz with an attenuation of greater than  
35 dB. The stopband for the 650 KHz selection be-  
gins around 1.1 MHz with an attenuation of greater  
than 20 dB.  
In addition, it is also possible to output HSYNC  
and VSYNC signals during CCIR-656 Slave  
Mode.  
4.2. Video Input Formatter  
The Video Input Formatter translates YCbCr input  
data into YUV information, when necessary, and  
splits the luma and chroma information for filter-  
ing, scaling, and modulation.  
The output of the chroma low-pass filter is connect-  
ed to the chroma interpolation filter in which up-  
sampling from 4:2:2 to 4:4:4 is accomplished.  
Following the interpolation filter, the U and V  
chroma signals pass through two independent vari-  
able gain amplifiers in which the chroma amplitude  
4.3. Color Subcarrier Synthesizer  
The subcarrier synthesizer is a digital frequency  
synthesizer that produces the appropriate subcarri-  
er frequency for NTSC or PAL. The CS4954/5  
generates the color burst frequency based on the  
DS278PP4  
11  
CS4954 CS4955  
can be varied via the U_AMP and V_AMP 8-bit  
host addressable registers.  
three pixel clocks. This variable delay is useful to  
offset different propagation delays of the luma  
baseband and modulated chroma signals. This ad-  
justable luma delay is available only on the  
CVBS_1 output.  
The U and V chroma signals are fed to a quadrature  
modulator in which they are combined with the  
output from the subcarrier synthesizer to produce  
the proper modulated chrominance signal.  
4.6. RGB Path and Component YUV Path  
The chroma then is interpolated by a factor of two  
in order to operate the output DACs at twice the  
pixel rate. The interpolated filters enable running  
the DACs at twice the pixel rate and this helps re-  
duce the sinx/x roll-off for higher frequencies and  
reduces the complexity of the external analog low  
pass filters.  
The RGB datapath has the same latency as the luma  
and chroma path. Therefore all six simultaneous  
analog outputs are synchronized. The 4:2:2 YCbCr  
data is first interpolated to 4:4:4 and then interpo-  
lated to 27 MHz. The color space conversion is per-  
formed at 27 MHz. The coefficients for the color  
space conversion conform to the ITU R.BT601  
specifications.  
4.5. Luma Path  
After color space conversion, the amplitude of each  
component can be independently adjusted via the  
R_AMP, G_AMP, and B_AMP 8-bit host address-  
able registers. A synchronization signal can be add-  
ed to either one, two or all of the RGB signals. The  
synchronization signal conforms to NTSC or PAL  
specifications.  
Along with the chroma output path, the CS4954/5  
Video Input Formatter initiates a parallel luma data  
path by directing the luma data to a digital delay  
line. The delay line is built as a digital FIFO in  
which the depth of the FIFO replicates the clock  
period delay associated with the more complex  
chroma path. Brightness adjustment is also provid-  
ed via the 8-bit BRIGHTNESS_OFFSET Register.  
Some applications (e.g., projection TVs) require  
analog component YUV signals. The chip provides  
a programmable mode that outputs component  
YUV data. Sync can be added to the luminance sig-  
nal. Independent gain adjustment of the three com-  
ponents is provided as well.  
Following the luma delay, the data is passed  
through an interpolation filter that has a program-  
mable bandwidth, followed by a variable gain am-  
plifier in which the luma DC values are modifiable  
via the Y_AMP Register.  
4.7. Digital to Analog Converters  
The output of the luma amplifier connects to the  
sync insertion block. Sync insertion is accom-  
plished by multiplexing, into the luma data path,  
the different sync DC values at the appropriate  
times. The digital sync generator takes horizontal  
sync and vertical sync timing signals and generates  
the appropriate composite sync timing (including  
vertical equalization and serration pulses), blank-  
ing information, and burst flag. The sync edge rates  
conform to RS-170A or ITU R.BT601 and ITU  
R.BT470 specifications.  
The CS4954/5 provides six discrete 27 MHz DACs  
for analog video. The default configuration is one  
10-bit DAC for S-video chrominance, one 10-bit  
DAC for S-Video luminance, one 10-bit DAC for  
composite output, and three 10-bit DACs for RGB  
outputs. All six DACs are designed for driving ei-  
ther low-impedance loads (double terminated  
75 ) or high-impedance loads (double terminated  
300 ). There are five different DAC configura-  
tions to choose from (see Table 1, below).  
It is also possible to delay the luminance signal,  
with respect to the chrominance signal, by up to  
The DACs can be put into tri-state mode via host-  
addressable control register bits. Each of the six  
12  
DS278PP4  
CS4954 CS4955  
DAC  
Pin #  
48  
Mode 1  
Mode 2  
Y
Mode 3  
Mode 4  
Mode 5  
CVBS_2  
-
Y
C
Y
Y
CVBS_2  
47  
C
C
C
-
CVBS  
R
44  
CVBS_1  
CVBS_1  
Cr (V)  
Y
CVBS_1  
CVBS_1  
CVBS_1  
Cr (V)  
Y
39  
R
G
B
-
R
G
B
G
40  
CVBS_2  
-
B
43  
Cb (U)  
Cb (U)  
Table 1. DAC configuration Modes  
DACs has its own associated DAC enable bit. In  
the Disable Mode, the 10-bit DACs source (or sink)  
zero current.  
output current modes are software selectable  
through a register bit.  
4.10. Host Interface  
When running the DACs with a low-impedance  
load, a minimum of three DACs must be powered  
down. When running the DACs with a high-imped-  
ance load, all the DACs can be enabled simulta-  
neously.  
The CS4954/5 provides a parallel 8-bit data inter-  
face for overall configuration and control. The host  
interface uses active-low read and write strobes,  
along with an active-low address enable signal, to  
provide microprocessor-compatible read and write  
cycles. Indirect host addressing to the CS4954/5 in-  
ternal registers is accomplished via an internal ad-  
dress register that is uniquely accessible via bus  
write cycles in which the host address enable signal  
is asserted.  
For lower power standby scenarios, the CS4954/5  
also provides power shut-off control for the DACs.  
Each DAC has an associated DAC shut-off bit.  
4.8. Voltage Reference  
The CS4954/5 is equipped with an on-board volt-  
age reference generator (1.232 V) that is used by  
the DACs. The internal reference voltage is accu-  
rate enough to guarantee a maximum of 3% overall  
gain error on the analog outputs. However, it is  
possible to override the internal reference voltage  
by applying an external voltage source to the VREF  
pin.  
The CS4954/5 also provides an I2C-compatible se-  
rial interface for device configuration and control.  
This port can operate in standard (100Kb/sec) or  
2
fast (400 Kb/sec) modes. When in I C mode, the  
parallel data interface pins, PDAT [7:0], can be  
used as a general purpose I/O port controlled by the  
2
I C interface.  
4.11. Closed Caption Services  
4.9. Current Reference  
The CS4954/5 supports the generation of NTSC  
Closed Caption services. Line 21 and Line 284 cap-  
tioning can be generated and enabled independent-  
ly via a set of control registers. When enabled,  
clock run-in, start bit, and data bytes are automati-  
cally inserted at the appropriate video lines. A con-  
venient interrupt protocol simplifies the software  
interface between the host processor and the  
CS4954/5.  
The DAC output current-per-bit is derived in the  
current reference block. The current step is speci-  
fied by the size of resistor placed between the ISET  
current reference pin and electrical ground.  
A 4 kresistor needs to be connected between  
ISET pin and GNDA. The DAC output currents are  
optimized to either drive a doubly terminated load  
of 75 (low impedence mode) or a double termi-  
nated load of 300 (high impedence mode). The 2  
DS278PP4  
13  
CS4954 CS4955  
See the Programming section of this data sheet for  
the individual register bit allocations, bit operation-  
al descriptions, and initialization states.  
4.12. Teletext Services  
The CS4954/5 encodes the most common teletext  
formats, such as European Teletext, World Stan-  
dard Teletext (PAL and NTSC), and North Ameri-  
can Teletext (NABTS).  
4.16. Testability  
The digital circuits are completely scanned by an  
internal scan chain, thus providing close to 100%  
fault coverage.  
Teletext data can be inserted in any of the TV lines  
(blanking lines as well as active lines). In addition  
the blanking lines can be individually allocated for  
Teletext instantiation.  
5. OPERATIONAL DESCRIPTION  
5.1. Reset Hierarchy  
The input timing for teletext data is user program-  
mable. See the section Teletext Services for further  
details.  
The CS4954/5 is equipped with an active low asyn-  
chronous reset input pin, RESET. RESET is used to  
initialize the internal registers and the internal state  
machines for subsequent default operation. See the  
electrical and timing specification section of this  
data sheet for specific CS4954/5 device RESET  
and power-on signal timing requirements and re-  
strictions.  
Teletext data can be independently inserted on ei-  
ther one or all of the CVBS_1, CVBS_2, or S-video  
signals.  
4.13. Wide-Screen Signaling Support and  
CGMS  
Insertion of wide-screen signal encoding for PAL  
and NTSC standards is supported and CGMS  
(Copy Generation Management System) for NTSC  
in Japan. Wide-screen signals are inserted in lines  
23 and 336 for PAL, and lines 20 and 283 for  
NTSC.  
While the RESET pin is held low, the host interface  
in the CS4954/5 is disabled and will not respond to  
host-initiated bus cycles. All outputs are valid after  
a time period following RESET pin low.  
A device RESET initializes the CS4954/5 internal  
registers to their default values as described by Ta-  
ble 9, Control Registers. In the default state, the  
CS4954/5 video DACs are disabled and the device  
is internally configured to provide blue field video  
data to the DACs (any input data present on the  
V [7:0] pins is ignored at this time). Otherwise, the  
CS4954/5 registers are configured for NTSC-M  
ITU R.BT601 output operation. At a minimum, the  
DAC Registers (0x04 and 0x05) must be written (to  
enable the DACs) and the IN_MODE bit of the  
4.14. VBI Encoding  
This chip supports the transmission of control sig-  
nals in the vertical blanking time interval according  
to SMPTE RP 188 recommendations. VBI encoded  
data can be independently inserted into either or all  
of CVBS_1, CVBS_2 or S-video signals.  
4.15. Control Registers  
The control and configuration of the CS4954/5 is  
accomplished primarily through the control regis- CONTROL_0 Register (0x01) must be set (to en-  
ter block. All of the control registers are uniquely  
addressable via the internal address register. The  
control register bits are initialized during device  
RESET.  
able ITU R.BT601 data input on V [7:0]) for the  
CS4954/5 to become operational after RESET.  
14  
DS278PP4  
 
CS4954 CS4955  
NTSC 27MHz Clock Count 1682 1683 1684 1685 1686 • • • 1716  
PAL 27MHz Clock Count 1702 1703 1704 1705 1706 • • • 1728  
1
1
2
2
3
3
• • • 128 129 • • • 244 245 246 247 248  
• • • 128 129 • • • 264 265 266 267 268  
CLK  
HSYNC (input)  
V[7:0]  
Y
Cr  
Y
Cb  
Y
Cr  
Y
(SYNC_DLY=0)  
active pixel  
#720  
horizontal blanking  
horizontal blanking  
active pixel active pixel  
#1 #2  
• • •  
V[7:0] Cb  
Y
Cr  
Y
Cb  
Y
Cr  
(SYNC_DLY=1)  
active pixel active pixel  
#719 #720  
active pixel active pixel  
#1 #2  
Figure 4. ITU R.BT601 Input Slave Mode Horizontal Timing  
SYNC_DLY = 0. When SYNC_DLY = 1, it expects  
the first active pixel data on clock cycle 246 (NTSC).  
5.2. Video Timing  
5.2.1. Slave Mode Input Interface  
5.2.2. Master Mode Input Interface  
In Slave Mode, the CS4954/5 receives signals on  
VSYNC and HSYNC as inputs. Slave Mode is the  
The CS4954/5 defaults to Slave Mode following  
default following RESET and is changed to Master RESET high but can be switched into Master Mode  
Mode via a control register bit (CONTROL_0 [4]). via the MSTR bit in the CONTROL_0 Register  
The CS4954/5 is limited to ITU R.BT601 horizon- (0x00). In Master Mode, the CS4954/5 uses the  
tal and vertical input timing. All clocking in the VSYNC, HSYNC and FIELD device pins as out-  
CS4954/5 is generated from the CLK pin. In Slave puts to schedule the proper external delivery of dig-  
Mode, the Sync Generator uses externally provided ital video into the V [7:0] pins. Figure 5 illustrates  
horizontal and vertical sync signals to synchronize horizontal timing for the CCIR601 input in Master  
the internal timing of the CS4954/5. Video data that Mode.  
is sent to the CS4954/5 must be synchronized to the  
The timing of the HSYNC output is selectable in  
horizontal and vertical sync signals. Figure 4 illus-  
the PROG_HS Registers (0x0D, 0x0E). HSYNC  
trates horizontal timing for ITU R.BT601 input in  
can be delayed by one full line cycle. The timing of  
Slave Mode. Note that the CS4954/5 expects to re-  
the VSYNC output is also selectable in the  
ceive the first active pixel data on clock cycle 245  
(NTSC) when CONTROL_2 Register (0x02) bit  
NTSC 27MHz Clock Count 1682 1683 1684 1685 1686 • • • 1716  
PAL 27MHz Clock Count 1702 1703 1704 1705 1706 • • • 1728  
1
1
2
2
3
3
• • • 128 129 • • • 244 245 246 247 248  
• • • 128 129 • • • 264 265 266 267 268  
CLK  
HSYNC (output)  
CB (output)  
V[7:0]  
Y
Cr  
Y
Cb  
Y
Cr  
Y
horizontal blanking  
active pixel  
#720  
active pixel active pixel  
#1 #2  
• • •  
Figure 5. ITU R.BT601 Input Master Mode Horizontal Timing  
DS278PP4  
15  
 
