EP7311-IB-90 [CIRRUS]

High-performance, Low-power, System-on-chip with SDRAM & Enhanced Digital Audio Interface; 高性能,低功耗的系统级芯片, SDRAM和增强数字音频接口
EP7311-IB-90
型号: EP7311-IB-90
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

High-performance, Low-power, System-on-chip with SDRAM & Enhanced Digital Audio Interface
高性能,低功耗的系统级芯片, SDRAM和增强数字音频接口

微控制器和处理器 外围集成电路 动态存储器 时钟
文件: 总58页 (文件大小:1205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EP7311 Data Sheet  
High-performance,  
FEATURES  
ARM720T Processor  
Low-power, System-on-chip  
with SDRAM & Enhanced  
Digital Audio Interface  
— ARM7TDMI CPU  
— 8 KB of four-way set-associative cache  
— MMU with 64-entry TLB  
— Thumb code support enabled  
Ultra low power  
OVERVIEW  
— 90 mW at 74 MHz typical  
— 30 mW at 18 MHz typical  
— 10 mW in the Idle State  
— <1 mW in the Standby State  
48 KB of on-chip SRAM  
The Maverick™ EP7311 is designed for ultra-low-power  
applications such as PDAs, smart cellular phones, and  
industrial hand held information appliances. The core-logic  
functionality of the device is built around an ARM720T  
processor with 8 KB of four-way set-associative unified cache  
and a write buffer. Incorporated into the ARM720T is an  
enhanced memory management unit (MMU) which allows for  
MaverickKey IDs  
®
support of sophisticated operating systems like Linux .  
— 32-bit unique ID can be used for SDMI compliance  
— 128-bit random ID  
Dynamically programmable clock speeds of  
18, 36, 49, and 74 MHz  
(cont.)  
(cont.)  
BLOCK DIAGRAM  
EPB Bus  
Clocks &  
Multimedia  
Codec Port  
Timers  
ARM720T  
ICE-JTAG  
Power  
Management  
Serial  
Interrupts,  
Interface  
PWM & GPIO  
ARM7TDMI CPU Core  
8 KB  
Cache  
Write  
Buffer  
Keypad&  
Touch  
Screen I/F  
(2) UARTs  
w/ IrDA  
Boot  
ROM  
Bus  
Bridge  
MMU  
Internal Data Bus  
Memory Controller  
SRAM I/F SDRAM I/F  
On-chip SRAM  
48 KB  
LCD  
Controller  
TM  
MaverickKey  
MEMORY AND STORAGE  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
AUG ‘05  
DS506F1  
http://www.cirrus.com  
EP7311  
High-Performance, Low-Power System on Chip  
FEATURES (cont)  
LCD controller  
— Interrupt Controller  
— Boot ROM  
— Interfaces directly to a single-scan panel monochrome  
STN LCD  
Package  
— Interfaces to a single-scan panel color STN LCD with  
minimal external glue logic  
— 208-Pin LQFP  
— 256-Ball PBGA  
— 204-Ball TFBGA  
Full JTAG boundary scan and Embedded ICE® support  
Integrated Peripheral Interfaces  
— 32-bit SDRAM Interface up to 2 external banks  
— 8/32/16-bit SRAM/FLASH/ROM Interface  
— Multimedia Codec Port  
The fully static EP7311 is optimized for low power  
dissipation and is fabricated on a 0.25 micron CMOS  
process  
Development Kits  
— EDB7312: Development Kit with color STN LCD on  
board.  
— Two Synchronous Serial Interfaces (SSI1, SSI2)  
— CODEC Sound Interface  
— EDB7312-LW: EDB7312 with Lynuxworks’ BlueCat  
Linux Tools and software for Windows host (free 30  
day BlueCat support from Lynuxworks).  
— 8×8 Keypad Scanner  
— 27 General Purpose Input/Output pins  
— Dedicated LED flasher pin from the RTC  
Internal Peripherals  
— EDB7312-LL: EDB7312 with Lynuxworks’ BlueCat  
Linux Tools and software for Linux host (free 30 day  
BlueCat support from Lynuxworks).  
— Two 16550 compatible UARTs  
— IrDA Interface  
Note: * BlueCat available separately through Lynuxworks  
— Two PWM Interfaces  
only.  
* Use the EDB7312 Development Kit for all the EP73xx  
devices.  
— Real-time Clock  
— Two general purpose 16-bit timers  
OVERVIEW (cont.)  
The EP7311 is designed for low-power operation. Its core  
operates at only 2.5 V, while its I/O has an operation range of  
2.5 V–3.3 V. The device has three basic power states:  
operating, idle and standby.  
media such as books or music, traditional software methods are  
quickly becoming unreliable. The MaverickKey unique IDs  
consist of two registers, one 32-bit series register and one  
random 128-bit register that may be used by an OEM for an  
authentication mechanism.  
One of its notable features is MaverickKey unique IDs. These  
are factory programmed IDs in response to the growing  
concern over secure web content and commerce. With Internet  
security playing an important role in the delivery of digital  
Simply by adding desired memory and peripherals to the  
highly integrated EP7311 completes a low-power system  
solution. All necessary interface logic is integrated on-chip.  
2
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
Table of Contents  
FEATURES...................................................................................................................................................................1  
OVERVIEW ..................................................................................................................................................................1  
Processor Core - ARM720T ..................................................................................................................................6  
Power Management ..............................................................................................................................................6  
MaverickKey™ Unique ID ......................................................................................................................................6  
Memory Interfaces .................................................................................................................................................6  
Digital Audio Capability .........................................................................................................................................6  
Universal Asynchronous Receiver/Transmitters (UARTs) .....................................................................................6  
Digital Audio Interface (DAI) ..................................................................................................................................7  
CODEC Interface ..................................................................................................................................................7  
SSI2 Interface ........................................................................................................................................................7  
Synchronous Serial Interface ................................................................................................................................8  
LCD Controller .......................................................................................................................................................8  
Interrupt Controller ................................................................................................................................................8  
Real-Time Clock ....................................................................................................................................................8  
PLL and Clocking ..................................................................................................................................................9  
DC-to-DC converter interface (PWM) ....................................................................................................................9  
Timers ...................................................................................................................................................................9  
General Purpose Input/Output (GPIO) ..................................................................................................................9  
Hardware debug Interface .....................................................................................................................................9  
Internal Boot ROM ...............................................................................................................................................10  
Packaging ............................................................................................................................................................10  
Pin Multiplexing ...................................................................................................................................................10  
System Design ....................................................................................................................................................11  
ELECTRICAL SPECIFICATIONS ......................................................................................................12  
Absolute Maximum Ratings .................................................................................................................................12  
Recommended Operating Conditions .................................................................................................................12  
DC Characteristics ..............................................................................................................................................12  
Timings ...............................................................................................................................................14  
Timing Diagram Conventions ....................................................................................................................14  
Timing Conditions ......................................................................................................................................14  
Static Memory .....................................................................................................................................................15  
Static Memory Single Read Cycle .............................................................................................................16  
Static Memory Single Write Cycle .............................................................................................................17  
Static Memory Burst Read Cycle ...............................................................................................................18  
Static Memory Burst Write Cycle ...............................................................................................................19  
SSI1 Interface ......................................................................................................................................................20  
SSI2 Interface ......................................................................................................................................................21  
LCD Interface ......................................................................................................................................................22  
JTAG Interface .....................................................................................................................................................23  
Packages ............................................................................................................................................24  
208-Pin LQFP Package Characteristics ..............................................................................................................24  
208-Pin LQFP Package Specifications ......................................................................................................24  
208-Pin LQFP Pin Diagram .......................................................................................................................25  
208-Pin LQFP Numeric Pin Listing ............................................................................................................26  
204-Ball TFBGA Package Characteristics ...........................................................................................................29  
204-Ball TFBGA Package Specifications ..................................................................................................29  
204-Ball TFBGA Pinout (Top View) ...........................................................................................................30  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
3
EP7311  
High-Performance, Low-Power System on Chip  
204-Ball TFBGA Ball Listing ...................................................................................................................... 31  
256-Ball PBGA Package Characteristics ............................................................................................................ 38  
256-Ball PBGA Package Specifications .................................................................................................... 38  
256-Ball PBGA Pinout (Top View)) ............................................................................................................ 39  
256-Ball PBGA Ball Listing ........................................................................................................................ 39  
JTAG Boundary Scan Signal Ordering ............................................................................................................... 43  
CONVENTIONS .................................................................................................................................48  
Acronyms and Abbreviations .............................................................................................................................. 48  
Units of Measurement ......................................................................................................................................... 48  
General Conventions .......................................................................................................................................... 49  
Pin Description Conventions ............................................................................................................................... 49  
49  
Ordering Information .......................................................................................................................50  
Environmental, Manufacturing, & Handling Information ..............................................................50  
Revision History ...............................................................................................................................51  
4
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
List of Figures  
Figure 1. A Maximum EP7309 Based System ..............................................................................................................11  
Figure 2. Legend for Timing Diagrams .........................................................................................................................14  
