CS5467_07 [CIRRUS]

Four-channel Power / Energy IC; 四通道功率/能量集成电路
CS5467_07
型号: CS5467_07
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

Four-channel Power / Energy IC
四通道功率/能量集成电路

文件: 总46页 (文件大小:712K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS5467  
Four-channel Power / Energy IC  
Features & Description  
Description  
• Energy Linearity: ±0.1% of Reading over 1000:1  
The CS5467 is a watt-hour meter on a chip. It  
measures line voltage and current and calcu-  
lates active, reactive, apparent power, energy,  
power factor, and RMS voltage and current.  
Dynamic Range  
• On-chip Functions:  
- Voltage and Current Measurement  
- Active, Reactive, and Apparent Power/Energy  
- RMS Voltage and Current Calculations  
- Current Fault and Voltage Sag Detection  
- Calibration  
An internal RMS voltage reference can be used  
if voltage measurement is disabled by  
tampering.  
- Phase Compensation  
Four ∆Σ analog-to-digital converters are used to  
measure two voltages and two currents. Option-  
ally, voltage2 channel can be used for  
temperature measurement.  
- Temperature Sensor  
- Energy Pulse Outputs  
• Meets Accuracy Spec for IEC, ANSI, & JIS  
• Low Power Consumption  
• Voltage Tamper Correction  
The CS5467 is designed to interface to a variety  
of voltage and current sensors.  
• Ground-referenced Inputs with Single Supply  
• On-chip 2.5 V Reference (25 ppm / °C typ.)  
• Power Supply Monitor Function  
Additional features include system-level calibra-  
tion, voltage sag and current fault detection,  
peak detection, phase compensation, and ener-  
gy pulse outputs.  
• Three-wire Serial Interface to Microcontroller or  
E2PROM  
• Power Supply Configurations  
GND: 0 V, VA+: +5 V, VD+: +3.3 V to +5 V  
ORDERING INFORMATION  
See Page 45.  
VA+  
RESET  
VD+  
IIN1+  
IIN1-  
4th Order ∆Σ  
Digital  
Filter  
HPF  
Option  
PGA  
x10  
Modulator  
MODE  
CS  
SDI  
VIN1+  
VIIN1-  
2nd Order ∆Σ  
Modulator  
SDO  
SCLK  
INT  
Digital  
Filter  
HPF  
Option  
Serial  
Interface  
Power  
Calculation  
Engine  
E1  
E2  
E3  
IIN2+  
IIN2-  
4th Order ∆Σ  
Modulator  
Digital  
Filter  
HPF  
Option  
E-to-F  
PGA  
VIN2+  
VIN2-  
2nd Order ∆Σ  
Modulator  
Digital  
Filter  
HPF  
Option  
Calibration  
x10  
x1  
VREFIN  
Temperature  
Sensor  
System  
Clock  
Clock  
Generator  
Power  
Monitor  
/K  
Voltage  
VREFOUT  
Reference  
PFMON  
XIN XOUT CPUCLK  
DGND  
AGND  
MAR ‘07  
DS714F1  
Copyright © Cirrus Logic, Inc. 2007  
http://www.cirrus.com  
(All Rights Reserved)  
CS5467  
TABLE OF CONTENTS  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2. Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Control Pins and Serial Data I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Analog Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Power Supply Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3. Characteristics & Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Analog Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Analog Inputs (All Inputs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Analog Inputs (Current Inputs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Analog Inputs (Voltage Inputs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Reference Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Reference Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Digital Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Master Clock Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Serial Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SDI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SDO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
E2PROM mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
E1, E2, and E3 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4. Signal Path Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.1 Analog-to-Digital Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.2 Decimation Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.3 Phase Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.4 DC Offset and Gain Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.5 High-pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.6 Low-Rate Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.7 RMS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.8 Power and Energy Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.9 Peak Voltage and Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.10 Power Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.1 Analog Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.1.1 Voltage1 & Voltage2 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.1.2 Current1 & Current2 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.1.3 Power Fail Monitor Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2
DS714F1  
CS5467  
5.1.4 Voltage Reference Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.1.5 Voltage Reference Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.1.6 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.2 Digital Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.2.1 Reset Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.2.2 CPU Clock Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.2.3 Interrupt Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.2.4 Energy Pulse Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.2.5 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6. Setting Up the CS5467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1 Clock Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.2 CPU Clock Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.3 Interrupt Pin Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.4 Current Input Gain Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.5 High-pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.6 Cycle Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.7 Energy Pulse Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.8 No Load Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.9 Energy Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.10 Energy Pulse Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.11 Voltage Sag/Current Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.12 Epsilon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.13 Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7. Using the CS5467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7.2 Power-down States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7.3 Voltage Tamper Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7.4 Command Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.5 Register Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.6 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
8. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.1 Page Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.2 Page 0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.3 Page 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
8.4 Page 2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.5 Page 5 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9. System Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9.1.1 Offset Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9.1.1.1 DC Offset Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9.1.1.2 AC Offset Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9.1.2 Gain Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
9.1.2.1 AC Gain Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
9.1.2.2 DC Gain Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
DS714F1  
3
CS5467  
9.1.3 Calibration Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
9.1.4 Temperature Sensor Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
9.1.4.1 Temperature Offset Calibration . . . . . . . . . . . . . . . . . . . . . . . 41  
9.1.4.2 Temperature Gain Calibration . . . . . . . . . . . . . . . . . . . . . . . . 41  
10. E2PROM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2
10.1 E PROM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2
10.2 E PROM Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2
10.3 Which E PROMs Can Be Used? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
11. Basic Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
12. Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
13. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
14. Environmental, Manufacturing, & Handling Information . . . . . . . . . . . . . . . . . 45  
15. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
LIST OF FIGURES  
Figure 1. CS5467 Read and Write Timing Diagrams ................................................................. 12  
Figure 2. Timing Diagram for E1, E2, and E3 .............................................................................. 13  
Figure 3. Signal Flow for V1, I1, P1, Q1 Measurements ............................................................ 14  
Figure 4. Signal Flow for V2, I2, P2, Q2 Measurements ............................................................ 14  
Figure 5. Low-rate Calculations.................................................................................................. 16  
Figure 6. Two-channel Power Summation.................................................................................. 16  
Figure 7. Oscillator Connections................................................................................................. 18  
Figure 8. Sag and Fault Detect................................................................................................... 22  
Figure 9. Fixed RMS Voltage Selection...................................................................................... 23  
Figure 10. Calibration Data Flow ................................................................................................ 40  
Figure 11. System Calibration of Offset...................................................................................... 40  
Figure 12. System Calibration of Gain........................................................................................ 41  
Figure 13. Typical Interface of E2PROM to CS5467 .................................................................. 42  
Figure 14. Typical Connection Diagram ..................................................................................... 43  
LIST OF TABLES  
Table 1. Interrupt Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 2. Current Input Gain Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 3. High-pass Filter Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 4. E2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 5. E3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 6. E1 / E2 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 7. E3 Pin with E1MODE enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4
DS714F1  
CS5467  
1. OVERVIEW  
The CS5467 is a CMOS power measurement integrated circuit utilizing four ∆Σ analog-to-digital convert-  
ers to measure two line voltages and two currents. Optionally, voltage2 channel can be used for temper-  
ature measurement. It calculates active, reactive, and apparent power as well as RMS and peak voltage  
and current. It handles other system-related functions, such as pulse output conversion, voltage sag, cur-  
rent fault, voltage zero crossing, line frequency, and voltage tamper correction.  
The CS5467 is optimized to interface to current transformers or shunt resistors for current measurement,  
and to resistive dividers or voltage transformers for voltage measurement. Two full-scale ranges are pro-  
vided on the current inputs to accommodate both types of current sensors. The CS5467’s four differential  
inputs have a common-mode input range from analog ground (AGND) to the positive analog supply  
(VA+).  
An additional analog input (PFMON) is provided to allow the application to determine when a power failure  
is in progress. By monitoring the unregulated power supply, the application can take any required action  
when a power loss occurs.  
An on-chip voltage reference (nominally 2.5 volts) is generated and provided at analog output, VREFOUT.  
This reference can be supplied to the chip by connecting it to the reference voltage input, VREFIN. Alter-  
natively, an external voltage reference can be supplied to the reference input.  
Three digital outputs (E1, E2, E3) provide a variety of output signals and, depending on the mode select-  
ed, provide energy pulses, power failure indication, or other choices.  
The CS5467 includes a three-wire serial host interface to an external microcontroller or serial E2PROM.  
Signals include serial data input (SDI), serial data output (SDO), serial clock (SCLK), and optionally a chip  
select (CS), which allows the CS5467 to share the SDO signal with other devices. A MODE input is used  
to control whether an E2PROM will be used instead of a host microcontroller.  
DS714F1  
5
CS5467  
2. PIN DESCRIPTION  
Crystal Out  
XOUT  
CPUCLK  
VD+  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
XIN  
SDI  
Crystal In  
CPU Clock Output  
Positive Digital Supply  
Digital Ground  
Serial Data Input  
Energy Output 2  
Energy Output 1  
Interrupt  
E2  
E1  
INT  
RESET  
E3  
PFMON  
IIN1+  
IIN1-  
VA+  
AGND  
IIN2+  
IIN2-  
DGND  
SCLK  
SDO  
Serial Clock  
Serial Data Ouput  
Chip Select  
Reset  
CS  
Energy Output 3  
Power Fail Monitor  
Differential Current Input  
Differential Current Input  
Positive Analog Supply  
Analog Ground  
Mode Select  
Differential Voltage Input  
Differential Voltage Input  
MODE  
VIN1+  
VIN1-  
9
10  
11  
12  
13  
14  
Voltage Reference Output VREFOUT  
Voltage Reference Input  
Differential Voltage Input  
Differential Voltage Input  
VREFIN  
VIN2+  
VIN2-  
Differential Current Input  
Differential Current Input  
Clock Generator  
Crystal Out  
Crystal In  
XOUT, XIN — Connect to an external quartz crystal. Alternatively, an external clock can be sup-  
plied to the XIN pin to provide the system clock for the device.  
1,28  
2
CPU Clock Output  
CPUCLK — Logic-level output from crystal oscillator. Can be used to clock an external CPU.  
Control Pins and Serial Data I/O  
SCLK — Clocks serial data from the SDI pin and to the SDO pin when CS is low. SCLK is a  
Schmitt-trigger input when MODE is low and a driven output when MODE is high.  
Serial Clock  
5
6
7
Serial Data Output  
Chip Select  
SDO — Serial data output. Data is clocked out by SCLK.  