 
CS4954 CS4955  
PROG_VS Register (0x0D). VSYNC can be de- (falling) edge of HSYNC if the PROG_HS Regis-  
layed by thirteen lines or advanced by eighteen lines. ters are set to default values.  
5.2.3. Vertical Timing  
5.2.5. NTSC Interlaced  
The CS4954/5 can be configured to operate in any  
The CS4954/5 supports NTSC-M, NTSC-J and  
of four different timing modes: PAL, which is 625 PAL-M modes where there are 525 total lines per  
vertical lines, 25 frames per second interlaced; frame and two fixed 262.5-line fields per frame and  
NTSC, which is 525 vertical lines, 30 frames per 30 total frames occurring per second. NTSC inter-  
second interlaced; and either PAL or NTSC in Pro- laced vertical timing is illustrated in Figure 7. Each  
gressive Scan, in which the display is non-inter- field consists of one line for closed caption, 240 ac-  
laced. These modes are selected in the  
CONTROL_0 Register (0x00).  
tive lines of video, plus 21.5 lines of blanking.  
VSYNC field one transitions low at the beginning  
The CS4954/5 conforms to standard digital decom- of line four and will remain low for three lines or  
pression dimensions and does not process digital 2574 pixel cycles (858 × 3). The CS4954/5 exclu-  
input data for the active analog video half lines as  
they are typically in the over/underscan region of  
sively reserves line 21 of field one for closed cap-  
tion insertion. Digital video input is expected to be  
televisions. 240 active lines total per field are pro- delivered to the CS4954/5 V [7:0] pins for 240  
cessed for NTSC, and 288 active lines total per lines beginning on active video lines 22 and con-  
field are processed for PAL. Frame vertical dimen- tinuing through line 261. VSYNC field two transi-  
sions are 480 lines for NTSC and 576 lines for tions low in the middle of line 266 and stays low for  
PAL. Table 2 specifies active line numbers for both  
NTSC and PAL. Refer to Figure 6 for HSYNC,  
VSYNC and FIELD signal timing.  
three line-times and transitions high in the middle  
of line 269. The CS4954/5 exclusively reserves line  
284 of field two for closed caption insertion. Video  
input on the V [7:0] pins is expected between lines  
285 through line 525.  
Mode  
Field  
Active Lines  
NTSC  
PAL  
1, 3;  
2, 4  
22-261;  
285-524  
5.2.6. PAL Interlaced  
1, 3, 5, 7;  
2, 4, 6, 8  
23-310;  
336-623  
The CS4954/5 supports PAL modes B, D, G, H, I,  
N, and Combination N, in which there are 625 total  
lines per frame, two fixed 312.5 line fields per  
frame, and 25 total frames per second. Figure 8 il-  
lustrates PAL interlaced vertical timing. Each field  
consists of 287 active lines of video plus 25.5 lines  
of blanking.  
NTSC Progressive-Scan  
PAL Progressive-Scan  
NA  
NA  
22-261  
23-310  
Table 2. Vertical Timing  
5.2.4. Horizontal Timing  
HSYNC is used to synchronize the horizontal-in-  
put-to-output timing in order to provide proper hor-  
izontal alignment. HSYNC defaults to an input pin  
following RESET but switches to an output in Mas-  
ter Mode (CONTROL_0 [4] = 1). Horizontal tim-  
ing is referenced to HSYNC transitioning low. For  
active video lines, digital video input is to be ap-  
plied to the V [7:0] inputs for 244 (NTSC) or for  
264 (PAL) CLK periods following the leading  
VSYNC will transition low to begin field one and  
will remain low for 2.5 lines or 2160 pixel cycles  
(864 × 2.5). Digital video input is expected to be  
delivered to the CS4954/5 V [7:0] pins for 287  
lines beginning on active video line 24 and continu-  
ing through line 310.  
Field two begins with VSYNC transitioning low  
after 312.5 lines from the beginning of field one.  
16  
DS278PP4  
 
CS4954 CS4955  
NTSC Vertical Timing (odd field)  
Line  
3
4
5
6
7
8
9
10  
HSYNC  
VSYNC  
FIELD  
NTSC Vertical Timing (even field)  
264 265 266  
Line  
267  
268  
269  
270  
271  
HSYNC  
VSYNC  
FIELD  
PAL Vertical Timing (odd field)  
265  
Line  
1
2
3
4
5
6
7
HSYNC  
VSYNC  
FIELD  
PAL Vertical Timing (even field)  
311 312 313  
Line  
314  
315  
316  
317  
318  
HSYNC  
VSYNC  
FIELD  
Figure 6. Vertical Timing  
VSYNC stays low for 2.5 line-times and transitions commonly support progressive scan by repetitively  
high with the beginning of line 315. Video input on displaying a 262 line field (524/525 lines for  
the V [7:0] pins is expected between line 336  
through line 622.  
NTSC). The common method is flawed: over time,  
the output display rate will overrun a system-clock-  
locked MPEG-2 decompressor and display a field  
twice every 8.75 seconds.  
5.2.7. Progressive Scan  
The CS4954/5 supports a progessive scan mode in  
which the video output is non-interlaced. This is  
accomplished by displaying only the odd video  
field for NTSC or PAL. To preserve precise  
MPEG-2 frame rates of 30 and 25 per second, the  
CS4954/5 displays the same odd field repetitively  
5.2.8. NTSC Progressive Scan  
VSYNC will transition low at line four to begin  
field one and will remain low for three lines or  
2574 pixel cycles (858 × 3). NTSC interlaced tim-  
ing is illustrated in Figure 9. In this mode, the  
but alternately varies the field times. This mode is CS4954/5 expects digital video input at the V [7:0]  
in contrast to other digital video encoders, which  
DS278PP4  
17  
CS4954 CS4955  
Analog  
Field 1  
VSYNC Drops  
523  
524  
525  
1
2
3
4
5
6
7
8
9
10  
22  
Analog  
Field 2  
261  
262 263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
284  
285  
Analog  
Field 3  
VSYNC Drops  
1
2
3
4
5
6
7
8
9
10  
22  
523  
524  
525  
Analog  
Field 4  
261  
262 263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
284  
285  
Burst begins with positive half-cycle  
Burst begins with negative half-cycle  
Figure 7. NTSC Video Interlaced Timing  
pins for 240 lines beginning on active video line 22  
and continuing through line 261.  
high during the middle of line 315. Video input on  
the V [7:0] pins is expected between line 335  
through line 622. Field two is 313 lines; field one is  
312 lines.  
Field two begins with VSYNC transitioning low at  
line 266. VSYNC stays low for 3 line cycles and  
transitions high during the end of line 268. Video  
input on the V [7:0] pins is expected between line  
284 and line 522. Field two is 263 lines; field one  
is 262 lines.  
5.3. ITU-R.BT656  
The CS4954/5 supports an additional ITU-  
R.BT656 slave mode feature that is selectable  
through the ITU-R.BT656 bit of the CONTROL_0  
Register. The ITU-R.BT656 slave feature is unique  
because the horizontal and vertical timing and dig-  
ital video are combined into a single 8-bit 27 MHz  
input. With ITU-R.BT656 there are no horizontal  
and vertical input or output strobes, only 8-bit  
27 MHz active CbYCrY data, with start- and end-  
of-video codes implemented using reserved 00 and  
FF code sequences within the video feed. As with  
all modes, V [7:0] are sampled with the rising edge  
of CLK. The CS4954/5 expects the digital ITU-  
R.BT656 stream to be error-free. The FIELD out-  
5.2.9. PAL Progressive Scan  
VSYNC will transition low at the beginning of the  
odd field and will remain low for 2.5 lines or 2160  
pixel cycles (864 × 2.5). PAL non-interlaced tim-  
ing is illustrated in Figure 10. In this mode, the  
CS4954/5 expects digital video input on the V [7:0]  
pins for 288 lines, beginning on active video line 23  
and continuing through line 309.  
The second begins with VSYNC transitioning low  
after 312 lines from the beginning of the first field.  
VSYNC stays low for 2.5 line-times and transitions  
18  
DS278PP4  
CS4954 CS4955  
VSYNC Drops  
Analog  
Field 1  
620  
621  
622  
623  
624  
625  
1
2
3
4
5
6
318 319  
6
7
23  
24  
Analog  
Field 2  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
320  
336  
337  
Analog  
Field 3  
620  
621  
622  
623  
624  
625  
1
2
3
4
5
7
23  
24  
Analog  
Field 4  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318 319  
320  
336  
337  
Analog  
Field 5  
620  
621  
622  
623  
624  
625  
1
2
3
4
5
6
7
23  
24  
Analog  
Field 6  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318 319  
320  
336  
337  
Analog  
Field 7  
620  
621  
622  
623  
624  
625  
1
2
3
4
5
6
7
23  
24  
Analog  
Field 8  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318 319  
320  
336  
337  
Burst Phase = 135 degrees relative to U  
Burst Phase = 225 degrees relative to U  
Figure 8. PAL Video Interlaced Timing  
put toggles as with non ITU-R.BT656 input. ITU- output these timing signals for other purposes. By  
R.BT656 input timing is illustrated in Figure 11.  
setting the 656_SYNC_OUT register bit in  
CONTROL_6 register, HSYNC and VSYNC are  
output,so that other devices in the system can syn-  
chronize to these timing signals.  
As mentioned above, there are no horizontal and  
vertical timing signals necessary in ITU-R.BT656  
mode. However in some cases it is advantageous to  
DS278PP4  
19  
CS4954 CS4955  
Start of  
VSYNC  
Field 1  
262  
261  
263  
262  
1
1
2
2
3
4
5
5
6
6
7
7
8
8
9
9
10  
10  
22  
22  
Field 2  
Field 3  
Field 4  
3
4
Start of  
VSYNC  
262  
261  
263  
262  
1
1
2
2
3
3
4
5
5
6
6
7
7
8
8
9
9
10  
10  
22  
22  
4
Burst begins with positive half-cycle  
Burst phase = reference phase = 1800relative to B-Y  
Burst begins with negative half-cycle  
Burst phase = reference phase = 1800relative to B-Y  
Figure 9. NTSC Video Non-Interlaced Progressive Scan Timing  
VSYNC Drops  
Analog  
Field 1  
309  
310  
311  
310  
312  
311  
313  
312  
1
2
2
3
3
4
4
5
5
6
6
7
7
23  
23  
24  
24  
Analog  
Field 2  
308  
309  
1
Analog  
Field 3  
309  
310  
311  
310  
312  
311  
313  
312  
1
2
2
3
3
4
4
5
5
6
6
7
7
23  
23  
24  
24  
Analog  
Field 4  
308  
309  
1
Burst Phase = 135 degrees relative to U  
Burst Phase = 225 degrees relative to U  
Figure 10. PAL Video Non-Interlaced Progressive Scan Timing  
20  
DS278PP4  
CS4954 CS4955  
Composite  
Video  
ITU R.BT656  
DATA  
V[7:0]  
Y
Cr  
Y
FF 00 00 XY 80 10 80 10  
80 10 80 10 80 10  
Ancilliary Data  
80 10 80 10 FF 00 00 XY Cb  
SAV Code  
Y
Cr Cb Y Cr  
EAV Code  
268 Clocks (NTSC)  
280 Clocks (PAL)  
4 Clocks  
4 Clocks  
1440 Clocks  
Active Video  
Active Video  
Horizontal Blanking  
Figure 11. CCIR656 Input Mode Timing  
Output formats are configured by writing control  
registers with the values shown in Table 3.  
5.4. Digital Video Input Modes  
The CS4954/5 provides two different digital video  
input modes that are selectable through the  
IN_MODE bit in the CONTROL_0 Register.  
5.6. Subcarrier Generation  
The CS4954/5 automatically synthesizes NTSC  
and PAL color subcarrier clocks using the CLK fre-  
In Mode 0 and upon RESET, the CS4954/5 de-  
faults to output a solid color (one of a possible of  
256 colors). The background color is selected by  
writing the BKG_COLOR Register (0x08). The  
colorspace of the register is RGB 3:3:2 and is unaf-  
fected by gamma correction. The default color fol-  
lowing RESET is blue.  
quency  
and  
four  
control  
registers  
(SC_SYNTH0/1/2/3). The NTSC subcarrier syn-  
thesizer is reset every four fields (every eight fields  
for PAL).  
The SC_SYNTH0/1/2/3 registers used together  
provide a 32-bit value that defaults to NTSC  
(43E0F83Eh) following RESET. Table 4 shows the  
32-bit value required for each of the different  
broadcast formats.  
In Mode 1 the CS4954/5 supports a single 8-bit  
27 MHz CbYCrY source as input on the V [7:0]  
pins. Input video timing can be ITU-R.BT601 mas-  
ter or slave and ITU-R.BT656.  
System  
Fsubcarrier  
Value (hex)  
5.5. Multi-standard Output Format  
Modes  
NTSC-M, NTSC-J  
3.5795455 MHz 43E0F83E  
PAL-B, D, G, H, I, N 4.43361875 MHz 54131596  
The CS4954/5 supports a wide range of output for-  
mats compatible with worldwide broadcast stan-  
dards. These formats include NTSC-M, NTSC-J,  
PAL-B/D/G/H/I, PAL-M, PAL-N, and PAL Com-  
bination N (PAL-Nc) which is the broadcast stan-  
dard used in Argentina. After RESET, the CS4954/5  
defaults to NTSC-M operation with ITU R.BT 601  
analog timing. NTSC-J can also be supported in the  
Japanese format by turning off the 7.5 IRE pedestal  
through the PED bit in the CONTROL_1 Register  
(0x01).  
PAL-N (Argentina)  
PAL-M  
3.582056 MHz 43ED288D  
3.579611 MHz 43CDDFC7  
Table 3.  
5.7. Subcarrier Compensation  
Since the subcarrier is synthesized from CLK the  
subcarrier frequency error will track the clock fre-  
quency error. If the input clock has a tolerance of  
200 ppm then the resulting subcarrier will also  
have a tolerance of 200 ppm. Per the NTSC speci-  
fication, the final subcarrier tolerance is ±10 Hz  
DS278PP4  
21  
 