Figure 3. Static Memory Single Read Cycle Timing Measurement ...............................................................................16  
Figure 4. Static Memory Single Write Cycle Timing Measurement ...............................................................................17  
Figure 5. Static Memory Burst Read Cycle Timing Measurement ................................................................................18  
Figure 6. Static Memory Burst Write Cycle Timing Measurement ................................................................................19  
Figure 7. SSI1 Interface Timing Measurement .............................................................................................................20  
Figure 8. SSI2 Interface Timing Measurement .............................................................................................................21  
Figure 9. LCD Controller Timing Measurement ............................................................................................................22  
Figure 10. JTAG Timing Measurement .........................................................................................................................23  
Figure 11. 208-Pin LQFP Package Outline Drawing ....................................................................................................24  
Figure 12. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram ..........................................................................25  
Figure 13. 204-Ball TFBGA Package ............................................................................................................................29  
Figure 14. 256-Ball PBGA Package ..............................................................................................................................38  
List of Tables  
Table 1. Power Management Pin Assignments ..............................................................................................................6  
Table 2. Static Memory Interface Pin Assignments ........................................................................................................6  
Table 3. Universal Asynchronous Receiver/Transmitters Pin Assignments ...................................................................7  
Table 4. DAI Interface Pin Assignments .........................................................................................................................7  
Table 5. CODEC Interface Pin Assignments ..................................................................................................................7  
Table 6. SSI2 Interface Pin Assignments .......................................................................................................................7  
Table 7. Serial Interface Pin Assignments ......................................................................................................................8  
Table 8. LCD Interface Pin Assignments ........................................................................................................................8  
Table 9. Keypad Interface Pin Assignments ...................................................................................................................8  
Table 10. Interrupt Controller Pin Assignments ..............................................................................................................8  
Table 11. Real-Time Clock Pin Assignments ..................................................................................................................9  
Table 12. PLL and Clocking Pin Assignments ................................................................................................................9  
Table 13. DC-to-DC Converter Interface Pin Assignments .............................................................................................9  
Table 14. General Purpose Input/Output Pin Assignments ............................................................................................9  
Table 15. Hardware Debug Interface Pin Assignments ..................................................................................................9  
Table 16. LED Flasher Pin Assignments ........................................................................................................................9  
Table 17. DAI/SSI2/CODEC Pin Multiplexing ...............................................................................................................10  
Table 18. Pin Multiplexing .............................................................................................................................................10  
Table 19. 208-Pin LQFP Numeric Pin Listing ...............................................................................................................26  
Table 20. 204-Ball TFBGA Ball Listing .........................................................................................................................31  
Table 21. 256-Ball PBGA Ball Listing ...........................................................................................................................39  
Table 22. JTAG Boundary Scan Signal Ordering .........................................................................................................43  
Table 23. Acronyms and Abbreviations ........................................................................................................................48  
Table 24. Unit of Measurement .....................................................................................................................................48  
Table 25. Pin Description Conventions .........................................................................................................................49  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
5
EP7311  
High-Performance, Low-Power System on Chip  
Both a specific 32-bit ID as well as a 128-bit random ID is  
programmed into the EP7311 through the use of laser probing  
technology. These IDs can then be used to match secure  
copyrighted content with the ID of the target device the  
EP7311 is powering, and then deliver the copyrighted  
information over a secure connection. In addition, secure  
transactions can benefit by also matching device IDs to server  
IDs. MaverickKey IDs provide a level of hardware security  
required for today’s Internet appliances.  
Processor Core - ARM720T  
The EP7311 incorporates an ARM 32-bit RISC  
microcontroller that controls a wide range of on-chip  
peripherals. The processor utilizes a three-stage pipeline  
consisting of fetch, decode and execute stages. Key features  
include:  
ARM (32-bit) and Thumb (16-bit compressed) instruction  
sets  
Memory Interfaces  
Enhanced MMU for Microsoft Windows CE and other  
operating systems  
There are two main external memory interfaces. The first one  
is the ROM/SRAM/FLASH-style interface that has  
programmable wait-state timings and includes burst-mode  
capability, with six chip selects decoding six 256 MB sections  
of addressable space. For maximum flexibility, each bank can  
be specified to be 8-, 16-, or 32-bits wide. This allows the use  
of 8-bit-wide boot ROM options to minimize overall system  
cost. The on-chip boot ROM can be used in product  
manufacturing to serially download system code into system  
FLASH memory. To further minimize system memory  
requirements and cost, the ARM Thumb instruction set is  
supported, providing for the use of high-speed 32-bit  
operations in 16-bit op-codes and yielding industry-leading  
code density.  
8 KB of 4-way set-associative cache.  
Translation Look Aside Buffers with 64 Translated Entries  
Power Management  
The EP7311 is designed for ultra-low-power operation. Its core  
operates at only 2.5 V, while its I/O has an operation range of  
2.5 V–3.3 V allowing the device to achieve a performance  
level equivalent to 60 MIPS. The device has three basic power  
states:  
• Operating — This state is the full performance state.  
All the clocks and peripheral logic are enabled.  
• Idle — This state is the same as the Operating State,  
except the CPU clock is halted while waiting for an  
event such as a key press.  
Pin Mnemonic  
I/O  
Pin Description  
• Standby — This state is equivalent to the computer  
being switched off (no display), and the main  
oscillator shut down. An event such as a key press  
can wake-up the processor.  
nCS[5:0]  
O
O
Chip select out  
Address output  
A[27:0]  
D[31:0]  
I/O Data I/O  
nMOE/nSDCAS  
nMWE/nSDWE  
(Note)  
(Note)  
O
O
ROM expansion OP enable  
ROM expansion write enable  
Pin Mnemonic  
I/O  
Pin Description  
Halfword access select  
output  
HALFWORD  
O
BATOK  
I
Battery ok input  
External power supply sense  
input  
WORD  
O
O
Word access select output  
Transfer direction  
nEXTPWR  
I
WRITE/nSDRAS  
(Note)  
nPWRFL  
I
I
Power fail sense input  
Table B. Static Memory Interface Pin Assignments  
nBATCHG  
Battery changed sense input  
Table A. Power Management Pin Assignments  
Note: Pins are multiplexed. See Table S on page 11 for more  
information.  
MaverickKey Unique ID  
MaverickKey unique hardware programmed IDs are a solution  
to the growing concern over secure web content and  
commerce. With Internet security playing an important role in  
the delivery of digital media such as books or music,  
traditional software methods are quickly becoming unreliable.  
The MaverickKey unique IDs provide OEMs with a method of  
utilizing specific hardware IDs such as those assigned for  
SDMI (Secure Digital Music Initiative) or any other  
authentication mechanism.  
6
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
The second is the programmable 16- or 32-bit-wide SDRAM  
interface that allows direct connection of up to two banks of  
SDRAM, totaling 512 Mb. To assure the lowest possible power  
consumption, the EP7311 supports self-refresh SDRAMs,  
which are placed in a low-power state by the device when it  
enters the low-power Standby State.  
UART 1 to enable these signals to drive an infrared  
communication interface directly.  
Pin Mnemonic  
I/O  
Pin Description  
TXD[1]  
O
I
UART 1 transmit  
RXD[1]  
CTS  
UART 1 receive  
Pin Mnemonic  
I/O  
Pin Description  
I
UART 1 clear to send  
UART 1 data carrier detect  
UART 1 data set ready  
UART 2 transmit  
SDCLK  
O
O
O
O
O
SDRAM clock output  
DCD  
I
SDCKE  
SDRAM clock enable output  
SDRAM chip select out  
SDRAM RAS signal output  
SDRAM CAS control signal  
DSR  
I
nSDCS[1:0]  
TXD[2]  
RXD[2]  
LEDDRV  
PHDIN  
O
I
WRITE/nSDRAS  
nMOE/nSDCAS  
(Note 2)  
(Note 2)  
UART 2 receive  
O
I
Infrared LED drive output  
Photo diode input  
SDRAM write enable control  
signal  
nMWE/nSDWE  
(Note 2)  
O
Table D. Universal Asynchronous Receiver/Transmitters Pin  
Assignments  
A[27:15]/DRA[0:12] (Note 1)  
A[14:13]/DRA[12:14]  
PD[7:6]/SDQM[1:0] (Note 2)  
SDQM[3:2]  
O
O
SDRAM address  
SDRAM internal bank select  
Multimedia Codec Port (MCP)  
I/O SDRAM byte lane mask  
SDRAM byte lane mask  
I/O Data I/O  
O
The Multimedia Codec Port provides access to an audio codec,  
a telecom codec, a touchscreen interface, four general purpose  
analog-to-digital converter inputs, and ten programmable  
digital I/O lines.  
D[31:0]  
Table C. SDRAM Interface Pin Assignments  
Pin Mnemonic  
I/O  
Pin Description  
Note: 1. Pins A[27:13] map to DRA[0:14] respectively.  
(i.e. A[27}/DRA[0}, A[26}/DRA[1], etc.) This is to  
balance the load for large memory systems.  
2. Pins are multiplexed. See Table S on page 11 for  
more information.  
SIBCLK  
O
O
I
Serial bit clock  
SIBDOUT  
SIBDIN  
Serial data out  
Serial data in  
Sample clock  
Digital Audio Capability  
SIBSYNC  
O
The EP7311 uses its powerful 32-bit RISC processing engine  
to implement audio decompression algorithms in software. The  
nature of the on-board RISC processor, and the availability of  
efficient C-compilers and other software development tools,  
ensures that a wide range of audio decompression algorithms  
can easily be ported to and run on the EP7311  
Table E. MCP Interface Pin Assignments  
Note: See Table R on page 11 for information on pin  
multiplexes.  
Universal Asynchronous  
Receiver/Transmitters (UARTs)  
The EP7311 includes two 16550-type UARTs for RS-232  
serial communications, both of which have two 16-byte FIFOs  
for receiving and transmitting data. The UARTs support bit  
rates up to 115.2 kbps. An IrDA SIR protocol encoder/decoder  
can be optionally switched into the RX/TX signals to/from  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
7
EP7311  
High-Performance, Low-Power System on Chip  
CODEC Interface  
Synchronous Serial Interface  
The EP7311 includes an interface to telephony-type CODECs  
for easy integration into voice-over-IP and other voice  
communications systems. The CODEC interface is  
multiplexed to the same pins as the MCP and SSI2.  
ADC (SSI) Interface: Master mode only; SPI and  
Microwire1-compatible (128 kbps operation)  
Selectable serial clock polarity  
Pin Mnemonic  
I/O  
Pin Description  
Pin Mnemonic  
I/O  
Pin Description  
PCMCLK  
O
O
I
Serial bit clock  
ADCLK  
O
I
SSI1 ADC serial clock  
SSI1 ADC serial input  
SSI1 ADC serial output  
SSI1 ADC chip select  
SSI1 ADC sample clock  
PCMOUT  
PCMIN  
Serial data out  
Serial data in  
Frame sync  
ADCIN  
ADCOUT  
nADCCS  
SMPCLK  
O
O
O
PCMSYNC  
O
Table F. CODEC Interface Pin Assignments  
Table H. Serial Interface Pin Assignments  
Note: See Table R on page 11 for information on pin  
multiplexes.  
LCD Controller  
SSI2 Interface  
A DMA address generator is provided that fetches video  
display data for the LCD controller from memory. The display  
frame buffer start address is programmable, allowing the LCD  
frame buffer to be in SDRAM, internal SRAM or external  
SRAM.  
An additional SPI/Microwire1-compatible interface is  
available for both master and slave mode communications. The  
SSI2 unit shares the same pins as the MCP and CODEC  
interfaces through a multiplexer.  
Synchronous clock speeds of up to 512 kHz  
Separate 16 entry TX and RX half-word wide FIFOs  
Half empty/full interrupts for FIFOs  
Interfaces directly to a single-scan panel monochrome STN  
LCD  
Interfaces to a single-scan panel color STN LCD with  
minimal external glue logic  
Separate RX and TX frame sync signals for asymmetric  
traffic  
Panel width size is programmable from 32 to 1024 pixels in  
16-pixel increments  
Video frame buffer size programmable up to  
128 KB  
Pin Mnemonic  
I/O  