CS — An input that enables the serial interface when MODE is low and a driven output when  
MODE is high.  
MODE — High selects external E2PROM, Low selects external microcontroller. MODE includes a  
weak internal pull-down and therefore selects microcontroller mode if not connected.  
Mode Select  
8
22, 25,  
26  
E3, E1, E2 — Primarily active-low energy pulse outputs. These can be programmed to output  
other conditions.  
Energy Output  
Reset  
23  
24  
27  
RESET — An active-low Schmitt-trigger input used to reset the chip.  
INT — Active-low output, indicates that an enabled condition has occurred.  
SDI — Serial data input. Data is clocked in by SCLK.  
Interrupt  
Serial Data Input  
Analog Inputs/Outputs  
9,10  
13, 14  
Differential Voltage Inputs  
VIN1+, VIN1-, VIN2+, VIN2- — Differential analog inputs for the voltage channels.  
20,19,  
16,15  
Differential Current Inputs  
Voltage Reference Output  
Voltage Reference Input  
IIN1+, IIN1-, IIN2+, IIN2- — Differential analog inputs for the current channels.  
11  
VREFOUT — The on-chip voltage reference output. Nominally 2.5 V, referenced to AGND.  
VREFIN — The voltage reference input. Can be connected to VREFOUT or external 2.5 V refer-  
ence.  
12  
Power Supply Connections  
Positive Digital Supply  
Digital Ground  
3
4
VD+ — The positive digital supply.  
DGND — Digital ground.  
Positive Analog Supply  
Analog Ground  
18  
17  
VA+ — The positive analog supply.  
AGND — Analog ground.  
PFMON — Used to monitor the unregulated power supply via a resistive divider. If the PFMON  
voltage drops below its low limit, the low-supply detect (LSD) bit is set in the Status register.  
Power Fail Monitor  
21  
6
DS714F1  
CS5467  
3. CHARACTERISTICS & SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
Parameter  
Positive Digital Power Supply  
Positive Analog Power Supply  
Voltage Reference  
Symbol  
VD+  
Min  
3.135  
4.75  
-
Typ  
5.0  
5.0  
2.5  
-
Max  
Unit  
V
5.25  
5.25  
-
VA+  
V
VREFIN  
V
Specified Temperature Range  
T
-40  
+85  
°C  
A
ANALOG CHARACTERISTICS  
• Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.  
• Typical characteristics and specifications are measured at nominal supply voltages and TA = 25 °C.  
• VA+ = VD+ = 5 V ±5%; AGND = DGND = 0 V; VREFIN = +2.5 V. All voltages with respect to 0 V.  
• DCLK = 4.096 MHz.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Accuracy  
Active Power  
(Note 1)  
All Gain Ranges  
Input Range 0.1% - 100%  
P
ACTIVE  
-
-
±0.1  
±0.2  
-
-
%
%
Reactive Power  
(Note 1 and 2)  
All Gain Ranges  
Input Range 0.1% - 100%  
Q
AVG  
Power Factor  
(Note 1 and 2)  
All Gain Ranges  
Input Range 1.0% - 100%  
PF  
-
-
±0.2  
±0.27  
-
-
%
%
Input Range 0.1% - 1.0%  
Current RMS  
(Note 1)  
All Gain Ranges  
Input Range 1.0% - 100%  
Input Range 0.1% - 1.0%  
%
%
%
I
-
-
±0.1  
±0.17  
-
-
RMS  
Voltage RMS  
(Note 1)  
All Gain Ranges  
Input Range 5% - 100%  
V
RMS  
-
±0.1  
-
%
Analog Inputs (All Inputs)  
Common Mode Rejection  
Common Mode + Signal  
(DC, 50, 60 Hz)  
CMRR  
80  
-
-
-
dB  
V
-0.25  
VA+  
Analog Inputs (Current Inputs)  
Differential Input Range  
[(IIN+) – (IIN-)]  
(Gain = 10)  
(Gain = 50)  
-
-
500  
100  
-
-
mV  
mV  
P-P  
P-P  
IIN  
Total Harmonic Distortion  
(Gain = 50)  
THD  
80  
-
94  
-115  
27  
-
-
-
-
-
dB  
Crosstalk from Voltage input at Full Scale  
Input Capacitance  
(50, 60 Hz)  
dB  
pF  
kΩ  
IC  
-
Effective Input Impedance  
Noise (Referred to Input)  
EII  
30  
(Gain = 10)  
(Gain = 50)  
-
-
-
-
22.5  
4.5  
µV  
rms  
rms  
N
I
µV  
Offset Drift (Without the High-pass Filter)  
Gain Error  
OD  
GE  
-
-
4.0  
-
µV/°C  
%
(Note 3)  
±0.4  
Notes: 1. Applies when the HPF option is enabled.  
2. Applies when the line frequency is equal to the product of the output word rate (OWR) and the value of  
Epsilon.  
DS714F1  
7
CS5467  
ANALOG CHARACTERISTICS (Continued)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
mV  
Analog Inputs (Voltage Inputs)  
Differential Input Range  
[(VIN+) – (VIN-)]  
VIN  
-
500  
-
P-P  
Total Harmonic Distortion  
Crosstalk from Current inputs at Full Scale  
Input Capacitance  
THD  
65  
-
75  
-70  
2.0  
-
-
dB  
dB  
(50, 60 Hz)  
-
All Gain Ranges  
IC  
-
-
-
pF  
Effective Input Impedance  
Noise (Referred to Input)  
EII  
2
-
MΩ  
N
-
140  
µV  
V
rms  
Offset Drift (Without the High-pass Filter)  
Gain Error  
OD  
GE  
-
-
16.0  
±3.0  
-
µV/°C  
%
(Note 3)  
Temperature  
Temperature Accuracy  
Power Supplies  
T
-
±5  
-
°C  
Power Supply Currents (Active State)  
IA+  
PSCA  
PSCD  
PSCD  
-
-
-
1.5  
3.5  
2.3  
-
-
-
mA  
mA  
mA  
ID+ (VA+ = VD+ = 5 V)  
I
D+ (VA+ = 5 V, VD+ = 3.3 V)  
Power Consumption  
(Note 4)  
Active State (VA+ = VD+ = 5 V)  
Active State (VA+ = 5 V, VD+ = 3.3 V)  
-
-
-
-
25  
15  
7
33  
20  
-
mW  
mW  
mW  
uW  
PC  
Stand-by State  
Sleep State  
10  
-
Power Supply Rejection Ratio (50, 60 Hz)  
(Note 5)  
Voltage  
Current (Gain = 50x)  
Current (Gain = 10x)  
48  
68  
60  
55  
75  
65  
-
-
-
dB  
dB  
dB  
PSRR  
PFMON Low-voltage Trigger Threshold  
(Note 6)  
PMLO  
PMHI  
2.3  
-
2.45  
2.55  
-
V
V
PFMON High-voltage Power-on Trip Point  
(Note 7)  
2.7  
Notes: 3. Applies before system calibration.  
4. All outputs unloaded. All inputs CMOS level.  
5. Measurement method for PSRR: VREFIN tied to VREFOUT, VA+ = VD+ = 5 V, a 150 mV  
(zero-to-peak) (60 Hz) sinewave is imposed onto the +5 V DC supply voltage at VA+ and VD+ pins. The  
“+” and “-” input pins of both input channels are shorted to AGND. The CS5467 is then commanded to  
continuous conversion acquisition mode, and digital output data is collected for the channel under test.  
The (zero-to-peak) value of the digital sinusoidal output signal is determined, and this value is converted  
into the (zero-to-peak) value of the sinusoidal voltage (measured in mV) that would need to be applied  
at the channel’s inputs, in order to cause the same digital sinusoidal output. This voltage is then defined  
as Veq. PSRR is (in dB):  
150  
Veq  
---------  
PSRR = 20 log  
6. When the voltage level on PFMON is sagging and LSD bit = 0, this is the voltage at which LSD is set to 1.  
7. If the LSD bit has been set to 1 (because PFMON voltage fell below PMLO), this is the voltage level on  
PFMON at which the LSD bit can be permanently reset back to 0.  
8
DS714F1  
CS5467  
VOLTAGE REFERENCE  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Reference Output  
Output Voltage  
VREFOUT  
+2.4  
-
+2.5  
25  
+2.6  
60  
V
Temperature Coefficient  
(Note 8) TC  
ppm/°C  
VREF  
Load Regulation  
(Note 9)  
V  
-
6
10  
mV  
R
Reference Input  
Input Voltage Range  
Input Capacitance  
Input CVF Current  
VREFIN  
+2.4  
+2.5  
4
+2.6  
V
-
-
-
-
pF  
nA  
100  
Notes: 8. The voltage at VREFOUT is measured across the temperature range. From these measurements the  
following formula is used to calculate the VREFOUT temperature coefficient.  
(
(
(
1.0 x 10 6  
(VREFOUTMAX - VREFOUTMIN)  
VREFOUTAVG  
1
TCVREF  
=
(
(
(
TAMAX - TAMIN  
9. Specified at maximum recommended output of 1 µA, source or sink.  
DS714F1  
9
CS5467  
DIGITAL CHARACTERISTICS  
• Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.  
• Typical characteristics and specifications are measured at nominal supply voltages and TA = 25 °C.  
• VA+ = VD+ = 5V ±5%; AGND = DGND = 0 V. All voltages with respect to 0 V.  
• DCLK = 4.096 MHz.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Master Clock Characteristics  
Master Clock Frequency  
Master Clock Duty Cycle  
CPUCLK Duty Cycle  
Internal Gate Oscillator (Note 11) DCLK  
(Note 12 and 13)  
2.5  
40  
40  
4.096  
20  
60  
60  
MHz  
%
-
-
%
Filter Characteristics  
Phase Compensation Range  
Input Sampling Rate  
(60 Hz, OWR = 4000 Hz)  
DCLK = MCLK/K  
(Both channels) OWR  
-3 dB  
-5.4  
-
+5.4  
°
Hz  
-
-
DCLK/8  
-
Digital Filter Output Word Rate  
High-pass Filter Corner Frequency  
DCLK/1024  
-
-
Hz  
-
0.5  
-
Hz  
Full-scale DC Calibration Range (Referred to Input) (Note 14) FSCR  
25  
100  
%FS  
µs  
Channel-to-channel Time-shift Error  
Input/Output Characteristics  
High-level Input Voltage  
(Note 15)  
1.0  
All Pins Except XIN and SCLK and RESET  
0.6 VD+  
(VD+) – 0.5  
0.8 VD+  
-
-
-
-
-
-
V
V
V
V
IH  
XIN  
SCLK and RESET  
Low-level Input Voltage (VD = 5 V)  
All Pins Except XIN and SCLK and RESET  
-
-
-
-
-
-
0.8  
1.5  
0.2 VD+  
V
V
V
V
V
IL  
IL  
XIN  
SCLK and RESET  
Low-level Input Voltage (VD = 3.3 V)  
All Pins Except XIN and SCLK and RESET  
-
-
-
-
-
-
0.48  
0.3  
0.2 VD+  
V
V
V
XIN  
SCLK and RESET  
High-level Output Voltage  
Low-level Output Voltage  
Iout = +5 mA  
V
(VD+) - 1.0  
-
-
V
OH  
Iout = -5 mA (VD = +5V)  
V
-
-
-
-
0.4  
0.4  
V
V
OL  
Iout = -2.5 mA (VD = +3.3V)  
Input Leakage Current  
3-state Leakage Current  
(Note 16)  
I
-
-
-
±1  
-
±10  
±10  
-
µA  
µA  
pF  
in  
I
OZ  
Digital Output Pin Capacitance  
C
5
out  
Notes: 10. All measurements performed under static conditions.  
11. If a crystal is used, XIN frequency must remain between 2.5 MHz - 5.0 MHz. If an external oscillator is  
used, XIN frequency range is 2.5 MHz - 20 MHz, but K must be set so that MCLK is between  
2.5 MHz - 5.0 MHz.  
12. If external MCLK is used, the duty cycle must be between 45% and 55% to maintain this specification.  
13. The frequency of CPUCLK is equal to MCLK.  
14. The minimum FSCR is limited by the maximum allowed gain register value. The maximum FSCR is  
limited by the full-scale signal applied to the input.  
15. Configuration register (Config) bits PC[6:0] are set to “0000000”.  
16. The MODE pin is pulled low by an internal resistor.  
10  
DS714F1  
CS5467  
SWITCHING CHARACTERISTICS  
• Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.  
• Typical characteristics and specifications are measured at nominal supply voltages and TA = 25 °C.  
• VA+ = 5 V ±5% VD+ = 3.3 V ±5% or 5 V ±5%; AGND = DGND = 0 V. All voltages with respect to 0 V.  
• Logic Levels: Logic 0 = 0 V, Logic 1 = VD+.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Rise Times  
(Note 17)  
t
-
-
-
50  
1.0  
-
µs  
ns  
rise  
Any Digital Output  
Any Digital Output  
Fall Times  
(Note 17)  
t
-
-
-
50  
1.0  
-
µs  
ns  
fall  
ost  
Start-up  
Oscillator Start-up Time  
XTAL = 4.096 MHz (Note 18)  
t
-
60  
-
ms  
Serial Port Timing  
Serial Clock Frequency  
Serial Clock  
SCLK  
-
-
2
MHz  
Pulse Width High  
Pulse Width Low  
t
t
200  
200  
-
-
-
-
ns  
ns  
1
2
SDI Timing  
CS Falling to SCLK Rising  
t
t
t
50  
50  
-
-
-
-
-
-
ns  
ns  
ns  
3
4
5
Data Set-up Time Prior to SCLK Rising  
Data Hold Time After SCLK Rising  
100  
SDO Timing  
CS Falling to SDO Driving  
t
t
t
-
-
-
20  
20  
20  
50  
50  
50  
ns  
ns  
ns  
6
7
8
SCLK Falling to New Data Bit (hold time)  
CS Rising to SDO Hi-Z  
2
E PROM mode Timing  
Serial Clock  
Pulse Width Low  
Pulse Width High  
t
8
8
DCLK  
DCLK  
9
t
10  
MODE setup time to RESET Rising  
RESET rising to CS falling  
CS falling to SCLK rising  
t
50  
48  
ns  
DCLK  
DCLK  
DCLK  
ns  
11  
12  
13  
14  
15  
16  
t
t
t
t
t
100  
8
SCLK falling to CS rising  
16  
CS rising to driving MODE low  
SDO setup time to SCLK rising  
50  
100  
ns  
Notes: 17. Specified using 10% and 90% points on waveform of interest. Output loaded with 50 pF.  
18. Oscillator start-up time varies with crystal parameters. This specification does not apply when using an  
external clock source.  
DS714F1  
11  
CS5467  
t3  
C S  
t1  
t2  
SC LK  
SD I  
t4  
t5  
Com m and Tim e 8 S C LK s  
High B yte  
M id B yte  
Low B yte  
SDI Write Timing (Not to Scale)  
CS  
t8  
High Byte  
Mid Byte  
Low Byte  
t6  
SDO  
SCLK  
SDI  
UNKNOW N  
t1  
t7  
t2  
Command Time 8 SCLKs  
SYNC0 or SYNC1  
Command  
SYNC0 or SYNC1  
Command  
SYNC0 or SYNC1  
Command  
SDO Read Timing (Not to Scale)  
t1 1  
t1 5  
M O D E  
(IN P U T )  
R E S E T  
(IN P U T )  
t1 4  
t1 2  
t7  
t1 3  
C S  
(O U T P U T )  
S C L K  
(O U T P U T )  
t1 0  
t1 6  
t9  
t4  
S D O  
(O U T P U T )  
t5  
L a s t 8  
B its  
S D I  
(IN P U T )  
D a ta fro m E E P R O M  
E2PROM mode Sequence Timing (Not to Scale)  
Figure 1. CS5467 Read and Write Timing Diagrams  
12  
DS714F1  
CS5467  
SWITCHING CHARACTERISTICS (Continued)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
E1, E2, and E3 Timing  
(Note 19 and 20)  
Period  
t
500  
244  
6
-
-
-
-
-
-
-
-
-
-
µs  
µs  
µs  
µs  
µs  
period  
Pulse Width  
t
pw  
Rising Edge to Falling Edge  
E2 Setup to E1 and/or E3 Falling Edge  
E1 Falling Edge to E3 Falling Edge  
t
3
t
1.5  
248  
4
t
5
Notes: 19. Pulse output timing is specified at DCLK = 4.096 MHz, E2MODE = 0, and E3MODE[1:0] = 0. Refer to  
6.7 Energy Pulse Outputs on page 20 for more information on pulse output pins.  
20. Timing is proportional to the frequency of DCLK.  
tperiod  
t3  
tpw  
E1  
t4  
E2  
E3  
tperiod  
t3  
t5  
t4  
tpw  
t5  
Figure 2. Timing Diagram for E1, E2, and E3  
ABSOLUTE MAXIMUM RATINGS  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DC Power Supplies  
(Notes 21 and 22)  
Positive Digital  
Positive Analog  
VD+  
VA+  
-0.3  
-0.3  
-
-
+6.0  
+6.0  
V
V
Input Current, Any Pin Except Supplies  
(Notes 23, 24, 25)  
I
-
-
-
-
±10  
100  
mA  
mA  
IN  
Output Current, Any Pin Except VREFOUT  
I
OUT  
Power Dissipation  
(Note 26)  
PD  
-
-
-
500  
mW  
V
Analog Input Voltage  
All Analog Pins  
V
V
- 0.3  
(VA+) + 0.3  
INA  
Digital Input Voltage  
All Digital Pins  
-0.3  
-40  
-65  
-
-
-
(VD+) + 0.3  
V
IND  
Ambient Operating Temperature  
Storage Temperature  
T
85  
°C  
°C  
A
T
150  
stg  
Notes: 21. VA+ and AGND must satisfy [(VA+) - (AGND)] + 6.0 V.  
22. VD+ and AGND must satisfy [(VD+) - (AGND)] + 6.0 V.  
23. Applies to all pins including continuous over-voltage conditions at the analog input pins.  
24. Transient current of up to 100 mA will not cause SCR latch-up.  
25. Maximum DC input current for a power supply pin is ±50 mA.  
26. Total power dissipation, including all input currents and output currents.  
DS714F1  
13  
CS5467  
V1  
V1  
GAIN  
OFF  
FGA  
1
VHPF1 IHPF1  
I1  
I1  
OFF  
GAIN  
Figure 3. Signal Flow for V1, I1, P1, Q1 Measurements  
4. SIGNAL PATH DESCRIPTION  
The data flow for voltage and current measurement and  
the other calculations are shown in Figures 3, 4, and 5.  
IIR “anti-sinc” filters, used to compensate for the ampli-  
tude roll-off of the decimation filters.  