CS4954 CS4955  
which is approximately 3 ppm. Care must be taken  
in selecting a suitable clock source.  
data to be inserted is also written into the four  
Closed Caption Data registers. The CS4954/5,  
when enabled, automatically generates the seven  
cycles of clock run-in (32 times the line rate), start  
bit insertion (001), and finally insertion of the two  
data bytes per line. Data low at the video outputs  
corresponds to 0 IRE and data high corresponds to  
50 IRE.  
In MPEG-2 system environments the clock is actu-  
ally recovered from the data stream. In these cases  
the recovered clock can be 27 MHz ±50 ppm or  
±1350 Hz. It varies per television, but in many cas-  
es given an MPEG-2 system clock of 27 MHz,  
±1350 Hz, the resultant color subcarrier produced  
will be outside of the television’s ability to com- There are two independent 8-bit registers per line  
pensate and the chrominance information will not  
be displayed (resulting in a black-and-white picture  
only).  
(CC_21_1 & CC_21_2 for line 21 and CC_284_1  
& CC_284_2 for line 284). Interrupts are also pro-  
vided to simplify the handshake between the driver  
software and the device. Typically the host would  
write all 4 bytes to be inserted into the registers and  
then enable closed caption insertion and interrupts.  
As the closed caption interrupts occur the host soft-  
ware would respond by writing the next two bytes  
to be inserted to the correct control registers and  
then clear the interrupt and wait for the next field.  
The CS4954/5 is designed to provide automatic  
compensation for an excessively inaccurate  
MPEG-2 system clock. Sub-carrier compensation  
is enabled through the XTAL bit of the  
CONTROL_2 Register. When enabled the  
CS4954/5 will utilize a common quartz color burst  
crystal (3.579545 MHz ± 50 ppm for NTSC) at-  
tached to the XTAL_IN and XTAL_OUT pins to  
automatically compare and compensate the color  
subcarrier synthesis process.  
5.9. Programmable H-sync and V-sync  
It is possible in master mode to change the H-sync  
and V-sync times based on register settings. Pro-  
grammable H-sync and V-sync timings are helpful  
in several digital video systems, where latencies of  
the control signals are present. The user can then  
program H-sync and V-sync timing according to  
their system requirements. The default values are  
244, and 264 for NTSC and PAL respectively.  
5.8. Closed Caption Insertion  
The CS4954/5 is capable of NTSC Closed Caption  
insertion on lines 21 and 284 independently.  
Closed captioning is enabled for either one or both  
lines via the CC_EN [1:0] Register bits and the  
NTSC-M NTSC-J  
PAL-N  
ITU  
ITU  
NTSC-M  
PAL-  
Comb.  
Address  
0×00  
0×01  
0×04  
0×05  
0×10  
0×11  
Register  
R.BT601 R.BT601 RS170A B,D,G,H,I PAL-M  
PAL-N  
A1h  
30h  
07h  
78h  
15h  
96h  
15h  
13h  
54h  
(Argent)  
CONTROL_0  
CONTROL_1  
CONTROL_4  
CONTROL_5  
SC_AMP  
01h  
12h  
07h  
78h  
1Ch  
3Eh  
F8h  
E0h  
43h  
01h  
10h  
07h  
78h  
1Ch  
3Eh  
F8h  
E0h  
43h  
21h  
16h  
07h  
78h  
1Ch  
3Eh  
F8h  
E0h  
43h  
41h  
30h  
07h  
78h  
15h  
96h  
15h  
13h  
54h  
61h  
12h  
07h  
78h  
15h  
C7h  
DFh  
CDh  
43h  
81h  
30h  
07h  
78h  
15h  
8Ch  
28h  
EDh  
43h  
SC_SYNTH0  
SC_SYNTH1  
SC_SYNTH2  
SC_SYNTH3  
0×12  
0×13  
0×14  
Table 4. Multi-standard Format Register Configurations  
22  
DS278PP4  
CS4954 CS4955  
H-sync can be delayed by a full line, in 74 nsec in-  
tervals.  
5.11. Teletext Support  
This chip supports several teletext standards, like  
European teletext, NABTS (North American tele-  
text), and WST (World Standard Teletext) for  
NTSC and PAL.  
V-sync can be shifted in both directions in time.  
The default values are 18 and 23 for NTSC and  
PAL respectively. Since the V-sync register is 5  
bits wide (Sync Register 0), the V-sync pulse can  
be shifted by 31 lines in total.  
All these teletext standards are defined in the ITU-  
R BT.653-2 document. The European teletext is  
defined as “teletext system B” for 625/50 Hz TV  
V-sync can preceed by a maximum of 18 lines  
(NTSC) or 23 lines (PAL) respectively from its de- systems. NABTS teletext is defined as “teletext  
fault location, and V-sync can follow by a maxi- system C” for 525/60 Hz TV systems. WST for  
mum of 13 lines (NTSC) or 8 lines (PAL) from its PAL is defined as “teletext system D” for  
default location.  
624/50 Hz TV systems and WST for NTSC is de-  
fined as “teletext system D” for 525/60 Hz TV  
systems.  
5.10. Wide Screen Signaling (WSS) and  
CGMS  
This chip provides independant teletext encoding  
into composite 1, composite 2 and s-video signals.  
The teletext encoding into these various signals is  
software programmable.  
Wide screen signaling support is provided for  
NTSC and for PAL standards. Wide screen signal-  
ing is currently used in most countries with 625 line  
systems as well as in Japan for EDTV-II applica-  
tions. For complete description of WSS standard,  
please refer to ITU-R BT.1119 (625 line system)  
and to EIAJ CPX1204 for the Japanese 525 line  
system.  
In teletext pulsation mode, (TTX_WINDOW=0),  
register 0×31 bit 3, the pin TTXDAT receives a  
teletext bitstream sampled at the 27 Mhz clock. At  
each rising edge of the TTXRQ output signal a sin-  
gle teletext bit has to be provided after a program-  
mable input delay at the TTXDAT input pin.  
The wide screen signal is transferred in a blanking  
line of each video field (NTSC: lines 20 and 283,  
PAL: lines 23 and 336). Wide screen signaling is  
enabled by setting WW_23 to “1”. Some countries  
with PAL standard don’t use line 336 for wide  
screen signaling (they use only line 23), therefore  
we provide another enable bit (WSS_22) for that  
particular line.  
Phase variant interpolation is achieved on this bit-  
stream in the internal teletext encoder, providing  
sufficient small phase jitter on the ouput text lines.  
TTXRQ provides a fully programmable request  
signal to the teletext source, indicating the insertion  
period of the bitstream at indepenantly selectable  
lines for both TV fields. The internal insertion win-  
dow for text is set to either 360, 296 or 288 teletext  
bits, depending on the selected teletext standard.  
The clock run-in is included in this window.  
There are 3 registers dedicated to contain the trans-  
mitted WSS bits (WSS_REG_0, WSS_REG_1,  
WSS_REG_2). The data insertion into the appro-  
priate lines are performed automatically by this de-  
vice. The run-in and start code bits do not have to  
be loaded into this device, it automatically inserts  
the correct code at the beginning of transfer.  
Teletext in enabled by setting the TTX_EN bit to  
“1”. The TTX_WST bit in conjunction with the  
TV_FORMAT register select one of the 4 possible  
teletext encoding possibilities.  
The teletext timing is shown in the Figure 12.  
TTXHS and TTXHD are user programmable and  
DS278PP4  
23  
CS4954 CS4955  
therefore allow the user to have full control over to (5.6427875 Mbit/sec) (WST PAL) or 288 TTX bits  
when sending teletext data to this device.  
(5.727272 Mbit/sec) (NABTS) or 296 TTX bits  
(5.727272 Mbit/sec) (WST NTSC) respectively.  
The time t is the time needed to interpolate tele-  
FD  
text input data and inserting it into the CVBS and Using the appropriate programming, all suitable  
Y output signals, such that it appears between lines of the odd field (TTXOVS through TTX-  
= 9.8 µs and t = 12 µs after the leading OVE) plus all suitable lines of the even field  
t
TTX  
TTX  
edge of the horizontal synchronization pulse. t  
(TTXEVS through TTXEVE) can be used for tele-  
text insertion. In addition it is possible to selec-  
tively disable the teletext insertion on single lines.  
This can be programmed by setting the  
FD  
changes with the TV standard and the selected  
teletext standard. Please refer to ITU-R BT.653-2  
for more detailed information.  
TTX_LINE_DIS1,  
TTX_LINE_DIS3 registers appropriately.  
TTX_LINE_DIS2  
and  
The time t is the pipeline delay time introduced  
by the source that is gated by TTXRQ in order to  
PD  
deliver teletext data. This delay is programmable Note that the TTXDAT signal must be synchro-  
through the register TTXHD. For every active  
HIGH transition at output pin TTXRQ, a new tele-  
text bit must be provided by the source. The time  
between the beginning of the first TTXRQ pulse  
and the leading edge of H-sync is programmable  
through the TTXHS register.  
nized with the 27 Mhz clock. The pulse width of  
the TTXRQ signal varies between three and four  
27 Mhz clock cycles. The variation is necessary in  
order to maintain the strict timing requirements of  
the teletext standard.  
Table 5 shows how to program the TTXHS register  
for teletext instantiation into the analog signals for  
the various supported TV formats. TTXHS is the  
time between the leading edge of the HSYNC sig-  
nal and the rising edge of the first TTXRQ signal  
and consists of multiples of 27 Mhz clock cycles  
Since the beginning of the pulses representing the  
TTXRQ signal and the delay between the rising  
edge of TTXRQ and valid teletext input data are  
fully programmable, the TTXDAT data is always  
inserted at the correct position after the leading  
edge of the outgoing horizontal synchronization  
pulse.  
Note that with increasing values of TTXHS the  
time t  
increases as well. The time t accounts  
TTX  
FD  
The time t  
is the internally used insertion  
TTXWin  
for the internal pipeline delay due to processing,  
synchronization and instantiation of the teletext  
data. The time t is dependant on the TTXHD  
window for TTX data; it has a constant length  
depending on the selected teletext standard which  
allows insertion of 360 TTX bits (6.9375  
Mbit/sec) (European teletext) or 296 TTX bits  
PD  
register.  
CVBS/Y  
CVBS/Y  
t
t
TTXWin  
t
t
TTX  
TTXWin  
TTX  
TTXRQ  
TTXRQ  
textbit #:  
1
2
3
4
5
textbit #:  
1
2
3
4
5
TTXDAT  
TTXDAT  
t
t
t
t
FD  
PD  
FD  
PD  
Figure 12. Teletext Timing (Pulsation Mode)  
Figure 13. Teletext Timing (Window Mode)  
24  
DS278PP4  
 