Pin Description  
Bits per pixel of 1, 2, or 4 bits  
SSICLK  
I/O  
O
Serial bit clock  
SSITXDA  
SSIRXDA  
SSITXFR  
SSIRXFR  
Serial data out  
Pin Mnemonic  
I/O  
Pin Description  
I
Serial data in  
I/O  
I/O  
Transmit frame sync  
Receive frame sync  
CL1  
O
O
O
O
O
LCD line clock  
CL2  
LCD pixel clock out  
Table G. SSI2 Interface Pin Assignments  
DD[3:0]  
FRM  
M
LCD serial display data bus  
LCD frame synchronization pulse  
LCD AC bias drive  
Note: See Table R on page 11 for information on pin  
multiplexes.  
Table I. LCD Interface Pin Assignments  
8
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
.
64-Keypad Interface  
Pin Mnemonic  
I/O  
Pin Description  
Matrix keyboards and keypads can be easily read by the  
EP7311. A dedicated 8-bit column driver output generates  
strobes for each keyboard column signal. The pins of Port A,  
when configured as inputs, can be selectively OR'ed together  
to provide a keyboard interrupt that is capable of waking the  
system from a STANDBY or IDLE state.  
nEINT[2:1]  
I
I
I
I
External interrupt  
EINT[3]  
External interrupt  
nEXTFIQ  
External Fast Interrupt input  
Media change interrupt input  
nMEDCHG/nBROM  
(Note)  
Table K. Interrupt Controller Pin Assignments  
Column outputs can be individually set high with the  
remaining bits left at high-impedance  
Note: Pins are multiplexed. See Table S on page 11 for more  
information.  
Column outputs can be driven all-low, all-high, or all-high-  
impedance  
Real-Time Clock  
Keyboard interrupt driven by OR'ing together all Port A  
bits  
The EP7311 contains a 32-bit Real Time Clock (RTC) that can  
be written to and read from in the same manner as the timer  
counters. It also contains a 32-bit output match register which  
can be programmed to generate an interrupt.  
Keyboard interrupt can be used to wake up the system  
8×8 keyboard matrix usable with no external logic, extra  
keys can be added with minimal glue logic  
Driven by an external 32.768 kHz crystal oscillator  
Pin Mnemonic  
I/O  
Pin Description  
COL[7:0]  
O
Keyboard scanner column drive  
Pin Mnemonic  
Pin Description  
Table J. Keypad Interface Pin Assignments  
RTCIN  
Real-Time Clock Oscillator Input  
Real-Time Clock Oscillator Output  
Real-Time Clock Oscillator Power  
Real-Time Clock Oscillator Ground  
RTCOUT  
VDDRTC  
VSSRTC  
Interrupt Controller  
When unexpected events arise during the execution of a  
program (i.e., interrupt or memory fault) an exception is  
usually generated. When these exceptions occur at the same  
time, a fixed priority system determines the order in which  
they are handled. The EP7311 interrupt controller has two  
interrupt types: interrupt request (IRQ) and fast interrupt  
request (FIQ). The interrupt controller has the ability to control  
interrupts from 22 different FIQ and IRQ sources.  
Table L. Real-Time Clock Pin Assignments  
PLL and Clocking  
Processor and Peripheral Clocks operate from a single  
3.6864 MHz crystal or external 13 MHz clock  
Programmable clock speeds allow the peripheral bus to run  
at 18 MHz when the processor is set to 18 MHz and at  
36 MHz when the processor is set to 36, 49 or 74 MHz  
Supports 22 interrupts from a variety of sources (such as  
UARTs, SSI1, and key matrix.)  
Routes interrupt sources to the ARM720T’s IRQ or FIQ  
(Fast IRQ) inputs  
Pin Mnemonic  
Pin Description  
Five dedicated off-chip interrupt lines operate as level  
sensitive interrupts  
MOSCIN  
Main Oscillator Input  
MOSCOUT  
VDDOSC  
VSSOSC  
Main Oscillator Output  
Main Oscillator Power  
Main Oscillator Ground  
Table M. PLL and Clocking Pin Assignments  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
9
EP7311  
High-Performance, Low-Power System on Chip  
DC-to-DC converter interface (PWM)  
Hardware debug Interface  
Full JTAG boundary scan and Embedded ICE® support  
Provides two 96 kHz clock outputs with programmable  
duty ratio (from 1-in-16 to 15-in-16) that can be used to  
drive a positive or negative DC to DC converter  
Pin Mnemonic  
I/O  
Pin Description  
TCLK  
I
I
JTAG clock  
Pin Mnemonic  
I/O  
Pin Description  
TDI  
JTAG data input  
DRIVE[1:0]  
FB[1:0]  
I/O  
I
PWM drive output  
PWM feedback input  
TDO  
nTRST  
TMS  
O
I
JTAG data output  
JTAG async reset input  
JTAG mode select  
Table N. DC-to-DC Converter Interface Pin Assignments  
I
Table P. Hardware Debug Interface Pin Assignments  
Timers  
Internal (RTC) timer  
LED Flasher  
Two internal 16-bit programmable hardware count-down  
timers  
A dedicated LED flasher module can be used to generate a low  
frequency signal on Port D pin 0 for the purpose of blinking an  
LED without CPU intervention. The LED flasher feature is  
ideal as a visual annunciator in battery powered applications,  
such as a voice mail indicator on a portable phone or an  
appointment reminder on a PDA.  
General Purpose Input/Output (GPIO)  
Three 8-bit and one 3-bit GPIO ports  
Supports scanning keyboard matrix  
Software adjustable flash period and duty cycle  
Operates from 32 kHz RTC clock  
Pin Mnemonic  
I/O  
Pin Description  
PA[7:0]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO port A  
Will continue to flash in IDLE and STANDBY states  
4 mA drive current  
PB[7:0]  
GPIO port B  
GPIO port D  
GPIO port D  
GPIO port D  
GPIO port E  
GPIO port E  
PD[0]/LEDFLSH  
PD[5:1]  
(Note)  
(Note)  
Pin Mnemonic  
I/O  
Pin Description  
PD[7:6]/SDQM[1:0]  
PD[0]/LEDFLSH  
(Note)  
O
LED flasher driver  
PE[1:0]/BOOTSEL[1:0] (Note)  
PE[2]/CLKSEL (Note)  
Table Q. LED Flasher Pin Assignments  
Note: Pins are multiplexed. See Table S on page 11 for more  
information.  
Table O. General Purpose Input/Output Pin Assignments  
Note: Pins are multiplexed. See Table S on page 11 for more  
information.  
Internal Boot ROM  
The internal 128 byte Boot ROM facilitates download of saved  
code to the on-board SRAM/FLASH.  
Packaging  
The EP7311 is available in a 208-pin LQFP package, 256-ball  
PBGA package or a 204-ball TFBGA package.  
10  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
The following table shows the pins that have been multiplexed  
in the EP7311.  
Pin Multiplexing  
The following table shows the pin multiplexing of the MCP,  
SSI2 and the CODEC. The selection between SSI2 and the  
CODEC is controlled by the state of the SERSEL bit in  
SYSCON2. The choice between the SSI2, CODEC, and the  
MCP is controlled by the MCPSEL bit in SYSCON3 (see the  
EP73xx User’s Manual for more information).  
Signal  
Block  
Signal  
Block  
nMOE  
Static Memory  
Static Memory  
Static Memory  
Static Memory  
Static Memory  
GPIO  
nSDCAS  
SDRAM  
nMWE  
nSDWE  
SDRAM  
SDRAM  
SDRAM  
SDRAM  
SDRAM  
WRITE  
A[27:15]  
A[14:13]  
PD[7:6]  
nSDRAS  
DRA[0:12]  
DRA[13:14]  
SDQM[1:0]  
Pin  
Mnemonic  
I/O  
MCP  
SSI2  
CODEC  
SSICLK  
I/O  
O
I
SIBCLK  
SIBDOUT  
SIBDIN  
SIBSYNC  
p/u  
SSICLK  
SSITXDA  
SSIRXDA  
PCMCLK  
PCMOUT  
PCMIN  
SSITXDA  
SSIRXDA  
SSITXFR  
SSIRXFR  
System  
Configuration  
System  
Configuration  
RUN  
CLKEN  
Interrupt  
Controller  
Boot ROM  
select  
I/O  
I
SSITXFR PCMSYNC  
SSIRXFR p/u  
nMEDCHG  
PD[0]  
nBROM  
GPIO  
GPIO  
LEDFLSH  
BOOTSEL[1:0]  
LED Flasher  
BUZ  
O
System  
Configuration  
PE[1:0]  
Table R. MCP/SSI2/CODEC Pin Multiplexing  
System  
Configuration  
PE[2]  
GPIO  
CLKSEL  
Table S. Pin Multiplexing  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
11  
EP7311  
High-Performance, Low-Power System on Chip  
System Design  
As shown in system block diagram, simply adding desired  
memory and peripherals to the highly integrated EP7311  
completes a low-power system solution. All necessary  
interface logic is integrated on-chip.  
CRYSTAL  
CRYSTAL  
MOSCIN  
RTCIN  
DD[0-3]  
CL1  
LCD  
CL2  
FRM  
M
nCS[4]  
PB0  
EXPCLK  
COL[0-7]  
KEYBOARD  
PA[0-7]  
D[0-31]  
A[0-27]  
PC CARD  
CONTROLLER  
PC CARD  
SOCKET  
PB[0-7]  
nMOE  
WRITE  
PD[0-7]  
DC  
INPUT  
PE[0-2]  
POWER  
SUPPLY UNIT  
SDRAS/  
SDCAS  
AND  
COMPARATORS  
nPOR  
nPWRFL  
BATOK  
nEXTPWR  
nBATCHG  
RUN  
×16  
SDRAM  
×16  
SDRAM  
SDCS[0]  
BATTERY  
SDQM[0-3]  
WAKEUP  
SDCS[1]  
×16  
×16  
SDRAM  
SDRAM  
SDQM[0-3]  
DRIVE[0-1]  
FB[0-1]  
DC-TO-DC  
CONVERTERS  
nCS[0]  
nCS[1]  
SSICLK  
SSITXFR  
SSITXDA  
SSIRXDA  
SSIRXFR  
CODEC/SSI2/  
MCP  
×16  
FLASH  
×16  
FLASH  
×16  
FLASH  
×16  
FLASH  
IR LED AND  
PHOTODIODE  
LEDDRV  
PHDIN  
CS[n]  
WORD  
RXD1/2  
TXD1/2  
DSR  
2× RS-232  
TRANSCEIVERS  
EXTERNAL MEMORY-  
MAPPED EXPANSION  
BUFFERS  
CTS  
DCD  
ADCCLK  
nADCCS  
ADCOUT  
ADCIN  
nCS[2]  
nCS[3]  
ADC  
DIGITIZER  
BUFFERS  
AND  
LEDFLSH  
ADDITIONAL I/O  
SMPCLK  
LATCHES  
Figure 1. A Maximum EP7311 Based System  
Note: A system can only use one of the following peripheral  
interfaces at any given time: SSI2,CODEC or MCP.  
12  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings  
DC Core, PLL, and RTC Supply Voltage  
DC I/O Supply Voltage (Pad Ring)  
DC Pad Input Current  
2.9 V  
3.6 V  
10 mA/pin; 100 mA cumulative  
Storage Temperature, No Power  
–40°C to +125°C  
Recommended Operating Conditions  
DC core, PLL, and RTC Supply Voltage  
DC I/O Supply Voltage (Pad Ring)  
DC Input / Output Voltage  
2.5 V 0.2 V  
2.3 V - 3.5 V  
O–I/O supply voltage  
Extended -20°C to +70°C; Commercial 0°C to +70°C;  
Industrial -40°C to +85°C  
Operating Temperature  
DC Characteristics  
All characteristics are specified at V  
= 2.5 V, V  
= 3.3 V and V = 0 V over an operating temperature of 0°C to +70°C  
DDIO SS  
DDCORE  
for all frequencies of operation. The current consumption figures have test conditions specified per parameter.”  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
0.65 × VDDIO  
VSS 0.3  
VDDIO + 0.3  
0.25 × VDDIO  
VDDIO = 2.5 V  
VDDIO = 2.5 V  
VIH  
CMOS input high voltage  
CMOS input low voltage  
-
-
V
V
VIL  
Schmitt trigger positive going  
threshold  
VT+  
-
-
2.1  
V
Schmitt trigger negative going  
threshold  
VT-  
0.8  
-
-
-
V
V
Vhst  
Schmitt trigger hysteresis  
0.1  
0.4  
VIL to VIH  
CMOS output high voltagea  
Output drive 1a  
Output drive 2a  
VDD – 0.2  
-
-
-
-
-
-
V
V
V
IOH = 0.1 mA  
IOH = 4 mA  
IOH = 12 mA  
VOH  
VOL  
2.5  
2.5  
CMOS output low voltagea  
Output drive 1a  
Output drive 2a  
-
-
-
-
-
-
0.3  
0.5  
0.5  
V
V
V
IOL = –0.1 mA  
IOL = –4 mA  
IOL = –12 mA  
VIN = VDD or GND  
IIN  
Input leakage current  
-
-
-
1.0  
µA  
µA  
Bidirectional 3-state leakage  
currentb c  
VOUT = VDD or GND  
IOZ  
25  
100  
CIN  
Input capacitance  
Output capacitance  
8
8
-
-
10.0  
10.0  
pF  
pF  
COUT  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
13  
EP7311  
High-Performance, Low-Power System on Chip  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
CI/O  
Transceiver capacitance  
8
-
10.0  
pF  
Only nPOR, nPWRFAIL,  
nURESET, PE0, PE1, and RTS  
are driven, while all other float,  
VIH = VDD 0.1 V,  
Standby current consumption1  
Core, Osc, RTC @2.5 V  
I/O @ 3.3 V  
IDDSTANDBY  
@ 25 C  
-
-
77  
41  
-
-
µA  
µA  
µA  
VIL = GND 0.1 V  
Only nPOR, nPWRFAIL,  
nURESET, PE0, PE1, and RTS  
are driven, while all other float,  
VIH = VDD 0.1 V,  
Standby current consumption1  
Core, Osc, RTC @2.5 V  
I/O @ 3.3 V  
IDDSTANDBY  
@ 70 C  
-
-
-
-
570  
111  
VIL = GND 0.1 V  
Only nPOR, nPWRFAIL,  
nURESET, PE0, PE1, and RTS  
are driven, while all other float,  
VIH = VDD 0.1 V,  
Standby current consumption1  
IDDSTANDBY  
@ 85 C  
-
-
-
-
1693  
163  
Core, Osc, RTC @2.5 V  
I/O @ 3.3 V  
VIL = GND 0.1 V  
Both oscillators running, CPU  
static, Cache enabled, LCD  
disabled, VIH = VDD 0.1 V, VIL  
Idle current consumption1  
Core, Osc, RTC @2.5 V  
I/O @ 3.3 V  
IDDidle  
-
-
6
10  
-
-
mA  
V
at 74 MHz  
= GND 0.1 V  
Minimum standby voltage for  
state retention, internal SRAM  
cache, and RTC operation only  
VDDSTANDBY  
Standby supply voltage  
2.0  
-
-
a.  
b.  
c.  
Refer to the strength column in the pin assignment tables for all package types.  
Assumes buffer has no pull-up or pull-down resistors.  
The leakage value given assumes that the pin is configured as an input pin but is not currently being driven.  
Note: 1) Total power consumption = IDDCORE x 2.5 V + IDDIO x 3.3 V  
2) A typical design will provide 3.3 V to the I/O supply (i.e., VDDIO), and 2.5 V to the remaining logic. This is to allow the I/O to be  
compatible with 3.3 V powered external logic (i.e., 3.3 V SDRAMs).  
2) Pull-up current = 50 µA typical at VDD = 3.3 V.  
14  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
Timings  
Timing Diagram Conventions  
This data sheet contains timing diagrams. The following key explains the components used in these diagrams. Any variations are  
clearly labelled when they occur. Therefore, no additional meaning should be attached unless specifically stated.  
C l o c k  
H i g h t o L o w  
H i g h / L o w t o H i g h  
B u s C h a n g e  
B u s V a l i d  
U n d e f i n e d / I n v a l i d  
V a l i d B u s t o T r i s t a t e  
B u s / S i g n a l O m i s s i o n  
Figure 2. Legend for Timing Diagrams  
Timing Conditions  
Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are specified at  
V
= 3.1 - 3.5 V and V = 0 V over an operating temperature of -40°C to +85°C. Pin loadings is 50 pF. The timing values are  
DDIO  
SS  
referenced to 1/2 V  
.
DD  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
15  
EP7311  
High-Performance, Low-Power System on Chip  
SDRAM Interface  
Figure 3 through Figure 6 define the timings associated with all phases of the SDRAM. The following table contains the values for  
the timings of each of the SDRAM modes.  
Parameter  
Symbol  
tCSa  
Min  
Typ  
Max  
Unit  
SDCLK rising edge to SDCS assert delay time  
SDCLK rising edge to SDCS deassert delay time  
SDCLK rising edge to SDRAS assert delay time  
SDCLK rising edge to SDRAS deassert delay time  
SDCLK rising edge to SDRAS invalid delay time  
SDCLK rising edge to SDCAS assert delay time  
SDCLK rising edge to SDCAS deassert delay time  
SDCLK rising edge to ADDR transition time  
SDCLK rising edge to ADDR invalid delay time  
SDCLK rising edge to SDMWE assert delay time  
SDCLK rising edge to SDMWE deassert delay time  
DATA transition to SDCLK rising edge time  
0
3  
1
2
2
3
1
4
2
0
1
2
1
0
-
4
10  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCSd  
tRAa  
tRAd  
3  
2
10  
7
tRAnv  
tCAa  
2  
5  
3  
2  
3  
4  
2
5
tCAd  
3
tADv  
5
tADx  
5
tMWa  
tMWd  
tDAs  
5
4
-
tDAh  
SDCLK rising edge to DATA transition hold time  
SDCLK rising edge to DATA transition delay time  
1
-
-
tDAd  
0
-
15  
16  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