4.1 Analog-to-Digital Converters  
4.3 Phase Compensation  
Voltage1 channel and voltage2/temperature channel  
use second-order delta-sigma modulators and the two  
current channels use fourth-order delta-sigma modula-  
tors to convert the analog inputs to single-bit digital data  
streams. The converters sample at a rate of DCLK/8.  
This high sampling provides a wide dynamic range and  
simplifies anti-alias filter design.  
Phase compensation changes the phase of current rel-  
ative to voltage by changing the sampling time in the  
decimation filters. The amount of phase shift is set by  
bits PC[7:0] in the Configuration register (Config) for  
channel 1 and bits PC[7:0] in the Control register (Ctrl)  
for channel 2.  
Phase compensation, PC[7:0] is a signed two’s comple-  
ment binary value in the range of -1.0 to almost +1.0  
output word rate (OWR) samples. For a sample rate of  
4000 Hz, the delay range is ±250 uS, a phase shift of  
±4.5° at 50 Hz and ±5.4° at 60 Hz. The step size would  
be 0.0352° at 50 Hz and 0.0422° at 60 Hz at this sample  
rate.  
4.2 Decimation Filters  
The single-bit modulator output data is widened to 24  
bits and down-sampled to DCLK/1024 with low-pass  
decimation filters. These decimation filters are third-or-  
der Sinc. Their outputs are passed through third-order  
V2  
V2  
GAIN  
OFF  
V2  
V2Q  
Q2  
FGA  
2
VHPF2 IHPF2  
P2  
2
Control Register  
I2  
I2  
I2  
OFF  
GAIN  
Figure 4. Signal Flow for V2, I2, P2, Q2 Measurements  
14  
DS714F1  
CS5467  
of interest, but passes DC. For more information, see  
6.5 High-pass Filters on page 20. The HPF filter multi-  
plexers drive the I1, V1, I2, and V2 result registers.  
4.4 DC Offset and Gain Correction  
The system and chip inherently have gain and offset er-  
rors which can be removed using the gain and offset  
registers. (See Section 9. System Calibration on page  
40). Each measurement channel has its own registers.  
For every channel, the output of the IIR filter is added to  
the offset register and multiplied by the gain register.  
4.6 Low-Rate Calculations  
Low-rate results are derived from sample-rate results  
integrated over N samples, where N is the value stored  
in the Cycle Count register. The low-rate interval is the  
sample interval multiplied by N.  
4.5 High-pass Filters  
Optional high-pass filters (HPF in Figures 3 and 4) re-  
move any DC from the selected signal paths. Subse-  
quently, DC will also be removed from power, and all  
low-rate results. (see Figures 5).  
4.7 RMS Results  
The root mean square (RMS in Figure 5) calculations  
are performed on N instantaneous voltage and current  
samples, using the formula:  
Each energy channel has a current and voltage path. If  
an HPF is enabled in only one path, a phase-matching  
filter (PMF) is applied to the other path which matches  
the amplitude and phase delay of the HPF in the band  
N 1  
2
n
I
I
=
RMS  
n = 0  
--------------------  
N
DS714F1  
15  
CS5467  
V1ACOFF  
(V2ACOFF  
)
P1  
OFF(P2OFF  
)
I1ACOFF  
(I2ACOFF  
)
Figure 5. Low-rate Calculations  
4.8 Power and Energy Results  
The instantaneous voltage and current samples are  
multiplied to obtain the instantaneous power (P1, P2)  
(see Figure 3 and 4). The product is then averaged over  
QWB  
=
S2 PA2ctive  
Quadrature power (Q1, Q2) are sample rate results ob-  
tained by multiplying instantaneous current (I1, I2) by in-  
stantaneous quadrature voltage (V1Q, V2Q) which are  
created by phase shifting instantaneous voltage (V1,  
V2) 90 degrees using first-order integrators. (See Fig-  
ure 3 and 4). The gain of these integrators is inversely  
related to line frequency, so their gain is corrected by  
the Epsilon register, which is based on line frequency.  
N conversions to compute active power (P1  
,
AVG  
P2  
).  
AVG  
Apparent power (S1, S2) is the product of RMS voltage  
and current as shown:  
S = VRMS × IRMS  
Power factor (PF1, PF2) is active power divided by ap-  
parent power as shown below. The sign of the power  
factor is determined by the active power.  
Reactive power (Q1 , Q2  
grating the instantaneous quadrature power over N  
samples.  
) is generated by inte-  
AvG  
Avg  
PActive  
Active power (P1  
and reactive power (Q1  
, P2  
), apparent power (S1, S2),  
------------------  
PF =  
AVG  
AVG  
S
, Q2  
) of the two channels  
AVG  
AVG  
are summed up and then divided by 2. The calculation  
results are placed in E , S , and Q reg-  
isters which can be configured to drive energy pulse  
outputs. (See Figure 6.)  
Wideband reactive power (Q1 , Q2 ) is calculated  
by doing a vector subtraction of active power from ap-  
parent power.  
WB  
WB  
PULSE  
PULSE  
PULSE  
OVF=  
EACCM  
P1AVG  
÷2  
÷2  
÷2  
EPULSE  
+
+
+
×
×
×
+
+
+
P2AVG  
S1  
OVF=  
SACCM  
SPULSE  
S2  
OVF=  
QACCM  
Q1AVG  
Q2AVG  
QPULSE  
( E1, E2, E3 )  
PulseRate  
Figure 6. Two-channel Power Summation  
16  
DS714F1  
CS5467  
chip’s power supply, or from inductance from a nearby  
transformer.  
4.9 Peak Voltage and Current  
Peak current (I1  
, I2  
) and peak voltage  
PEAK  
PEAK  
These offsets can be either positive or negative, indicat-  
ing crosstalk coupling either in phase or out of phase  
with the applied voltage input. The power offset regis-  
ters can compensate for either condition.  
(V1  
, V2  
) are the largest current and voltage  
PEAK  
PEAK  
samples detected in the previous low-rate interval.  
4.10 Power Offset  
The power offset registers, P1  
(P2  
) can be used  
OFF  
OFF  
To use this feature, measure the average power at no  
load using either Single or Continuous Conversion com-  
to offset erroneous power sources resident in the sys-  
tem not originating from the power line. Residual power  
offsets are usually caused by crosstalk into current  
paths from voltage paths or from ripple on the meter or  
mands. Take the measured result (from the P1  
AVG  
(P2  
) register), invert (negate) the value and write it  
AVG  
to the associated power offset register, P1  
(P2  
).  
OFF  
OFF  
DS714F1  
17  
CS5467  
5. PIN DESCRIPTIONS  
5.1 Analog Pins  
5.1.6 Crystal Oscillator  
The CS5467 has four differential inputs: VIN1± ± VIN2± ±  
IIN1± , and IIN2± are the voltage1, voltage2, current1,  
and current2 inputs, respectively. A single-ended power  
fail monitor input, voltage reference input, and voltage  
reference output are also available.  
An external quartz crystal can be connected to the XIN  
and XOUT pins as shown in Figure 7. To reduce system  
cost, each pin is supplied with an on-chip, phase-shift-  
ing capacitor to ground.  
.
5.1.1 Voltage1 & Voltage2 Inputs  
XOUT  
The output of the line voltage resistive divider or trans-  
former is connected to the VIN1+ (VIN2+) and VIN1-  
(VIN2-) input pins of the CS5467. The voltage channel  
is equipped with a 10x, fixed-gain amplifier. The  
full-scale signal level that can be applied to the voltage  
channel is ±250 mV. If the input signal is a sine wave,  
C1  
Oscillator  
Circuit  
XIN  
C2  
the  
maximum  
RMS  
voltage  
is  
250 mVp / 2 176.78 mVRMS which is approximate-  
DGND  
ly 70.7% of maximum peak voltage.  
C1 = C2 = 22 pF  
5.1.2 Current1 & Current2 Inputs  
The output of the current-sensing resistor or transform-  
er is connected to the IIN1+ (IIN2+) and IIN1- (IIN2-) in-  
put pins of the CS5467. To accommodate different  
current-sensing elements, the current channel incorpo-  
rates a programmable gain amplifier (PGA) with two se-  
lectable input gains. The full-scale signal level for the  
current channels is ±50 mV or ±250 mV. If the input sig-  
nal is a sine wave, the maximum RMS voltage is  
35.35 mVRMS or 176.78 mVRMS which is approxi-  
mately 70.7% of maximum peak voltage.  
Figure 7. Oscillator Connections  
Alternatively, an external clock source can be connect-  
ed to the XIN pin.  
5.2 Digital Pins  
5.2.1 Reset Input  
The active-low RESET pin, when asserted, will halt all  
CS5467 operations and reset internal hardware regis-  
ters and states. When de-asserted, an initialization se-  
quence begins, setting default register values.  
5.1.3 Power Fail Monitor Input  
An analog input (PFMON) is provided to determine  
when a power loss is imminent. By connecting a resis-  
tive divider from the unregulated meter power supply to  
the PFMON input, an interrupt can be generated, or the  
Low Supply Detected (LSD) Status register bit can be  
monitored to indicate low-supply conditions. The  
PFMON input has a comparator that trips around the  
level of the voltage reference input (VREFIN).  
5.2.2 CPU Clock Output  
A logic-level clock output (CPUCLK) is provided at the  
crystal frequency to drive an external CPU or microcon-  
troller clock. Two phase choices are available.  
5.2.3 Interrupt Output  
The INT pin indicates an enabled Internal Status regis-  
ter (Status) bit is set. Status register bits indicate condi-  
tions such as data ready, modulator oscillations, low  
supply, voltage sag, current faults, numerical overflows,  
and result updates.  
5.1.4 Voltage Reference Input  
The CS5467 requires a stable voltage reference of  
2.5 V applied to the VREFIN pin. This reference can be  
supplied from an external voltage reference or from the  
VREFOUT output. A bypass capacitor of at least 0.1 µF  
is recommended at the VREFIN pin.  
5.2.4 Energy Pulse Outputs  
The CS5467 provides three pins (E1, E2, E3) for pulse  
energy outputs. These pins can also be used to output  
other conditions, such as voltage1 sign, power fail mon-  
itor, or energy sign.  
5.1.5 Voltage Reference Output  
The CS5467 generates a 2.5 V reference (VREFOUT).  
It is suitable for driving the VREFIN pin, but has very lit-  
tle fan-out capacity and is not recommended for driving  
external circuits.  
18  
DS714F1  
CS5467  
for host microcontrollers, and a driven output for serial  
E PROMs.  
5.2.5 Serial Interface  
2
The CS5467 provides 5 pins, SCLK, SDI, SDO, CS, and  
MODE for communication between a host microcontrol-  
SDI is the serial data input to the CS5467.  
2
ler or serial E PROM and the CS5467.  
SDO is the serial data output from the CS5467. It’s out-  
put drivers are disabled whenever CS is de-asserted, al-  
lowing other devices to drive the SDO line.  
MODE is an input that, when high, indicates to the  
2
CS5467 that a serial E PROM is being used instead of  
a host microcontroller. It has a weak pull-down allowing  
it to be left unconnected if microcontroller mode is used.  
CS is the chip select input for the serial bus. A high logic  
level de-asserts it, tri-stating the SDO pin and clearing  
the serial interface. A low logic level enables the serial  
port. This pin may be tied low for systems not requiring  
multiple SDO drivers. CS is a driven output when inter-  
SCLK is used to shift and qualify serial data. Serial data  
changes as a result of the falling edge of SCLK and is  
valid during the rising edge. It is a Schmitt-trigger input  
2
facing to serial E PROMs.  
DS714F1  
19  
CS5467  
6. SETTING UP THE CS5467  
6.1 Clock Divider  
The internal clock to the CS5467 needs to operate  
around 4 MHz. However, by using the internal clock di-  
vider, a higher crystal frequency can be used. This is im-  
portant when driving an external microcontroller  
requiring a faster clock and using the CPUCLK output.  
path within a channel, a phase matching filter (PMF) is  
applied to the other path within that channel. The PMF  
filter matches the amplitude and phase response of the  
HPF in the band of interest, but passes DC.  
VHPF  
IHPF  
Filter Configuration  
0
0
1
1
0
1
0
1
No filter on Voltage or Current  
HPF on Current, PMF on Voltage  
HPF on Voltage, PMF on Current  
HPF on Current and Voltage  
K is the divide ratio from the crystal input to the internal  
clock and is selected with Configuration register (Con-  
fig) bits K[3:0]. It has a range of 1 to 16. A value of zero  
results in a setting of 16.  
Table 3. High-pass Filter Configuration  
6.2 CPU Clock Inversion  
6.6 Cycle Count  
By default, CPUCLK is inverted from XIN. Setting Con-  
figuration register bit iCPU removes this inversion. This  
can be useful when one phase adds more noise to the  
system than the other.  
Low-rate calculations, such as average power and RMS  
voltage and current integrate over several (N) output  
word rate (OWR) samples. The duration of this averag-  
ing window is set by the Cycle Count (N) register. By de-  
fault, Cycle Count is set to 4000 (1 second at output  
word rate [OWR] of 4000 Hz). The minimum value for  
Cycle Count is 10.  
6.3 Interrupt Pin Behavior  
The behavior of the INT pin is controlled by the IMODE  
and IINV bits in the Configuration register as shown.  
6.7 Energy Pulse Outputs  
IMODE  
IINV  
INT Pin  
By default, E1 outputs total active energy, E3, total re-  
active energy, and E2, the sign of both active and reac-  
tive energy. (See Figure 2. Timing Diagram for E1, E2,  
and E3 on page 13.)  
0
0
Active-low Level  
0
1
1
1
0
1
Active-high Level  
Low Pulse  
Three pairs of bits in the Mode Control (Modes) register  
control the operation of these outputs. These bits are  
named  
E1MODE[1:0],  
E2MODE[1:0],  
and  
High Pulse  
E3MODE[1:0]. Some combinations of these bits over-  
ride others, so read the following paragraphs carefully.  
Table 1. Interrupt Configuration  
The E2 pin can output energy sign, or total apparent en-  
ergy. Table 4 lists the functions of E2 as controlled by  
E2MODE[1:0] in the Modes register.  
If IMODE = 1, the duration of the INT pulse will be two  
DCLK cycles, where DCLK = MCLK/K.  
6.4 Current Input Gain Ranges  
Control register bits I1gain (I2gain) select the input  
range of the current inputs.  
Note: E2MODE[1:0]=3 is a special mode.  
E2MODE1 E2MODE0  
E2 output  
Energy Sign  
0
0
1
1
0
1
0
1
I1gain, I2gain Maximum Input  
Gain  
Total Apparent Energy  
Not Used  
0
1
±250 mV  
±50 mV  
10x  
50x  
Enable E1MODE  
Table 2. Current Input Gain Ranges  
Table 4. E2 Pin Configuration  
6.5 High-pass Filters  
Mode Control (Modes) register bits VHPF and IHPF ac-  
tivate the HPF in the voltage and current paths, respec-  
tively. Each energy channel has separate VHPF and  
IHPF bits. When a high-pass filter is enabled in only one  
The E3 pin can output total reactive energy, power fail  
monitor status, voltage1 sign, or total apparent energy.  
Table 5 lists the functions of E3 as controlled by  
20  
DS714F1  
 