CS4954 CS4955  
Note that the teletext databits are shaped according CONTROL_1 Register. The color bar generator  
to the ITU R.BT653-2 specifications.  
works in master or Slave Mode and has no effect on  
the video input/output timing. If the CS4954/5 is  
configured for Slave Mode color bars, proper video  
timing must be present on the HSYNC and  
VSYNC pins for the color bars to be displayed.  
Given proper Slave Mode input timing or Master  
Mode, the color bar generator will override the vid-  
eo input pixel data.  
If register 0×31 bit 3 is set, (TTX_WINDOW=1)  
the teletext is in windows mode, the request pulses  
become a window where the bit provided on the  
TTXDAT pin are valid (see Figure 13).  
Alternately to the pulsation mode (where the num-  
ber of request pulses are determined by the teletext  
standard chosen), the length of the window must be  
programmed by the user independently of the tele-  
text standard used. The length of the window is  
programmed through register 0×29 TTXHS (start  
of window) and register 0×2A (TTXHD) and 0×31  
(end of window). The end-of-window register is a  
11 bit value.  
The output of the color bar generator is instantiated  
after the chroma interpolation filter and before the  
luma delay line. The generated color bar numbers  
are for 100% amplitude, 100% saturation NTSC  
EIA color bars or 100% amplitude, 100% satura-  
tion PAL EBU color bars. For PAL color bars, the  
CS4954/5 generates NTSC color bar values, which  
are very close to standard PAL values. The exact  
luma and chroma values are listed in Table 6. .  
In teletext window mode, the TTXHS value can be  
selected using the values in Table 5. Although  
these values may need to be adjusted to match your  
system delay, use the following equation to com-  
pute the TTXHD value:  
Color  
Cb  
0
Cr  
0
Y
White  
Yellow  
Cyan  
+ 167  
+ 156  
+ 138  
+ 127  
+ 110  
+ 99  
- 84  
+ 28  
- 56  
+ 56  
- 28  
+ 84  
0
+ 14  
- 84  
- 70  
+ 70  
+ 84  
- 14  
0
TTXHS + 1402 = TTXHD (for Europe)  
TTXHS + 1151 = TTXHD (for WST)  
TTXHS + 1122 = TTXHD (for NABTS)  
TTXHS  
Green  
Magenta  
Red  
Blue  
+ 81  
Teletext  
standard  
(register  
value)  
Black  
+ 70  
tTTX  
TV standard  
NTSC-M  
NTSC-M  
PAL-B  
Table 6. Internal Color Bar Values (8-bit values, Cb/Cr  
are in twos complement format)  
NABTS  
WST-NTSC  
Europe TTX  
WST-PAL  
NABTS  
161  
142  
204  
163  
161  
142  
204  
163  
204  
163  
10.5 µs  
9.8 µs  
5.13. VBI encoding  
12.0 µs  
10.5 µs  
10.5 µs  
9.8 µs  
PAL-B  
VBI (Vertical Blanking Interval) encoding is per-  
formed according to SMPTE RP 188 recommenda-  
tions. In NTSC mode lines 10 - 20 and lines 272 -  
283 are used for the transmission of ancillary data.  
In PAL mode lines 6 - 22 and lines 318 -335 are  
used. The VBI encoding mode can be set through  
the CONTROL_3 register.  
PAL-M  
PAL-M  
WST-NTSC  
PAL-N (non Arg.) Europe TTX  
12.0 µs  
10.5 µs  
12.0 µs  
10.5 µs  
PAL-N (non Arg.)  
PAL-N (Arg.)  
WST-PAL  
Europe TTX  
WST-PAL  
PAL-N (Arg.)  
Table 5. Teletext timing parameters  
All digital input data is passed through the chip  
when this mode is enabled. It is therefore the re-  
sponsibility of the user to ensure appropriate ampli-  
5.12. Color Bar Generator  
The CS4954/5 is equipped with a color bar genera-  
tor that is enabled through the CBAR bit of the  
DS278PP4  
25  
 
 
CS4954 CS4955  
tude levels. Table 7 shows the relationship of the  
digital input signal and the analog output voltage.  
signal which is presented on the INT output pin. If  
an interrupt has occurred, it cannot be eliminated  
with a disable, it must be cleared.  
Digital Input  
0×38  
Analog Output Voltage  
286 mV  
5.16. General Purpose I/O Port  
0×3B  
300 mV  
The CS4954/5 has a GPIO port and register that is  
0×C4  
1000 mV  
2
available when the device is configured for I C  
Table 7. VBI Encoding Signal Amplitudes  
2
host interface operation. In I C host interface  
mode, the PDAT [7:0] pins are unused by the host  
interface and they can operate as input or output  
pins for the GPIO_DATA_REG Register (0×0A).  
Each LSB corresponds to a step of 5 mV in the out-  
put voltage.  
5.14. Super White/Super Black support  
The  
CS4954/5  
also  
contains  
the  
GPIO_CTRL_REG Register (0×09) which is used  
to configure the GPIO pins for input or output op-  
eration.  
The ITU-R BT.601 recommendation limits the al-  
lowed range for the digital video data between  
0×10 - 0×EB for luma and between 0×10 - 0×F0 for  
the chrominance values. This chip will clip any  
digital input value which is out of this range to con-  
form to the ITU-R BT.601 specifications.  
The GPIO port PDAT [7:0] pins are configured for  
input operation when the corresponding  
GPIO_CTRL_REG [7:0] bits are set to 0. In GPIO  
input mode, the CS4954/5 will latch the data on the  
PDAT [7:0] pins into the corresponding bit loca-  
tions of GPIO_DATA_REG when it detects regis-  
However for some applications it is useful to allow  
a wider input range. By setting the CLIP_OFF bit  
(CONTROL_6 register) the allowed input range is  
extended between 0×01 - 0×FE for both luma and  
chrominance values.  
2
ter address 0×0A through the I C interface. A  
detection of address 0×0A can happen in two ways.  
The first and most common way this will happen is  
when address 0×0A is written to the CS4954/5 via  
Note that 0×00 and 0×FF values are never allowed,  
since they are reserved for synchronization infor-  
mation.  
2
its I C interface. The second method for detecting  
address 0×0A is implemented by accessing register  
2
2
address 0×09 through I C. In I C host interface op-  
eration, the CS4954/5 register address pointer will  
auto-increment to address 0×0A after an address  
0×09 access.  
5.15. Interrupts  
In order to better support precise video mode  
switches and to establish a software/hardware  
handshake with the closed caption insertion block  
the CS4954/5 is equipped with an interrupt pin The GPIO port PDAT [7:0] pins are configured for  
named INT. The INT pin is active high. There are output operation when the corresponding  
three interrupt sources: VSYNC, Line 21, and Line GPIO_CTRL_REG [7:0] bits are set. In GPIO out-  
284. Each interrupt can be individually disabled put mode, the CS4954/5 will output the data in  
with the INT_EN Register. Each interrupt is also GPIO_DATA_REG [7:0] bit locations onto the  
cleared via writing a one to the corresponding  
INT_CLR Register bits. The three individual inter-  
rupts are OR-ed together to generate an interrupt  
corresponding PDAT [7:0] pins when it detects a  
register address 0×0A through the I C interface.  
2
26  
DS278PP4  
 