SDRAM Load Mode Register Cycle  
SDCLK  
tCSa  
tCSd  
tRAd  
tCAd  
SDCS  
tRAa  
SDRAS  
tCAa  
SDCAS  
tADv  
tADx  
ADDR  
DATA  
SDQM  
tMWa  
tMWd  
SDMWE  
Figure 3. SDRAM Load Mode Register Cycle Timing Measurement  
Note:  
1. Timings are shown with CAS latency = 2  
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.  
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
17  
EP7311  
High-Performance, Low-Power System on Chip  
SDRAM Burst Read Cycle  
SDCLK  
tCSa  
tCSa  
tCSd  
tCSd  
SDCS  
SDRAS  
SDCAS  
ADDR  
tRAa  
tRAd  
tRAnv  
tCAa  
tCAd  
tADv  
tADv  
ADRAS  
ADCAS  
tDAs  
tDAs  
tDAs  
tDAs  
D1  
D2  
D3  
D4  
DATA  
tDAh  
tDAh  
tDAh  
tDAh  
SDQM  
[0:3]  
SDMWE  
Figure 4. SDRAM Burst Read Cycle Timing Measurement  
Note: 1. Timings are shown with CAS latency = 2  
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.  
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal.  
18  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
SDRAM Burst Write Cycle  
SDCLK  
tCSa  
tCSa  
tCSd  
tCSd  
SDCS  
tRAa  
tRAd  
SDRAS  
SDCAS  
tCAa  
tCAd  
tADv  
tADv  
ADDR  
ADCAS  
ADRAS  
tDAd  
tDAd  
tDAd  
tDAd  
DATA  
SDQM  
D1  
D2  
D3  
D4  
0
tMWa  
tMWd  
SDMWE  
Figure 5. SDRAM Burst Write Cycle Timing Measurement  
Note:  
1. Timings are shown with CAS latency = 2  
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.  
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
19  
EP7311  
High-Performance, Low-Power System on Chip  
SDRAM Refresh Cycle  
SDCLK  
tCSa  
tCSd  
SDCS  
tRAa  
tRAd  
SDRAS  
tCAd  
tCAa  
SDCAS  
SDATA  
ADDR  
SDQM  
[3:0]  
SDMWE  
Figure 6. SDRAM Refresh Cycle Timing Measurement  
Note:  
1. Timings are shown with CAS latency = 2  
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.  
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal  
20  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
Static Memory  
Figure 7 through Figure 10 define the timings associated with all phases of the Static Memory. The following table contains the  
values for the timings of each of the Static Memory modes.  
Parameter  
Symbol  
tCSd  
tCSh  
tAd  
Min  
Typ  
Max  
Unit  
EXPCLK rising edge to nCS assert delay time  
EXPCLK falling edge to nCS deassert hold time  
EXPCLK rising edge to A assert delay time  
EXPCLK falling edge to A deassert hold time  
EXPCLK rising edge to nMWE assert delay time  
EXPCLK rising edge to nMWE deassert hold time  
EXPCLK falling edge to nMOE assert delay time  
EXPCLK falling edge to nMOE deassert hold time  
EXPCLK falling edge to HALFWORD deassert delay time  
EXPCLK falling edge to WORD assert delay time  
EXPCLK rising edge to data valid delay time  
EXPCLK falling edge to data invalid delay time  
Data setup to EXPCLK falling edge time  
2
2
4
3
3
3
3
2
2
2
8
6
-
8
7
20  
20  
16  
19  
10  
10  
10  
10  
20  
16  
21  
30  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
9
tAh  
10  
6
tMWd  
tMWh  
tMOEd  
tMOEh  
tHWd  
tWDd  
tDv  
6
7
7
8
8
13  
15  
-
tDnv  
tDs  
tDh  
EXPCLK falling edge to data hold time  
-
-
3
tWRd  
tEXs  
EXPCLK rising edge to WRITE assert delay time  
EXPREADY setup to EXPCLK falling edge time  
EXPCLK falling edge to EXPREADY hold time  
5
-
11  
-
23  
0
tEXh  
-
-
0
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
21  
EP7311  
High-Performance, Low-Power System on Chip  
Static Memory Single Read Cycle  
EXPCLK  
tCSd  
tCSh  
nCS  
tAd  
A
nMWE  
tMOEd  
tMOEh  
nMOE  
tHWd  
HALF-  
WORD  
tWDd  
WORD  
tDs  
tDh  
D
tEXs  
tEXh  
EXPRDY  
tWRd  
WRITE  
Figure 7. Static Memory Single Read Cycle Timing Measurement  
Note: 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at  
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is  
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period  
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.  
2. Address, Halfword, Word, and Write hold state until next cycle.  
22  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
Static Memory Single Write Cycle  
EXPCLK  
tCSd  
tCSh  
nCS  
tAd  
A
tMWd  
tMWh  
nMWE  
nMOE  
tHWd  
HALF-  
WORD  
tWDd  
WORD  
tDv  
D
tEXs  
tEXh  
EXPRDY  
WRITE  
Figure 8. Static Memory Single Write Cycle Timing Measurement  
Note: 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at  
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is  
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period  
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.  
2. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with  
valid timing under zero wait state conditions.  
3. Address, Data, Halfword, Word, and Write hold state until next cycle.  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
23  
EP7311  
High-Performance, Low-Power System on Chip  
Static Memory Burst Read Cycle  
EXPCLK  
tCSd  
tCSh  
nCS  
tAh  
tAd  
tAh  
tAh  
A
nMWE  
tMOEd  
tMOEh  
nMOE  
tHWd  
HALF  
WORD  
tWDd  
WORD  
D
tDs tDh  
tDs tDh  
tDs tDh  
tDs tDh  
tEXs  
tEXh  
EXPRDY  
WRITE  
tWRd  
Figure 9. Static Memory Burst Read Cycle Timing Measurement  
Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive  
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.  
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at  
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is  
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period  
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.  
3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to  
determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion  
cycles. This improves performance so the SQAEN bit should always be set where possible.  
4. Address, Halfword, Word, and Write hold state until next cycle.  
24  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
Static Memory Burst Write Cycle  
EXPCLK  
tCSd  
tCSh  
nCS  
tAh  
tAh  
tAh  
tAd  
A
tMWd  
tMWd  
tMWd  
tMWd  
tMWh  
tMWh  
tMWh  
tMWh  
nMWE  
nMOE  
tHWd  
HALF  
WORD  
tWDd  
WORD  
D
tDv  
tDnv  
tDv  
tDnv  
tDv  
tDnv  
tDv  
tEXs  
tEXh  
EXPRDY  
WRITE  
Figure 10. Static Memory Burst Write Cycle Timing Measurement  
Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-1-1-1). This is the maximum number of consecutive  
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.  
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at  
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is  
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period  
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.  
3. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with  
valid timing under zero wait state conditions.  
4. Address, Data, Halfword, Word, and Write hold state until next cycle.  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
25  
EP7311  
High-Performance, Low-Power System on Chip  
SSI1 Interface  
Parameter  
Symbol  
tCd  
Min  
Max  
Unit  
ADCCLK falling edge to nADCCSS deassert delay time  
ADCIN data setup to ADCCLK rising edge time  
ADCIN data hold from ADCCLK rising edge time  
ADCCLK falling edge to data valid delay time  
ADCCLK falling edge to data invalid delay time  
9
-
10  
15  
14  
13  
3
ms  
ns  
ns  
ns  
ns  
tINs  
tINh  
-
tOvd  
tOd  
7  
2  
ADC  
CLK  
tCd  
nADC  
CSS  
tINs  
tINh  
ADCIN  
tOvd  
tOd  
ADC  
OUT  
Figure 11. SSI1 Interface Timing Measurement  
26  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
SSI2 Interface  
Parameter  
Symbol  
tclk_per  
tclk_high  
tclk_low  
tclkrf  
Min  
Max  
Unit  
SSICLK period (slave mode)  
SSICLK high time  
185  
925  
925  
3
2050  
1025  
1025  
18  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SSICLK low time  
SSICLK rise/fall time  
tFRd  
SSICLK rising edge to RX and/or TX frame sync high time  
SSICLK rising edge to RX and/or TX frame sync low time  
SSIRXFR and/or SSITXFR period  
-
3
tFRa  
-
8
tFR_per  
tRXs  
960  
3
990  
7
SSIRXDA setup to SSICLK falling edge time  
SSIRXDA hold from SSICLK falling edge time  
SSICLK rising edge to SSITXDA data valid delay time  
SSITXDA valid time  
tRXh  
3
7
tTXd  
-
2
tTXv  
960  
990  
tclk_per  
tclk_high  
tclk_low  
SSI  
CLK  
tclkrf  
tFR_per  
tFRd  
tFRa  
SSIRXFR/  
SSITXFR  
tRXh  
tRXs  
SSI  
RXDA  
D7  
D2  
D2  
D1  
D1  
D0  
D0  
tTXd  
SSI  
TXDA  
D7  
tTXv  
Figure 12. SSI2 Interface Timing Measurement  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
27  
EP7311  
High-Performance, Low-Power System on Chip  
LCD Interface  
Parameter  
Symbol  
tCL1d  
tCL2d  
tFRMd  
tMd  
Min  
Max  
Unit  
CL[2] falling to CL[1] rising delay time  
CL[1] falling to CL[2] rising delay time  
CL[1] falling to FRM transition time  
CL[1] falling to M transition time  
10  
80  
25  
3,475  
10,425  
20  
ns  
ns  
ns  
ns  
ns  
300  
10  
10  
tDDd  
CL[2] rising to DD (display data) transition time  
20  
CL[2]  
tCL2d  
tCL1d  
CL[1]  
FRM  
tFRMd  
tMd  
M
tDDd  
DD [3:0]  
Figure 13. LCD Controller Timing Measurement  
28  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
JTAG Interface  
Parameter  
Symbol  
tclk_per  
tclk_high  
tclk_low  
tJPs  
Min  
Max  
Units  
TCK clock period  
2
1
1
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock high time  
TCK clock low time  
JTAG port setup time  
JTAG port hold time  
JTAG port clock to output  
-
0
tJPh  
-
3
tJPco  
-
10  
12  
19  
tJPzx  
JTAG port high impedance to valid output  
JTAG port valid output to high impedance  
-
tJPxz  
-
tclk_per  
tclk_high  
tclk_low  
TCK  
tJPh  
tJPs  
TMS  
TDI  
tJPzx  
tJPco  
tJPxz  
TDO  
Figure 14. JTAG Timing Measurement  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
29  
EP7311  
High-Performance, Low-Power System on Chip  
Packages  
208-Pin LQFP Package Characteristics  
208-Pin LQFP Package Specifications  
29.60 (1.165)  
30.40 (1.197)  
27.80 (1.094)  
28.20 (1.110)  
0.17 (0.007)  
0.27 (0.011)  
27.80 (1.094)  
28.20 (1.110)  
29.60 (1.165)  
30.40 (1.197)  
EP7311  
208-Pin LQFP  
0.50  
(0.0197)  
BSC  
Pin 1 Indicator  
Pin 208  
Pin 1  
1.35 (0.053)  
1.45 (0.057)  
1.00 (0.039) BSC  
0.45 (0.018)  
0.75 (0.030)  
0.09 (0.004)  
0.20 (0.008)  
0° MIN  
7° MAX  
0.05 (0.002)  
0.15 (0.006)  
1.40 (0.055)  
1.60 (0.063)  
Figure 15. 208-Pin LQFP Package Outline Drawing  
Note: 1) Dimensions are in millimeters (inches), and controlling dimension is millimeter.  
2) Drawing above does not reflect exact package pin count.  
3) Before beginning any new design with this device, please contact Cirrus Logic for the latest package information.  
4) For pin locations, please see Figure 16. For pin descriptions see the EP7311 User’s Manual.  
30  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
208-Pin LQFP Pin Diagram  
D[25]  
A[25]/DRA[2]  
D[26]  
A[26]/DRA[1]  
D[27]  
A[27]/DRA[0]  
104  
103  
102  
101  
100  
99  
157  
158  
159  
160  
161  
162  
163  
164  
VDDOSC  
MOSCIN  
MOSCOUT  
VSSOSC  
WAKEUP  
nPWRFL  
VSSIO  
98  
D[28]  
97  
A[6]  
D[6]  
A[5]  
D[5]  
VDDIO  
VSSIO  
A[4]  
D[4]  
A[3]  
D[3]  
A[2]  
VSSIO  
D[2]  
A[1]  
D[1]  
A[0]  
D[29]  
96  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
D[30]  
95  
D[31]  
94  
BUZ  
93  
COL[0]  
92  
COL[1]  
91  
TCLK  
90  
VDDIO  
89  
COL[2]  
88  
COL[3]  
87  
COL[4]  
86  
COL[5]  
85  
COL[6]  
84  
COL[7]  
83  
FB[0]  
82  
EP7311  
D[0]  
VSSIO  
81  
VSSCORE  
VDDCORE  
VSSIO  
VDDIO  
CL[2]  
CL[1]  
FRM  
FB[1]  
80  
SMPCLK  
79  
ADCOUT  
78  
208-Pin LQFP  
ADCCLK  
77  
DRIVE[0]  
76  
(Top View)  
DRIVE[1]  
75  
VDDIO  
74  
M
VSSIO  
73  
DD[3]  
DD[2]  
VSSIO  
DD[1]  
DD[0]  
VDDCORE  
72  
VSSCORE  
71  
nADCCS  
70  
ADCIN  
69  
SSIRXFR  
68  
nSDCS[1]  
SSIRXDA  
67  
nSDCS[0  
]
SSITXDA  
66  
SDQM[3]  
SDQM[2]  
VDDIO  
SSITXFR  
65  
VSSIO  
64  
SSICLK  
63  
VSSIO  
SDCKE  
SDCLK  
PD[0]/LEDFLSH  
62  
PD[1]  
61  
PD[2]  
60  
nMWE/nSDWE  
nMOE/nSDCAS  
VSSIO  
PD[3]  
59  
TMS  
58  
VDDIO  
57  
nCS[0]  
nCS[1]  
nCS[2]  
nCS[3]  
PD[4]  
56  
PD[5]  
55  
PD[6]/SDQM[0]  
54  
53  
PD[7]/SDQM[1]  
nCS[4]  
Figure 16. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram  
Note: 1. N/C should not be grounded but left as no connects.  
2. Pin differences between the EP7211 and the EP7311 are bolded.  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
31  
EP7311  
High-Performance, Low-Power System on Chip  
208-Pin LQFP Numeric Pin Listing  
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)  
Table T. 208-Pin LQFP Numeric Pin Listing  
Pin  
Pin  
No.  
Reset  
State  
Signal  
Type  
Strength  
Reset  
State  
Signal  
Type  
Strength  
No.  
37  
38  
39  
40  
41  
42  
43  
44  
45  
DCD  
DSR  
I
1
nCS[5]  
VDDIO  
VSSIO  
EXPCLK  
WORD  
WRITE/nSDRAS  
RUN/CLKEN  
EXPRDY  
TXD[2]  
RXD[2]  
TDI  
O
1
Low  
I
2
Pad Pwr  
nTEST[1]  
nTEST[0]  
EINT[3]  
I
With p/u*  
With p/u*  
3
Pad Gnd  
I
4
I/O  
1
1
1
1
1
1
I
5
Out  
Low  
Low  
Low  
nEINT[2]  
nEINT[1]  
nEXTFIQ  
PE[2]/CLKSEL  
I
I
6
Out  
7
O
I
8
I
I/O  
1
1
Input  
Input  
9
O
High  
PE[1]/  
BOOTSEL[1]  
46  
47  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
I
I
Pad Gnd  
I/O  
with p/u*  
PE[0]/  
BOOTSEL[0]  
1
Input  
VSSIO  
PB[7]  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
VSSRTC  
RTCOUT  
RTCIN  
RTC Gnd  
1
1
1
1
1
1
1
1
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
O
PB[6]  
I/O  
I
PB[5]  
I/O  
VDDRTC  
N/C  
RTC power  
PB[4]  
I/O  
PB[3]  
I/O  
PD[7]/SDQM[1]  
PD[6]/SDQM[0]  
PD[5]  
I/O  
1
1
1
1
Low  
Low  
Low  
Low  
PB[2]  
I/O  
I/O  
PB[1]/PRDY2  
PB[0]/PRDY1  
VDDIO  
TDO  
I/O  
I/O  
I/O  
PD[4]  
I/O  
Pad Pwr  
O
VDDIO  
Pad Pwr  
1
1
1
1
1
1
1
1
1
1
1
1
Three state  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Low  
TMS  
I
with p/u*  
PA[7]  
I/O  
PD[3]  
I/O  
1
1
1
1
1
Low  
Low  
Low  
Low  
Input  
PA[6]  
I/O  
PD[2]  
I/O  
PA[5]  
I/O  
PD[1]  
I/O  
PA[4]  
I/O  
PD[0]/LEDFLSH  
SSICLK  
I/O  
PA[3]  
I/O  
I/O  
PA[2]  
I/O  
VSSIO  
Pad Gnd  
PA[1]  
I/O  
SSITXFR  
SSITXDA  
SSIRXDA  
SSIRXFR  
ADCIN  
I/O  
1
1
Low  
Low  
PA[0]  
I/O  
O
LEDDRV  
TXD[1]  
VSSIO  
PHDIN  
CTS  
O
I
O
High  
I/O  
Input  
High  
Pad Gnd  
I
High  
I
nADCCS  
VSSCORE  
VDDCORE  
O
1
I
Core Gnd  
Core Pwr  
RXD[1]  
I
32  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)  
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)  
Reset  
Pin  
No.  
Reset  
State  
Pin  
No.  
Signal  
Type  
Strength  
Signal  
Type  
Strength  
State  
73  
74  
VSSIO  
VDDIO  
Pad Gnd  
Pad Pwr  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
A[23]/DRA[4]  
D[23]  
O
1
1
1
1
1
1
Low  
Low  
Low  
Low  
Low  
Low  
I/O  
High /  
Low  
A[22]/DRA[5]  
D[22]  
O
75  
76  
DRIVE[1]  
DRIVE[0]  
I/O  
I/O  
2
2
I/O  
High /  
Low  
A[21]/DRA[6]  
D[21]  
O
I/O  
77  
78  
ADCCLK  
ADCOUT  
SMPCLK  