CS5467  
E3MODE[1:0] in the Modes register when E1MODE is  
not enabled.  
6.8 No Load Threshold  
The No Load Threshold register (Load ) is used to  
MIN  
zero out the contents of E  
their magnitude is less than the Load  
and Q  
registers if  
register value.  
PULSE  
PULSE  
E3MODE1 E3MODE0  
E3 output  
MIN  
0
0
1
1
0
1
0
1
Total Reactive Energy  
Power Fail Monitor  
Voltage1 Sign  
6.9 Energy Pulse Width  
Note: Energy Pulse Width (PulseWidth) only applies to  
E1, E2, or E3 pins that are configured to output pulses.  
When any are configured to output steady-state signals,  
such as voltage1 sign, power fail monitor, or energy  
sign, pulse widths and output rates do not apply.  
Total Apparent Energy  
Table 5. E3 Pin Configuration  
The pulse width time (t ) in Figure 2, is set by the value  
in the PulseWidth register which is an integer multiple of  
the sample or output word rate (OWR). At OWR of  
pw  
When both E2MODE bits are high, the E1MODE bits  
are enabled, allowing active, apparent, reactive, or wide  
band reactive energy for both energy channels to be  
output on E1 and E2. Table 6 lists the functions of E1  
and E2 with E1MODE enabled.  
4000 Hz (a period of 250 uS) t  
= PulseWidth x  
pw  
250 uS. By default, PulseWidth is set to 1.  
6.10 Energy Pulse Rate  
E1MODE1 E1MODE0  
E1 / E2 outputs  
Active Energy  
The full-scale pulse frequency of enabled E1, E2, E3  
pins is the value in PulseRate x output word rate  
(OWR)/2. The actual pulse frequency is the full-scale  
pulse frequency multiplied by the pulse register’s  
0
0
1
1
0
1
0
1
Apparent Energy  
Reactive Energy  
Wideband Reactive  
(E  
, S  
, or Q  
) value.  
PULSE  
PULSE  
PULSE  
Example:  
If the output word rate (OWR) is 4000 Hz, and the  
PulseRate register is set to 0.05, the full-rate pulse fre-  
Table 6. E1 / E2 Modes  
quency is 0.05 x 4000 / 2 = 100 Hz. If the E  
ter, driving E1, is 0.4567, the pulse output rate on E1 will  
be 100 Hz x 0.4567 = 45.67 Hz.  
regis-  
PULSE  
When E1MODE bits are enabled, the E3 pin outputs ei-  
ther the power fail monitor status, or the sign of the E1  
and E2 outputs. Table 7 list the functions of the E3 pin  
using E3MODE[1:0] in the Modes register when  
E1MODE is enabled .  
6.11 Voltage Sag/Current Fault Detection  
Voltage sag detection is used to determine when aver-  
aged voltage falls below a predetermined level for a  
specified interval of time. Current fault detection deter-  
mines when averaged current falls below a predeter-  
mined level for a specified interval of time.  
E3MODE1 E3MODE0  
E3 output  
Power Fail Monitor  
Energy Sign  
not used  
0
0
1
1
0
1
0
1
The specified interval of time (duration) is set by the val-  
ue in the V1Sag  
(V2Sag  
) and I1Fault  
DUR  
DUR DUR  
(I2Fault  
) registers. Setting any of these to zero (de-  
DUR  
not used  
fault) disables the detect feature for the given channel.  
The value is in output word rate (OWR) samples. The  
predetermined level is set by the values in the  
Table 7. E3 Pin with E1MODE enabled  
V1Sag  
(V2Sag  
)
and  
I1Fault  
LEVEL  
LEVEL  
LEVEL  
(I2Fault  
) registers.  
LEVEL  
DS714F1  
21  
CS5467  
For each enabled input channel, the measured value is  
rectified and compared to the associated level register.  
Over the duration window, the number of samples  
above and below the level are counted. If the number of  
samples below the level exceeds the number of sam-  
updated. The Voltage2 register (V2) will not update dur-  
ing the temperature measurement, but resume mea-  
surement afterwards.  
Temperature measurements are stored in the Temper-  
ature register (T) which, by default, is configured to a  
range of ±128 degrees on the Celsius (°C) scale.  
ples above, a Status register bit V1  
(V2  
),  
SAG  
SAG  
I1  
(I2  
) is set, indicating a sag or fault condi-  
FAULT  
FAULT  
The application program can change both the scale and  
range of Temperature (T) by changing the Temperature  
tion. (see Figure 8)..  
Gain (T  
) and Temperature Offset (T  
) registers.  
GAIN  
OFF  
Two values must be known — the transistor’s VBE per  
degree, and the transistor’s VBE at 0 degrees. At the  
time of this publication, these values are:  
VBE (per degree) = 0.2769523 mV/°C or °K  
V
0 = 79.2604368 mV at 0°C  
BE  
To determine the values to write to T  
and T  
, use  
OFF  
GAIN  
the following formulae:  
17  
T
T
= AD / VBE / T x 2  
GAIN  
OFF  
FS  
FS  
23  
= -V 0 / AD x 2  
BE  
FS  
Figure 8. Sag and Fault Detect  
In the above equations, AD  
is the full-scale input  
FS  
range of the temperature A/D converter or 833.333 mV  
and T is the desired full-scale range of the Tempera-  
ture (T) register. The binary exponents are the bit posi-  
tions of the binary point of these registers.  
FS  
6.12 Epsilon  
The Epsilon register is used to set the gain of the 90°  
phase shift used in the quadrature power calculation.  
To use the Celsius scale (°C) and cover the chip’s oper-  
ating temperature range of -40°C to +85°C, the Temper-  
The value in the Epsilon register is the ratio of the line  
frequency to the output word rate (OWR). It is, by de-  
fault, 50/4000 (0.0125), for 50 Hz line and 4000 Hz sam-  
ple (OWR) frequencies.  
ature register range needs to be ±128 degrees. T  
should be 128 degrees.  
FS  
T
= 833.333 / 0.2769523 / 128 x 131072  
= 3081155 (0x2F03C3)  
For 60 Hz line frequency, it is 60/4000 (0.015). Other  
output word rates (OWR) can be used.  
GAIN  
Epsilon can also be calculated automatically by the  
CS5467 by setting the AFC bit in the Mode Control  
(Modes) register. The Frequency Update bit (FUP) in  
the Status register is set every time the Epsilon register  
has been automatically updated.  
T
= -79.2604368 / 833.333 x 8388608  
= -797862 (0xF3D35A)  
OFF  
These are the actual default values for these registers.  
and T can also be used to calibrate the gain  
T
GAIN  
OFF  
and/or offset of the temperature sensor or A/D convert-  
er. (See Section 9. System Calibration on page 40).  
6.13 Temperature Measurement  
The on-chip temperature sensor is designed to mea-  
sure temperature and optionally compensate for tem-  
perature drift of the voltage reference. It uses the VBE of  
a transistor to determine temperature.  
To use the Kelvin (°K) scale, simply add 273 times VBE  
23  
/ AD x 2 to T  
since 0°C = 273°K,. You will also  
FS  
OFF  
need more range. Since -40°C to +85°C is 233°K to  
358°K, a T of 512 degrees should be used in the  
FS  
In the CS5467, voltage2 and temperature are multi-  
plexed on one ADC channel. To initiate a temperature  
measurement, write 1 to the Temperature Measure-  
T
calculation.  
GAIN  
To use the Fahrenheit (°F) scale, multiply VBE by 5/9  
23  
and add 32 times the new VBE / AD x 2 to T  
ment (T  
) register. T  
will go through counts 1,  
FS  
OFF  
MEAS  
MEAS  
since 0°C = 32°F. You will also want to use a T of 256  
2, 4, and back to 0. Wait for T  
to return to 0. When  
FS  
MEAS  
degrees to cover the -40°C to +85°C range.  
done, Temperature (T) is updated. The Status register  
bit TUP also indicates when the Temperature register is  
22  
DS714F1  
CS5467  
7. USING THE CS5467  
7.1 Initialization  
The CS5467 uses a power-on-reset circuit (POR) to  
provide an internal reset until the analog voltage reach-  
es 4.0 V. The RESET input pin can also be used by the  
application circuit to reset the part.  
to entering the stand-by state. When returning from  
sleep mode, a complete initialization occurs.  
7.3 Voltage Tamper Correction  
The CSS5467 provides compensation for meter tam-  
pering on voltage channels.  
After RESET is removed and the oscillator is stable, an  
initialization program is executed to set the default reg-  
ister values.  
If the application detects that the voltage input has been  
impaired it may choose to use the fixed internal RMS  
voltage reference by setting the VFIX bit in the Modes  
A Software Reset command is also provided to allow  
the application to run the initialization program without  
removing power or asserting RESET.  
register. The value of this reference (VF  
) is by de-  
RMS  
fault 0.707107 (full-scale RMS) but can be changed by  
the application program. (See figure 9)  
The application should avoid sending commands during  
initialization. The DRDY bit in the Status register indi-  
cates when the initialization program has completed.  
7.2 Power-down States  
The CS5467 has two power-down states, stand-by and  
sleep. In the stand-by state, all circuitry except the volt-  
age reference and crystal oscillator is powered off. In  
sleep state, all circuitry except the instruction decoder is  
powered off.  
To return the device to the active state, send a Wake-  
up/Halt command to the device. When returning from  
stand-by mode, registers will retain their contents prior  
Figure 9. Fixed RMS Voltage Selection  
DS714F1  
23  
CS5467  
Synchronizing commands are also used to synchronize  
the serial port to a byte boundary. The CS and RESET  
pins will also synchronize the serial port.  
7.4 Command Interface  
Commands and data are transferred most-significant bit  
(MSB) first. Figure 1 on page 12, defines the serial port  
timing. Commands are clocked in on SDI using SCLK.  
They are a single byte (8 bits) long and fall into one of  
four basic types:  
Register writes require three bytes of write data to fol-  
low, clocked in on the SDI pin, MSB first by SCLK.  
Instructions are commands that will interrupt any in-  
struction currently executing and begin the new instruc-  
tion. These include conversions, calibrations, power  
control, and soft reset.  
1. Register Read  
2. Register Write  
3. Synchronizing  
4. Instructions  
(See Section 7.6 Commands on page 25).  
7.5 Register Paging  
Register reads will cause up to four bytes of register  
data to be clocked out, MSB first on the SDO pin by  
SCLK. During this time, other commands can be  
clocked in on the SDI pin. Other commands will not in-  
terrupt read data, except another register read, which  
will cause the new read data to appear on SDO.  
Read and Write commands access one of 32 registers  
within a specified page. The Register Page Select reg-  
ister’s (Page) default value is 0. To access registers in  
another page, write the desired page number to the  
Page register. The Page register is always at address  
31 and is accessible from within any page.  
Synchronizing can be sent while read data is being  
clocked out if no other commands need to be sent.  
24  
DS714F1  
CS5467  
7.6 Commands  