CS4954 CS4955  
6. FILTER RESPONSES  
1.3 Mhz. filter passband response  
1.3 Mhz. filter frequency response  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
1
2
3
4
5
6
0
2
4
6
8
10  
12  
x 10  
6
5
x 10  
frequency (Hz)  
frequency (Hz)  
Figure 14. 1.3 Mhz Chrominance low-pass filter trans-  
fer characteristic  
Figure 15. 1.3 Mhz Chrominance low-pass filter trans-  
fer characterstic (passband)  
650 Khz. filter passband response  
0
650 Khz. filter frequency response  
0
-0.5  
-1  
-5  
-10  
-15  
-20  
-25  
-30  
-1.5  
-2  
-2.5  
-3  
0
2
4
6
8
10  
12  
0
1
2
3
4
5
6
5
6
x 10  
x 10  
Figure 16. 650 kHz Chrominance low-pass filter trans-  
fer characteristic  
Figure 17. 650 kHz Chrominance low-pass filter trans-  
fer characteristic (passband)  
DS278PP4  
27  
CS4954 CS4955  
Luma Output Interpolation Filter Response at 27MHz full scale  
Chroma Output Interpolator Pass band  
0
-5  
1
0.8  
0.6  
0.4  
0.2  
0
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
2
4
6
8
10  
12  
14  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Frequency (MHz)  
Frequency (MHz)  
Figure 18. Chrominance output interpolation filter  
transfer characteristic (passband)  
Figure 19. Luminance interpolation filter transfer char-  
acteristic  
RGB datapath filter for rgb_bw = 0 full scale  
0
Luma Output Interpolation Filter Response at 27 MHz (-3 dB)  
0.5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
0
2
4
6
8
10  
12  
0
1
2
3
4
5
6
7
8
Frequency (MHz)  
Frequency (MHz)  
Figure 20. Luminance interpolation filter transfer char-  
acterstic (passband)  
Figure 21. Chrominance interpolation filter transfer  
characteristic for RGB datapath  
28  
DS278PP4  
CS4954 CS4955  
RGB datapath filter when rgb_bw = 1 (Reduced Bandwidth)  
RGB datapath filter when rgb_bw = 1 (Reduced Bandwidth) (-3 dB)  
1
0.5  
0
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Frequency (MHz)  
Frequency (MHz)  
Figure 22. Chroma Interpolator for RGB Datapath  
when rgb_bw=1 (Reduced Bandwidth)  
Figure 23. Chroma Interpolator for RGB Datapath  
when rgb_bw=1 (Reduced Bandwidth)  
RGB datapath filter for rgb_bw = 0 (-3 dB)  
1
Chroma Output Interpolator Full Scale  
0
0.5  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
0
2
4
6
8
10  
12  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
Figure 24. Chroma Interpolator for RGB Datapath  
when rgb_bw=0 -3 dB  
Figure 25. Chroma Interpolator for RGB Datapath  
when rgb_bw=0 (Full Scale)  
DS278PP4  
29  
CS4954 CS4955  
digital amplifiers. The DAC output levels are de-  
fined by the following operations:  
7. ANALOG  
7.1. Analog Timing  
VREF/RISET = IREF  
All CS4954/5 analog timing and sequencing is de-  
rived from 27 MHz clock input. The analog outputs  
are controlled internally by the video timing genera-  
tor in conjunction with master and slave timing. The  
video output signals perform accordingly for NTSC  
and PAL specifications.  
(e.g., 1.232 V/4K = 308 µA)  
CVBS/Y/C/R/G/B outputs in low impedance mode:  
VOUT (max) = IREF*(16/145)*1023*37.5 = 1.304V  
CVBS/Y/C/R/G/B outputs in high impedance mode:  
VOUT (max) = IREF*(4/145)*1023*150= 1.304 V  
Being that the CS4954/5 is almost entirely a digital  
circuit, great care has been taken to guarantee ana-  
log timing and slew rate performance as specified  
in the NTSC and PAL analog specifications. Refer-  
ence the Analog Parameters section of this data  
sheet for exact performance parameters.  
7.4. DACs  
The CS4954/5 is equipped with six independent,  
video-grade, current-output, digital-to-analog con-  
verters (DACs). They are 10-bit DACs operating at  
a 27 MHz two-times-oversampling rate. All six  
DACs are disabled and default to a low power  
mode upon RESET. Each DAC can be individually  
powered down and disabled. The output-current-  
per-bit of all six DACs is determined by the size of  
the resistor connected between the ISET pin and  
electrical ground.  
7.2. VREF  
The CS4954/5 can operate with or without the aid  
of an external voltage reference. The CS4954/5 is  
designed with an internal voltage reference genera-  
tor that provides a VREFOUT signal at the VREF  
pin. The internal voltage reference is utilized by not  
making a connection to the VREF pin. The VREF  
pin can also be connected to an external precision  
7.4.1. Luminance DAC  
1.232 volt reference, which then overrides the in- The Y pin is driven from a 10-bit 27 MHz current  
ternal reference.  
output DAC that internally receives the Y, or lumi-  
nance portion, of the video signal (black and white  
only). Y is designed to drive proper video levels  
into a 37.5 load. Reference the detailed electrical  
section of this data sheet for the exact Y digital to  
analog AC and DC performance data. A EN_L en-  
able control bit in the Control Register 5 (0×05) is  
provided to enable or disable the luminance DAC.  
For a complete disable and lower power operation  
the luminance DAC can be totally shut down via  
the SVIDLUM_PD control bit in the Control Regis-  
ter 4 (0×04). In this mode, turn-on through the con-  
trol register will not be instantaneous.  
7.3. ISET  
All six of the CS4954/5 digital to analog converter  
DACs are output current normalized with a com-  
mon ISET device pin. The DAC output current per  
bit is determined by the size of the resistor connect-  
ed between ISET and electrical ground. Typically a  
4 K, 1% metal film resistor should be used. The  
ISET resistance can be changed by the user to ac-  
commodate varying video output attenuation via  
post filters and also to suit individual preferred per-  
formance.  
In conjunction with the ISET value, the user can  
also independently vary the chroma, luma and col-  
orburst amplitude levels via host addressable con-  
trol register bits that are used to control internal  
7.4.2. Chrominance DAC  
The C pin is driven from a 10-bit 27 MHz current  
output DAC that internally receives the C or  
30  
DS278PP4  
CS4954 CS4955  
chrominance portion of the video signal (color current flow from the output. For a complete dis-  
only). C is designed to drive proper video levels able and lower power operation, the red DAC can  
into a 37.5 load. Reference the detailed electrical be totally shut down via the R_PD control register  
section of this data sheet for the exact C digital to bit in Control Register 4 (0×04). In this mode turn-  
analog AC and DC performance data. A EN_C en-  
on through the control register will not be instanta-  
able control register bit in the Control Register 1 neous.  
(0×05) is provided to enable or disable the chromi-  
7.4.5. Green DAC  
nance DAC. For a complete disable and lower  
power operation the chrominance DAC can be to-  
tally shut down via the SVIDCHR_PD register bit  
in the Control Register 4 (0×04). In this mode turn-  
on through the control register will not be instanta-  
neous.  
The green pin is driven from a 10-bit 27 MHz cur-  
rent output DAC that internally receives a com-  
bined luma and chroma signal to provide  
composite video output. Green is designed to drive  
proper composite video levels into a 37.5 load.  
Reference the detailed electrical section of this data  
sheet for the exact green digital to analog AC and  
DC performance data. The EN_G enable control  
7.4.3. CVBS DAC  
The CVBS pin is driven from a 10-bit 27 MHz cur-  
rent output DAC that internally receives a com- register bit, in Control Register 1 (0×05), is provid-  
bined luma and chroma signal to provide ed to enable or disable the output pin. When dis-  
composite video output. CVBS is designed to drive  
abled, there is no current flow from the output. For  
proper composite video levels into a 37.5 load. a complete disable and lower power operation, the  
Reference the detailed electrical section of this data  
sheet for the exact CVBS digital to analog AC and  
DC performance data. The EN_COM enable con-  
green DAC can be totally shut down via the G_PD  
control register bit in Control Register 4 (0×04). In  
this mode turn-on through the control register will  
trol register bit, in Control Register 1 (0×05), is not be instantaneous.  
provided to enable or disable the output pin. When  
7.4.6. Blue DAC  
disabled, there is no current flow from the output.  
The blue pin is driven from a 10-bit 27 MHz cur-  
For a complete disable and lower power operation,  
the CVBS37 DAC can be totally shut down via the  
COMDAC_PD control register bit in Control  
Register 4 (0×04). In this mode turn-on through the  
control register will not be instantaneous.  
rent output DAC that internally receives a com-  
bined luma and chroma signal to provide  
composite video output. Blue is designed to drive  
proper composite video levels into a 37.5 load.  
Reference the detailed electrical section of this data  
sheet for the exact blue digital to analog AC and  
DC performance data. The EN_B enable control  
7.4.4. Red DAC  
The Red pin is driven from a 10-bit 27 MHz current  
output DAC that internally receives a combined register bit, in Control Register 5 (0×05), is provid-  
luma and chroma signal to provide composite vid- ed to enable or disable the output pin. When dis-  
eo output. Red is designed to drive proper compos- abled, there is no current flow from the output. For  
ite video levels into a 37.5 load. Reference the  
detailed electrical section of this data sheet for the blue DAC can be totally shut down via the B_PD  
exact red digital to analog AC and DC performance control register bit in Control Register 4 (0×04). In  
a complete disable and lower power operation, the  
data. The EN_R enable control register bit, in Con- this mode turn-on through the control register will  
trol Register 1 (0×05), is provided to enable or dis- not be instantaneous.  
able the output pin. When disabled, there is no  
DS278PP4  
31  
CS4954 CS4955  
If some of the 6 DACs are not used, it is strongly  
recommended to power them down (see  
CONTROL_4 register) in order to reduce the pow-  
er dissipation.  
Low/High  
Impedance  
mode  
Nominal Power  
supply  
maximum # of  
active DACs  
3.3V  
3.3V  
5.0V  
5.0V  
Low Impedance  
High Impedance  
Low Impedance  
High Impedance  
3
6
3
6
Depending on the external resistor connected to the  
ISET pin the output drive of the DACs can be  
changed. There are two modes in which the DACs  
should either be operated in. An external resistor of  
4 kmust be connected to the ISET pin.  
Table 8. Maximum DAC Numbers  
8. PROGRAMMING  
The first mode is the high impedance mode  
(LOW_IMP bit set to 0). The DAC outputs will  
then drive a double terminated load of 300 and  
will output a video signal which conforms to the  
analog video specifications for NTSC and PAL.  
External buffers will be needed if the DAC output  
load differs from 300 .  
8.1. Host Control Interface  
The CS4954/5 host control interface can be config-  
2
ured for I C or 8-bit parallel operation. The  
2
CS4954/5 will default to I C operation when the  
RD and WR pins are both tied low at power up. The  
RD and WR pins are active for 8-bit parallel oper-  
ation only.  
The second mode is the low impedence mode  
(LOW_IMP but set to 1). The DAC output will  
then drive a double terminated load of 75 and  
will output a video signal which conforms to the  
analog video specifications for NTSC and PAL. No  
external buffers are necessary, the ouputs can di-  
rectly drive a television input.  
8.1.1. I2C Interface  
2
The CS4954/5 provides an I C interface for access-  
ing the internal control and status registers. Exter-  
nal pins are a bidirectional data pin (SDA) and a  
serial input clock (SCL). The protocol follows the  
2
I C specifications. A complete data transfer is  
2
Note that for power dissipation purposes it is not  
always possible to have all the 6 DACs active at the  
same time. Table 8 shows the maximum allowed  
active DACs depending on the power supply and  
low/high impedance modes. If less than 6 DACs  
are allowed to be active the other ones must be  
power down (see CONTROL_4 register).  
shown in Figure 26. Note that this I C interface will  
work in Slave Mode only - it is not a bus master.  
SDA and SCL are connected via an external pull-  
up resistor to a positive supply voltage. When the  
bus is free, both lines are high. The output stages of  
devices connected to the bus must have an open-  
drain or open-collector in order to perform the  
2
wired-AND function. Data on the I C bus can be  
SDA  
SCL  
1-7  
8
9
1-7  
8
9
1-7  
8
9
A
P
Start Address R/W  
ACK  
Data  
ACK  
Data ACK  
Stop  
Note: I2C transfers data always with MSB first, LSB last  
Figure 26. I2C Protocol  
32  
DS278PP4  
 
 
CS4954 CS4955  
transferred at a rate of up to 400 Kbits/sec in fast  
mode. The number of interfaces to the bus is solely  
dependent on the limiting bus capacitance of 400  
pF. When 8-bit parallel interface operation is being  
active low strobes and host address enable  
(ADDR), which, when low, enables unique address  
register accesses. The control port is used to access  
internal registers which configure the CS4954/5 for  
used, SDA and SCL can be tied directly to ground. various modes of operation. The internal registers  
2
are uniquely addressed via an address register. The  
address register is accessed during a host write cy-  
cle with the WR and ADDR pins set low. Host  
write cycles with ADDR set high will write the 8-  
bits on the PDAT [7:0] pins into the register cur-  
rently selected by the address register. Likewise  
read cycles occur with RD set low and ADDR set  
high will return the register contents selected by the  
address register. Reference the detailed electrical  
timing parameter section of this data sheet for exact  
host parallel interface timing characteristics and  
specifications.  
The I C bus address for the CS4954/5 is program-  
mable via the I2C_ADR Register (0×0F). When  
I C interface operation is being used, RD and WR  
must be tied to ground. PDAT [7:0] are available to  
be used for GPIO operation in I C host interface  
mode. For 3.3 V operation it is necessary to have  
the appropriate level shifting for I C signals.  
2
2
2
8.1.2. 8-bit Parallel Interface  
The CS4954/5 is equipped with a full 8-bit parallel  
microprocessor write and read control port. Along  
with the PDAT [7:0] pins, the control port interface  
is comprised of host read (RD) and host write (WR)  
WR  
Trec  
Trec  
RD  
RD  
Figure 27. 8-bit Parallel Host Port Timing: Read-Write/Write-Read Cycle  
Trd  
Trah  
Trpw  
ADDR  
PDAT[7:0]  
Trdh  
Trda  
Tas  
Figure 28. 8-bit Parallel Host Port Timing: Address Read Cycle  
DS278PP4  
33  
CS4954 CS4955  
Twr  
Twac  
Twpw  
WR  
ADDR  
PDAT[7:0]  
Tas  
Figure 29. 8-bit Parallel Host Port Timing: Address Write Cycle  
Twds Twdh  
subsequent register description section describe the  
8.2. Register Description  
full register map for the CS4954 only. A complete  
CS4955 register set description is available only to  
Macrovision ACP-PPV Licensed Buyers.  
A set of internal registers are available for control-  
ling the operation of the CS4954/5. The registers  
extend from internal address 0×00 through 0×5A.  
Table 9 shows a complete list of these registers and  
their internal addresses. Note that this table and the  
8.2.1. Control Registers  
Address  
0×00  
0×01  
0×02  
0×03  
0×04  
0×05  
0×06  
0×07  
0×08  
0×09  
0×0A  
0×0B  
0×0C  
0×0D  
0×0E  
0×0F  
0×10  
0×11  
0×12  
0×13  
0×14  
0×15  
0×16  
Register Name  
control_0  
Type  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Default value  
01h  
02h  
00h  
00h  
3Fh  
00h  
00h  
control_1  
control_2  
control_3  
control_4  
control_5  
control_6  
RESERVED  
bkg_color  
r/w  
r/w  
r/w  
03h  
00h  
00h  
gpio_ctrl_reg  
gpio_data_reg  
RESERVED  
RESERVED  
SYNC_0  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
90h  
F4h  
00h  
1Ch  
3Eh  
F8h  
E0h  
43h  
00h  
00h  
SYNC_1  
I2C_ADR  
SC_AMP  
SC_SYNTH0  
SC_SYNTH1  
SC_SYNTH2  
SC_SYNTH3  
HUE_LSB  
HUE_MSB  
Table 9. Control Registers  
34  
DS278PP4  
 