FB[1]  
O
1
1
1
Low  
Low  
Low  
VSSIO  
Pad Gnd  
O
A[20]/DRA[7]  
D[20]  
O
1
1
1
1
1
1
Low  
Low  
Low  
Low  
Low  
Low  
79  
O
I/O  
80  
I
A[19]/DRA[8]  
D[19]  
O
81  
VSSIO  
Pad Gnd  
I/O  
82  
FB[0]  
I
A[18]/DRA[9]  
D[18]  
O
83  
COL[7]  
COL[6]  
COL[5]  
COL[4]  
COL[3]  
COL[2]  
VDDIO  
TCLK  
O
1
1
1
1
1
1
High  
High  
High  
High  
High  
High  
I/O  
84  
O
VDDIO  
Pad Pwr  
85  
O
VSSIO  
Pad Gnd  
86  
O
nTRST  
I
O
87  
O
A[17]/DRA[10]  
D[17]  
1
1
1
1
1
1
1
1
1
1
1
1
1
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
88  
O
I/O  
O
89  
Pad Pwr  
A[16]/DRA[11]  
D[16]  
90  
I
I/O  
O
91  
COL[1]  
COL[0]  
BUZ  
O
1
1
1
1
1
1
1
High  
High  
Low  
Low  
Low  
Low  
Low  
A[15]/DRA[12]  
D[15]  
92  
O
I/O  
O
93  
O
I/O  
A[14]/DRA[13]  
D[14]  
94  
D[31]  
I/O  
O
95  
D[30]  
I/O  
A[13]/DRA[14]  
D[13]  
96  
D[29]  
I/O  
I/O  
O
97  
D[28]  
I/O  
A[12]  
98  
VSSIO  
Pad Gnd  
O
D[12]  
I/O  
O
99  
A[27]/DRA[0]  
D[27]  
2
1
2
1
2
1
1
1
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
A[11]  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
I/O  
VDDIO  
Pad Pwr  
Pad Gnd  
I/O  
O
A[26]/DRA[1]  
D[26]  
O
VSSIO  
I/O  
D[11]  
1
1
1
1
1
1
1
Low  
Low  
Low  
Low  
Low  
Low  
Low  
A[25]/DRA[2]  
D[25]  
O
A[10]  
I/O  
D[10]  
I/O  
O
HALFWORD  
A[24]/DRA[3]  
VDDIO  
VSSIO  
O
A[9]  
O
D[9]  
I/O  
O
Pad Pwr  
Pad Gnd  
I/O  
A[8]  
D[8]  
I/O  
D[24]  
1
Low  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
33  
EP7311  
High-Performance, Low-Power System on Chip  
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)  
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)  
Pin  
No.  
Reset  
State  
Pin  
No.  
Reset  
State  
Signal  
Type  
Strength  
Signal  
Type  
Strength  
148  
149  
150  
151  
152  
153  
154  
A[7]  
VSSIO  
O
1
Low  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
FRM  
M
O
1
1
1
1
Low  
Low  
Low  
Low  
Pad Gnd  
O
D[7]  
I/O  
1
Low  
DD[3]  
I/O  
nBATCHG  
nEXTPWR  
BATOK  
nPOR  
I
I
I
I
DD[2]  
I/O  
VSSIO  
Pad Gnd  
DD[1]  
I/O  
1
1
1
1
2
2
Low  
Low  
High  
High  
Low  
Low  
Schmitt  
Schmitt  
DD[0]  
I/O  
nMEDCHG/  
nBROM  
nSDCS[1]  
nSDCS[0]  
SDQM[3]  
SDQM[2]  
VDDIO  
O
155  
I
O
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
nURESET  
VDDOSC  
MOSCIN  
MOSCOUT  
VSSOSC  
WAKEUP  
nPWRFL  
A[6]  
I
I/O  
Osc Pwr  
I/O  
Osc  
Pad Pwr  
Osc  
VSSIO  
Pad Gnd  
Osc Gnd  
SDCKE  
SDCLK  
nMWE/nSDWE  
nMOE/nSDCAS  
VSSIO  
I/O  
2
2
1
1
Low  
Low  
High  
High  
I
Schmitt  
I/O  
I
O
O
1
1
1
1
Low  
Low  
Low  
Low  
O
D[6]  
I/O  
Pad Gnd  
A[5]  
Out  
nCS[0]  
O
O
O
O
O
1
1
1
1
1
High  
High  
High  
High  
High  
D[5]  
I/O  
nCS[1]  
VDDIO  
VSSIO  
A[4]  
Pad Pwr  
nCS[2]  
Pad Gnd  
nCS[3]  
O
1
1
2
1
2
Low  
Low  
Low  
Low  
Low  
nCS[4]  
D[4]  
I/O  
A[3]  
O
*With p/u’ means with internal pull-up on the pin.  
D[3]  
I/O  
A[2]  
O
Pad Gnd  
I/O  
VSSIO  
D[2]  
1
2
1
2
1
Low  
Low  
Low  
Low  
Low  
A[1]  
O
D[1]  
I/O  
A[0]  
O
D[0]  
I/O  
VSS CORE  
VDD CORE  
VSSIO  
VDDIO  
CL[2]  
Core Gnd  
Core Pwr  
Pad Gnd  
Pad Pwr  
O
1
1
Low  
Low  
CL[1]  
O
34  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
204-Ball TFBGA Package Characteristics  
204-Ball TFBGA Package Specifications  
TOP VIEW  
BOTTOM VIEW  
Ø0.08 M C  
Ø0.15 M C A B  
Ø0.25~0.35(204X)  
A1 CORNER  
A1 CORNER  
1
2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20  
20 19 18 17 16 15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
T
M
N
P
R
T
U
V
W
Y
U
V
W
Y
A
0.65  
12.35  
B
13±0.05  
)
C
0.15(4X  
Substrate Thickness :  
0.36  
Ball Pitch :  
0.65  
0.3  
Ball Diameter :  
Mold Thickness :  
SEATING PLANE  
C
0.53  
Figure 17. 204-Ball TFBGA Package  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
35  
EP7311  
High-Performance, Low-Power System on Chip  
204-Ball TFBGA Pinout (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
A2  
14  
15  
16  
17  
18  
19  
20  
nMWE/  
nSDWE  
GNDCOR  
E
A
B
C
D
E
F
VDDIO EXPCLK nCS3 nCS1  
SDQM2 nSDCS1  
SDCKE nSDCS0  
DD2  
FRM  
CL1  
D1  
D4  
A5 nPWRFL MOSCOUT GNDIO  
GNDIO GNDIO A  
nMOE/  
nSDCAS  
WORD VDDIO nCS5 nCS2  
RUN/  
DD1  
DD0  
M
CL2  
D0  
A0  
A1  
D2  
D3  
A3  
A4  
D5  
D6 WAKEUP MOSCIN GNDIO  
GNDOS  
GNDIO nURESET B  
VDDCO  
RE  
EXPRDY VDDIO nCS4 nCS0 SDCLK SDQM3  
DD3  
A6  
VDDOSC GNDIO  
BATOK  
nPOR  
A7  
C
D
E
F
CLKEN  
C
PB7  
RXD2 VDDIO  
GNDIO nBATCHG  
WRITE/  
TXD2  
nMEDCHG  
nEXTPWR  
/nBROM  
PB4  
PB3  
D9  
nSDRAS  
PB6  
PB2  
TDO  
PA5  
PA2  
TDI  
D7  
D8  
A8  
A9  
D10  
D11  
A12  
PB1/  
PRDY2  
G
H
J
PB5  
G
H
J
PB0/  
PRDY1  
PA7  
PA4  
PA1  
A10  
D12  
D13  
A13/  
DRA14  
PA6  
A11  
A14/  
DRA13  
K
L
VDDIO  
D14  
D15  
K
L
A16/  
DRA11  
TXD1 LEDDRV PA3  
VDDIO  
D16  
A15/  
DRA12  
A17/  
DRA10  
M
N
P
RXD1  
CTS  
PA0  
nTRST  
M
N
P
R
A18/  
DRA9  
DSR nTEST1 PHDIN  
D17  
D18  
D19  
A20/  
DRA7  
EINT3 nEINT2 DCD  
PE2/  
D20  
A19/  
DRA8  
A21/  
DRA6  
R nEXTFIQ  
nTEST0  
D22  
D23  
CLKSEL  
PE1/  
PE0/  
A22/  
DRA5  
T
BOOT BOOT nEINT1  
SEL1 SEL0  
D21  
T
HALF  
WORD  
A23/  
DRA4  
U GNDRTCRTCOUT RTCIN  
V VDDRTC GNDIO GNDIO  
D24  
U
V
PD7/  
SDQM1  
A26/  
DRA1  
A24/  
DRA3  
PD4  
TMS  
PD2  
SSICLK SSIRXDAnADCCS VDDIO ADCCLK COL7 COL4 TCLK BUZ  
GNDCO  
D29  
D30  
VDDIO  
D26  
VDDIO  
VDDIO  
PD6/SD  
QM0  
A27/  
DRA0  
W
Y
GNDIO GNDIO GNDIO  
PD1 SSITXFR SSIRXFR  
DRIVE1 ADCOUT FB0 COL5 COL2 COL0  
D25  
W
RE  
PD0/  
VDDCO  
RE  
A25/  
DRA2  
GNDIO GNDIO GNDIO PD5  
PD3  
LED SSITXDA ADCIN  
FLSH  
DRIVE0 SMPLCK FB1 COL6 COL3 COL1  
D31  
D28  
D27  
VDDIO  
Y
36  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
204-Ball TFBGA Ball Listing  
The list is ordered by ball location.  
Table 21. 204-Ball TFBGA Ball Listing  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
Digital I/O power,  
3.3 V  
A1  
VDDIO  
Pad power  
I
Expansion clock  
input  
A2  
EXPCLK  
1
A3  
A4  
nCS[3]  
nCS[1]  
1
1
High  
High  
O
O
Chip select 3  
Chip select 1  
ROM, expansion  
write enable/  
SDRAM write enable  
A5  
nMWE/nSDWE  
1
High  
O
control signal  
SDRAM byte lane  
mask  
A6  
A7  
A8  
SDQM[2]  
nSDCS[1]  
DD[2]  
2
1
1
Low  
High  
Low  
O
O
O
SDRAM chip select  
2
LCD serial display  
data  
LCD frame  
synchronization  
pulse  
A9  
FRM  
1
1
Low  
Low  
O
A10  
A11  
A12  
A13  
A14  
A15  
CL[1]  
VSSCORE  
D[1]  
O
LCD line clock  
Core ground  
Core ground  
1
2
1
1
Low  
Low  
Low  
Low  
I/O  
O
Data I/O  
A[2]  
System byte address  
Data I/O  
D[4]  
I/O  
O
A[5]  
System byte address  
Power fail sense  
input  
A16  
nPWRFL  
I
A17  
A18  
A19  
A20  
MOSCOUT  
VSSIO  
O
Main oscillator out  
I/O ground  
Pad ground  
Pad ground  
Pad ground  
VSSIO  
I/O ground  
VSSIO  
I/O ground  
Word access select  
output  
B1  
B2  
WORD  
VDDIO  
1
Low  
O
Digital I/O power, 3.3  
V
Pad power  
B3  
B4  
nCS[5]  
nCS[2]  
1
1
Low  
O
O
Chip select 5  
Chip select 2  
High  
ROM, expansion OP  
enable/SDRAM CAS  
control signal  
B5  
nMOE/nSDCAS  
1
High  
O
SDRAM clock  
enable output  
B6  
B7  
SDCKE  
2
1
Low  
O
O
SDRAM chip select  
0
nSDCS[0]  
High  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
37  
EP7311  
High-Performance, Low-Power System on Chip  
Table 21. 204-Ball TFBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
LCD serial display  
data  
B8  
DD[1]  
1
Low  
O
B9  
M
1
1
1
2
2
1
1
Low  
Low  
Low  
Low  
Low  
Low  
Low  
O
0
LCD AC bias drive  
LCD pixel clock out  
Data I/O  
B10  
B11  
B12  
B13  
B14  
B15  
CL[2]  
D[0]  
A[1]  
D[3]  
A[4]  
D[6]  
I/O  
O
System byte address  
Data I/O  
I/O  
O
System byte address  
Data I/O  
I/O  
System wake up  
input  
B16  
WAKEUP  
Schmitt  
I
B17  
B18  
B19  
B20  
MOSCIN  
VSSIO  
I
Main oscillator input  
I/O ground  
Pad ground  
Pad ground  
I
VSSIO  
I/O ground  
nURESET  
Schmitt  
1
User reset input  
Run output / clock  
enable output  
C1  
C2  
C3  
RUN/CLKEN  
EXPRDY  
VDDIO  
Low  
0
Expansion port  
ready input  
1
I
Digital I/O power,  
3.3 V  
Pad power  
C4  
C5  
C6  
nCS[4]  
nCS[0]  
SDCLK  
1
1
2
High  
High  
Low  
O
O
O
Chip select 4  
Chip select 0  
SDRAM clock out  
SDRAM byte lane  
mask  
C7  
SDQM[3]  
DD[0]  
2
1
1
Low  
Low  
Low  
O
LCD serial display  
data  
C8  
O
O
LCD serial display  
data  
C9  
DD[3]  
Digital core power,  
2.5 V  
C10  
VDDCORE  
Core power  
C11  
C12  
C13  
C14  
C15  
C16  
A[0]  
2
1
2
1
1
Low  
Low  
Low  
Low  
Low  
O
System byte address  
Data I/O  
D[2]  
I/O  
A[3]  
O
System byte address  
Data I/O  
D[5]  
I/O  
O
A[6]  
System byte address  
PLL ground  
VSSOSC  
Oscillator ground  
Oscillator power in,  
2.5V  
C17  
VDDOSC  
Oscillator power  
C18  
C19  
VSSIO  
BATOK  
Pad ground  
I
I/O ground  
Battery ok input  
38  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
Table 21. 204-Ball TFBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
Schmitt  
1
C20  
nPOR  
PB[7]  
I
I
Power-on reset input  
GPIO port B  
D1  
D2  
Input  
UART 2 receive data  
input  
RXD[2]  
I
Digital I/O power,  
3.3V  
D3  
D18  
D19  
D20  
E1  
VDDIO  
VSSIO  
Pad power  
Pad ground  
I/O ground  
Battery changed  
sense input  
nBATCHG  
A[7]  
I
O
I
1
1
Low  
System byte address  
GPIO port B  
PB[4]  
Input  
UART 2 transmit  
data output  
E2  
E3  
TXD[2]  
1
1
High  
O
O
Transfer direction /  
SDRAM RAS signal  
output  
WRITE/nSDRAS  
Low  
Media change  
interrupt input /  
internal ROM boot  
enable  
E18  
nMEDCHG/nBROM  
I
External power  
supply sense input  
E19  
E20  
F1  
nEXTPWR  
D[9]  
I
1
1
Low  
I/O  
I/O  
Data I/O  
PB[3]  
GPIO port B  
GPIO port B  
Input  
Input  
F2  
PB[6]  
1
I/O  
F3  
TDI  
with p/u*  
I
JTAG data input  
Data I/O  
F18  
F19  
F20  
D[7]  
A[8]  
D[10]  
1
1
1
Low  
Low  
Low  
I/O  
O
System byte address  
Data I/O  
I/O  
G1  
PB[1]  
PB[2]  
PB[5]  
D[8]  
1
1
1
1
I/O  
I/O  
I/O  
I/O  
Input  
Input  
Input  
Input  
G2  
GPIO port B  
GPIO port B  
Data I/O  
G3  
G18  
G19  
G20  
A[9]  
1
1
Low  
Low  
O
System byte address  
Data I/O  
D[11]  
I/O  
H1  
PA[7]  
TDO  
1
1
I/O  
O
GPIO port A  
Input  
Input  
Input  
H[2]  
JTAG data out  
H[3]  
PB[0]  
A[10]  
1
1
I/O  
O
GPIO port B  
H[18]  
Low  
System byte address  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
39  
EP7311  
High-Performance, Low-Power System on Chip  
Table 21. 204-Ball TFBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
H19  
D[12]  
A[12]  
1
1
Low  
Low  
I/O  
O
Data I/O  
H20  
J1  
System byte address  
GPIO port A  
PA[4]  
PA[5]  
PA[6]  
1
1
1
I/O  
I/O  
I/O  
Input  
J2  
J3  
GPIO port A  
GPIO port A  
Input  
Input  
J18  
J19  
A[11]  
D[13]  
1
1
Low  
Low  
O
System byte address  
Data I/O  
I/O  
System byte address  
/ SDRAM address  
J20  
K1  
A[13]/DRA[14]  
PA[1]  
1
1
1
Low  
O
I/O  
I/O  
GPIO port A  
GPIO port A  
Input  
K2  
PA[2]  
Input  
Digital I/O power,  
3.3V  
K3  
VDDIO  
D[14]  
Pad power  
K18  
K19  
K20  
L1  
1
1
1
1
1
1
Low  
Low  
Low  
High  
Low  
I/O  
O
Data I/O  
System byte address  
/ SDRAM address  
A[14]/DRA[13]  
D[15]  
I/O  
O
Data I/O  
UART 1 transmit  
data out  
TXD[1]  
LEDDRV  
PA[3]  
L2  
O
IR LED drive  
GPIO port A  
L3  
I/O  
Input  
Digital I/O power,  
3.3V  
L18  
L19  
L20  
VDDIO  
Pad power  
D[16]  
1
1
Low  
Low  
I/O  
O
Data I/O  
System byte address  
/ SDRAM address  
A[16]/DRA[11]  
UART 1 receive data  
input  
M1  
RXD[1]  
I
I
UART 1 clear to  
send input  
M2  
CTS  
M3  
PA[0]  
1
1
1
I/O  
O
O
I
GPIO port A  
Input  
System byte address  
/ SDRAM address  
M18  
M19  
M20  
N1  
A[15]/DRA[12]  
A[17]/DRA[10]  
nTRST  
Low  
Low  
System byte address  
/ SDRAM address  
JTAG async reset  
input  
UART 1 data set  
ready input  
DSR  
I
Test mode select  
input  
N2  
N3  
nTEST[1]  
PHDIN  
With p/u*  
I
I
Photodiode input  
40  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
Table 21. 204-Ball TFBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
N18  
D[17]  
D[19]  
1
1
Low  
Low  
I/O  
I/O  
Data I/O  
Data I/O  
N19  
N20  
P1  
System byte address  
/ SDRAM address  
A[18]/DRA[9]  
EINT[3]  
1
Low  
O
I
External interrupt  
External interrupt  
input  
P2  
nEINT[2]  
I
UART 1 data carrier  
detect  
P3  
DCD  
I
P18  
P19  
P20  
R1  
D[18]  
1
1
1
Low  
Low  
Low  
I/O  
O
Data I/O  
System byte address  
/ SDRAM address  
A[20]/DRA[7]  
D[20]  
I/O  
I
Data I/O  
External fast  
interrupt input  
nEXTFIQ  
GPIO port E / clock  
input mode select  
R2  
R3  
PE[2]/CLKSEL  
nTEST[0]  
1
I/O  
I
Input  
Test mode select  
input  
With p/u*  
System byte address  
/ SDRAM address  
R18  
R19  
R20  
A[19]/DRA[8]  
D[22]  
1
1
1
Low  
Low  
Low  
O
I/O  
O
Data I/O  
System byte address  
/ SDRAM address  
A[21]/DRA[6]  
GPIO port E / boot  
mode select  
T1  
T2  
T3  
PE[1]/BOOTSEL[1]  
PE[0]/BOOTSEL[0]  
nEINT[1]  
1
1
I/O  
I/O  
I
Input  
GPIO port E / boot  
mode select  
Input  
External interrupt  
input  
T18  
T19  
D[21]  
D[23]  
1
1
Low  
Low  
I/O  
I/O  
Data I/O  
Data I/O  
System byte address  
/ SDRAM address  
T20  
U1  
U2  
U3  
A[22]/DRA[5]  
VSSRTC  
RTCOUT  
RTCIN  
1
Low  
O
Real time clock  
ground  
RTC ground  
Real time clock  
oscillator output  
O
Real time clock  
oscillator input  
I/O  
Halfword access  
select output  
U18  
U19  
U20  
HALFWORD  
D[24]  
1
1
1
Low  
Low  
Low  
O
I/O  
O
Data I/O  
System byte address  
/ SDRAM address  
A[23]/DRA[4]  
Real time clock  
power, 2.5V  
V1  
VDDRTC  
RTC power  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
41  
EP7311  
High-Performance, Low-Power System on Chip  
Table 21. 204-Ball TFBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
V2  
VSSIO  
VSSIO  
Pad ground  
Pad ground  
I/O ground  
V3  
V4  
I/O ground  
GPIO port D /  
SDRAM byte lane  
mask  
PD[7]/SDQM[1]  
1
Low  
I/O  
V5  
V6  
PD[4]  
PD[2]  
1
1
Low  
Low  
I/O  
I/O  
GPIO port D  
GPIO port D  
DAI/CODEC/SSI2  
serial clock  
V7  
SSICLK  
SSIRXDA  
nADCCS  
VDDIO  
1
I/O  
Input  
DAI/CODEC/SSI2  
serial data input  
V8  
I/O  
SSI1 ADC chip  
select  
V9  
1
High  
O
Digital I/O power,  
3.3V  
V10  
V11  
V12  
V13  
Pad power  
SSI1 ADC serial  
clock  
ADCCLK  
COL[7]  
1
1
1
Low  
High  
High  
O
O
O
Keyboard scanner  
column drive  
Keyboard scanner  
column drive  
COL[4]  
V14  
V15  
V16  
TCLK  
BUZ  
I
JTAG clock  
1
1
Low  
Low  
O
Buzzer drive output  
Data I/O  
D[29]  
I/O  
System byte address  
/ SDRAM address  
V17  
V18  
V19  
V20  
A[26]/DRA[1]  
VDDIO  
2
Low  
O
Digital I/O power,  
3.3 V  
Pad power  
Pad power  
O
Digital I/O power,  
3.3 V  
VDDIO  
System byte address  
/ SDRAM address  
A[24]/DRA[3]  
Low  
W1  
W2  
W3  
VSSIO  
VSSIO  