All commands are 1 byte (8 bits) long. Many command values are unused and should NOT be written by the  
application program. All commands except register reads, register writes, or synchronizing commands will  
abort any conversion, calibration, or any initialization sequence currently executing. This includes reset. No  
commands other than reads or synchronizing should be executed until the reset sequence completes.  
7.6.1 Conversion  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
1
1
1
0
CC  
0
0
0
Executes a conversion (measurement) program.  
CC  
Continuous/Single Conversion  
0 = Perform a Single Conversion (0xE0)  
1 = Perform Continuous Conversion (0xE8)  
7.6.2 Synchronization (SYNC0 and SYNC1)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
1
1
1
1
1
1
1
SYNC  
The serial interface is bidirectional. While reading data on the SDO output, the SDI input must be receiving  
commands. If no command is needed during a read, SYNC0 or SYNC1 commands can be sent while read  
data is received on SDO.  
The serial port is normally initialized by de-asserting CS. An alternative method of initialization is to send 3 or  
more SYNC1 commands followed by a SYNC0. This is useful in systems where CS is not used and tied low.  
7.6.3 Power Control (Stand-by, Sleep, Wake-up/Halt and Software Reset)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
1
0
S1  
S0  
0
0
0
0
The CS5467 has two power-down states, stand-by and sleep. In stand-by, all circuitry except the voltage ref-  
erence and clocks are turned off. In sleep mode, all circuitry except the command decoder is turned off. A  
Wake-up/Halt command restores full-power operation after stand-by and issues a hardware reset after sleep.  
The Software Reset command is a program that emulates a pin reset and is not a power control function.  
S[1:0]  
00 = Software Reset  
01 = Sleep  
10 = Wake-up/Halt  
11 = Stand-by  
DS714F1  
25  
CS5467  
7.6.4 Calibration  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
1
0
CAL5 CAL4 CAL3 CAL2 CAL1 CAL0  
The CS5467 can perform gain and offset calibrations using either DC or AC signals. Proper input levels must  
be applied to the current inputs and voltage input before performing calibrations.  
CAL[5:4]*  
CAL[3:0]  
Note:  
00 = DC Offset  
01 = DC Gain  
10 = AC Offset  
11 = AC Gain  
0001 = Current for Channel 1  
0010 = Voltage for Channel 1  
0100 = Current for Channel 2  
1000 = Voltage for Channel 2  
Anywhere from 1 to all 4 channels can be calibrated simultaneously.  
26  
DS714F1  
CS5467  
7.6.5 Register Read and Write  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
W/R  
RA4  
RA3  
RA2  
RA1  
RA0  
0
Read and Write commands provide access to on-chip registers. After a Read command, the addressed data  
can be clocked out the SDO pin by SCLK. After a Write command, 24 bits of write data must follow. The data  
th  
is transferred to the addressed register after the 24 data bit is received. Registers are organized into pages  
of 32 addresses each. To access a desired page, write its number to the Page register at address 31.  
W/R  
Write/Read control  
0 = Read  
1 = Write  
RA[4:0]  
Register address.  
Page 0 Registers  
Address  
0
RA[4:0]  
Name  
Config  
I1  
V1  
P1  
Description  
Configuration  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
1
2
3
4
5
6
7
8
Instantaneous Current Channel 1  
Instantaneous Voltage Channel 1  
Instantaneous Power Channel 1  
Active Power Channel 1  
RMS Current Channel 1  
RMS Voltage Channel 1  
Instantaneous Current Channel 2  
Instantaneous Voltage Channel 2  
Instantaneous Power Channel 2  
Active Power Channel 2  
RMS Current Channel 2  
RMS Voltage Channel 2  
Reactive Power Channel 1  
Instantaneous Quadrature Power Channel 1  
Internal Status  
Reactive Power Channel 2  
Instantaneous Quadrature Power Channel 2  
Peak Current Channel 1  
Peak Voltage Channel 1  
Apparent Power Channel 1  
Power Factor Channel 1  
Peak Current Channel 2  
Peak Voltage Channel 2  
Apparent Power Channel 2  
Power Factor Channel 2  
Interrupt Mask  
P1  
AVG  
I1  
RMS  
V1  
I2  
RMS  
V2  
P2  
P2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31 R  
AVG  
RMS  
I2  
V2  
RMS  
Q1  
Q1  
AVG  
Status  
Q2  
Q2  
AVG  
I1  
PEAK  
V1  
S1  
PEAK  
PF1  
I2  
PEAK  
V2  
S2  
PEAK  
PF2  
Mask  
T
Temperature  
Control  
Active Energy Pulse Output  
Apparent Energy Pulse Output  
Reactive Energy Pulse Output  
Register Page Select  
Ctrl  
E
S
PULSE  
PULSE  
Q
PULSE  
31 W 11111  
Page  
Warning: Do not write to unpublished register locations.  
DS714F1  
27  
CS5467  
Page1 Registers  
Address  
0
RA[4:0]  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10011  
10100  
10101  
10110  
10111  
11001  
11010  
11011  
11100  
11101  
Name  
Description  
Current DC Offset Channel 1  
Current Gain Channel 1  
Voltage DC Offset Channel 1  
Voltage Gain Channel 1  
Power Offset Channel 1  
Current AC (RMS) Offset Channel 1  
Voltage AC (RMS) Offset Channel 1  
Current DC Offset Channel 2  
Current Gain Channel 2  
Voltage DC Offset Channel 2  
Voltage Gain Channel 2  
I1  
I1  
OFF  
1
2
3
4
5
6
7
8
GAIN  
V1  
V1  
P1  
OFF  
GAIN  
OFF  
I1  
ACOFF  
V1  
ACOFF  
OFF  
I2  
I2  
GAIN  
9
V2  
V2  
P2  
OFF  
GAIN  
OFF  
10  
11  
12  
13  
14  
15  
16  
17  
19  
20  
21  
22  
23  
25  
26  
27  
28  
29  
Power Offset Channel 2  
I2  
Current AC (RMS) Offset Channel 2  
Voltage AC (RMS) Offset Channel 2  
Pulse Output Width  
Pulse Output Rate (frequency)  
Mode Control  
ACOFF  
V2  
ACOFF  
PulseWidth  
PulseRate  
Modes  
Epsilon  
N
Ratio of Line to Sample Frequency  
Cycle Count (Number of OWR Samples in One Low-rate Interval)  
Wideband Reactive Power from Power Triangle Channel 1  
Wideband Reactive Power from Power Triangle Channel 2  
Temperature Sensor Gain  
Temperature Sensor Offset  
Filter Settling Time for Conversion Startup  
No Load Threshold  
Voltage RMS Fixed Reference  
System Gain  
System Time (in samples)  
Q1  
Q2  
WB  
WB  
T
T
T
GAIN  
OFF  
SETTLE  
Load  
MIN  
RMS  
VF  
G
Time  
31 W 11111  
Page  
Register Page Select  
Page2 Registers  
Address  
RA[4:0]  
00000  
00001  
00100  
00101  
01000  
01001  
01100  
01101  
Name  
V1Sag  
V1Sag  
I1Fault  
I1Fault  
V2Sag  
V2Sag  
I2Fault  
I2Fault  
Page  
Description  
0
1
4
5
8
9
12  
13  
V Sag Duration Channel 1  
V Sag Level Channel 1  
I Fault Duration Channel 1  
I Fault Level Channel 1  
V Sag Duration Channel 2  
V Sag Level Channel 2  
I Fault Duration Channel 2  
I Fault Level Channel 2  
Register Page Select  
DUR  
LEVEL  
DUR  
LEVEL  
DUR  
LEVEL  
DUR  
LEVEL  
31 W 11111  
Page5 Register  
Address  
26  
RA[4:0]  
11010  
Name  
Description  
Temperature Measurement  
Register Page Select  
T
MEAS  
31 W 11111  
Page  
Warning: Do not write to unpublished register locations.  
28  
DS714F1  
CS5467  
8. REGISTER DESCRIPTIONS  
1. “Default” = bit states after power-on or reset  
2. DO NOT write a “1” to any unpublished register bit.  
3. DO NOT write to any unpublished register address.  
8.1 Page Register  
8.1.1 Page Address: 31, Write-only, can be written from ANY page.  
MSB  
LSB  
26  
25  
24  
23  
22  
21  
20  
Default = 0  
Register Read and Write commands contain only 5 address bits. But the internal address bus of the CS5467  
is 12 bits wide. Therefore, registers are organized into “Pages”. There are 128 pages of 32 registers each.  
The Page register provides the 7 high-order address bits and selects one of the 128 register pages. Not all  
pages are used,  
Page is a write-only integer containing 7 bits.  
8.2 Page 0 Registers  
8.2.1 Configuration (Config) Address: 0  
23  
22  
21  
20  
19  
18  
17  
16  
PC7  
PC6  
PC5  
PC4  
PC3  
PC2  
PC1  
PC0  
15  
14  
13  
12  
11  
10  
9
8
EWA  
-
-
IMODE  
IINV  
-
-
-
7
6
5
4
3
2
1
0
-
-
-
iCPU  
K3  
K2  
K1  
K0  
Default = 1 (K=1)  
PC[7:0]  
Phase compensation for channel 1. Sets a delay in voltage, relative to current. Phase is  
signed and in the range of -1.0 value < 1.0 sample (OWR) intervals.  
EWA  
Allows the E1 and E2 pins to be configured as open-drain outputs.  
0 = Normal Outputs  
1 = Open-drain Outputs  
IMODE, IINV  
Interrupt configuration. Selects INT pin behavior.  
00 = Low Logic Level When Asserted  
01 = High Logic Level When Asserted  
10 = Low-going Pulse on New Interrupt  
11 = High-going Pulse on New Interrupt  
iCPU  
Inverts the CPUCLK output.  
0 = Default  
1 = Invert CPUCLK.  
K[3:0]  
Clock divider. Divides MCLK by K to generate internal clock DCLK. (DCLK = MCLK/K). K  
is unsigned and in the range of 1 to 16. When zero, K = 16. At reset, K = 1.  
DS714F1  
29  
CS5467  
8.2.2 Instantaneous Current (I1, I2), Voltage (V1, V2), and Power (P1, P2)  
Address: 1 (I1), 2 (V1), 3 (P2), 7 (I2), 8 (V2), 9 (P2)  
MSB  
-(20)  
LSB  
2-23  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
.....  
I1 (I2) and V1 (V2) contain instantaneous current and voltage, respectively, which are multiplied to yield instan-  
taneous power, P1 (P2). These are two's complement values in the range of -1.0 value < 1.0, with the binary  
point to the right of the MSB.  
8.2.3 Active Power (P1AVG , P2AVG  
)
Address: 4 (P1  
), 10 (P2  
)
AVG  
AVG  
MSB  
LSB  
-(20)  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
.....  
Instantaneous power is averaged over each low-rate interval (N samples) to compute active power, P1  
AVG  
(P2  
). These are two's complement values in the range of -1.0 value < 1.0, with the binary point to the  
AVG  
right of the MSB.  
8.2.4 RMS Current (I1RMS , I2RMS ) and Voltage (V1RMS , V2RMS  
)
Address: 5 (I1  
), 6 (V1  
), 11 (I2  
), 12 (V2  
)
RMS  
RMS  
RMS  
RMS  
MSB  
LSB  
2-1  
2-2  
2-3  
2-4  
) and V1  
2-5  
(V2  
2-6  
2-7  
2-8  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
2-24  
.....  
I1  
(I2  
) contain the root mean square (RMS) values of I1 (I2) and V1 (V2), calcu-  
RMS  
RMS  
RMS  
RMS  
lated each low-rate interval. These are unsigned values in the range of 0 value < 1.0, with the binary point  
to the left of the MSB.  
8.2.5 Instantaneous Quadrature Power (Q1, Q2)  
Address: 14 (Q1), 17 (Q2)  
MSB  
LSB  
-(20)  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
.....  
Instantaneous quadrature power, Q1 (Q2), the product of voltage1 (voltage2) shifted 90 degrees and current1  
(current2). These are two's complement values in the range of -1.0 value < 1.0, with the binary point to the  
right of the MSB.  
8.2.6 Reactive Power (Q1Avg , Q2AVG  
)
Address: 13 (Q1  
), 16 (Q2  
)
AVG  
AVG  
MSB  
LSB  
-(20)  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