CS4954 CS4955  
Address  
0×17  
0×18  
Register Name  
SCH PHASE ADJUST  
CC_EN  
Type  
r/w  
r/w  
Default value  
00h  
00h  
00h  
00h  
00h  
00h  
0×19  
CC_21_1  
r/w  
0×1A  
0×1B  
0×1C  
0×1D  
0×1E  
0×1F  
0×20  
0×21  
0×22  
0×23  
0×24  
0×25  
0×26  
0×27  
0×28  
0×29  
0×2A  
0×2B  
0×2C  
0×2D  
0×2E  
0×2F  
0×30  
0×31  
0×32  
0×33  
CC_21_2  
r/w  
CC_284_1  
CC_284_2  
RESERVED  
WSS_REG_0  
WSS_REG_1  
WSS_REG_2  
RESERVED  
CB_AMP  
r/w  
r/w  
r/w  
r/w  
r/w  
00h  
00h  
00h  
r/w  
r/w  
80h  
80h  
80h  
80h  
80h  
80h  
00h  
A1h  
02h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
CR_AMP  
Y_AMP  
r/w  
R_AMP  
r/w  
G_AMP  
r/w  
B_AMP  
r/w  
BRIGHT_OFFSET  
TTXHS  
r/w  
r/w  
TTXHD  
r/w  
TTXOVS  
r/w  
TTXOVE  
r/w  
TTXEVS  
r/w  
TTXEVE  
r/w  
TTX_DIS1  
TTX_DIS2  
TTX_DIS_3  
INT_EN  
r/w  
r/w  
r/w  
r/w  
INT_CLR  
r/w  
0×34  
STATUS_0  
RESERVED  
STATUS_1  
RESERVED  
read only  
0×35 - 0×59  
0×5A  
0×61 - 0×7F  
read only  
04h  
Table 9. Control Registers (Continued)  
DS278PP4  
35  
CS4954 CS4955  
Control Register 0  
Address  
0×00  
CONTROL_0 Read/Write  
Default Value = 01h  
Bit Number  
Bit Name  
Default  
7
6
TV_FMT  
0
5
4
MSTR  
0
3
CCIR656  
0
2
PROG  
0
1
0
IN_MODE CBCR_UV  
0
0
0
1
Bit  
Mnemonic  
Function  
selects the TV display format  
000:  
NTSC-M CCIR601 timing (default)  
NTSC-M RS170A timing  
PAL-B, D, G, H, I  
001:  
010:  
7:5  
TV_FMT  
011:  
PAL-M  
100:  
PAL-N (Argentina)  
PAL-N (non Argentina)  
reserved  
101:  
110-111:  
4
3
2
1
0
MSTR  
CCIR656  
PROG  
1 = Master Mode, 0 = Slave Mode  
video input is in ITU R.BT656 format (0 = off, 1 = on)  
Progressive scanning enable (enable = 1)  
IN_MODE  
CBCR_UV  
Input select (0 = solid background, 1 = use V [7:0] data)  
enable YCbCr to YUV conversion (1 = enable, 0 = disable)  
Control Register 1  
Address  
0×01  
CONTROL_1 Read/Write  
Default Value = 02h  
7
6
5
CH BW  
0
4
LPF_ON  
0
3
RGB_BW  
0
2
FLD  
0
1
PED  
1
0
CBCRSEL  
0
Bit Number  
Bit Name  
Default  
LUM DEL  
0
0
Bit  
Mnemonic  
Function  
luma delay on the composite1 output  
00:  
01:  
10:  
11:  
no delay (default)  
7:6  
LUM DEL  
1 pixel clock delay  
2 pixel clock delay  
3 pixel clock delay  
5
4
3
2
1
0
CH BW  
LPF ON  
RGB_BW  
FLD_POL  
PED  
chroma lpf bandwidth (0 = 650 kHz, 1 = 1.3 Mhz)  
chroma lpf on/off (0 = off, 1 = on)  
0 = Full bandwidth on RGB, 1 = BW reduced to 2.5 MHz (3 dB point) (default 0)  
Polarity of Field (0: odd field = 0,1: odd field = 1)  
Pedestal offset (0: 0 IRE, 1: 7.5 IRE)  
CBCRSEL  
CbCr select (0 = chroma undelayed, 1 = chroma delayed by one clock)  
36  
DS278PP4  
CS4954 CS4955  
Control Register 2  
Address  
0×02  
CONTROL_2 Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
TTX WST  
0
3
2
1
XTAL  
0
0
SC_EN  
0
OUTPUT FORMAT  
0
TTX EN SYNC_DLY  
0
0
0
0
Bit  
Mnemonic  
Function  
selects the output through the DACs  
000 :  
rgb, s-video, composite1 (6 DACs) (default)  
yuv, s-video, composite1 (6 DACs)  
s-video, composite1, composite2, (4 DACs)  
rgb, composite1, composite2 (5 DACs)  
yuv, composite1, composite2 (5 DACs)  
don’t care  
001 :  
7:5  
OUTPUT FORMAT  
010 :  
011 :  
100 :  
101-111:  
To select between world standard (NTSC), world standard (PAL), or north  
american teletext standard during NTSC or PAL modes (1 = WST TTX) (default  
is 0)  
In NTSC-M or PAL-M mode. This bit works in conjunction with the TV FORMAT  
register.  
4
TTX WST  
0:  
1:  
0:  
1:  
NABTS, if TV FORMAT is NTSC or PAL-M  
WST (NTSC), if TV FORMAT is NTSC or PAL-M  
Europe TTX, if TV FORMAT is PAL-B, G..., N  
WST (PAL), if TV FORMAT is PAL-B, G, ..., N  
3
2
1
0
TTX EN  
SYNC DLY  
XTAL  
Enable teletext process (1 = enable)  
Slave mode 1 pixel sync delay (1 = enable)  
Crystal oscillator for subcarrier adjustment enable (1 = enable)  
Chroma burst disable (1 = disable)  
BU DIS  
DS278PP4  
37  
CS4954 CS4955  
Control Register 3  
Address  
0×03  
CONTROL_3 Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
CBAR  
0
RESERVED  
0
FD THR C1 FD THR C2 FD THR SV FD THR EN  
0
0
0
0
0
0
Bit  
7:5  
4
Mnemonic  
-
Function  
reserved  
FD THR C1  
FD THR C2  
FD THR SV  
FD THR_EN  
CBAR  
feedthrough enabled for composite 1 output (0 = off, 1 = on)  
feedthrough enabled for composite 2 output (0 = off, 1 = on)  
3
2
feedthrough enabled for s-video (on luma signal) (0 = off, 1 = on)  
Enable (1 = enable) input to feed through during inactive lines  
internal color bar generator (0 = off, 1 = on)  
1
0
Control Register 4  
Address  
0×04  
CONTROL_4 Read/Write  
Default Value = 3Fh  
7
6
5
4
3
2
1
G_PD  
1
0
Bit Number  
CB_H_SEL  
0
CB_FLD_SEL COMDAC_PD SVIDLUM_PD SVIDCHR_PD R_PD  
B_PD  
Bit Name  
Default  
0
1
1
1
1
1
Bit  
7
Mnemonic  
CB_H_SEL  
Function  
Composite Blank / HSYNC output select (1 = CB select, 0 = HSYNC select)  
Composite Blank / FIELD output select (1 = CB select, 0 = HSYNC select)  
power down composite DAC  
6
CB_FLD_SEL  
5
4
3
2
1
0
COMDAC_PD  
SVIDLUM_PD  
SVIDCHR_PD  
R_PD  
0: power up, 1: power down  
power down luma s-video DAC  
0: power up, 1: power down  
power down chroma s-video DAC  
0: power up, 1: power down  
power down red rgb video DAC  
0: power up, 1: power down  
power down green rgb video DAC  
0: power up, 1: power down  
G_PD  
power down blue rgb video DAC  
B_PD  
0: power up, 1: power down  
38  
DS278PP4  
CS4954 CS4955  
Control Register 5  
Address  
0×05  
CONTROL_5 Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
LOW IMP  
0
5
EN COM  
0
4
EN L  
0
3
EN C  
0
2
EN R  
0
1
EN G  
0
0
EN B  
0
RSVD  
0
Bit  
7
Mnemonic  
-
Function  
reserved  
6
LOW IMP  
EN COM  
EN L  
selects between high output impedance (0) or low output impedance (1) mode of DACs  
enable DAC for composite output 0: tri-state, 1: enable  
5
4
enable s-video DAC for luma output 0: tri-state, 1: enable  
enable s-video DAC for chroma output 0: tri-state, 1: enable  
enable rgb video DAC for red output 0: tri-state, 1: enable  
enable rgb video DAC for green output 0: tri-state, 1: enable  
enable rgb video DAC for blue output 0: tri-state, 1: enable  
3
EN C  
2
EN_R  
1
EN_G  
EN_B  
0
Control Register 6  
Address  
0×06  
CONTROL_6 Read/Write  
Default Value = 00h  
7
6
CLIP OFF  
0
5
4
3
2
1
0
Bit Number  
Bit Name  
656 SYNC  
OUT  
TTXEN  
COM2  
TTXEN  
COM1  
TTXEN  
SVID  
BSYNC DIS GSYNC DIS RSYNC DIS  
Default  
0
0
0
0
0
0
0
Bit  
7
Mnemonic  
656 SYNC OUT  
CLIP OFF  
Function  
Enable (=1) output of hsync and vsync in the ITU R.BT656 mode  
Clipping input signals disable (0: clipping active 1: no clipping)  
6
5
TTXEN COM2 Enable teletext at the composit2 output (0: disable teletext, 1 : enable teletext)  
4
TTXEN COM1  
TTXEN SVID  
BSYNC DIS  
GSYNC DIS  
RSYNC DIS  
Enable teletext at the composit1 output ( 0: disable teletext, 1 : enable teletext)  
Enable teletext at the s-video output ( 0: disable teletext, 1: enable teletext)  
Disable syncs in the blue or v output (0: enable syncs, 1: disable syncs)  
Disable syncs in the green or u output ( 0: enable syncs, 1: disable syncs)  
Disable syncs in the red or y output (0: enable syncs, 1: disable syncs)  
3
2
1
0
DS278PP4  
39  
CS4954 CS4955  
Background Color Register  
Address  
0×08  
BKG_COLOR Read/Write  
Default Value = 03h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
BG  
0
0
0
0
0
0
1
1
Bit  
Mnemonic  
Function  
7:0  
BG  
Background color (7:5 = R, 4:2 = G, 1:0 = B) (default is 0000 0011 - blue)  
GPIO Control Register  
Address  
0×09  
GPIO__REG Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
GPR_CNTRL  
0
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
7:0  
GPR CNTRL  
Input(0)/output(1) control of GPIO registers (bit 0: PDAT(0), bit 7: PDAT(7))  
GPIO Data Register  
Address  
0×0A  
GPIO_REG  
Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
GPIO REG  
0
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
GPIO data register ( data is output on PDAT bus if appropriate bit in address 09 is  
set to “1”, otherwise data is input/output through I2C)- This register is only accessible  
in I2C mode.  
7:0  
GPIO REG  
Sync Register 0  
Address  
0×0D  
Sync_0  
Read/Write  
Default Value = 90h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
PROG VS[4:0]  
0
PROG HS[10:8]  
0
1
0
1
0
0
0
Bit  
7:3  
2:0  
Mnemonic  
PROG VS[4:0] programmable vsync lines  
PROG HS[10:8] programmable hsync pixels (3 most significant bits)  
Function  
40  
DS278PP4  
CS4954 CS4955  
Sync Register 1  
Address  
0×0E  
Sync_1  
Read/Write  
Default Value = F4h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
PROG HS[7:0]  
1
1
1
1
0
1
0
0
Bit  
Mnemonic  
Function  
7:0  
PROG HS[7:0]  
programmable hsync pixels lsb  
2
I C Address Register  
Address  
0×0F  
I2C_ADR  
Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
I2C ADR  
0
RESERVED  
0
0
0
0
0
0
0
Bit  
7
Mnemonic  
Function  
-
reserved  
I2C device address (programmable)  
I2C  
6:0  
Subcarrier Amplitude Register  
Address  
0×10  
SC_AMP  
Read/Write  
Default Value = 1Ch  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
BU AMP  
0
0
0
1
1
1
0
0
Bit  
Mnemonic  
Function  
7:0  
BU AMP  
Color burst amplitude  
Subcarrier Synthesis Register  
Address  
0×11  
0×12  
0×13  
0×14  
SC_SYNTH0 Read/Write  
SC_SYNTH1  
SC_SYNTH2  
Default Value = 3Eh  
F8h  
E0h  
43h  
SC_SYNTH3  
Register  
Bits  
7:0  
Mnemonic  
Function  
SC_SYNTH0  
SC_SYNTH1  
SC_SYNTH2  
SC_SYNTH3  
CC 0  
CC 1  
CC 2  
CC 3  
Subcarrier synthesis bits 7:0  
Subcarrier synthesis bits 15:8  
7:0  
7:0  
Subcarrier synthesis bits 23:16  
Subcarrier synthesis bits 31:24  
7:0  
DS278PP4  
41  
CS4954 CS4955  
Hue LSB Adjust Register  
Address  
0×15  
HUE_LSB  
Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
HUE LSB  
0
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
7:0  
HUE LSB  
8 LSBs for hue phase shift  
Hue MSB Adjust Register  
Address  
0×16  
HUE_MSB  
Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
RESERVED  
MSB  
0
0
0
0
0
0
0
0
Bit  
7:2  
1:0  
Mnemonic  
-
Function  
reserved  
2 MSBs for hue phase shift  
HUE MSB  
SCH Sync Phase Adjust  
Address  
0×17  
SCH  
Read/Write  
Default Value = 00h  
Bit  
Mnemonic  
Function  
7:0  
SCH  
Default - 00h in increments of 1.4 degree per bit up to 360°  
Closed Caption Enable Register  
Address  
0×18  
CC_EN  
Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
RESERVED  
EN_284  
0
EN_21  
0
0
0
0
0
0
0
Bit  
7:2  
1
Mnemonic  
-
Function  
reserved  
CC EN[1]  
CC EN[0]  
enable closed caption for line 284  
enable closed caption for line 21  
0
42  
DS278PP4  
CS4954 CS4955  
Closed Caption Data Register  
Address  
0×19  
0×1A  
0×1B  
0×1C  
CC_21_1  
CC_21_2  
CC_284_1  
CC_284_2  
Read/Write  
Default Value = 00h  
00h  
00h  
00h  
Bit  
7:0  
7:0  
7:0  
7:0  
Mnemonic  
CC_21_1  
Function  
first closed caption databyte of line 21  
second closed caption databyte of line 21  
first closed caption databyte of line 284  
second closed caption databyte of line 284  
CC_21_2  
CC_284_1  
CC_284_2  
Wide Screen Signaling Register 0  
Address  
0×1E  
WSS_REG_0 Read/Write  
Default Value = 00h  
7
WSS_23  
0
6
WSS_22  
0
5
WSS_21  
0
4
WSS_20  
0
3
WSS_19  
0
2
WSS_18  
0
1
WSS_17  
0
0
WSS_16  
0
Bit Number  
Bit Name  
Default  
Bit  
Mnemonic  
Function  
7
WSS_23  
Enable wide screen signalling (enable =1)  
PAL: enable WSS (enable = 1) on line 23 of field 2,  
NTSC: don’t care  
6
WSS_22  
5
4
3
2
1
0
WSS_21  
WSS_20  
WSS_19  
WSS_18  
WSS_17  
WSS_16  
PAL: group 4, bit 13, NTSC: don’t care  
PAL: group 4, bit 12, NTSC: don’t care  
PAL: group 4, bit 11, NTSC: bit 20  
PAL: group 3, bit 10, NTSC: bit 19  
PAL: group 3, bit 9, NTSC: bit 18  
PAL: group 3, bit 8, NTSC: bit 17  
DS278PP4  
43  
CS4954 CS4955  
Wide Screen Signalling Register 1  
Address  
0×1F  
WSS_REG_1 Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
WSS_15  
0
6
WSS_14  
0
5
WSS_13  
0
4
WSS_12  
0
3
WSS_11  
0
2
WSS_10  
0
1
WSS_9  
0
0
WSS_8  
0
Bit  
7
Mnemonic  
WSS_15  
WSS_14  
WSS_13  
WSS_12  
WSS_11  
WSS_10  
WSS_9  
Function  
PAL: group 2, bit 7, NTSC: bit 16  
PAL: group 2, bit 6, NTSC: bit 15  
PAL: group 2, bit 5, NTSC: bit 14  
PAL: group 2, bit 4, NTSC: bit 13  
