CS5343_07 [CIRRUS]

98 dB, 96 kHz, Multi-Bit Audio A/D Converter; 98分贝, 96千赫,多比特音频A / D转换器
CS5343_07
型号: CS5343_07
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

98 dB, 96 kHz, Multi-Bit Audio A/D Converter
98分贝, 96千赫,多比特音频A / D转换器

转换器
文件: 总21页 (文件大小:331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS5343/4  
98 dB, 96 kHz, Multi-Bit Audio A/D Converter  
Features  
General Description  
 Advanced Multi-Bit ΔΣ Architecture  
 24-bit Conversion  
The CS5343/4 is a complete analog-to-digital converter  
for digital audio systems. It performs sampling, analog-  
to-digital conversion, and anti-alias filtering, generating  
24-bit values for both left and right inputs in serial form  
at sample rates up to 108 kHz per channel.  
 Supports Audio Sample Rates Up to 108 kHz  
 98 dB Dynamic Range at 5 V  
The CS5343/4 uses a 3rd-order, multi-bit Delta-Sigma  
modulator followed by a digital filter, which removes the  
need for an external anti-alias filter.  
 -92 dB THD+N at 5 V  
 Low-Latency Digital Filter  
The CS5343/4 also features a high-impedance sam-  
pling network which eliminates costly external  
components such as op-amps.  
 High-Pass Filter to Remove DC Offsets  
 Single +3.3 V or +5 V Power Supply  
 Power Consumption < 40 mW at 3.3 V  
 Master or Slave Operation  
The CS5343/4 is available in a 10-pin TSSOP package  
for both Commercial (-40° to +85° C) and Automotive  
grades (-40° to +105° C). The CDB5343 Customer  
Demonstration Board is also available for device evalu-  
ation and implementation suggestions. Please refer to  
the “Ordering Information” on page 21 for complete  
details.  
 Slave Mode Speed Auto-Detect  
 Master Mode Default Settings  
 256x or 384x MCLK/LRCK Ratio  
 CS5343 Supports I²S Audio Format  
 CS5344 Supports Left-Justified Audio Format  
The CS5343/4 is ideal for audio systems requiring wide  
dynamic range, negligible distortion and low noise, such  
as set-top boxes, DVD-karaoke players, DVD record-  
ers, A/V receivers, and automotive applications.  
VA  
3.3 V to 5 V  
High-Z  
Sampling  
Network  
Single-Ended  
Analog Input  
Low-Latency  
Digital Filters  
Master  
Clock  
Auto-detect  
MCLK Divider  
AINL  
High-Pass  
Filter  
FILT+  
VQ  
Internal  
Reference  
Voltages  
SCLK  
LRCK  
Slave Mode  
Auto-detect  
High-Z  
Sampling  
Network  
Single-Ended  
Analog Input  
Low-Latency  
Digital Filters  
AINR  
SDOUT  
High-Pass  
Filter  
Copyright © Cirrus Logic, Inc. 2007  
MARCH '07  
DS687F1  
(All Rights Reserved)  
http://www.cirrus.com  
CS5343/4  
TABLE OF CONTENTS  
1. PIN DESCRIPTIONS .............................................................................................................................. 4  
2. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 5  
RECOMMENDED OPERATING CONDITIONS ..................................................................................... 5  
ABSOLUTE MAXIMUM RATINGS ......................................................................................................... 5  
ANALOG CHARACTERISTICS - COMMERCIAL GRADE (-CZZ) ......................................................... 6  
ANALOG CHARACTERISTICS - AUTOMOTIVE GRADE (-DZZ) ......................................................... 7  
DIGITAL FILTER CHARACTERISTICS ................................................................................................ 8  
DC ELECTRICAL CHARACTERISTICS ................................................................................................ 8  
DIGITAL CHARACTERISTICS ............................................................................................................... 9  
SYSTEM CLOCKING AND SERIAL AUDIO INTERFACE ................................................................... 10  
3. TYPICAL CONNECTION DIAGRAM ................................................................................................... 12  
4. APPLICATIONS ................................................................................................................................... 13  
4.1 Operation as Clock Master or Slave ............................................................................................... 13  
4.1.1 Slave Mode Operation ........................................................................................................... 13  
4.1.2 Master Mode Operation ......................................................................................................... 14  
4.1.2.1 Master Mode Speed Selection ................................................................................... 14  
4.1.3 Master Clock ......................................................................................................................... 14  
4.2 Serial Audio Interface ..................................................................................................................... 15  
4.3 Digital Interface ............................................................................................................................... 15  
4.4 Analog Connections ....................................................................................................................... 15  
4.4.1 Component Values ................................................................................................................ 16  
4.5 Grounding and Power Supply Decoupling ...................................................................................... 16  
4.6 Synchronization of Multiple Devices ............................................................................................... 17  
5. FILTER PLOTS .................................................................................................................................... 17  