VSSIO  
Pad ground  
Pad ground  
Pad ground  
I/O ground  
I/O ground  
I/O ground  
GPIO port D /  
SDRAM byte lane  
mask  
W4  
PD[6]/SDQM[0]  
1
Low  
I/O  
W5  
W6  
TMS  
with p/u*  
1
I
JTAG mode select  
GPIO port D  
PD[1]  
Low  
Low  
I/O  
DAI/CODEC/SSI2  
frame sync  
W7  
SSITXFR  
1
1
I/O  
DAI/CODEC/SSI2  
frame sync  
W8  
SSIRXFR  
VSSCORE  
DRIVE[1]  
I/O  
Core Ground  
I/O  
Input  
W9  
Core Ground  
High /  
Low  
W10  
2
PWM drive output  
42  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
Table 21. 204-Ball TFBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
SSI1 ADC serial  
data output  
W11  
ADCOUT  
1
Low  
O
I
W12  
W13  
FB[0]  
PWM feedback input  
Keyboard scanner  
column drive  
COL[5]  
1
1
High  
High  
O
Keyboard scanner  
column drive  
W14  
COL[2]  
O
Keyboard scanner  
column drive  
W15  
W16  
W17  
W18  
W19  
COL[0]  
D[30]  
1
1
2
1
High  
Low  
Low  
Low  
O
I/O  
O
Data I/O  
System byte address  
/ SDRAM address  
A[27]/DRA[0]  
D[26]  
I/O  
Data I/O  
Digital I/O power,  
3.3V  
VDDIO  
Pad power  
W20  
Y1  
D[25]  
1
Low  
I/O  
Pad ground  
Pad ground  
Pad ground  
I/O  
Data I/O  
VSSIO  
VSSIO  
VSSIO  
PD[5]  
I/O ground  
I/O ground  
I/O ground  
GPIO port D  
GPIO port D  
Y2  
Y3  
Y4  
1
1
Low  
Low  
Y5  
PD[3]  
I/O  
GPIO port D / LED  
blinker output  
Y6  
Y7  
Y8  
Y9  
Y10  
PD[0]/LEDFLSH  
SSITXDA  
1
1
Low  
Low  
I/O  
DAI/CODEC/SSI2  
serial data output  
O
SSI1 ADC serial  
input  
ADCIN  
I
Digital core power,  
2.5V  
VDDCORE  
DRIVE[0]  
Core power  
I/O  
2
1
PWM drive output  
Input  
SSI1 ADC sample  
clock  
Y11  
Y12  
Y13  
SMPCLK  
FB[1]  
Low  
O
I
PWM feedback input  
Keyboard scanner  
column drive  
COL[6]  
1
1
1
High  
High  
High  
O
Keyboard scanner  
column drive  
Y14  
Y15  
COL[3]  
COL[1]  
O
O
Keyboard scanner  
column drive  
Y16  
Y17  
Y18  
D[31]  
D[28]  
D[27]  
1
1
1
Low  
Low  
Low  
I/O  
I/O  
I/O  
Data I/O  
Data I/O  
Data I/O  
System byte address  
/ SDRAM address  
Y19  
A[25]/DRA[2]  
2
Low  
O
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
43  
EP7311  
High-Performance, Low-Power System on Chip  
Table 21. 204-Ball TFBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
Digital I/O power,  
3.3V  
Y20  
VDDIO  
Pad power  
*
“With p/u” means with internal pull-up of 100 KOhms on the pin.  
Strength 1 = 4 ma  
Strength 2 = 12 ma  
Input. Port A,B,D,E GPIOs default to input at nPOR and URESET conditions.  
256-Ball PBGA Package Characteristics  
256-Ball PBGA Package Specifications  
Figure 18. 256-Ball PBGA Package  
Note: 1) For pin locations see Table V.  
2) Dimensions are in millimeters (inches), and controlling dimension is millimeter  
3) Before beginning any new EP7311 design, contact Cirrus Logic for the latest package information.  
256-Ball PBGA Pinout (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A
B
C
D
E
F
VDDIO  
nCS[4]  
nCS[1]  
SDCLK  
SDQM[3]  
DD[1]  
M
VDDIO  
D[0]  
D[2]  
A[3]  
VDDIO  
A[6]  
MOSCOUT VDDOSC VSSIO  
WAKEUP VDDIO nURESET  
A
B
nMOE/  
nSDCAS  
nCS[5]  
VDDIO  
VDDIO  
EXPCLK  
EXPRDY  
PB[7]  
nCS[3]  
VSSIO  
VSSIO  
TDI  
VDDIO nSDCS[1]  
DD[2]  
VSSIO  
CL[1]  
VDDIO  
CL[2]  
FRM  
VDDCORE  
VSSIO  
VSSRTC  
A[0]  
D[1]  
VSSIO  
D[4]  
A[2]  
A[4]  
A[5]  
VDDIO  
VDDIO  
WORD  
TXD[2]  
PB[4]  
VSSIO  
nCS[2]  
VSSIO  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VSSIO  
nTRST  
VSSIO  
VSSIO  
VDDIO  
nPOR nEXTPWR C  
WRITE/  
nSDRAS  
nMWE/  
nSDWE  
nSDCS[0]  
SDQM[2]  
SDCKE  
nPWRFL MOSCIN  
D[7]  
D[9]  
D[8]  
D[10]  
D
E
F
nMEDCHG/  
nBROM  
RXD[2]  
PB[5]  
nCS[0]  
VSSIO  
D[5]  
VSSOSC  
VSSRTC  
A[7]  
VSSIO  
BATOK  
A[8]  
RUN/  
CLKEN  
PB[3]  
VSSIO  
TDO  
DD[3]  
DD[0]  
A[1]  
D[6]  
nBATCHG  
A[9]  
D[11]  
D[12]  
D[14]  
D[16]  
VDDIO  
VDDIO  
D[13]  
D[15]  
D[17]  
G
H
J
PB[1]  
VDDIO  
PA[5]  
PB[6]  
PA[6]  
PA[0]  
VSSRTC VSSRTC  
D[3]  
VSSRTC  
G
H
J
A[13]/  
DRA[14]  
PA[7]  
VSSIO  
VSSIO  
VSSIO  
VDDIO  
VDDIO  
VSSIO  
VSSIO  
PA[4]  
PB[0]  
PB[2]  
CTS  
VSSRTC VSSRTC  
VSSRTC VSSRTC  
A[10]  
A[11]  
A[12]  
A[17]/  
A[16]/  
A[15]/  
A[14]/  
DRA[13]  
PA[3]  
PA[1]  
PA[2]  
TXD[1]  
DRA[10] DRA[11] DRA[12]  
K
L
LEDDRV  
RXD[1]  
PHDIN  
DSR  
DCD  
nTEST[1] EINT[3]  
VSSRTC  
ADCIN  
COL[4]  
COL[6]  
FB[0]  
TCLK  
D[31]  
D[20]  
VSSRTC  
D[27]  
D[19]  
D[18]  
VDDIO  
K
L
PE[2]/  
PD[0]/  
LEDFLSH  
A[22]/  
DRA[5]  
A[21]/  
DRA[6]  
A[18]/  
A[19]/  
nEINT[1]  
VSSRTC  
CLKSEL  
VSSRTC  
DRA[9]  
DRA[8]  
PE[0]/  
BOOTSEL[0]  
A[23]/  
DRA[4]  
A[20]/  
DRA[7]  
M
N
P
R
T
nTEST[0] nEINT[2]  
TMS  
PD[5]  
VDDIO  
PD[2]  
SSITXFR DRIVE[1]  
COL[0]  
COL[2]  
VDDIO  
COL[3]  
COL[5]  
VSSIO  
D[26]  
VSSIO  
D[30]  
BUZ  
D[21]  
D[23]  
M
N
P
R
T
PE[1]/  
nEXTFIQ  
VDDIO  
VSSIO  
PD[1]  
SSIRXDA ADCCLK SMPCLK  
D[29]  
HALFWORD VSSIO  
D[22]  
D[24]  
BOOTSEL[1]  
VSSRTC RTCOUT  
VDDIO  
VSSIO  
VSSIO  
VDDIO  
VDDIO  
VSSIO  
COL[7]  
FB[1]  
VSSIO  
COL[1]  
VDDIO  
VDDIO  
VSSIO  
VDDIO  
A[27]/  
DRA[0]  
A[25]/  
DRA[2]  
A[24]\  
DRA[3]  
RTCIN  
VDDIO  
PD[7]/  
PD[4]  
SSITXDA nADCCS  
ADCOUT  
VDDIO  
D[25]  
PD[6]/  
A[26]/  
DRA[1]  
VDDRTC  
PD[3]  
SSICLK SSIRXFR VDDCORE DRIVE[0]  
D[28]  
VSSIO  
SDQM[1] SDQM[0]  
44  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
0.85 (0.034)  
±0.05 (.002)  
17.00 (0.669)  
±0.20 (.008)  
0.40 (0.016)  
±0.05 (.002)  
Pin 1 Corner  
15.00 (0.590)  
±0.20 (.008)  
D1  
30° TYP  
Pin 1 Indicator  
17.00 (0.669)  
±0.20 (.008)  
E1  
15.00 (0.590)  
±0.20 (.008)  
2 Layer  
0.36 (0.014)  
±0.09 (0.004)  
TOP VIEW  
SIDE VIEW  
D
17.00 (0.669)  
Pin 1 Corner  
1.00 (0.040)  
1.00 (0.040)  
REF  
E
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
1.00 (0.040)  
REF  
A
B
C
D
E
F
G
H
J
1.00 (0.040)  
17.00 (0.669)  
K
L
M
N
P
R
T
0.50  
R
BOTTOM VIEW  
3 Places  
JEDEC #: MO-151  
Ball Diameter: 0.50 mm 0.10 mm  
17 ¥ 17 ¥ 1.61 mm body  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
45  
EP7311  
High-Performance, Low-Power System on Chip  
256-Ball PBGA Ball Listing  
The list is ordered by ball location.  
Table V. 256-Ball PBGA Ball Listing (Continued)  
Table V. 256-Ball PBGA Ball Listing  
Ball Location  
Name  
Type  
Description  
Ball Location  
Name  
Type  
Description  
C12  
C13  
C14  
C15  
C16  
VDDIO  
VSSIO  
Pad power Digital I/O power, 3.3V  
Pad ground I/O ground  
A1  
A2  
VDDIO  
nCS[4]  
nCS[1]  
SDCLK  
SDQM[3]  
DD[1]  
Pad power Digital I/O power, 3.3V  
O
O
O
O
O
O
Chip select out  
VSSIO  
Pad ground I/O ground  
A3  
Chip select out  
nPOR  
I
I
Power-on reset input  
A4  
SDRAM clock out  
SDRAM byte lane mask  
LCD serial display data  
LCD AC bias drive  
nEXTPWR  
External power supply sense input  
A5  
Transfer direction / SDRAM RAS signal  
output  
D1  
WRITE/nSDRAS  
O
I
A6  
A7  
M
D2  
D3  
D4  
D5  
EXPRDY  
VSSIO  
VDDIO  
nCS[2]  
Expansion port ready input  
A8  
VDDIO  
D[0]  
Pad power Digital I/O power, 3.3V  
Pad ground I/O ground  
A9  
I/O  
I/O  
O
Data I/O  
Pad power Digital I/O power, 3.3V  
A10  
A11  
A12  
A13  
A14  
D[2]  
Data I/O  
O
O
Chip select out  
A[3]  
System byte address  
ROM, expansion write enable/ SDRAM  
write enable control signal  
D6  
nMWE/nSDWE  
VDDIO  
A[6]  
Pad power Digital I/O power, 3.3V  
D7  
D8  
nSDCS[0]  
CL[2]  
O
O
SDRAM chip select out  
LCD pixel clock out  
O
O
System byte address  
Main oscillator out  
MOSCOUT  
D9  
VSSRTC  
D[4]  
Core ground Real time clock ground  
Oscillator  
power  
A15  
VDDOSC  
Oscillator power in, 2.5V  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
I/O  
Data I/O  
A16  
B1  
VSSIO  
nCS[5]  
VDDIO  
nCS[3]  
Pad ground I/O ground  
nPWRFL  
MOSCIN  
VDDIO  
VSSIO  
D[7]  
I
I
Power fail sense input  
Main oscillator input  
O
Chip select out  
B2  
Pad power I/O ground  
Pad power Digital I/O power, 3.3V  
Pad ground I/O ground  
B3  
O
O
Chip select out  
ROM, expansion OP enable/SDRAM  
CAS control signal  
I/O  
Data I/O  
B4  
nMOE/nSDCAS  
D[8]  
I/O  
Data I/O  
B5  
B6  
VDDIO  
nSDCS[1]  
DD[2]  
Pad power Digital I/O power, 3.3V  
RXD[2]  
PB[7]  
I
I
UART 2 receive data input  
GPIO port B  
O
O
O
SDRAM chip select out  
LCD serial display data  
LCD line clock  
E2  
B7  
E3  
TDI  
I
JTAG data input  
Word access select output  
B8  
CL[1]  
E4  
WORD  
VSSIO  
nCS[0]  
SDQM[2]  
FRM  
O
B9  
VDDCORE  
D[1]  
Core power Digital core power, 2.5V  
E5  
Pad ground I/O ground  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
I/O  
O
O
O
I
Data I/O  
E6  
O
O
Chip select out  
A[2]  
System byte address  
System byte address  
System byte address  
System wake up input  
E7  
SDRAM byte lane mask  
LCD frame synchronization pulse  
System byte address  
Data I/O  
A[4]  
E8  
O
A[5]  
E9  
A[0]  
O
WAKEUP  
VDDIO  
nURESET  
VDDIO  
EXPCLK  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VSSIO  
E10  
D[5]  
I/O  
Pad power Digital I/O power, 3.3V  
User reset input  
Pad power Digital I/O power, 3.3V  
Expansion clock input  
Oscillator  
ground  
E11  
E12  
E13  
VSSOSC  
VSSIO  
PLL ground  
I
Pad ground I/O ground  
C2  
I
Media change interrupt input / internal  
ROM boot enable  
nMEDCHG/nBROM  
I
C3  
Pad ground I/O ground  
E14  
E15  
E16  
F1  
VDDIO  
D[9]  
Pad power Digital I/O power, 3.3V  
C4  
Pad power Digital I/O power, 3.3V  
Pad ground I/O ground  
I/O  
Data I/O  
C5  
D[10]  
I/O  
Data I/O  
C6  
Pad ground I/O ground  
PB[5]  
I
I
GPIO port B  
GPIO port B  
C7  
Pad ground I/O ground  
F2  
PB[3]  
C8  
Pad power Digital I/O power, 3.3V  
Pad ground I/O ground  
F3  
VSSIO  
TXD[2]  
RUN/CLKEN  
VSSIO  
Pad ground I/O ground  
C9  
F4  
O
O
UART 2 transmit data output  
Run output / clock enable output  
C10  
C11  
Pad ground I/O ground  
F5  
Pad ground I/O ground  
F6  
Pad ground I/O ground  
46  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
Table V. 256-Ball PBGA Ball Listing (Continued)  
Table V. 256-Ball PBGA Ball Listing (Continued)  
Ball Location  
Name  
Type  
Description  
Ball Location  
Name  
Type  
Description  
F7  
F8  
SDCKE  
DD[3]  
O
O
SDRAM clock enable output  
LCD serial display data  
System byte address  
Data I/O  
J7  
J8  
CTS  
VSSRTC  
VSSRTC  
A[17]/DRA[10]  
A[16]/DRA[11]  
A[15]/DRA[12]  
A[14]/DRA[13]  
nTRST  
I
UART 1 clear to send input  
RTC ground Real time clock ground  
RTC ground Real time clock ground  
F9  
A[1]  
O
J9  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
D[6]  
I/O  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
O
O
O
O
I
System byte address / SDRAM address  
VSSRTC  
BATOK  
nBATCHG  
VSSIO  
D[11]  
RTC ground Real time clock ground  
System byte address / SDRAM address  
System byte address / SDRAM address  
System byte address / SDRAM address  
JTAG async reset input  
Data I/O  
I
I
Battery ok input  
Battery changed sense input  
Pad ground I/O ground  
I/O Data I/O  
Pad power Digital I/O power, 3.3V  
GPIO port B  
Pad power Digital I/O power, 3.3V  
D[16]  
I/O  
I/O  
O
I
VDDIO  
PB[1]  
D[17]  
Data I/O  
I
LEDDRV  
PHDIN  
IR LED drivet  
G2  
VDDIO  
TDO  
K2  
Photodiode input  
G3  
O
I
JTAG data out  
GPIO port B  
GPIO port B  
K3  
VSSIO  
Pad ground I/O ground  
G4  
PB[4]  
K4  
DCD  
I
I
I
UART 1 data carrier detect  
G5  
PB[6]  
I
K5  
nTEST[1]  
EINT[3]  
Test mode select input  
External interrupt  
G6  
VSSRTC  
VSSRTC  
DD[0]  
Core ground Real time clock ground  
RTC ground Real time clock ground  
K6  
G7  
K7  
VSSRTC  
ADCIN  
RTC ground Real time clock ground  
G8  
O
LCD serial display data  
Data I/O  
K8  
I
SSI1 ADC serial input  
Keyboard scanner column drive  
JTAG clock  
G9  
D[3]  
I/O  
K9  
COL[4]  
O
G10  
G11  
G12  
G13  
G14  
G15  
G16  
H1  
VSSRTC  
A[7]  
RTC ground Real time clock ground  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
TCLK  
I
O
O
O
System byte address  
System byte address  
System byte address  
D[20]  
I/O  
I/O  
I/O  
Data I/O  
A[8]  
D[19]  
Data I/O  
A[9]  
D[18]  
Data I/O  
VSSIO  
D[12]  
Pad ground I/O ground  
VSSIO  
Pad ground I/O ground  
I/O  
Data I/O  
VDDIO  
Pad power Digital I/O power, 3.3V  
Pad power Digital I/O power, 3.3V  
D[13]  
I/O  
Data I/O  
VDDIO  
PA[7]  
I
I
GPIO port A  
GPIO port A  
RXD[1]  
I
I
UART 1 receive data input  
UART 1 data set ready input  
H2  
PA[5]  
L2  
DSR  
H3  
VSSIO  
PA[4]  
Pad ground I/O ground  
L3  
VDDIO  
Pad power Digital I/O power, 3.3V  
H4  
I
I
I
I
GPIO port A  
GPIO port A  
GPIO port B  
GPIO port B  
L4  
nEINT[1]  
PE[2]/CLKSEL  
VSSRTC  
PD[0]/LEDFLSH  
VSSRTC  
COL[6]  
I
I
External interrupt input  
H5  
PA[6]  
L5  
GPIO port E / clock input mode select  
H6  
PB[0]  
L6  
RTC ground Real time clock ground  
H7  
PB[2]  
L7  
I/O  
GPIO port D / LED blinker output  
H8  
VSSRTC  
VSSRTC  
A[10]  
RTC ground Real time clock ground  
RTC ground Real time clock ground  
L8  
Core ground Real time clock ground  
H9  
L9  
O
Keyboard scanner column drive  
Data I/O  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
O
O
O
O
System byte address  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
M5  
M6  
D[31]  
I/O  
A[11]  
System byte address  
VSSRTC  
A[22]/DRA[5]  
A[21]/DRA[6]  
VSSIO  
RTC ground Real time clock ground  
A[12]  
System byte address  
O
O
System byte address / SDRAM address  
System byte address / SDRAM address  
A[13]/DRA[14]  
VSSIO  
D[14]  
System byte address / SDRAM address  
Pad ground I/O ground  
Pad ground I/O ground  
I/O  
Data I/O  
A[18]/DRA[9]  
A[19]/DRA[8]  
nTEST[0]  
nEINT[2]  
VDDIO  
O
O
I
System byte address / SDRAM address  
D[15]  
I/O  
Data I/O  
System byte address / SDRAM address  
Test mode select input  
PA[3]  
I
I
GPIO port A  
GPIO port A  
J2  
PA[1]  
I
External interrupt input  
J3  
VSSIO  
PA[2]  
Pad ground I/O ground  
Pad power Digital I/O power, 3.3V  
GPIO port E / Boot mode select  
JTAG mode select  
Pad power Digital I/O power, 3.3V  
J4  
I
I
GPIO port A  
PE[0]/BOOTSEL[0]  
TMS  
I
J5  
PA[0]  
GPIO port A  
I
J6  
TXD[1]  
O
UART 1 transmit data out  
VDDIO  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
47  
EP7311  
High-Performance, Low-Power System on Chip  
Table V. 256-Ball PBGA Ball Listing (Continued)  
Table V. 256-Ball PBGA Ball Listing (Continued)  
Ball Location  
Name  
Type  
Description  
Ball Location  
Name  
Type  
Description  
M7  
M8  
SSITXFR  
DRIVE[1]  
FB[0]  
I/O  
I/O  
I
MCP/CODEC/SSI2 frame sync  
PWM drive output  
R7  
R8  
VDDIO  
ADCOUT  
COL[7]  
Pad power Digital I/O power, 3.3V  
O
O
SSI1 ADC serial data output  
Keyboard scanner column drive  
Keyboard scanner column drive  
Keyboard scanner column drive  
Data I/O  
M9  
PWM feedback input  