PAL: group 1, bit 3, NTSC: bit 12  
PAL: group 1, bit 2, NTSC: bit 11  
PAL: group 1, bit 1, NTSC: bit 10  
PAL: group 1, bit 0, NTSC: bit 9  
6
5
4
3
2
1
0
WSS_8  
Wide Screen Signalling Register 2  
Address  
0×20  
WSS_REG_2 Read/Write  
Default Value = 00h  
7
WSS_7  
0
6
WSS_6  
0
5
WSS_5  
0
4
WSS_4  
0
3
WSS_3  
0
2
WSS_2  
0
1
WSS_1  
0
0
WSS_0  
0
Bit Number  
Bit Name  
Default  
Bit  
7
Mnemonic  
WSS_7  
WSS_6  
WSS_5  
WSS_4  
WSS_3  
WSS_2  
WSS_1  
WSS_0  
Function  
PAL: don’t care, NTSC: bit 8  
PAL: don’t care, NTSC: bit 7  
PAL: don’t care, NTSC: bit 6  
PAL: don’t care, NTSC: bit 5  
PAL: don’t care, NTSC: bit 4  
PAL: don’t care, NTSC: bit 3  
PAL: don’t care, NTSC: bit 2  
PAL: don’t care, NTSC: bit 1  
6
5
4
3
2
1
0
Filter Register 0  
Address  
0×22  
CB_AMP  
Read/Write  
Default Value = 80h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
U_AMP  
1
0
0
0
0
0
0
0
Bit  
Mnemonic  
U_AMP  
Function  
7:0  
U(Cb) amplitude coefficient  
44  
DS278PP4  
CS4954 CS4955  
Filter Register 1  
Address  
0×23  
CR_AMP  
Read/Write  
Default Value = 80h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
V_AMP  
1
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
7:0  
V_AMP  
V(Cr) amplitude coefficient  
Filter Register 2  
Address  
0×24  
Y_AMP  
Read/Write  
Default Value = 80h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
Y_AMP  
1
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
7:0  
Y_AMP  
Luma amplitude coefficient  
Filter Register 3  
Address  
0×25  
R_AMP  
Read/Write  
Default Value = 80h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
R_AMP  
1
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
7:0  
R_AMP  
Red amplitude coefficient  
Filter Register 4  
Address  
0×26  
G_AMP  
Read/Write  
Default Value = 80h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
G_AMP  
1
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
7:0  
G_AMP  
Green amplitude coefficient  
DS278PP4  
45  
CS4954 CS4955  
Filter Register 5  
Address  
0×27  
B_AMP  
Read/Write  
Default Value = 80h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
B_AMP  
1
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
7:0  
B_AMP  
Blue amplitude coefficient  
Filter Register 6  
Address  
0×28  
Bright_Offsett Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
BRIGHTNESS_OFFSET  
0
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
7:0  
BRGHT_OFFSET Brightness adjustment ( range: -128 to +127)  
Teletext Register 0  
Address  
0×29  
TTXHS  
Read/Write  
Default Value = A1h  
7
6
5
4
3
2
1
0
Bit Number  
Bit Name  
Default  
TTXHS  
1
0
1
0
0
0
0
1
Bit  
Mnemonic  
Function  
Start of teletext request pulses or start of window  
7:0  
TTXHS  
Teletext Register 1  
Address  
0×2A  
TTXHD  
Read/Write  
Default Value = 02h  
7
6
5
4
3
2
1
0
Bit Number  
Bit Name  
Default  
TTXHD  
0
0
0
0
0
0
1
0
Bit  
Mnemonic  
Function  
If TTX_WINDOW = 0 then this register is used as the Pipeline delay between  
TTXRQ and TTXDAT signal in the teletext source. User programmable delay step  
of 37 ns per LSB.  
7:0  
TTXHD  
If TTX_WINDOW = 1 then this register is used as the 8 LSBs of the teletext insertion  
windows; the 3 MSBs are located in register 0×31. (register 0×31 bit 3)  
46  
DS278PP4  
CS4954 CS4955  
Teletext Register 2  
Address  
0×2B  
TTXOVS  
Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
TTXOVS  
0
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
Start of teletext line window in odd field  
7:0  
TTXOVS  
Teletext Register 3  
Address  
0×2C  
TTXOVE  
Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
TTXOVE  
0
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
End of teletext line window in odd field  
7:0  
TTXOVE  
Teletext Register 4  
Address  
0×2D  
TTXEVS  
Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
TTXEVS  
0
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
Start of teletext line window in even field  
7:0  
TTXEVS  
Teletext Register 5  
Address  
0×2E  
TTXEVE  
Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
TTXEVE  
0
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
End of teletext line window in even field  
7:0  
TTXEVE  
DS278PP4  
47  
CS4954 CS4955  
Teletext Register 6  
Address  
0×2F  
TTX_DIS1  
Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
TTX_LINE_DIS1  
0
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
Teletext disable bits corresponding to the lines 5-12 respectively, (11111111=all  
eight lines are disabled),  
7:0  
TTX_LINE_DIS1  
(MSB is for line 5, LSB is for line 12)  
Teletext Register 7  
Address  
0×30  
TTX_DIS2  
Read/Write  
Default Value = 00h  
7
6
5
4
3
2
1
0
Bit Number  
Bit Name  
Default  
TTX_LINE_DIS2  
0
0
0
0
0
0
0
0
Bit  
Mnemonic  
Function  
Teletext disable bits corresponding to the lines 13-20 respectively, (11111111=all  
eight lines are disablled,  
7:0  
TTX_LINE_DIS2  
(MSB is for line 13, LSB is for line 20)  
Teletext Register 8  
Address  
0×31  
TTX_DIS3  
Read/Write  
Default Value = 00h  
7
6
TTXHD  
0
5
4
3
2
1
0
Bit Number  
Bit Name  
Default  
RESERVED TTX_WINDOW  
TTX_LINE_DIS3  
0
0
0
0
0
0
0
Bit  
Mnemonic  
TTXHD  
Function  
If TTX_WINDOW = 0 these 3 bits are unused.  
If TTX_WINDOW = 1 these 3 bits are the MSBs of the register 0×2A; they are used  
to specify the length of the teletext insertion window  
7:5  
4
3
Reserved  
TTX_WINDOW Selects between TTXRQ (= 0) pulsation or TTXRQ (= 1) Window mode  
Teletext disable bits corresponding to the lines 13-20 respectively, (111=all three  
lines are disabled),  
2:0  
TTX_LINE_DIS3  
(MSB is for line 21, LSB is for line 23)  
48  
DS278PP4  
CS4954 CS4955  
Interrupt Register 0  
Address  
0×32  
INT_EN  
Read/Write  
Default Value = 00h  
7
6
5
4
3
2
1
0
INT_V_EN  
0
Bit Number  
Bit Name  
Default  
RESERVED  
0
INT_21_EN INT_284_EN  
0
0
0
0
0
0
Bit  
7:3  
2
Mnemonic  
-
Function  
reserved  
INT_21_EN  
INT_284_EN  
INT_V_EN  
interrupt enable for closed caption line 21  
interrupt enable for closed caption line 284  
interrupt enable for new video field  
1
0
Interrupt Register 1  
Address  
0×33  
INT_CLR  
Read/Write  
Default Value = 00h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
RESERVED  
0
CLR_INT_21  
0
CLR_INT_284  
0
CLR_INT_V  
0
0
0
0
0
Bit  
7:3  
2
Mnemonic  
Function  
-
reserved  
CLR_INT_21  
CLR_INT_284  
CLR_INT_V  
clear interrupt for closed caption line 21 (INT 21)  
clear interrupt for closed caption line 284 (INT_284)  
clear interrupt for new video field (INT_V)  
1
0
Status Register 0  
Address  
0×34  
STATUS_0  
Read Only  
Default Value = 00h  
5
4
3
INT_V  
0
2:0  
FLD  
0
Bit Number  
Bit Name  
Default  
INT_21  
0
INT_284  
0
Bit  
5
Mnemonic  
INT_21  
Function  
Interrupt flag for line 21 (closed caption) complete  
Interrupt flag for line 284 (closed caption) complete  
Interrupt flag for video field change  
4
INT_284  
INT_V  
3
2:0  
FLD_ST  
Field Status bits(001 = field 1,000 = field 8)  
Status Register 1  
Address  
0×5A  
STATUS_1  
Read only  
Default Value = 04h  
Bit Number  
Bit Name  
Default  
7
6
5
4
3
2
1
0
DEVICE_ID  
0
0
0
0
0
1
0
0
Bit  
Mnemonic  
Function  
7:0  
DEVICE_ID  
Device identification: CS4954: 0000 0100, CS4955: 0000 0101  
DS278PP4  
49  
CS4954 CS4955  
Place all decoupling caps as close as possible the  
the device as possible. Surface mount capacitors  
generally have lower inductance than radial lead or  
axial lead components. Surface mount caps should  
be place on the component side of the PCB to min-  
imize inductance caused by board vias. Any vias,  
especially to ground, should be as large as possible  
to reduce their inductive effects.  
9. BOARD DESIGN AND LAYOUT  
CONSIDERATIONS  
The printed circuit layout should be optimized for  
lowest noise on the CS4954/5 placed as close to the  
output connectors as possible. All analog supply  
traces should be as short as possible to minimize in-  
ductive ringing.  
A well designed power distribution network is es-  
sential in eliminating digital switching noise. The  
ground planes must provide a low-impedance re-  
turn path for the digital circuits. A PC board with a  
minimun of four layers is recommended. The  
ground layer should be used as a shield to isolate  
noise from the analog traces. The top layer (1)  
should be reserved for analog traces but digital  
traces can share this layer if the digital signals have  
low edge rates and switch little current or if they are  
separated from the analog traces by a signigicant  
distance (dependent on their frequency content and  
current). The second layer should then be the  
ground plane followed by the analog power plane  
on layer three and the digital signal layer on layer  
four.  
9.3. Digital Interconnect  
The digital inputs and outputs of the CS4954/5  
should be isolated from the analog outputs as much  
as possible. Use separate signal layers whenever  
possible and do not route digital signals over the  
analog power and ground planes.  
Noise from the digital section is related to the digi-  
tal edge rates used. Ringing, overshoot, under-  
shoot, and ground bounce are all related to edge  
rate. Use lower speed logic such as HCMOS for the  
host port interface to reduce switching noise. For  
the video input ports, higher speed logic is re-  
quired, but use the slowest practical edge rate to re-  
duce noise. To reduce noise, it is important to  
match the source impedance, line impedance, and  
load impedance as much as possible. Generally, if  
the line length is greater than one fourth the signal  
edge rate, line termination is necessary. Ringing  
can also be reduced by damping the line with a se-  
ries resistor (22-150 ). Under extreme cases, it  
may be advisable to use microstrip techniques to  
further reduce radiated switching noise if very fast  
edge rates (<2ns) are used. If microstrip techniques  
are used, split the analog and digital ground planes  
and use proper RF decoupling techniques.  
9.1. Power and Ground Planes  
The power and ground planes need isolation gaps  
of at least 0.05" to minimize digital switching noise  
effects on the analog signals and components. A  
split analog/digital ground plane should be con-  
nected at one point as close as possible to the  
CS4954/5.  
9.2. Power Supply Decoupling  
Start by reducing power supply ripple and wiring  
harness inductance by placing a large (33-100 uF)  
capacitor as close to the power entry point as pos-  
sible. Use separate power planes or traces for the  
digital and analog sections even if they use the  
same supply. If necessary, further isolate the digital  
and analog power supplies by using ferrite beads on  
each supply branch followed by a low ESR capac-  
itor.  
9.4. Analog Interconnect  
The CS4954/5 should be located as close as possi-  
ble the output connectors to minimize noise pickup  
and reflections due to impedance mismatch. All un-  
used analog outputs should be placed in shutdown.  
This reduces the total power that the CS4954/5 re-  
quires, and eliminates the impedance mismatch  
50  
DS278PP4  
CS4954 CS4955  
presented by an unused connector. The analog out- idea to use output filters that are AC coupled to  
puts should not overlay the analog power plane to avoid any problems.  
maximize high frequency power supply rejection.  
9.6. ESD Protection  
9.5. Analog Output Protection  
All MOS devices are sensitive to Electro Static  
To minimize the possibility of damage to the ana- Discharge (ESD). When manipulating these devic-  
log output sections, make sure that all video con- es, proper ESD precautions are recommended to  
nectors are well grounded. The connector should  
avoid performance degradation or permanent dra-  
have a good DC ground path to the analog and dig- mage.  
ital power supply grounds. If no DC (and low fre-  
9.7. External DAC Output Filter  
quency) path is present, improperly grounded  
equipment can impose damaging reverse currents  
on the video out lines. Therefore, it is also a good  
If an output filter is required, the low pass filter  
shown in Figure 30 can be used.  
2.2µH  
IN  
OUT  
C
2
C
1
330pF  
220pF  
Figure 30. External Low Pass Filter  
C2 should be chosen so that C1 = C2 + Ccable  
DS278PP4  
51  
 