6. PARAMETER DEFINITIONS ................................................................................................................ 19  
7. PACKAGE DIMENSIONS .................................................................................................................... 20  
THERMAL CHARACTERISTICS .......................................................................................................... 20  
8. ORDERING INFORMATION ................................................................................................................ 21  
9. REVISION HISTORY ............................................................................................................................ 21  
LIST OF FIGURES  
Figure 1. CS5343 I²S Serial Audio Interface.............................................................................................. 11  
Figure 2. CS5344 Left-Justified Serial Audio Interface .............................................................................. 11  
Figure 3. Typical Connection Diagram....................................................................................................... 12  
Figure 4. CS5343 I²S Serial Audio Interface.............................................................................................. 15  
Figure 5. CS5344 Left-Justified Serial Audio Interface .............................................................................. 15  
Figure 6. CS5343/4 Analog Input Network................................................................................................. 15  
Figure 7. CS5343/4 Example Analog Input Network.................................................................................. 16  
Figure 8. Single-Speed Mode Stopband Rejection.................................................................................... 17  
Figure 9. Single-Speed Mode Transition Band .......................................................................................... 17  
Figure 10. Single-Speed Mode Transition Band (Detail)............................................................................ 17  
Figure 11. Single-Speed Mode Passband Ripple ...................................................................................... 17  
Figure 12. Double-Speed Mode Stopband Rejection................................................................................. 18  
Figure 13. Double-Speed Mode Transition Band....................................................................................... 18  
Figure 14. Double-Speed Mode Transition Band (Detail) .......................................................................... 18  
Figure 15. Double-Speed Mode Passband Ripple..................................................................................... 18  
2
DS687F1  
CS5343/4  
LIST OF TABLES  
Table 1. Master/Slave Mode Selection ...................................................................................................... 13  
Table 2. Speed Modes and the Associated Sample Rates (Fs) in Slave Mode......................................... 13  
Table 3. Speed Modes and the Associated Sample Rates (Fs) in Master Mode....................................... 14  
Table 4. Speed Mode Selection in Master Mode ....................................................................................... 14  
Table 5. Common MCLK Frequencies in Master and Slave Modes .......................................................... 14  
Table 6. Analog Input Design Parameters ................................................................................................. 16  
DS687F1  
3
CS5343/4  
1. PIN DESCRIPTIONS  
VA  
SDOUT  
SCLK  
LRCK  
MCLK  
FILT+  
10  
9
1
2
3
4
5
GND  
AINR  
8
VQ  
7
AINL  
6
Pin Name Pin #  
Pin Description  
Serial Audio Data Output (Output) - Output for two’s complement serial audio data. Also selects Master  
or Slave Mode; See Section 4.1 on page 13 for details.  
SDOUT  
SCLK  
1
2
3
Serial Clock (Input/Output) - Serial clock for the serial audio interface.  
Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the  
serial audio data line.  
LRCK  
MCLK  
FILT+  
4
5
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters.  
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.  
AINL  
AINR  
6
8
Analog Input (Input) - The full-scale analog input level is specified in the Analog Characteristics specifi-  
cation table.  
VQ  
7
9
Quiescent Voltage (Output) - Filter connection for the internal quiescent reference voltage.  
Ground (Input) - Ground reference. Must be connected to analog ground.  
GND  
VA  
10 Power (Input) - Positive power supply for the digital and analog sections.  
4
DS687F1  
CS5343/4  
2. CHARACTERISTICS AND SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
GND = 0 V, all voltages with respect to GND.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Power Supplies  
3.1  
4.75  
3.3  
5.0  
3.5  
5.25  
V
V
VA  
Ambient Operating Temperature  
Commercial (-CZZ)  
Automotive (-DZZ)  
TAC  
TAD  
-40  
-40  
-
-
85  
105  
°C  
°C  
ABSOLUTE MAXIMUM RATINGS  
GND = 0 V, all voltages with respect to GND. (Note 1)  
Parameter  
DC Power Supplies  
Symbol  
VA  
Min  
Max  
Unit  
V
-0.3  
-10  
-0.7  
-50  
-65  
+6.0  
+10  
Input Current  
(Note 2)  
(Note 3)  
Iin  
mA  
V
Input Voltage  
VIN  
VA+0.7  
+115  
+150  
Ambient Operating Temperature (Power Applied)  
Storage Temperature  
TA  
°C  
°C  
Tstg  
Notes:  
1. Operation beyond these limits may result in permanent damage to the device. Normal operation is not  
guaranteed at these extremes.  
2. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause  
SCR latch-up.  