.....  
Reactive power Q1  
(Q2  
) is Q1 (Q2) averaged over every N samples. These are two's complement  
AVG  
AVG  
values in the range of -1.0 value < 1.0, with the binary point to the right of the MSB.  
30  
DS714F1  
CS5467  
8.2.7 Peak Current (I1PEAK, I2PEAK ) and Peak Voltage (V1PEAK, V2PEAK  
)
Address: 18 (I1  
), 19 (V1  
), 22 (I2  
), 23 (V2  
PEAK  
)
PEAK  
PEAK  
PEAK  
MSB  
LSB  
-(20)  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
.....  
Peak current, I1  
(I2  
) and peak voltage, V1  
(V2  
) are the instantaneous current and voltage  
PEAK  
PEAK  
PEAK  
PEAK  
samples with the greatest magnitude detected during the last low-rate interval. These are two's complement  
values in the range of -1.0 value < 1.0, with the binary point to the right of the MSB.  
8.2.8 Apparent Power (S1, S2)  
Address: 20 (S1), 24 (S2)  
MSB  
LSB  
-(20)  
2-1  
Apparent power S1 (S2) is the product of V1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
(V2  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
.....  
and I1  
and I2 ), These are two's complement  
RMS  
RMS  
RMS  
RMS  
values in the range of 0 value < 1.0, with the binary point to the right of the MSB.  
8.2.9 Power Factor (PF1, PF2)  
Address: 21 (PF1), 25 (PF2)  
MSB  
LSB  
-(20)  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
.....  
Power factor is calculated by dividing active power by apparent power. The sign is determined by the active  
power sign. These are two's complement values in the range of -1.0 value < 1.0, with the binary point to the  
right of the MSB.  
8.2.10 Temperature (T) Address: 27  
MSB  
LSB  
-(27)  
26  
25  
24  
23  
22  
21  
20  
2-10  
2-11  
2-12  
2-13  
2-14  
2-15  
2-16  
.....  
T contains results from the on-chip temperature measurement. By default, T uses the Celsius scale, and is a  
two's complement value in the range of -128.0 value < 128.0 (oC), with the binary point to the right of bit 16.  
T can be rescaled by the application using the T  
and T  
registers.  
OFF  
GAIN  
8.2.11 Active, Apparent, and Reactive Energy Pulse Outputs (EPULSE , SPULSE , QPULSE  
)
Address: 29 (E  
), 30 (S  
), 31 (Q  
)
PULSE  
PULSE  
PULSE  
MSB  
LSB  
-(20)  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
.....  
These drive the pulse outputs when configured to do so. These are two's complement values in the range of  
-1.0 value < 1.0, with the binary point to the right of the MSB. Refer to 4.8 Power and Energy Results on  
page 16.  
DS714F1  
31  
CS5467  
8.2.12 Internal Status (Status) and Interrupt Mask (Mask)  
Address: 15 (Status); 26 (Mask)  
23  
22  
21  
20  
19  
18  
17  
16  
DRDY  
I2OR  
V2OR  
CRDY  
I2ROR  
V2ROR  
I1OR  
V1OR  
15  
14  
13  
12  
11  
10  
9
8
E2OR  
I1ROR  
V1ROR  
E1OR  
I1FAULT  
V1SAG  
I2FAULT  
V2SAG  
7
6
5
4
3
2
1
0
TUP  
V2OD  
I2OD  
V1OD  
I1OD  
LSD  
FUP  
IC  
Default =  
1 (Status), 0 (Mask)  
The Status register indicates a variety of conditions within the chip. Writing a '1' to a Status register bit will  
clear that bit if the condition that set it has been removed. Writing a '0' to any bit has no effect.  
The Mask register is used to control the activation of the INT pin. Writing a '1' to a Mask register bit will allow  
the corresponding Status register bit to activate the INT pin when set.  
DRDY  
Data Ready. During conversion, this bit indicates that low-rate results have been updated.  
It indicates completion of other commands and the reset sequence.  
I1OR (I2OR)  
V1OR (V2OR)  
CRDY  
Current Out of Range. Set when the measured current would cause the I1 (I2) register to  
overflow.  
Voltage Out of Range. Set when the measured voltage would cause the V1 (V2) register  
to overflow.  
Conversion Ready. Indicates that sample rate (output word rate) results have been updat-  
ed.  
I1ROR (I2ROR)  
RMS Current Out of Range. Set when RMS current would cause the I1  
(I2  
) regis-  
RMS  
RMS  
ter to overflow.  
V1ROR (V2ROR) RMS Voltage Out of Range. Set when RMS voltage would cause the V1  
(V2  
) reg-  
RMS  
RMS  
ister to overflow.  
E1OR (E2OR)  
Energy Out of Range. Set when average power would cause P1  
(P2  
) to overflow.  
AVG  
AVG  
I1FAULT (I2FAULT)Indicates when a current fault condition has occurred.  
V1SAG (V2SAG) Indicates when a voltage sag condition has occurred.  
TUP  
Indicates when the Temperature register (T) has been updated.  
V1OD (V2OD)  
I1OD (I2OD)  
LSD  
Modulator oscillation has been detected in the voltage1 (voltage2) A/D.  
Modulator oscillation has been detected in the current1 (current2) A/D.  
Low Supply Detect. Set when the voltage on the PFMON pin falls below the specified low  
level. The LSD bit cannot be reset until the voltage rises above the specified high level.  
FUP  
IC  
Frequency Updated. Indicates the Epsilon register has been updated.  
Invalid Command. Normally logic 1. Set to 0 when an invalid command is received. It may  
also indicate loss of serial command synchronization and the part may need to be re-ini-  
tialized.  
32  
DS714F1  
CS5467  
8.2.13 Control (Ctrl) Address: 28  
23  
22  
21  
20  
19  
18  
17  
16  
PC7  
PC6  
PC5  
PC4  
PC3  
PC2  
PC1  
PC0  
15  
14  
13  
12  
11  
10  
9
8
-
-
-
I2gain  
-
-
-
STOP  
7
6
5
4
3
2
1
0
-
-
I1gain  
INTOD  
-
NOCPU  
NOOSC  
-
Default = 0  
PC[7:0]  
Phase compensation for channel 2. Sets a delay in voltage relative to current. Phase is  
signed and in the range of -1.0 value < 1.0 sample (OWR) intervals.  
I1gain (I2gain)  
STOP  
Sets the gain of the current1 (current2) input.  
0 = Gain is set for ±250mV range.  
1 = Gain is set for ±50mV range.  
2
Terminates E PROM command sequence (if used).  
0 = No Action  
2
1 = Stop E PROM Commands.  
INTOD  
Converts INT output pin to an open drain output.  
0 = Normal Output  
1 = Open-drain Output  
NOCPU  
NOOSC  
Saves power by disabling the CPUCLK output pin.  
0 = CPUCLK Enabled  
1 = CPUCLK Disabled  
Disables the crystal oscillator, making XIN a logic-level input.  
0 = Crystal Oscillator Enabled  
1 = Crystal Oscillator Disabled  
DS714F1  
33  
CS5467  
8.3 Page 1 Registers  
8.3.1 DC Offset for Current (I1OFF , I2OFF ) and Voltage (V1OFF , V2OFF  
)
Address: 0 (I1  
), 2 (V1  
), 7 (I2  
), 9 (V2  
)
OFF  
OFF  
OFF  
OFF  
MSB  
LSB  
-(20)  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
.....  
Default = 0  
DC offset registers I1  
& V1  
(I2  
& V2  
) are initialized to zero on reset. During DC offset calibra-  
OFF  
OFF  
OFF  
OFF  
tion, selected registers are written with the inverse of the DC offset measured. The application program can  
also write the DC offset register values. These are two's complement values in the range of -1.0 value < 1.0,  
with the binary point to the right of the MSB.  
8.3.2 Gain for Current (I1GAIN , I2GAIN ) and Voltage (V1GAIN , V2GAIN  
)
Address: 1 (I1  
), 3 (V1  
), 8 (I2  
), 10 (V2  
)
GAIN  
GAIN  
GAIN  
GAIN  
MSB  
LSB  
21  
20  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-16  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
.....  
Default = 1.0  
Gain registers I1  
& V1  
(I2  
& V2  
) are initialized to 1.0 on reset. During AC or DC gain calibra-  
GAIN  
GAIN  
GAIN  
GAIN  
tion, selected register are written with the multiplicative inverse of the gain measured. These are unsigned  
fixed-point values in the range of 0 value < 4.0, with the binary point to the right of the second MSB.  
8.3.3 Power Offset (P1OFF , P2OFF  
Address: 4 (P1  
)
)
), 11 (P2  
OFF  
OFF  
MSB  
LSB  
-(20)  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
.....  
Default = 0  
Power offset P1  
(P2  
) is added to instantaneous power and averaged over a low-rate interval to yield  
OFF  
OFF  
P1  
(P2  
) register results. It can be used to reduce systematic energy errors. These are two's comple-  
AVG  
AVG  
ment values in the range of -1.0 value < 1.0, with the binary point to the right of the MSB.  
8.3.4 AC Offset for Current (I1ACOFF , I2ACOFF ) and Voltage (V1ACOFF , V2ACOFF  
)
Address: 5 (I1  
), 6 (V1  
), 12 (I2  
), 13 (V2  
)
ACOFF  
ACOFF  
ACOFF  
ACOFF  
MSB  
LSB  
-(20)  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
.....  
Default = 0  
AC offset registers I1  
& V1  
(V  
& V2  
) are initialized to zero on reset. These are added  
ACOFF  
ACOFF ACOFF  
ACOFF  
to the RMS results before being stored to the RMS result registers. They can be used to reduce systematic  
errors in the RMS results. These are two's complement values in the range of -1.0 value < 1.0, with the bi-  
nary point to the right of the MSB.  
34  
DS714F1  
CS5467  
8.3.5 Mode Control (Modes) Address: 16  
23  
22  
21  
20  
19  
18  
17  
16  
-
VFIX  
-
-
-
-
-
-
15  
14  
13  
12  
11  
10  
9
8
-
E1MODE1  
E1MODE0  
-
-
E2MODE1  
E2MODE0  
VHPF2  
7
6
5
4
3
2
1
0
IHPF2  
VHPF1  
IHPF1  
-
E3MODE1  
E3MODE0  
POS  
AFC  
Default = 0  
VFIX  
Use internal RMS voltage reference instead of voltage input for average active power.  
0 = Use voltage input.  
1 = Use internal RMS voltage reference, VF  
.
RMS  
E1MODE[1:0]  
E1, E2, and E3 alternate output mode (when enabled by E2MODE).  
00 = E1, E2 = P1AVG, P2AVG  
01 = E1, E2 = S1, S2  
10 = E1, E2 = Q1AVG, Q2AVG  
11 = E1, E2 = Q1WB, Q2WB  
E2MODE[1:0]  
VHPF2:IHPF2  
VHPF1:IHPF1  
E3MODE[1:0]  
E3MODE[1:0]  
E2 Output Mode  
00 = Energy Sign  
01 = Total Apparent Energy  
10 = Not Used  
11 = Enable E1MODE  
High-pass Filter Enable for Energy Channel 2  
00 = No Filter  
01 = HPF on Current, PMF on Voltage  
10 = HPF on Voltage, PMF on Current  
11 = HPF on both Voltage and Current  
High-pass Filter Enable for Energy Channel 1  
00 = No Filter  
01 = HPF on Current, PMF on Voltage  
10 = HPF on Voltage, PMF on Current  
11 = HPF on both Voltage and Current  
E3 Output Mode (with E1MODE disabled)  
00 = Total Reactive Energy (default)  
01 = Power Fail Monitor  
10 = Voltage1 Sign  
11 = Total Apparent Energy  
E3 Output Mode (with E1MODE enabled)  
00 = Power Fail Monitor  
01 = Energy Sign  
10 = Not Used  
11 = Not Used  
POS  
AFC  
Positive Energy Only. Suppresses negative values in P1  
is calculated, zero will be stored instead.  
and P2  
. If a negative value  
AVG  
AVG  
Enables automatic line frequency measurement which sets Epsilon every time a new line  
frequency measurement completes. Epsilon is used to control the gain of the 90 degree  
phase shift integrator used in quadrature power calculations.  
DS714F1  
35  
CS5467  
8.3.6 Line to Sample Frequency Ratio (Epsilon) Address: 17  
MSB  
-(20)  
LSB  
2-23  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