CS4954 CS4955  
L1  
Ferrite Bead  
Vcc  
4.7 µF  
0.1 µF  
17  
36 41 46  
15  
VDD  
VAA  
XTALIN  
14  
16  
NC  
VREF  
XTALOUT  
PADDR  
38  
39  
RED  
75 or  
300 Ω  
30  
31  
TTXDAT  
40  
43  
GREEN  
BLUE  
TTXRQ  
PDAT[7:0]  
RD  
75 or  
300 Ω  
26-19  
27  
28  
to SCART  
Connector  
Gpio port  
Vcc  
75or  
300 Ω  
WR  
44  
48  
Video  
1.5 kΩ  
Composite  
Connector  
1.5 kΩ  
110  
CVBS  
Y
CS4954  
CS4955  
32  
75 or 300 Ω  
75 or 300 Ω  
SDA  
SCL  
I2C  
Controller  
33  
110  
S-Video  
Connector  
29  
8
27 MHz Clock  
Pixel Data  
CLK  
47  
C
V[7:0]  
8-1  
9
75 or 300 Ω  
/CB  
FIELD  
12  
34  
37  
10  
11  
13  
INT  
RESET  
ISET  
HSYNC/CB  
VSYNC  
TEST  
GNDD  
GNDA  
34 42 45  
4 k±1%  
18  
Figure 31. Typical Connection Diagram  
52  
DS278PP4  
CS4954 CS4955  
10. PIN DESCRIPTION  
B
CVBS  
GNDA  
VAA  
GNDA  
VAA  
G
R
C
VREF  
ISET  
Y
V0  
VAA  
48 47 46 45 44 43 42 41 40 39 38 37  
V1  
GNDA  
RESET  
SCL  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
V2  
3
V3  
4
V4  
SDA  
5
CS4954-CQ  
CS4955-CQ  
48-Pin TQFP  
Top View  
V5  
6
TTXRQ  
TTXDAT  
CLKIN  
WR  
7
V6  
8
V7  
9
FIELD /CB  
HSYNC/CB  
VSYNC  
INT  
10  
11  
12  
RD  
PDAT0  
PDAT1  
PDAT2  
PDAT3  
PDAT4  
PDAT5  
PDAT6  
PDAT7  
13 14 15 16 17 18 19 20 21 22 23 24  
TEST  
XTAL_OUT  
XTAL_IN  
PADR  
VDD  
GNDD  
DS278PP4  
53  
CS4954 CS4955  
Pin Name  
V [7:0]  
Pin Number  
Type  
IN  
Description  
Digital video data inputs  
8, 7, 6, 5, 4, 3, 2, 1  
CLK  
29  
16  
15  
14  
10  
IN  
27 MHz input clock  
PADDR  
IN  
Address enable line  
subcarrier crystal input  
subcarrier crystal output  
XTAL_IN  
XTAL_OUT  
IN  
OUT  
I/O  
Active low horizontal sync, or composite blank signal  
HSYNC/CB  
VSYNC  
11  
9
I/O  
OUT  
IN  
Active low vertical sync.  
FIELD/CB  
Video field ID. Selectable polarity or composite blank  
Host parallel port read strobe, active low  
27  
RD  
28  
IN  
Host parallel port write strobe, active low  
WR  
PDAT [7:0]  
19, 20, 21, 22, 23, 24, 25, 26  
I/O  
I/O  
IN  
Host parallel port/ general purpose I/O  
I2C data  
SDA  
SCL  
CVBS  
Y
32  
33  
44  
48  
47  
39  
40  
43  
38  
I2C clock input  
CURRENT Composite video output  
CURRENT Luminance analog output  
CURRENT Chrominance analog output  
CURRENT Red analog output  
C
R
G
CURRENT Green analog output  
CURRENT Blue analog output  
B
VREF  
I/O  
Internal voltage reference output or external refer-  
ence input  
CURRENT DAC current set  
ISET  
37  
30  
31  
12  
34  
TTXDAT  
TTXRQ  
INT  
IN  
OUT  
OUT  
IN  
Teletext data input  
Teletext request output  
Interrupt output, active high  
Active low master RESET  
RESET  
TEST  
VAA  
13  
36, 41, 46  
18  
IN  
TEST pin. Ground for normal operation  
+ 5 V or + 3.3 V supply (must be same as VDD)  
Ground  
PS  
PS  
PS  
PS  
GNDD  
VDD  
17  
+5 V or 3.3 V supply (must be same as VAA)  
Ground  
GNDA  
35, 42, 45  
Table 10. Device Pin Descriptions  
54  
DS278PP4  
CS4954 CS4955  
11. PACKAGE DRAWING  
48L TQFP PACKAGE DRAWING  
E
E1  
D1  
D
1
e
B
A
A1  
L
INCHES  
MILLIMETERS  
MIN  
DIM  
A
A1  
B
D
D1  
E
E1  
e*  
L
MIN  
---  
MAX  
MAX  
1.60  
0.15  
0.27  
9.30  
7.10  
9.30  
7.10  
0.60  
0.75  
7.00°  
0.063  
0.006  
0.011  
0.366  
0.280  
0.366  
0.280  
0.024  
0.030  
7.000°  
---  
0.002  
0.007  
0.343  
0.272  
0.343  
0.272  
0.016  
0.018  
0.000°  
0.05  
0.17  
8.70  
6.90  
8.70  
6.90  
0.40  
0.45  
0.00°  
* Nominal pin pitch is 0.50 mm  
Controlling dimension is mm.  
JEDEC Designation: MS026  
DS278PP4  
55  

相关型号:

CS4954-CQ

NTSC/PAL Digital Video Encoder
CIRRUS

CS4954-CQZ

NTSC/PAL Digital Video Encoder
CIRRUS

CS4954_06

NTSC/PAL Digital Video Encoder
CIRRUS

CS4955

NTSC/PAL Digital Video Encoder
CIRRUS

CS4955-CQ

NTSC/PAL Digital Video Encoder
CIRRUS

CS4955-CQZ

NTSC/PAL Digital Video Encoder
CIRRUS

CS496102

New Audio System Processors are Ideal for Digital Audio Networking Applications
CIRRUS

CS496102-CQZ

Digital Audio Networking Processor
CIRRUS

CS496102-CQZ/A1

Digital Audio Networking Processor
CIRRUS

CS496112

New Audio System Processors are Ideal for Digital Audio Networking Applications
CIRRUS

CS496112-CQZ

Digital Audio Networking Processor
CIRRUS

CS496112-CQZ/A1

Digital Audio Networking Processor
CIRRUS