3. The maximum over/under voltage is limited by the input current.  
DS687F1  
5
CS5343/4  
ANALOG CHARACTERISTICS - COMMERCIAL GRADE (-CZZ)  
Test conditions (unless otherwise specified): T = 25° C; Input test signal is a 997 Hz sine wave through recom-  
A
mended inputs as seen in Figure 6 on page 15; source impedance less than or equal to 2.5 kΩ; valid with FILT+  
and VQ components as shown in Figure 3 on page 12; measurement bandwidth is 10 Hz to 20 kHz; Fs = 48 kHz  
or 96 kHz.  
Dynamic Performance for Commercial Grade  
VA = 3.3 V  
Typ  
VA = 5.0 V  
Typ  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Dynamic Range  
A-weighted  
unweighted  
91  
88  
94  
91  
-
-
95  
92  
98  
95  
-
-
dB  
dB  
Total Harmonic Distortion + Noise  
(Note 4)  
-1 dB  
-
-
-
-89  
-71  
-31  
-86  
-
-
-
-
-
-92  
-75  
-35  
-89  
-
-
dB  
dB  
dB  
THD+N  
-20 dB  
-60 dB  
VA = 3.3 V and VA = 5.0 V  
Dynamic Performance for Commercial Grade  
Min  
Typ  
Max  
Unit  
Interchannel Isolation  
DC Accuracy  
-
90  
-
dB  
Interchannel Gain Mismatch  
Gain Error  
-
-3  
-
-
0.1  
+3  
-
dB  
%
-
Gain Drift  
100  
ppm/°C  
Analog Input Characteristics  
Full-scale Input Voltage  
Full-scale Input Voltage  
Input Impedance  
VA = 3.3 V nom  
VA = 5 V nom  
0.560*VA  
0.552*VA  
-
0.568*VA  
0.559*VA  
7.5  
0.575*VA  
0.567*VA  
-
Vpp  
Vpp  
MΩ  
Notes:  
4. Referred to the typical full-scale input voltage  
6
DS687F1  
CS5343/4  
ANALOG CHARACTERISTICS - AUTOMOTIVE GRADE (-DZZ)  
Test conditions (unless otherwise specified): T = -40° C to 85° C; Input test signal is a 997 Hz sine wave through  
A
recommended inputs as seen in Figure 6 on page 15; source impedance less than or equal to 2.5 kΩ; valid with  
FILT+ and VQ components as shown in Figure 3 on page 12; measurement bandwidth is 10 Hz to 20 kHz;  
Fs = 48 kHz or 96 kHz.  
Dynamic Performance for Automotive Grade  
VA = 3.1 to 3.5 V  
VA = 4.75 to 5.25 V  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Dynamic Range  
A-weighted  
unweighted  
86  
83  
94  
91  
-
-
90  
87  
98  
95  
-
-
dB  
dB  
Total Harmonic Distortion + Noise  
(Note 5)  
-1 dB  
-
-
-
-88  
-71  
-31  
-76  
-
-
-
-
-
-91  
-75  
-35  
-84  
-
-
dB  
dB  
dB  
THD+N  
-20 dB  
-60 dB  
VA = 3.1 V to 3.5 V and VA = 4.75 V to 5.25 V  
Dynamic Performance for Automotive Grade  
Min  
Typ  
Max  
Unit  
Interchannel Isolation  
DC Accuracy  
-
90  
-
dB  
Interchannel Gain Mismatch  
Gain Error  
-
-3  
-
-
0.1  
+3  
-
dB  
%
-
Gain Drift  
100  
ppm/°C  
Analog Input Characteristics  
Full-scale Input Voltage  
Full-scale Input Voltage  
Input Impedance  
VA = 3.1 V to 3.5 V  
0.523*VA  
0.543*VA  
-
0.567*VA  
0.560*VA  
7.5  
0.612*VA  
0.573*VA  
-
Vpp  
Vpp  
MΩ  
VA = 4.75 V to 5.25 V  
Notes:  
5. Referred to the typical full-scale input voltage  
DS687F1  
7
CS5343/4  
DIGITAL FILTER CHARACTERISTICS  
Parameter  
Symbol  
Min  
0
Typ  
Max  
Unit  
Fs  
Passband  
(-0.1 dB)  
-
-
-
-
0.489  
Passband Ripple  
Stopband  
-0.025  
0.560  
69  
0.025  
dB  
-
-
Fs  
Stopband Attenuation  
Single-Speed Mode  
dB  
Fs = 4 - 54 kHz  
Total Group Delay (Fs = Output Sample Rate)  
tgd  
-
-
-
12/Fs  
9/Fs  
-
-
s
s
Double-Speed Mode  
Fs = 86 - 108 kHz  
Total Group Delay (Fs = Output Sample Rate)  
High-Pass Filter Characteristics  
tgd  
Frequency Response  
-3.0 dB  
1
20  
-
-
Hz  
Hz  
-0.13 dB  
(Note 6)  
(Note 6)  
Phase Deviation  
Passband Ripple  
@ 20 Hz  
-
-
10  
-
-
Deg  
dB  
0
Notes:  
6. Response shown is for Fs equal to 48 kHz. Filter characteristics scale with Fs.  
DC ELECTRICAL CHARACTERISTICS  
GND = 0 V, all voltages with respect to 0 V. MCLK=12.288 MHz; Master Mode.  