Keyboard scanner column drive  
Data I/O  
R9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
COL[0]  
D[27]  
O
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
COL[3]  
O
I/O  
COL[1]  
O
VSSIO  
Pad ground I/O ground  
D[30]  
I/O  
O
A[23]/DRA[4]  
VDDIO  
A[20]/DRA[7]  
D[21]  
O
System byte address / SDRAM address  
A[27]/DRA[0]  
A[25]/DRA[2]  
VDDIO  
System byte address / SDRAM address  
System byte address / SDRAM address  
Pad power Digital I/O power, 3.3V  
O
O
I/O  
I
System byte address / SDRAM address  
Pad power Digital I/O power, 3.3V  
Data I/O  
A[24]/DRA[3]  
VDDRTC  
PD[7]/SDQM[1]  
PD[6]/SDQM[0]  
PD[3]  
O
System byte address / SDRAM address  
nEXTFIQ  
PE[1]/BOOTSEL[1]  
VSSIO  
External fast interrupt input  
GPIO port E / boot mode select  
RTC power Real time clock power, 2.5V  
N2  
I
T2  
I/O  
I/O  
I/O  
I/O  
GPIO port D / SDRAM byte lane mask  
N3  
Pad ground I/O ground  
T3  
GPIO port D / SDRAM byte lane mask  
GPIO port D  
N4  
VDDIO  
PD[5]  
Pad power Digital I/O power, 3.3V  
T4  
N5  
I/O  
I/O  
I/O  
O
GPIO port D  
T5  
SSICLK  
MCP/CODEC/SSI2 serial clock  
MCP/CODEC/SSI2 frame sync  
N6  
PD[2]  
GPIO port D  
T6  
SSIRXFR  
VDDCORE  
DRIVE[0]  
FB[1]  
N7  
SSIRXDA  
ADCCLK  
SMPCLK  
COL[2]  
D[29]  
MCP/CODEC/SSI2 serial data input  
SSI1 ADC serial clock  
SSI1 ADC sample clock  
Keyboard scanner column drive  
Data I/O  
T7  
Core power Core power, 2.5V  
N8  
T8  
I/O  
I
PWM drive output  
N9  
O
T9  
PWM feedback input  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
O
T10  
T11  
T12  
T13  
T14  
T15  
T16  
COL[5]  
O
Keyboard scanner column drive  
I/O  
I/O  
O
VDDIO  
Pad power Digital I/O power, 3.3V  
D[26]  
Data I/O  
BUZ  
O
I/O  
O
Buzzer drive output  
HALFWORD  
VSSIO  
Halfword access select output  
D[28]  
Data I/O  
Pad ground I/O ground  
A[26]/DRA[1]  
D[25]  
System byte address / SDRAM address  
Data I/O  
D[22]  
I/O  
I/O  
Data I/O  
Data I/O  
I/O  
D[23]  
VSSIO  
Pad ground I/O ground  
VSSRTC  
RTCOUT  
VSSIO  
RTC ground Real time clock ground  
P2  
O
Real time clock oscillator output  
P3  
Pad ground I/O ground  
Pad ground I/O ground  
Pad power Digital I/O power, 3.3V  
Pad ground I/O ground  
Pad ground I/O ground  
Pad power Digital I/O power, 3.3V  
Pad ground I/O ground  
Pad power Digital I/O power, 3.3V  
Pad ground I/O ground  
Pad ground I/O ground  
Pad power Digital I/O power  
Pad ground I/O ground  
P4  
VSSIO  
P5  
VDDIO  
VSSIO  
P6  
P7  
VSSIO  
P8  
VDDIO  
VSSIO  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
VDDIO  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
D[24]  
I/O  
Data I/O  
VDDIO  
RTCIN  
Pad power Digital I/O power, 3.3V  
I/O  
Real time clock oscillator input  
R2  
VDDIO  
PD[4]  
Pad power Digital I/O power, 3.3V  
R3  
I/O  
I/O  
O
GPIO port D  
R4  
PD[1]  
GPIO port D  
R5  
SSITXDA  
nADCCS  
MCP/CODEC/SSI2 serial data output  
SSI1 ADC chip select  
R6  
O
48  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
JTAG Boundary Scan Signal Ordering  
Table W. JTAG Boundary Scan Signal Ordering  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
1
B3  
A2  
B1  
E3  
C1  
C2  
E2  
D2  
F3  
D1  
F2  
G3  
E1  
F1  
G2  
G1  
H3  
H1  
J3  
B1  
C2  
E4  
D1  
F5  
D2  
F4  
E1  
E2  
G5  
F1  
G4  
F2  
H7  
G1  
H6  
H1  
H5  
H2  
H4  
J1  
nCS[5]  
EXPCLK  
WORD  
WRITE/nSDRAS  
RUN/CLKEN  
EXPRDY  
TXD2  
O
I/O  
O
1
4
3
5
6
6
O
8
7
O
10  
13  
14  
16  
17  
20  
23  
26  
29  
32  
35  
38  
41  
44  
47  
50  
53  
56  
59  
62  
65  
67  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
8
I
9
O
10  
13  
14  
15  
16  
17  
18  
19  
20  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
RXD2  
I
PB[7]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
PB[6]  
PB[5]  
PB[4]  
PB[3]  
PB[2]  
PB[1]/PRDY2  
PB[0]/PRDY1  
PA[7]  
PA[6]  
PA[5]  
J2  
PA[4]  
J1  
PA[3]  
L3  
J4  
PA[2]  
K2  
K1  
M3  
L2  
J2  
PA[1]  
J5  
PA[0]  
K1  
J6  
LEDDRV  
TXD1  
O
L1  
K2  
J7  
PHDIN  
CTS  
I
N3  
M2  
M1  
P3  
N1  
N2  
R3  
P1  
P2  
I
L1  
K4  
L2  
K5  
M1  
K6  
M2  
L4  
RXD1  
I
DCD  
I
DSR  
I
nTEST1  
nTEST0  
EINT3  
I
I
I
nEINT2  
nEINT1  
I
I
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
49  
EP7311  
High-Performance, Low-Power System on Chip  
Table W. JTAG Boundary Scan Signal Ordering (Continued)  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
44  
45  
46  
47  
53  
54  
55  
56  
59  
60  
61  
62  
68  
69  
70  
75  
76  
77  
78  
79  
80  
82  
83  
84  
85  
86  
87  
88  
91  
92  
93  
94  
95  
96  
97  
99  
100  
101  
T3  
R1  
N1  
L5  
nEXTFIQ  
PE[2]/CLKSEL  
PE[1]/BOOTSEL1  
PE[0]/BOOTSEL0  
PD[7]/SDQM[1]  
PD[6/SDQM[0]]  
PD[5]  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
79  
80  
R2  
N2  
83  
T1  
M4  
T2  
86  
T2  
89  
V4  
T3  
92  
W4  
Y4  
N5  
95  
R3  
PD[4]  
98  
V5  
T4  
PD[3]  
101  
104  
107  
110  
122  
125  
126  
128  
131  
134  
136  
138  
140  
141  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
163  
166  
169  
172  
174  
177  
W5  
Y5  
N6  
PD[2]  
R4  
PD[1]  
V6  
L7  
PD[0]/LEDFLSH  
SSIRXFR  
ADCIN  
W6  
Y6  
T6  
I/O  
I
K8  
W8  
Y8  
R6  
nADCCS  
DRIVE1  
DRIVE0  
ADCCLK  
ADCOUT  
SMPCLK  
FB1  
O
M8  
T8  
I/O  
I/O  
O
V9  
W10  
Y10  
V11  
W11  
Y11  
Y12  
W12  
V12  
Y13  
W13  
V13  
Y14  
W14  
A1  
N8  
R8  
O
N9  
O
T9  
I
M9  
R9  
FB0  
I
COL7  
O
L9  
COL6  
O
T10  
K9  
COL5  
O
COL4  
O
R10  
N10  
R11  
M10  
T12  
L10  
R12  
N11  
T13  
R13  
M11  
T14  
COL3  
O
COL2  
O
COL1  
O
COL0  
O
BUZ  
O
V14  
Y15  
W15  
V15  
Y16  
W16  
V16  
D[31]  
I/O  
I/O  
I/O  
I/O  
Out  
I/O  
O
D[30]  
D[29]  
D[28]  
A[27]/DRA[0]  
D[27]  
A[26]/DRA[1]  
50  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
Table W. JTAG Boundary Scan Signal Ordering (Continued)  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
102  
103  
104  
105  
106  
109  
110  
111  
112  
113  
114  
115  
117  
118  
119  
120  
121  
122  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
141  
142  
143  
144  
145  
146  
147  
Y17  
W17  
Y18  
V17  
W18  
Y19  
W20  
U18  
V20  
U19  
U20  
T19  
T20  
R19  
R20  
T18  
P19  
P20  
R18  
N19  
N20  
P18  
M19  
N18  
L20  
L19  
M18  
K20  
K19  
K18  
J20  
N12  
R14  
T15  
N13  
R16  
P15  
M13  
N16  
L12  
N15  
L13  
M16  
M15  
K11  
L16  
K12  
L15  
K13  
J10  
D[26]  
A[25]/DRA[2]  
D[25]  
I/O  
O
179  
182  
184  
187  
189  
191  
194  
196  
199  
201  
204  
206  
209  
211  
214  
216  
219  
221  
224  
226  
229  
231  
234  
236  
239  
241  
244  
246  
249  
251  
254  
256  
259  
261  
264  
266  
269  
271  
I/O  
O
HALFWORD  
A[24]/DRA[3]  
D[24]  
O
I/O  
O
A[23]/DRA[4]  
D[23]  
I/O  
O
A[22]/DRA[5]  
D[22]  
I/O  
O
A[21]/DRA[6]  
D[21]  
I/O  
O
A[20]/DRA[7]  
D[20]  
I/O  
O
A[19]/DRA[8]  
D[19]  
I/O  
O
A[18]/DRA[9]  
D[18]  
I/O  
O
A[17]/DRA[10]  
D[17]  
J16  
I/O  
O
J11  
A[16]/DRA[11]  
D[16]  
J15  
I/O  
O
J12  
A[15]/DRA[12]  
D[15]  
H16  
J13  
I/O  
O
A[14]/DRA[13]  
D[14]  
H15  
H13  
G16  
H12  
G15  
H11  
F15  
H10  
E16  
G13  
E15  
G12  
D16  
I/O  
O
A[13]/DRA[14]  
D[13]  
I/O  
O
A[12]  
D[12]  
I/O  
O
A[11]  
J19  
D[11]  
I/O  
O
H20  
H19  
J18  
A[10]  
D[10]  
I/O  
O
A[9]  
K3  
D[9]  
I/O  
O
Y3  
A[8]  
G20  
D[8]  
I/O  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
51  
EP7311  
High-Performance, Low-Power System on Chip  
Table W. JTAG Boundary Scan Signal Ordering (Continued)  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
148  
150  
151  
152  
153  
154  
155  
156  
161  
162  
163  
164  
165  
166  
169  
170  
171  
172  
173  
175  
176  
177  
178  
179  
184  
185  
186  
187  
188  
189  
191  
192  
193  
194  
195  
196  
199  
200  
H18  
F20  
G19  
E20  
F19  
G18  
D20  
F18  
D19  
E19  
C19  
C20  
E18  
B20  
B16  
A16  
C15  
B15  
A15  
C14  
B14  
A14  
C13  
B13  
A13  
C12  
B12  
A12  
C11  
B11  
B10  
A10  
A9  
G11  
D15  
F13  
C16  
F12  
C15  
E13  
B16  
B14  
D11  
A13  
F10  
B13  
E10  
B12  
D10  
A11  
G9  
A[7]  
D[7]  
O
I/O  
I
274  
276  
279  
280  
281  
282  
283  
284  
285  
286  
287  
289  
292  
294  
297  
299  
302  
304  
307  
309  
312  
314  
317  
319  
322  
324  
326  
328  
330  
333  
336  
339  
342  
344  
346  
349  
352  
355  
nBATCHG  
nEXTPWR  
BATOK  
nPOR  
nMEDCHG/nBROM  
nURESET  
WAKEUP  
nPWRFL  
A[6]  
I
I
I
I
I
I
I
O
D[6]  
I/O  
O
A[5]  
D[5]  
I/O  
O
A[4]  
D[4]  
I/O  
O
A[3]  
D[3]  
I/O  
O
B11  
A10  
F9  
A[2]  
D[2]  
I/O  
O
A[1]  
B10  
E9  
D[1]  
I/O  
O
A[0]  
A9  
D[0]  
I/O  
O
D8  
CL2  
B8  
CL1  
O
E8  
FRM  
O
A7  
M
O
F8  
DD[3]  
I/O  
I/O  
I/O  
I/O  
O
B7  
DD[2]  
A6  
DD[1]  
G8  
DD[0]  
B6  
nSDCS[1]  
nSDCS[0]  
SDQM[3]  
SDQM[2]  
SDCKE  
SDCLK  
B9  
D7  
O
C9  
A5  
I/O  
I/O  
I/O  
I/O  
A8  
E7  
B8  
F7  
C8  
A4  
52  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
Table W. JTAG Boundary Scan Signal Ordering (Continued)  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
201  
202  
204  
205  
206  
207  
208  
A7  
B7  
C7  
A6  
B6  
C6  
A5  
D6  
B4  
E6  
A3  
D5  
B3  
A2  
nMWE/nSDWE  
nMOE/nSDCAS  
nCS[0]  
O
O
O
O
O
O
O
358  
360  
362  
364  
366  
368  
370  
nCS[1]  
nCS[2]  
nCS[3]  
nCS[4]  
1) See EP7311 Users’ Manual for pin naming / functionality.  
2) For each pad, the JTAG connection ordering is input,  
output, then enable as applicable.  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
53  
EP7311  
High-Performance, Low-Power System on Chip  
Table X. Acronyms and Abbreviations (Continued)  
CONVENTIONS  
Acronym/  
Definition  
This section presents acronyms, abbreviations, units of  
measurement, and conventions used in this data sheet.  
Abbreviation  
TAP  
TLB  
test access port  
Acronyms and Abbreviations  
translation lookaside buffer  
Table X lists abbreviations and acronyms used in this data  
sheet.  
UART  
universal asynchronous receiver  
Table X. Acronyms and Abbreviations  
Units of Measurement  
Acronym/  
Definition  
Table Y. Unit of Measurement  
Abbreviation  
Symbol  
Unit of Measure  
A/D  
analog-to-digital  
degree Celsius  
°C  
fs  
ADC  
CODEC  
D/A  
analog-to-digital converter  
coder / decoder  
sample frequency  
hertz (cycle per second)  
kilobits per second  
kilobyte (1,024 bytes)  
kilohertz  
Hz  
digital-to-analog  
kbps  
KB  
DMA  
EPB  
FCS  
FIFO  
FIQ  
direct-memory access  
embedded peripheral bus  
frame check sequence  
first in / first out  
kHz  
kΩ  
kilohm  
Mbps  
MB  
MBps  
MHz  
µA  
megabits (1,048,576 bits) per second  
megabyte (1,048,576 bytes)  
megabytes per second  
megahertz (1,000 kilohertz)  
microampere  
fast interrupt request  
general purpose I/O  
in circuit test  
GPIO  
ICT  
IR  
infrared  
IRQ  
standard interrupt request  
Infrared Data Association  
Joint Test Action Group  
liquid crystal display  
light-emitting diode  
µF  
microfarad  
IrDA  
JTAG  
LCD  
LED  
LQFP  
LSB  
MIPS  
MMU  
MSB  
PBGA  
PCB  
PDA  
PLL  
µW  
µs  
microwatt  
microsecond (1,000 nanoseconds)  
milliampere  
mA  
mW  
ms  
milliwatt  
low profile quad flat pack  
least significant bit  
millisecond (1,000 microseconds)  
nanosecond  
ns  
millions of instructions per second  
memory management unit  
most significant bit  
V
volt  
W
watt  
plastic ball grid array  
printed circuit board  
personal digital assistant  
phase locked loop  
p/u  
pull-up resistor  
RISC  
RTC  
SIR  
reduced instruction set computer  
Real-Time Clock  
slow (9600–115.2 kbps) infrared  
static random access memory  
synchronous serial interface  
SRAM  
SSI  
54  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
General Conventions  
Pin Description Conventions  
Hexadecimal numbers are presented with all letters in  
uppercase and a lowercase “h” appended or with a 0x at the  
beginning. For example, 0x14 and 03CAh are hexadecimal  
numbers. Binary numbers are enclosed in single quotation  
marks when in text (for example, ‘11’ designates a binary  
number). Numbers not indicated by an “h”, 0x or quotation  
marks are decimal.  
Abbreviations used for signal directions are listed in Table Z.  
Table Z. Pin Description Conventions  
Abbreviation  
Direction  
I
Input  
O
I/O  
Output  
Input or Output  
Registers are referred to by acronym, with bits listed in  
brackets separated by a colon (:) (for example, CODR[7:0]),  
and are described in the EP7311 User’s Manual. The use of  
“TBD” indicates values that are “to be determined,” “n/a”  
designates “not available,” and “n/c” indicates a pin that is a  
“no connect.”  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
55  
EP7311  
High-Performance, Low-Power System on Chip  
Ordering Information  
Model  
EP7311-CB  
Temperature  
Package  
0 to +70 °C  
EP7311-CB-90 (90 MHz)  
EP7311-IB  
256-pin PBGA, 17mm X 17mm  
-40 to +85 °C.  
EP7311-IB-90 (90 MHz)  
EP7311-CV  
0 to +70 °C  
208-pin LQFP.  
EP7311-IV  
-40 to +85 °C.  
EP7311-CR  
0 to +70 °C  
204-pin TFBGA, 13mm X 13mm.  
EP7311-CR-90 (90 MHz)  
Environmental, Manufacturing, & Handling Information  
Model Number  
EP7311-CB  
Peak Reflow Temp  
MSL Rating*  
Max Floor Life  
EP7311-CB-90 (90 MHz)  
EP7311-IB  
EP7311-IB-90 (90 MHz)  
EP7311-CV  
225 °C  
3
7 Days  
EP7311-IV  
EP7311-CR  
EP7311-CR-90 (90 MHz)  
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.  
56  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  
EP7311  
High-Performance, Low-Power System on Chip  
Revision History  
Revision  
PP1  
Date  
Changes  
NOV 2003  
AUG 2005  
First preliminary release.  
Updated SDRAM timing. Added MSL data.  
F1  
Contacting Cirrus Logic Support  
For all product questions and inquiries contact a Cirrus Logic Sales Representative.  
To find the one nearest to you go to www.cirrus.com  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE-  
VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD  
TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE  
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED  
IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICA-  
TIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER  
AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH  
THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
SPI is a trademark of Motorola, Inc.  
Microwire is a trademark of National Semiconductor Corporation.  
LINUX is a registered trademark of Linus Torvalds.  
Microsoft Windows and Microsoft are registered trademarks of Microsoft Corporation.  
DS506F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
57  
EP7311  
High-Performance, Low-Power System on Chip  
58  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS506F1  