.....  
Default = 0.0125 (4.0 kHz x 0.0125 or 50 Hz)  
Epsilon is the ratio of the input line frequency to the output word rate (OWR). It can either be written by the ap-  
plication program or calculated automatically from the line frequency (from the voltage input) using the AFC bit  
in the Modes register. It is a two's complement value in the range of -1.0 value < 1.0, with the binary point to  
the right of the MSB. Negative values are not used.  
8.3.7 Pulse Output Width (PulseWidth) Address: 14  
MSB  
LSB  
222  
221  
220  
219  
218  
217  
216  
26  
25  
24  
23  
22  
21  
20  
0
.....  
Default = 1 (250 uS at OWR = 4 kHz)  
PulseWidth sets the duration of energy pulses. The actual pulse duration is the contents of PulseWidth divided  
by the output word rate (OWR). PulseWidth is an integer in the range of 1 to 8,388,607.  
8.3.8 Pulse Output Rate (PulseRate) Address: 15  
MSB  
LSB  
-(20)  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
.....  
Default= -1  
PulseRate sets the full-scale frequency for E1, E2, E3 pulse outputs. For a 4 kHz sample rate, the maximum  
pulse rate is 2 kHz. This is a two's complement value in the range of -1 value < 1, with the binary point to the  
left of the MSB.  
Refer to 6.10 Energy Pulse Rate on page 21 for more information.  
8.3.9 Cycle Count (N) Address: 19  
MSB  
LSB  
222  
Default = 4000  
221  
220  
219  
218  
217  
216  
26  
25  
24  
23  
22  
21  
20  
.....  
0
Determines the number of output word rate (OWR) samples to use in calculating low-rate results. Cycle Count  
(N) is an integer in the range of 10 to 8,388,607. Values less than 10 should not be used.  
8.3.10 Wideband Reactive Power (Q1WB , Q2WB  
)
Address: 20 (Q1  
), 21 (Q2  
)
WB  
WB  
MSB  
LSB  
-(20)  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
.....  
Wideband reactive power is calculated using vector subtraction. (See Section 4.8 Power and Energy Results  
on page 16). The value is signed, but has a range of 0 value < 1.0. The binary point is to the right of the MSB.  
36  
DS714F1  
CS5467  
8.3.11 Temperature Gain (TGAIN ) Address: 22  
MSB  
LSB  
26  
25  
24  
23  
22  
21  
20  
2-1  
2-11  
2-12  
2-13  
2-14  
2-20  
23  
2-15  
2-21  
22  
2-16  
2-22  
21  
2-17  
.....  
Default = 0x2F02C3  
Refer to 6.13 Temperature Measurement on page 22 for more information.  
8.3.12 Temperature Offset (TOFF ) Address: 23  
MSB  
-(20)  
LSB  
2-23  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
.....  
Default = 0xF3D35A  
Refer to 6.13 Temperature Measurement on page 22 for more information.  
8.3.13 Filter Settling Time for Conversion Startup (TSETTLE ) – Address: 25  
MSB  
223  
LSB  
20  
222  
221  
220  
219  
218  
217  
216  
26  
25  
24  
.....  
Default = 30  
Sets the number of output word rate (OWR) samples that will be used to allow filters to settle at the beginning  
of Conversion and Calibration commands. This is an integer in the range of 0 to 8,388,607 samples.  
8.3.14 No Load Threshold (LoadMIN ) Address: 26  
MSB  
LSB  
-(20)  
2-1  
Default = 0  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
.....  
Load  
E
is used to set the no load threshold. When the magnitude of the E  
register is less than Load  
,
MIN  
MIN  
PULSE  
will be zeroed. If the magnitude of the Q  
register is less than Load , Q  
will be zeroed.  
PULSE  
MIN  
PULSE  
pulse  
Load  
is a two’s compliment value in the range of -1.0 value < 1.0, with the binary point to the right of the  
MIN  
MSB. Negative values are not used.  
8.3.15 Voltage Fixed RMS Reference (VFRMS ) Address 27  
MSB  
-(20)  
LSB  
2-23  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
.....  
Default = 0.7071068 (full scale RMS)  
If the application program detects that the meter has possibly been tampered with in such a manner that the  
voltage input is no longer working, it may choose to use this internal RMS reference instead of the disabled  
voltage input by setting the VFIX bit in the Modes register. This is a two's complement value in the range of  
0 value < 1.0, with the binary point to the right of the MSB. Negative values are not used.  
DS714F1  
37  
CS5467  
8.3.16 System Gain (G) Address: 28  
MSB  
LSB  
-(21)  
20  
Default = 1.25  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-16  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
.....  
System Gain (G) is applied to all channels. By default, G = 1.25, but can be finely adjusted to compensate for  
voltage reference error. It is a two's complement value in the range of -2.0 value < 2.0, with the binary point  
to the right of the second MSB. Values should be kept within 5% of 1.25.  
8.3.17 System Time (Time) Address: 29  
MSB  
LSB  
223  
222  
Default = 0  
221  
220  
219  
218  
217  
216  
26  
25  
24  
23  
22  
21  
20  
.....  
System Time (Time) is measured in output word rate (OWR) samples. This is an unsigned integer in the range  
of 0 to 16,777,215 samples. At OWR = 4.0 kHz, OWR will overflow every 1 hour, 9 minutes, and 54 seconds.  
Time can be used by the application to manage real-time events.  
38  
DS714F1  
CS5467  
8.4 Page 2 Registers  
8.4.1 Voltage Sag and Current Fault Duration (V1SagDUR , V2SagDUR , I1FaultDUR , I2FaultDUR  
)
Address: 0 (V1Sag  
), 8 (V2Sag  
), 4 (I1Fault  
), 12 (I2Fault  
)
DUR  
DUR  
DUR  
DUR  
MSB  
LSB  
222  
221  
220  
219  
218  
217  
216  
26  
25  
24  
23  
22  
21  
20  
0
.....  
Default = 0  
Voltage sag duration, V1Sag  
(V2Sag  
) and current fault duration, I1Fault  
(I2Fault  
) determine  
DUR  
DUR  
DUR  
DUR  
the count of output word rate (OWR) samples utilized to determine a sag or fault event. These are integers in  
the range of 0 to 8,388,607 samples. A value of zero disables the feature.  
8.4.2 Voltage Sag and Current Fault Level (V1SagLEVEL , V2SagLEVEL , I1FaultLEVEL , I2FaultLEVEL  
)
Address: 1 (V1Sag  
), 9 (V2Sag  
), 5 (I1Fault  
), 13 (I2Fault  
)
LEVEL  
LEVEL  
LEVEL  
LEVEL  
MSB  
LSB  
-(20)  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
.....  
Default = 0  
Voltage sag level, V1Sag  
(V2Sag  
) and current fault level, I1Fault  
(I2Fault  
) establish  
LEVEL  
LEVEL  
LEVEL  
LEVEL  
an input level below which a sag or fault is triggered. These are two's complement values in the range of  
-1.0 value < 1.0, with the binary point to the right of the MSB. Negative values are not used.  
8.5 Page 5 Register  
8.5.1 Temperature Measurement (TMEAS ) Address: 26  
MSB  
223  
LSB  
20  
222  
221  
220  
219  
218  
217  
216  
26  
25  
24  
23  
22  
21  
.....  
Default = 0  
The Temperature Measurement (T  
) register is used to cycle-steal voltage channel2 for temperature  
MEAS  
measurement. Writing a one to the LSB causes the temperature to be measured and the Temperature register  
(T) to be updated.  
Refer to 6.13 Temperature Measurement on page 22 for more information.  
DS714F1  
39  
CS5467  
9. SYSTEM CALIBRATION  
9.1 Calibration  
The CS5467 provides DC offset and gain calibration  
that can be applied to the voltage and current measure-  
ments, and AC offset calibration which can be applied to  
the voltage and current RMS calculations.  
External  
Connections  
+
-
+
-
IN+  
+
-
0V  
XGAIN  
Since the voltage and current channels have indepen-  
dent offset and gain registers, offset and gain calibra-  
tion can be performed on any channel independently.  
IN-  
+
-
CM  
The data flow of the calibration is shown in Figure 10.  
The CS5467 must be operating in its active state and  
ready to accept valid commands. Refer to 7.6 Com-  
mands on page 25.  
Figure 11. System Calibration of Offset  
9.1.1.1 DC Offset Calibration  
The value in the Cycle Count register (N) determines  
the number of output word rate (OWR) samples that are  
averaged during a calibration. DC offset and gain cali-  
The DC Offset Calibration command measures and av-  
erages DC values read on specified voltage or current  
channels at zero input and stores the inverse result in  
the associated offset registers. This will be added to in-  
stantaneous measurements in subsequent conver-  
sions, removing the offset.  
brations take at least N + T  
samples. AC offset  
SETTLE  
calibrations take at least 6(N) + T  
samples. As N  
SETTLE  
is increased, the accuracy of calibration results tends to  
also increase.  
Gain registers for channels being calibrated should be  
set to 1.0 prior to performing DC offset calibration.  
The DRDY bit in the Status register will be set at the  
completion of Calibration commands. If an overflow oc-  
curs during calibration, other Status register bits may be  
set as well.  
9.1.1.2 AC Offset Calibration  
The AC Offset Calibration command measures the re-  
sidual RMS values read on specified voltage or current  
channels at zero input and stores the inverse result in  
the associated AC offset registers. This will be added to  
RMS measurements in subsequent conversions, re-  
moving the offset.  
9.1.1 Offset Calibration  
During offset calibrations, no line voltage or current  
should be applied to the meter. A zero-volt differential  
signal can also be applied to the voltage inputs VIN1±  
(VIN2± ꢀ or current inputs IIN1± (IIN2± ꢀ of the CS5467.  
(see Figure 11.)  
AC offset registers for channels being calibrated should  
first be cleared prior to performing the calibration.  
V1, I1, V2, I2  
RMS  
I1RMS, V1RMS  
I2RMS, V2RMS  
+
N
,
Filter  
Modulator  
In  
X
N
÷
X
+
+
Σ
+
I1ACOFF, V1ACOFF  
,
N
I1DCOFF, V1DCOFF  
,
I1GAIN, V1GAIN,  
I2DCOFF, V2DCOFF I2GAIN, V2GAIN  
I2ACOFF, V2ACOFF  
Σ
AC Offset  
DC Gain  
DC Offset AC Gain  
Negate  
1
N
÷
Negate  
DCAVG  
DC AVG  
0.6  
RMS  
= READABLE/WRITABLE REGISTERS.  
Figure 10. Calibration Data Flow  
40  
DS714F1  
CS5467  
During AC gain calibration the RMS level of the applied  
reference is measured with the preset gain, then divided  
into 0.6 and the quotient stored back into the corre-  
sponding gain register.  
9.1.2 Gain Calibration  
During gain calibration, a full-scale reference signal  
must be applied to the meter or optionally, scaled to the  
VIN1± (VIN2± ꢀ, IIN1± (IIN2± ꢀ pins of the CS5467. A DC  
reference must be used for DC gain calibration. Either  
an AC or DC reference can be used for RMS AC calibra-  
tions. If DC is used, the associated high-pass filter  
(HPF) must be off.  
9.1.2.2 DC Gain Calibration  
With a DC reference applied, the DC Gain Calibration  
command measures and averages DC values read on  
the specified voltage or current channels and stores the  
reciprocal result in the associated gain registers, con-  