VA = 3.3 V  
VA = 5.0 V  
Parameter  
Symbol Min Typ Max Min Typ  
Max Unit  
Power Supply Current  
Power Supply Current  
Power Consumption  
(Normal Operation)  
IA  
IA  
-
-
11  
10  
15  
-
-
-
12  
40  
17  
-
mA  
uA  
(Power-Down Mode) (Note 7)  
(Normal Operation)  
(Power-Down Mode) (Note 7)  
-
-
-
-
36  
<1  
50  
-
-
-
60  
<1  
85  
-
mW  
mW  
Parameter  
Symbol  
Min  
Typ  
65  
Max  
Unit  
PSRR  
-
-
dB  
Power Supply Rejection Ratio (1 kHz)  
(Note 8)  
VQ Nominal Voltage  
Output Impedance  
-
-
0.44xVA  
25  
-
-
V
kΩ  
Filt+ Nominal Voltage  
Output Impedance  
Maximum allowable DC current source/sink  
-
-
-
VA  
220  
2.5  
-
-
-
V
kΩ  
uA  
Notes:  
7. Device enters power-down mode when MCLK is held static.  
8. Valid with the recommended capacitor values on FILT+ and VQ as shown in the Typical Connection  
Diagram.  
8
DS687F1  
CS5343/4  
DIGITAL CHARACTERISTICS  
Parameter  
High-Level Input Voltage  
Symbol  
VIH  
Min  
60  
-
Typ  
Max  
Units  
%
(% of VA)  
(% of VA)  
-
-
-
Low-Level Input Voltage  
VIL  
30  
%
High-Level Output Voltage at Io = 500 μA  
(% of VA)  
(% of VA)  
VOH  
70  
-
-
%
VOL  
Iin  
-
-
-
15  
10  
%
Low-Level Output Voltage at Io =500 μA  
Input Leakage Current  
-10  
μA  
DS687F1  
9
CS5343/4  
SYSTEM CLOCKING AND SERIAL AUDIO INTERFACE  
Logic “0” = GND = 0 V; Logic “1” = VA, C = 20 pF.  
L
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Master Mode  
MCLK Period  
(Double-Speed, 384x Mode)  
(Double-Speed, 192x Mode)  
(Double-Speed, 256x Mode)  
(Double-Speed, 128x Mode)  
(Single-Speed, 768x Mode)  
(Single-Speed, 384x Mode)  
(Single-Speed, 512x Mode)  
(Single-Speed, 256x Mode)  
tclkw  
24  
48  
36  
72  
24  
48  
36  
72  
40  
-
-
30  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
%
-
45  
-
90  
-
325  
651  
488  
976  
60  
-
-
-
MCLK Duty Cycle  
50  
Output Sample Rate  
(Single-Speed)  
(Double-Speed)  
4
86  
-
-
54  
108  
kHz  
kHz  
Fs  
LRCK Duty Cycle  
-
50  
50  
-
-
-
%
%
SCLK Duty Cycle  
-
SDOUT valid before SCLK rising  
SDOUT valid after SCLK rising  
SCLK falling to LRCK edge  
Slave Mode  
tstp  
thld  
tslrd  
10  
40  
-20  
-
ns  
ns  
ns  
-
-
-
20  
MCLK Period  
(Double-Speed, 384x Mode)  
(Double-Speed, 192x Mode)  
(Double-Speed, 256x Mode)  
(Double-Speed, 128x Mode)  
(Single-Speed, 768x Mode)  
(Single-Speed, 384x Mode)  
(Single-Speed, 512x Mode)  
(Single-Speed, 256x Mode)  
tclkw  
24  
48  
36  
72  
24  
48  
36  
72  
40  
-
-
30  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
%
-
45  
-
90  
-
325  
651  
488  
976  
60  
-
-
-
MCLK Duty Cycle  
Input Sample Rate  
50  
(Single-Speed)  
(Double-Speed)  
4
86  
-
-
54  
108  
kHz  
kHz  
Fs  
LRCK Duty Cycle  
SCLK Period  
40  
50  
60  
-
%
tsclkw  
1
-
ns  
------------------  
64 × Fs  
SCLK Duty Cycle  
45  
10  
50  
-
55  
-
%
ns  
ns  
ns  
SDOUT valid before SCLK rising  
SDOUT valid after SCLK rising  
SCLK falling to LRCK edge  
tstp  
thld  
tslrd  
40  
-
-
-20  
-
20  
10  
DS687F1  
CS5343/4  
tslrd  
LRCK  
SCLK  
tsclkw  
SDOUT  
MSB  
MSB-1  
tstp  
thld  
Figure 1. CS5343 I²S Serial Audio Interface  
tslrd  
LRCK  
SCLK  
tsclkw  
SDOUT  
MSB  
MSB-1  
tstp  
thld  
Figure 2. CS5344 Left-Justified Serial Audio Interface  
DS687F1  
11  
CS5343/4  
3. TYPICAL CONNECTION DIAGRAM  