相关型号:

EP7311-IB-C

HIGH-PERFORMANCE, LOW-POWER SYSTEM-ON-CHIP WITH SDRAM AND ENHANCED DIGITAL AUDIO INTERFACE
CIRRUS

EP7311-IR-C

HIGH-PERFORMANCE, LOW-POWER SYSTEM-ON-CHIP WITH SDRAM AND ENHANCED DIGITAL AUDIO INTERFACE
CIRRUS

EP7311-IV

High-performance, Low-power, System-on-chip with SDRAM & Enhanced Digital Audio Interface
CIRRUS

EP7311-IV-C

HIGH-PERFORMANCE, LOW-POWER SYSTEM-ON-CHIP WITH SDRAM AND ENHANCED DIGITAL AUDIO INTERFACE
CIRRUS

EP7311M-IBZ

RISC Microcontroller, 32-Bit, FLASH, 74MHz, CMOS, PBGA256, 17 X 17 MM, 1.61 MM HEIGHT, PLASTIC, M0-151, BGA-256
CIRRUS

EP7311_05

High-performance, Low-power, System-on-chip with SDRAM & Enhanced Digital Audio Interface
CIRRUS

EP7312

HIGH-PERFORMANCE, LOW-POWER SYSTEM-ON-CHIP WITH SDRAM AND ENHANCED DIGITAL AUDIO INTERFACE
CIRRUS

EP7312-90

New ARM720T 90 MHz Embedded Processor Allows Faster than Real-Time Recording
CIRRUS

EP7312-CB

High-performance, Low-power, System-on-chip with SDRAM & Enhanced with SDRAM & Enhanced
CIRRUS

EP7312-CB-90

HIGH-PERFORMANCE, LOW-POWER SYSTEM ON CHIP WITH SDRAM AND ENHANCED DIGITAL AUDIO INTERFACE
CIRRUS

EP7312-CB-C

HIGH-PERFORMANCE, LOW-POWER SYSTEM-ON-CHIP WITH SDRAM AND ENHANCED DIGITAL AUDIO INTERFACE
CIRRUS

EP7312-CR

High-performance, Low-power, System-on-chip with SDRAM & Enhanced with SDRAM & Enhanced
CIRRUS