verting measured voltage into needed gain. Subse-  
quent conversions will use the new gain value.  
Figure 12 shows the basic setup for gain calibration.  
External  
Connections  
+
-
+
-
9.1.3 Calibration Order  
1. DC offset.  
IN+  
Reference  
Signal  
+
-
XGAIN  
2. DC or AC gain.  
IN-  
+
-
CM  
3. AC offset (if needed).  
If both AC gain and offset calibrations were performed,  
it is possible to repeat both to obtain additional accuracy  
as AC gain and offset may interact.  
Figure 12. System Calibration of Gain.  
Using a reference that is too large or too small can  
cause an over-range condition during calibration. Either  
condition can set Status register bits I1OR (I2OR)  
V1OR (V2OR) for DC and I1ROR (I2ROR) V1ROR  
(V2ROR) for AC calibration.  
9.1.4 Temperature Sensor Calibration  
Temperature sensor calibration involves the adjustment  
of two parameters - VBE and VBE0. These values must  
be known in order to calibrate the temperature sensor.  
See Section 6.13 Temperature Measurement on page  
22 for an explanation of VBE and VBE0 and how to cal-  
Full scale (FS) for the voltage input is ±250 mV peak  
and for the current inputs is ±250 mV or ±50 mV peak  
depending on selected gain range. The normal peak  
voltage applied to these pins should not exceed these  
levels during calibration or normal operation.  
culate T  
and T  
register values from them.  
OFF  
GAIN  
9.1.4.1 Temperature Offset Calibration  
Offset calibration can be done at any temperature, but  
should be done mid-scale if any gain error exists.  
The range of the gain registers limits the gain calibration  
range and subsequently the range of the reference level  
that can be applied. The reference should not exceed  
FS or be lower than FS/4.  
Subtract the measured T register temperature from the  
actual temperature to determine the offset error. Multi-  
ply this error by VBE and add it to VBE0 to yield a new  
9.1.2.1 AC Gain Calibration  
VBE0 value. Recalculate T  
using this new value.  
OFF  
Full scale for AC RMS gain calibrations is 60% of the in-  
put’s full-scale range, which is either 250 mV or 50 mV  
depending on the gain range selected. That’s 150 mV or  
30 mV, again depending on range. So the normal refer-  
9.1.4.2 Temperature Gain Calibration  
Two temperature points far enough apart to give rea-  
sonable accuracy, for example 25°C and 85°C, are re-  
quired to calibrate temperature gain.  
ence input level should be either 150 or 30 mV  
or DC.  
, AC  
RMS  
Divide the actual temperature difference by the mea-  
sured (T register) difference for the two temperatures.  
Prior to executing an AC Gain Calibration command,  
gain registers for any channel to be calibrated should be  
set to 1.0 if the reference level mentioned above is  
used, or to that level divided by the actual reference lev-  
el used.  
This gives a gain correction factor. Update the T  
GAIN  
register by multiplying it’s value by this correction factor.  
Update VBE by dividing its old value by the gain cor-  
rection factor. It will be needed for subsequent offset  
calibrations.  
DS714F1  
41  
CS5467  
2
10. E PROM OPERATION  
2
The CS5467 can accept commands from a serial  
10.2 E PROM Code  
2
E PROM connected to the serial interface instead of a  
The EEPROM code should do the following:  
host microcontroller. A high level (logic 1) on the MODE  
2
1. Set any Configuration or Control register bits, such as  
HPF enables and phase compensation settings.  
input indicates that an E PROM is connected. This  
makes the CS and SCLK pins become driven outputs.  
After reset and after running the initialization program,  
the CS5467 begins reading commands from the con-  
2. Write any calibration data to gain and offset registers.  
3. Set energy output pulse width, rate, and formats.  
4. Execute a Continuous Conversion command.  
5. Set the STOP bit in the Control register (last).  
2
nected E PROM.  
2
10.1 E PROM Configuration  
A typical connection between the CS5467 and a  
E PROM is shown in Figure 13.  
2
Below is an example E PROM code set.  
2
-7E 00 00 01  
The CS5467 asserts CS (logic 0), clocks SCLK, and  
Change to page 1.  
2
sends Read commands to the E PROM on SDO.  
-60 00 01 E0  
Command format is identical to microcontroller mode,  
except the CS5467 will not attempt to write to the EE-  
PROM device. The command sequence stops when the  
STOP bit in the Control register (Ctrl) is written by the  
command sequence.  
Write Modes Register, turn high-pass filters on.  
-42 7F C4 A9  
Write value of 0x7FC4A9 to I1  
-46 FF B2 53  
Write value of 0xFFB253 to V1  
-50 7F C4 A9  
Write value of 0x7FC4A9 to I2  
-54 FF B2 53  
Write value of 0xFFB253 to V2  
-7E 00 00 00  
register.  
register.  
register.  
register.  
GAIN  
GAIN  
VD  
+
E1  
Pulse Output  
GAIN  
Counter  
E2  
5 K  
EEPROM  
CS5467  
GAIN  
SCLK  
SCK  
SDI  
SO  
SI  
Change to page 0.  
-74 00 00 04  
SDO  
CS  
5 K  
MODE  
CS  
Set LSD bit to 1 in the Mask register.  
-E8  
Start continuous conversions  
-78 00 01 00  
Connector to Calibrator  
Write STOP bit to the Control register (Ctrl) to  
terminate E PROM command sequence.  
2
Figure 13. Typical Interface of E PROM to CS5467  
2
2
10.3 Which E PROMs Can Be Used?  
Figure 13 also shows the external connections that  
would be made to a calibration device, such as a note-  
book computer, handheld calibrator, or tester during  
meter assembly, The calibrator or tester can be used to  
control the CS5467 during calibration and program the  
2
Several industry-standard serial E PROMs can be used  
with the CS5467. Some are listed below:  
Atmel AT25010, AT25020 or AT25040  
National Semiconductor NM25C040M8 or NM25020M8  
2
required values into the E PROM.  
Xicor X25040SI  
2
These serial E PROMs expect a specific 8-bit com-  
mand (00000011) in order to perform a memory read.  
The CS5467 has been hardware programmed to trans-  
2
mit this 8-bit command to the E PROM after reset.  
42  
DS714F1  
CS5467  
11. BASIC APPLICATION CIRCUITS  
Figure 14 shows the CS5467 configured to measure  
power in a single-phase, 3-wire system while operating  
in a single-supply configuration. In this diagram, current  
transformers (CT) are used to sense the line currents  
and voltage dividers are used to sense the line voltages.  
5 k  
10 kΩ  
L2  
N
L1  
10  
500  
500  
0.1 µF  
470 µF  
0.1 µF  
2 uF  
3
18  
VA+  
VD+  
13  
VIN2+  
C
V+  
CS5467  
CVdiff  
R
R
1
2
CV-  
RV-  
21  
14  
9
VIN2-  
VIN1+  
PFMON  
CPUCLK  
XOUT  
2
1
4.096 MHz  
C
V+  
CVdiff  
R
R
2
Optional  
Clock  
Source  
1
28  
XIN  
CV-  
RV-  
10  
19  
VIN1-  
IIN1-  
R I-  
23  
CI-  
CI+  
½ RBurden  
½ RBurden  
RESET  
CS  
7
CIdiff  
CT  
Serial  
Data  
Interface  
27  
6
SDI  
20  
SDO  
SCLK  
INT  
IIN1+  
IIN2-  
5
RI+  
24  
RI-  
15  
16  
26  
25  
E2  
E1  
CI-  
CI+  
½ RBurden  
½ RBurden  
CIdiff  
CT  
Pulse Output  
Counter  
IIN2+  
RI+  
12  
VREFIN  
LOAD  
LOAD  
11  
VREFOUT  
0.1 µF  
AGND  
17  
DGND  
4
Figure 14. Typical Connection Diagram (Single-phase, 3-wire Direct Connect to Power Line)  
DS714F1  
43  
CS5467  
12. PACKAGE DIMENSIONS  
28L SSOP PACKAGE DRAWING  
N
D
E11  
A2  
A
E
A1  
b2  
e
L
END VIEW  
SEATING  
PLANE  
SIDE VIEW  
1
2 3  
TOP VIEW  
INCHES  
NOM  
--  
0.006  
0.069  
--  
0.4015  
0.307  
0.209  
0.026  
0.0354  
4°  
MILLIMETERS  
NOTE  
DIM  
A
A1  
A2  
b
D
E
E1  
e
L
MIN  
--  
MAX  
0.084  
0.010  
0.074  
0.015  
0.413  
0.323  
0.220  
0.030  
0.041  
8°  
MIN  
--  
NOM  
--  
0.15  
1.75  
--  
10.20  
7.80  
5.30  
0.65  
0.90  
4°  
MAX  
2.13  
0.25  
1.88  
0.38  
10.50  
8.20  
5.60  
0.75  
1.03  
8°  
0.002  
0.064  
0.009  
0.390  
0.291  
0.197  
0.022  
0.025  
0°  
0.05  
1.62  
0.22  
9.90  
7.40  
5.00  
0.55  
0.63  
0°  
2,3  
1
1
JEDEC #: MO-150  
Controlling Dimension is Millimeters  
Notes: 1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold mismatch  
and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per side.  
2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.13 mm total in  
excess of “b” dimension at maximum material condition. Dambar intrusion shall not reduce dimension “b” by more  
than 0.07 mm at least material condition.  
3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.  
44  
DS714F1  
CS5467  
13. ORDERING INFORMATION  
Model  
CS5467-IS  
Temperature  
Package  
-40 to +85 °C  
28-pin SSOP  
CS5467-ISZ (lead free)  
14. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION  
Model Number  
CS5467-IS  
CS5467-ISZ (lead free)  
Peak Reflow Temp  
240 °C  
MSL Rating*  
Max Floor Life  
2
3
365 Days  
7 Days  
260 °C  
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.  
DS714F1  
45  
CS5467  
15. REVISION HISTORY  
Revision  
PP1  
Date  
Changes  
FEB 2007  
FEB 2007  
Initial release.  
PP2  
Corrections to implicitly state that temperature measurement is a secondary func-  
tion of voltage2 channel. Updated typical connection diagram. Changed Phase  
Compensation Range from ±2.8° to ±5.4°.  
F1  
MAR 2007  
Updated to F1 for quality process level (QPL).  
Contacting Cirrus Logic Support  
For all product questions and inquiries contact a Cirrus Logic Sales Representative.  
To find the one nearest to you go to www.cirrus.com  
IMPORTANT NOTICE  
"Preliminary" product information describes products that are in production, but for which full characterization data is not yet available.  
Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE-  
VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD  
TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE  
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED  
IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICA-  
TIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER  
AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH  
THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
46  
DS714F1  

相关型号:

CS5467_11

Four-channel Power/Energy IC
CIRRUS

CS5471

DUAL CHANNEL DELTA SIGMA ANALOG TO DIGITAL CONVERTER
CIRRUS

CS5471-BS

DUAL CHANNEL DELTA SIGMA ANALOG TO DIGITAL CONVERTER
CIRRUS

CS5480

Three Channel Energy Measurement IC
APEX

CS5480-INZ

Three Channel Energy Measurement IC
APEX

CS5480-INZ/B0

ADC, Delta-Sigma, 24-Bit, 1 Func, 3 Channel, Serial Access, CMOS, 4 X 4 MM, MO-220, QFN-24
CIRRUS

CS5480-INZR

Three Channel Energy Measurement IC
APEX

CS5481

Converter IC
ETC

CS5484

Four Channel Energy Measurement IC
APEX

CS5484-INZ

Four Channel Energy Measurement IC
APEX

CS5484-INZR

Four Channel Energy Measurement IC
APEX

CS5490

Two Channel Energy Measurement IC
APEX