3.3 V to 5 V  
0.1 µF 1 µF  
VA or  
GND  
10  
VA  
VA  
5
FILT+  
CS5343/4  
1 µF 0.1 µF  
1 µF 0.1 µF  
9
7
GND  
VQ  
1
SDOUT  
2
Audio  
SCLK  
Processor/  
System  
3
LRCK  
6
AINL  
AINR  
Clocks  
Analog Input  
Conditioning  
4
MCLK  
See Figure 6 on  
page 15  
1
Pull-up to VA for Master Mode  
Pull-down to GND for Slave Mode  
8
2
Optional pull-up resistor for configur-  
ing clocks in Master Mode as  
described in the “Master Mode Speed  
Selection” section on page 14  
Figure 3. Typical Connection Diagram  
12  
DS687F1  
CS5343/4  
4. APPLICATIONS  
4.1  
Operation as Clock Master or Slave  
The CS5343/4 supports operation as either a clock master or slave. As a clock master, the left/right and  
serial clocks are synchronously generated on-chip and output on the LRCK and SCLK pins, respectively.  
As a clock slave, the LRCK and SCLK pins are always inputs and require external generation of the left/right  
and serial clocks. The selection of clock master or slave is made via a 10 kΩ pull-up resistor from SDOUT  
to VA for Master Mode selection or via a 10 kΩ pull-down resistor from SDOUT to GND for Slave Mode se-  
lection, as shown in Table 1.  
Mode  
Selection  
Master Mode  
Slave Mode  
10 kΩ pull-up resistor from SDOUT to VA  
10 kΩ pull-down resistor from SDOUT to GND  
Table 1. Master/Slave Mode Selection  
4.1.1  
Slave Mode Operation  
A unique feature of the CS5343/4 is the automatic selection of either Single- or Double-Speed Mode when  
acting as a clock slave. The auto-mode selection feature supports all standard audio sample rates from  
4 to 108 kHz. Please refer to Table 2 for supported sample rate ranges in Slave Mode.  
MCLK/LRCK  
Ratio  
SCLK/LRCK  
Ratio  
Speed Mode  
Input Sample Rate Range (kHz)  
256x  
512x  
384x  
768x  
128x  
256x  
192x  
384x  
64  
64  
4 - 54  
4 - 54  
Single-Speed Mode  
48, 64  
48, 64  
64  
4 - 54  
4 - 54  
86 - 108  
86 - 108  
86 - 108  
86 - 108  
64  
Double-Speed Mode  
48, 64  
48, 64  
Table 2. Speed Modes and the Associated Sample Rates (Fs) in Slave Mode  
DS687F1  
13  
CS5343/4  
4.1.2  
Master Mode Operation  
As clock Master, the CS5343/4 generates LRCK and SCLK synchronously on-chip. Table 3 shows the  
available sample rates and associated clock ratios in Master Mode.  
MCLK/LRCK  
Ratio  
SCLK/LRCK  
Ratio  
Speed Mode  
Input Sample Rate Range (kHz)  
256x  
512x  
384x  
768x  
128x  
256x  
192x  
384x  
64  
64  
64  
64  
64  
64  
64  
64  
4 - 54  
4 - 54  
Single-Speed Mode  
4 - 54  
4 - 54  
86 - 108  
86 - 108  
86 - 108  
86 - 108  
Double-Speed Mode  
Table 3. Speed Modes and the Associated Sample Rates (Fs) in Master Mode  
4.1.2.1 Master Mode Speed Selection  
During power-up in Master Mode, the LRCK and SCLK pins are inputs to configure speed mode and the  
output clock ratio. The LRCK pin is pulled low internally to select Single-Speed Mode by default, but Dou-  
ble-Speed Mode is accessed with a 10 kΩ pull-up resistor from LRCK to VA as shown in Table 4. Simi-  
larly, the SCLK pin is internally pulled-low by default to select a 256x/512x MCLK/LRCK ratio, but a  
MCLK/LRCK ratio of 348x/768x is accessed with a 10 kΩ pull-up resistor from SCLK to VA as shown in  
Table 4. Following the power-up routine, the LRCK and SCLK pins become clock outputs.  
Pin  
Resistor Option  
Clock Configuration  
Single-Speed Mode (default)  
Double-Speed Mode  
Internal Pull-Down to GND (100 kΩ)  
External Pull-Up to VA (10 kΩ)  
Internal Pull-Down to GND (100 kΩ)  
External Pull-Up to VA (10 kΩ)  
LRCK  
128x/256x/512x MCLK/LRCK (default)  
192x/384x/768x MCLK/LRCK  
SCLK  
Table 4. Speed Mode Selection in Master Mode  
4.1.3  
Master Clock  
The CS5343/4 requires a Master clock (MCLK) which runs the internal sampling circuits and digital filters.  
There is an internal automatic MCLK divider which is activated based on the input frequency of MCLK.  
This divider selection allows the high and low MCLK speeds in a given speed mode (i.e. 256x and 512x  
in SSM). Table 4 lists some common audio output sample rates and the required MCLK frequency.  
Master and Slave Mode  
MCLK(MHz)  
MCLK (MHz)  
Sample Rate (kHz)  
Speed Mode  
256x  
512x  
384x  
768x  
32  
44.1  
48  
SSM  
SSM  
SSM  
8.912  
11.289  
12.288  
16.384  
22.579  
24.576  
12.288  
16.934  
18.432  
24.576  
33.868  
36.864  
MCLK(MHz)  
MCLK (MHz)  
Sample Rate (kHz)  
Speed Mode  
128x  
11.289  
12.288  
256x  
22.579  
24.576  
192x  
384x  
88.2  
96  
DSM  
DSM  
16.934  
18.432  
33.868  
36.864  
Table 5. Common MCLK Frequencies in Master and Slave Modes  
14  
DS687F1  
CS5343/4  
4.2  
Serial Audio Interface  
The CS5343 output is serial data in I²S audio format and the CS5344 output is serial data in Left-Justified  
audio format. Figures 4 and 5 show the I²S and Left-Justified data relative to SCLK and LRCK. Additionally,  
Figures 1 and 2 display more information on the required timing for the serial audio interface format. For an  
overview of serial audio interface formats, please refer to Cirrus Application Note AN282.  
LRCK  
Left Channel  
Right Channel  
SCLK  
SDATA  
23 22  
9
8
7
6
5
4
3
2
1
0
23 22  
9
8
7
6
5
4
3
2
1
0
23 22  
Figure 4. CS5343 I²S Serial Audio Interface  
LRCK  
SCLK  
Left Channel  
Right Channel  
SDATA  
23 22  
9
8
7
6
5
4
3
2
1
0
23 22  
9
8
7
6
5
4
3
2
1
0
23 22  
Figure 5. CS5344 Left-Justified Serial Audio Interface  
4.3  
Digital Interface  
VA supplies power to both the analog and digital sections of the ADC, and also powers the serial port. Con-  
sequently, the digital interface logic level must equal VA to within the limits specified under “Digital Charac-  
teristics” on page 9.  
4.4  
Analog Connections  
The analog modulator samples the input signal at half of the internal master clock rate, or 6.144 MHz when  
MCLK = 12.288 MHz. The digital filter will reject signals within the stopband of the filter. However, there is  
no rejection for input signals which are multiples of the input sampling frequency (n × 6.144 MHz), where  
n=0,1,2,... Refer to Figure 6 which shows the recommended topology of the analog input network. The ex-  
ternal shunt capacitor and internal input impedance form a single-pole RC filter to provide the appropriate  
filtering of noise at the modulator sampling frequency. Additionally, the 180 pF capacitor acts as a charge  
source for the internal sampling circuits. Capacitors of NPO or other high-quality dielectric will produce the  
best results while capacitors with a large voltage coefficient (such as general-purpose ceramics) can de-  
grade signal linearity.  
CS5343/4  
1 µF  
R1  
Input  
AIN  
180pF  
C0G  
R2  
Figure 6. CS5343/4 Analog Input Network  
DS687F1  
15  
CS5343/4  
4.4.1  
Component Values  
Three parameters determine the values of resistors R1 and R2 as shown in Figure 6: source impedance,  
attenuation, and input impedance. Table 6 shows the design equation used to determine these values.  
Source Impedance: Source impedance is defined as the impedance as seen from the ADC looking  
back into the signal network. The ADC achieves optimal THD+N performance with a source imped-  
ance less than or equal to 2.5 kΩ.  
Attenuation: The required attenuation factor depends on the magnitude of the input signal. The full-  
scale input voltage is specified under “Analog Characteristics - Commercial Grade (-CZZ)” on page 6.  
The user should select values for R1 and R2 such that the magnitude of the incoming signal multiplied  
by the attenuation factor is less than or equal to the full-scale input voltage of the device.  
Input Impedance: Input impedance is the impedance from the signal source to the ADC analog input  
pins, including the ADC. Because the ADC’s input impedance (see the “Analog Characteristics - Com-  
mercial Grade (-CZZ)” table on page 6) is several orders of magnitude larger than the resistor values  
typically used for the input attenuator, its contribution can be neglected when calculating the input im-  
pedance. Table 6 shows the input parameters and the associated design equations for the input at-  
tenuator.  
(R1 × R2)  
Source Impedance  
------------------------  
R1 + R2  
(R2)  
Attenuation Factor  
Input Impedance  
------------------------  
(R1 + R2)  
(R1 + R2)  
Table 6. Analog Input Design Parameters  
Figure 7 illustrates an example configuration using two 4.99 kΩ resistors in place of R1 and R2. Based on  
the discussion above, this circuit provides an optimal interface for both the ADC and the signal source.  
First, consumer equipment frequently requires an input impedance of 10 kΩ, which the 4.99 kΩ resistors  
provide. Second, this circuit will attenuate a typical line level voltage, 2 Vrms, to the full-scale input of the  
ADC, 1 Vrms when VA = 5 V. Finally, at 2.5 kΩ, the source impedance optimizes analog performance of  
the ADC.  
CS5343/4  
4.99 kΩ  
4.99 kΩ  
1 µF  
Input  
AIN  
180pF  
C0G  
Figure 7. CS5343/4 Example Analog Input Network  
4.5  
Grounding and Power Supply Decoupling  
As with any high-resolution converter, designing with the CS5343/4 requires careful attention to power sup-  
ply and grounding arrangements if its potential performance is to be realized. Figure 3 shows the recom-  
mended power arrangements, with VA connected to a clean supply. Decoupling capacitors should be as  
near to the ADC as possible, with the low value ceramic capacitor being the nearest. All signals, especially  
clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted coupling into the mod-  
ulators. The FILT+ and VQ decoupling capacitors, particularly the 0.1 µF, must be positioned to minimize  
the electrical path from FILT+ to GND. The CDB5343 evaluation board demonstrates the optimum layout  
and power supply arrangements. To minimize digital noise, connect the ADC digital outputs only to CMOS  
inputs.  
16  
DS687F1  
CS5343/4  
4.6  
Synchronization of Multiple Devices  
In systems where multiple ADCs are required, care must be taken to achieve simultaneous sampling. To  
ensure synchronous sampling, the MCLK, SCLK, and LRCK signals must be the same for all of the CS5343  
and CS5344 devices in the system.  
5. FILTER PLOTS  
0
-10  
0
-10  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5 0.6  
0.7 0.8  
0.9  
1.0  
0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60  
Frequency (normalized to Fs)  
Frequency (normalized to Fs)  
Figure 8. Single-Speed Mode Stopband Rejection  
Figure 9. Single-Speed Mode Transition Band  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
0.46  
0.47  
0.48  
0.49  
0.50  
0.51  
0.52  
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
Frequency (normalized to Fs)  
Frequency (normalized to Fs)  
Figure 10. Single-Speed Mode Transition Band (Detail)  
Figure 11. Single-Speed Mode Passband Ripple  
DS687F1  
17  
CS5343/4  
0
-10  
0
-10  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5 0.6  
0.7 0.8  
0.9  
1.0  
0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60  
Frequency (normalized to Fs)  
Frequency (normalized to Fs)  
Figure 12. Double-Speed Mode Stopband Rejection  
Figure 13. Double-Speed Mode Transition Band  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
0.46  
0.47  
0.48  
0.49  
0.50  
0.51  
0.52  
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
Frequency (normalized to Fs)  
Frequency (normalized to Fs)  
Figure 14. Double-Speed Mode Transition Band (Detail)  
Figure 15. Double-Speed Mode Passband Ripple  
18  
DS687F1  
CS5343/4  
6. PARAMETER DEFINITIONS  
Dynamic Range  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified bandwidth made with  
a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full-scale. This  
technique ensures that the distortion components are below the noise level and do not affect the measure-  
ment. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991,  
and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels.  
Total Harmonic Distortion + Noise  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured  
at -1 and -20 dBFS as suggested in AES17-1991 Annex A.  
Frequency Response  
A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at  
1 kHz. Units in decibels.  
Interchannel Isolation  
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's  
output with no signal to the input under test and a full-scale signal applied to the other channel. Units in deci-  
bels.  
Interchannel Gain Mismatch  
The gain difference between left and right channels. Units in decibels.  
Gain Error  
The deviation from the nominal full-scale analog input for a full-scale digital output.  
Gain Drift  
The change in gain value with temperature. Units in ppm/°C.  
DS687F1  
19  
CS5343/4  
7. PACKAGE DIMENSIONS  
10LD TSSOP (3 mm BODY) PACKAGE DRAWING (Note 1)  
N
D
E11  
c
E
A2  
A
A1  
e
b
L
END VIEW  
SEATING  
PLANE  
L1  
SIDE VIEW  
1
2
3
TOP VIEW  
INCHES  
MILLIMETERS  
NOTE  
DIM  
A
MIN  
--  
NOM  
--  
MAX  
0.0433  
0.0059  
0.0374  
0.0118  
0.0091  
--  
MIN  
--  
NOM  
--  
MAX  
1.10  
0.15  
0.95  
0.30  
0.23  
--  
A1  
A2  
b
0
--  
0
--  
--  
0.0295  
--  
0.75  
0.15  
0.08  
--  
0.0059  
--  
--  
4, 5  
2
c
0.0031  
--  
--  
D
--  
0.1181 BSC  
0.1929 BSC  
0.1181 BSC  
0.0197 BSC  
0.0236  
3.00 BSC  
4.90 BSC  
3.00 BSC  
0.50 BSC  
0.60  
E
--  
--  
--  
--  
E1  
e
--  
--  
--  
--  
--  
3
--  
--  
--  
L
0.0157  
--  
0.0315  
--  
0.40  
--  
0.80  
--  
L1  
µ
0.0374 REF  
--  
0.95 REF  
--  
0°  
8°  
0°  
8°  
Controlling Dimension is Millimeters  
Notes:  
1. Reference document: JEDEC MO-187  
2. D does not include mold flash or protrusions, which is 0.15 mm max. per side.  
3. E1 does not include inter-lead flash or protrusions, which is 0.15 mm max per side.  
4. Dimension b does not include a total allowable dambar protrusion of 0.08 mm max.  
5. Exceptions to JEDEC dimension.  
THERMAL CHARACTERISTICS  
Parameter  
Allowable Junction Temperature  
Symbol  
Min  
Typ  
Max  
Unit  
TJ  
-
-
135  
°C  
Junction to Ambient Thermal Impedance  
(4-layer PCB)  
(2-layer PCB)  
θJA-4  
θJA-2  
-
-
100  
170  
-
-
°C/W  
°C/W  
20  
DS687F1  
CS5343/4  
8. ORDERING INFORMATION  
Product  
Description  
98 dB, Multi-Bit Audio  
A/D Converter,  
I²S Audio Format  
98 dB, Multi-Bit Audio  
A/D Converter,  
I²S Audio Format  
98 dB, Multi-Bit Audio  
A/D Converter,  
Package Pb-Free  
Grade  
Temp Range Container  
Order #  
CS5343-CZZ  
Rail  
CS5343  
10-TSSOP  
10-TSSOP  
10-TSSOP  
Yes  
Yes  
Yes  
Commercial -40° to +85° C  
Automotive -40° to +105° C  
Commercial -40° to +85° C  
Automotive -40° to +105° C  
Tape & Reel CS5343-CZZR  
Rail  
Tape & Reel CS5343-DZZR  
Rail CS5344-CZZ  
Tape & Reel CS5344-CZZR  
Rail CS5344-DZZ  
Tape & Reel CS5344-DZZR  
CDB5343  
CS5343-DZZ  
CS5343  
CS5344  
CS5344  
Left-Justified Audio Format  
98 dB, Multi-Bit Audio  
A/D Converter,  
10-TSSOP  
-
Yes  
No  
Left-Justified Audio Format  
CDB5343 CS5343 Evaluation Board  
-
-
-
9. REVISION HISTORY  
Release  
Changes  
Corrected MCLK timing specifications on page 10  
Corrected “Typical Connection Diagram” on page 12  
A4  
Corrected Table 3, “Speed Modes and the Associated Sample Rates (Fs) in Master Mode,” on page 14  
Updated “Recommended Operating Conditions” on page 5  
Updated specifications and limits for “Analog Characteristics - Commercial Grade (-CZZ)” on page 6  
Updated specifications and limits for “Analog Characteristics - Automotive Grade (-DZZ)” on page 7  
Corrected “Power Supply Current (Normal Operation)” on page 8  
Increased specification for Slave-Mode “SDOUT valid after SCLK rising” on page 10  
Corrected Section 4.1.2.1 on page 14  
F1  
Updated Section 4.1.3 on page 14  
Contacting Cirrus Logic Support  
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.  
To find one nearest you, go to www.cirrus.com.  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE-  
VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD  
TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE  
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED  
IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICA-  
TIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER  
AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH  
THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
DS687F1  
21  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY