G913B [CRANE]

150mA Low-Dropout Linear Regulators; 150毫安低压差线性稳压器
G913B
型号: G913B
厂家: Crane Aerospace & Electronics.    Crane Aerospace & Electronics.
描述:

150mA Low-Dropout Linear Regulators
150毫安低压差线性稳压器

稳压器
文件: 总10页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Global Mixed-mode Technology Inc.  
G913  
150mA Low-Dropout Linear Regulators  
Features  
General Description  
„ꢀLow, 55µA No-Load Supply Current  
„ꢀGuaranteed 150mA Output Current  
„ꢀDropout Voltage is 70mV @ 50mA Load  
„ꢀOver-Temperature Protection and Short-Circuit  
Protection  
The G913 is a low supply current, low dropout linear  
regulator that comes in a space saving SOT23-5 pack-  
age. The supply current at no-load is 55µA. In the  
shutdown mode, the maximum supply current is less  
than 1µA. Operating voltage range of the G913 is from  
2.5V to 5.5V. The over-current protection limit is set at  
250mA typical and 150mA minimum. An overtem-  
perature protection circuit is built-in in the G913 to  
prevent thermal overload. These power saving fea-  
tures make the G913 ideal for use in the bat-  
tery-powered applications such as notebook com-  
puters, cellular phones, and PDA’s.  
„ꢀTwo Modes of Operation ----  
Fixed Mode: 2.84V (G913A), 3.15V (G913B),  
3.30V (G913C), 3.00V (G913D)  
Adjustable Mode: from 1.25V to 5.5V  
„ꢀMax. Supply Current in Shutdown Mode < 1µA  
„ꢀLow Output Noise at 220µVRMS  
„ꢀStability with lost cost ceramic capacitors  
The G913 has two modes of operation. When the SET  
pin is connected to ground, its output is a pre-set  
value: 2.84V for G913A, 3.15V for G913B, and 3.30V  
for G913C, and 3.00V for G913D. There is no external  
components needed to decide the output voltage.  
When an output other than the preset value is needed,  
two external resistors should be used as a voltage  
divider. The output voltage is then decided by the re-  
sistor ratio. The G913 comes in a space saving  
SOT23-5 package.  
Applications  
„ꢀNotebook Computers  
„ꢀCellular Phones  
„ꢀPDAs  
„ꢀDigital still Camera and Video Recorders  
„ꢀHand-Held Devices  
„ꢀBar Code Scanners  
Ordering Information  
TEMP.  
PIN-  
PART MARKING VOLTAGE  
RANGE PACKAGE  
-40°C~ +85°C SOT 23-5  
-40°C~ +85°C SOT 23-5  
-40°C~ +85°C SOT 23-5  
-40°C~ +85°C SOT 23-5  
G913A  
G913B  
G913C  
G913D  
3A  
3B  
3C  
3D  
2.84  
3.15  
3.30  
3.00  
Pin Configuration  
OUTPUT  
VOLTAGE  
IN  
OUT  
G913  
SHDN  
CIN  
COUT  
µ
1 F  
1
5
SHDN  
SET  
_ 1µF  
BATTERY  
SET  
GND  
2
3
GND  
IN  
G913  
Fixed mode  
OUTPUT  
VOLTAGE  
OUT  
IN  
4
OUT  
R1  
G913  
SOT23-5  
SET  
CIN  
1µF  
SHDN  
BATTERY  
COUT  
1µF  
R2  
GND  
Adjustable mode  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver 0.9 Preliminary  
Jan 25, 2002  
1
Global Mixed-mode Technology Inc.  
G913  
Continuous Power Dissipation (TA = +25°C)  
Absolute Maximum Ratings  
VIN to GND……………………………………-0.3V to +7V  
Output Short-Circuit Duration………………….….Infinite  
SET to GND.……………………………..…..-0.3V to +7V  
SOT23-5……………………………………...…..520 mW  
Operating Temperature Range………...-40°C to +85°C  
Junction Temperature……………………….……+150°C  
θJA(1)….…..…………….…………….…..…..240°C/Watt  
Storage Temperature Range………….-65°C to +160°C  
Lead Temperature (soldering, 10sec)..…………+300°C  
SHDN to GND…………………..………….-0.3V to +7V  
SHDNto IN….…………………..…………..-7V to +0.3V  
OUT to GND…………………………-0.3V to (VIN + 0.3V)  
Note (1): See Recommended Minimum Footprint (Figure 3)  
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress rat-  
ings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of  
the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Electrical Characteristics  
(VIN =+3.6V, V SHDN =VIN, TA =TJ =+25°C, unless otherwise noted.) (Note 1)  
PARAMETER  
Input Voltage (Note 2)  
SYMBOL  
VIN  
CONDITIONS  
MIN TYP MAX UNITS  
2.5  
-2  
5.5  
2
V
%
Output Voltage Accuracy  
VOUT  
Variation from specified VOUT, IOUT=1mA  
Adjustable Output Voltage Range (Note 3)  
Maximum Output Current  
VOUT  
VSET  
150  
5.5  
V
mA  
mA  
Current Limit (Note 4)  
ILIM  
IQ  
250  
55  
145  
2
ILOAD = 0mA  
SET = GND  
120  
Ground Pin Current  
µA  
ILOAD = 50mA  
IOUT = 1mA  
Dropout Voltage (Note 5)  
VDROP  
mV  
IOUT = 50mA  
70  
I
OUT =150mA  
230 300  
0.1 0.28  
0.08 0.4  
0.02 0.8  
SET=GND, VIN=V(STD)+0.1V,to 5.5V IOUT = 1mA  
SET tied to OUT, VIN=2.5V to 5.5V, IOUT = 1mA  
SET tied to OUT  
Line Regulation  
Load Regulation  
VLNR  
%/V  
%
VLDR IOUT = 0mA to 150mA  
SET = GND  
1.0  
VIN=4.2V,  
en  
Output Voltage Noise (10Hz to 100kHz)  
SHUTDOWN  
COUT = 1µF  
220  
µVRMS  
IOUT=150mA  
VIH  
VIL  
Regulator enabled  
Regulator shutdown  
V SHDN = VIN  
VIN-0.7  
V
SHDN Input Threshold  
0.4  
TA = +25°C  
TA = +25°C  
I SHDN  
0.003 0.1  
µA  
µA  
SHDN Input Bias Current  
Shutdown Supply Current  
SET INPUT  
IQSHDN VOUT = 0V  
0.2  
1
V
IN = 2.5V to 5.5V,  
TA = +25°C  
1.225 1.25 1.275  
1.25  
SET Reference Voltage (Note 3)  
VSET  
ISET  
V
IOUT = 1mA  
TA = TMIN to TMAX  
TA = +25°C  
SET Input Leakage Current (Note 3)  
THERMAL PROTECTION  
VSET = 1.3V  
5
30  
nA  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
TSHDN  
150  
15  
°C  
°C  
TSHDN  
Note 1: Limits is 100% production tested at TA= +25°C. Low duty pulse techniques are used during test to  
maintain junction temperature as close to ambient as possible.  
Note 2: Guaranteed by line regulation test.  
Note 3: Adjustable mode only.  
Note 4: Not tested. For design purposes, the current limit should be considered 150mA minimum to 420mA maximum.  
Note 5: The dropout voltage is defined as (VIN-VOUT) when VOUT is 100mV below the value of VOUT for VIN = VOUT +2V,  
The performance of every G913 part, see “Typical Performance Characteristics”.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver 0.9 Preliminary  
Jan 25, 2002  
2
Global Mixed-mode Technology Inc.  
G913  
Typical Performance Characteristics  
(VIN= +3.6V, CIN=1µF, COUT=1µF, G913B, TA=25 °C, unless otherwise noted.)  
Output Voltage vs. Load Current  
Ground Current vs. Load Current  
3.160  
3.150  
3.140  
3.130  
3.120  
3.110  
3.100  
300  
250  
200  
150  
100  
50  
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Load Current (mA)  
Load Current (mA)  
Output Voltage vs. Load Current  
Supply Current vs. Input Voltage  
3.50  
130  
120  
110  
100  
90  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
No Load  
ILOAD = 50mA  
80  
70  
60  
50  
ILOAD = 0A  
40  
30  
20  
10  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
Input Voltage (V)  
Input Voltage (V)  
Dropout Voltage vs. Load Current  
Output Noise 10HZ to 100KHZ  
300  
250  
200  
150  
100  
50  
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Load Current (mA)  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver 0.9 Preliminary  
Jan 25, 2002  
3
Global Mixed-mode Technology Inc.  
G913  
Typical Performance Characteristics  
(VIN= +3.6V, CIN=1µF, COUT=1µF, G913B, TA=25 °C, unless otherwise noted.)  
Line Transient  
Load Transient  
Load Transient  
Load Transient  
Dropout Voltage vs. Load Current by G913  
Dropout Voltage vs. Temperature  
300  
400  
TA=25°C  
350  
300  
250  
200  
150  
100  
50  
250  
G913C  
Top to Bottom  
G913C  
G913B  
G913D  
ILOAD=150mA  
200  
150  
100  
50  
ILOAD=50mA  
G913A  
ILOAD=0mA  
0
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Load Current (mA)  
J
Junction Temperature T ()  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver 0.9 Preliminary  
Jan 25, 2002  
4
Global Mixed-mode Technology Inc.  
G913  
Typical Performance Characteristics  
(VIN= +3.6V, CIN=1µF, COUT=1µF, G913B, TA=25 °C, unless otherwise noted.)  
Turn on Response Time  
Shutdown Pin Delay  
Shutdown Pin Delay  
Turn off Response Time  
Shutdown Response Time  
Shutdown Response Time  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver 0.9 Preliminary  
Jan 25, 2002  
5
Global Mixed-mode Technology Inc.  
G913  
Typical Performance Characteristics  
(VIN= +3.6V, CIN=1µF, COUT=1µF, G913B, TA=25 °C, unless otherwise noted.)  
Shutdown Supply Current  
SHDN Input Bias Current vs. Temperature  
0.20  
0.10  
0.00  
-0.10  
-0.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
G913C  
G913C  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Junction Temperature TJ ()  
Junction Temperature TJ ()  
SET Input Leakage Current vs. Temperature  
SET Reference Voltage vs. Temperature  
60  
1.260  
1.255  
1.250  
1.245  
1.240  
1.235  
1.230  
55  
G913C  
50  
G913C  
ILOAD=1mA  
VIN=5.5V  
45  
40  
35  
30  
25  
20  
15  
10  
5
VIN=3.6V  
VIN=2.5V  
0
-5  
-10  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Junction Temperature TJ ()  
Junction Temperature TJ ()  
Output Voltage vs. Temperature  
Ground Current vs. Temperature  
3.340  
3.330  
3.320  
3.310  
3.300  
3.290  
3.280  
100  
80  
60  
40  
20  
0
G913C  
ILOAD=1mA  
G913C  
ILOAD=0A  
V
IN=5.5V  
V
IN=3.6V  
V
IN=3.4V  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Junction Temperature TJ ()  
Junction Temperature TJ ()  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver 0.9 Preliminary  
Jan 25, 2002  
6
Global Mixed-mode Technology Inc.  
G913  
Pin Description  
PIN  
FUNCTION  
NAME  
Active-Low Shutdown Input. A logic low reduces the supply current to less than 1µA. Connect to IN for normal  
operation.  
SHDN  
1
Ground. This pin also functions as a heatsink. Solder to large pads or the circuit board ground plane to  
maximize thermal dissipation.  
2
3
4
GND  
IN  
Regulator Input. Supply voltage can range from +2.5V to +5.5V. Bypass with 1µF to GND  
Regulator Output. Fixed or adjustable from 1.25V to +5.5V. Sources up to 150mA. Bypass with a 1µF,  
0.2typical ESR capacitor to GND.  
OUT  
Feedback Input for Setting the Output Voltage. Connect to GND to set the output voltage to the preset  
2.84V or 3.15V or 3.30V or 3.00V. Connect to an external resistor divider for adjustable-output operation.  
5
SET  
action, the error amplifier, output PMOS, and the volt-  
Detailed Description  
age divider effectively form a unity-gain amplifier with  
the feedback voltage force to be the same as the  
1.25V bandgap reference. The output voltage, VOUT, is  
then given by the following equation:  
The block diagram of the G913 is shown in Figure 1. It  
consists of an error amplifier, 1.25V bandgap refer-  
ence, PMOS output transistor, internal feedback volt-  
age divider, mode comparator, shutdown logic, over  
current protection circuit, and over temperature protec-  
tion circuit.  
V
OUT = 1.25 (1 + R1/R2).  
(1)  
Alternatively, the relationship between R1 and R2 is  
given by:  
R1 = R2 (VOUT /1.25 + 1).  
(2)  
The mode comparator compares the SET pin voltage  
with an internal 120mV reference. If the SET pin volt-  
age is less than 120mV, the internal feedback voltage  
divider’s central tap is connected to the non-inverting  
input of the error amplifier. The error amplifier com-  
pares non-inverting input with the 1.25V bandgap ref-  
erence. If the feedback voltage is higher than 1.25V,  
the error amplifier’s output becomes higher so that the  
PMOS output transistor has a smaller gate-to-source  
voltage (VGS). This reduces the current carrying capa-  
bility of the PMOS output transistor, as a result the  
output voltage decreases until the feedback voltage is  
equal to 1.25V. Similarly, when the feedback voltage  
is less than 1.25V, the error amplifier causes the out-  
put PMOS to conductor more current to pull the feed-  
back voltage up to 1.25V. Thus, through this feedback  
For the reasons of reducing power dissipation and  
loop stability, R2 is chosen to be 100K. For G913A,  
R1 is 128K, and the pre-set VOUT is 2.84V. For  
G913B, R1 is 152K, and the pre-set VOUT is 3.15V.  
For G913C, R1 is 164K, and the pre-set VOUT is  
3.30V. For G913D, R1 is 140K, and the pre-set VOUT  
is 3.00V.  
When external voltage divider is used, as shown in  
Figure 2, the SET pin voltage will be larger than  
600mV. The non-inverting input of the amplifier will be  
connected to the external voltage divider. However,  
the operation of the feedback loop is the same, so that  
the conditions of Equations 1 and 2 are still true. The  
output voltage is still given by Equation 1.  
IN  
SHDN  
OVER CURRENT  
P
ERROR  
AMP  
PROTECT & DYNAMIC  
FEEDBACK  
SHUTDOWN  
LOGIC  
OUT  
SET  
R1  
R2  
OVER TEMP.  
PROTECT  
1.25V  
Vref  
120mV  
MODE COMPARATOR  
GND  
Figure 1. Functional Diagram  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver 0.9 Preliminary  
Jan 25, 2002  
7
Global Mixed-mode Technology Inc.  
G913  
Where (TJ–TA) is the temperature difference the G913 die  
and the ambient air,θJA, is the thermal resistance of the  
OUTPUT  
VOLTAGE  
OUT  
IN  
chosen package to the ambient air. For surface mount  
device, heat sinking is accomplished by using the heat  
spreading capabilities of the PC board and its copper  
traces. In the case of a SOT23-5 package, the thermal  
resistance is typically 240oC/Watt. (See Recommended  
Minimum Footprint) [Figure 3] Refer to Figure 4 is the  
G913 valid operating region (Safe Operating Area) & refer  
to Figure 5 is maximum power dissipation of SOT 23-5.  
R1  
R2  
G913  
SET  
RL  
C
SHDN  
IN  
BATTERY  
COUT  
1µF  
1µF  
GND  
The die attachment area of the G913’s lead frame is  
connected to pin 2, which is the GND pin. Therefore, the  
GND pin of G913 can carry away the heat of the G913  
die very effectively. To improve the power dissipation,  
connect the GND pin to ground using a large ground  
plane near the GND pin.  
Figure 2. Adjustable Output Using External  
Feedback Resistors  
Over Current Protection  
The G913 use a current mirror to monitor the output cur-  
rent. A small portion of the PMOS output transistor’s cur-  
rent is mirrored onto a resistor such that the voltage  
across this resistor is proportional to the output current.  
This voltage is compared against the 1.25V reference.  
Once the output current exceeds the limit, the PMOS  
output transistor is turned off. Once the output transistor is  
turned off, the current monitoring voltage decreases to  
zero, and the output PMOS is turned on again. If the over  
current condition persist, the over current protection circuit  
will be triggered again. Thus, when the output is shorted  
to ground, the output current will be alternating between 0  
and the over current limit. The typical over current limit of  
the G913 is set to 250mA. Note that the input bypass  
capacitor of 1µF must be used in this case to filter out the  
input voltage spike caused by the surge current due to the  
inductive effect of the package pin and the printed circuit  
board’s routing wire. Otherwise, the actual voltage at the  
IN pin may exceed the absolute maximum rating.  
Applications Information  
Capacitor Selection and Regulator Stability  
Normally, use a 1µF capacitor on the input and a 1µF  
capacitor on the output of the G913. Larger input capaci-  
tor values and lower ESR provide better supply-noise  
rejection and transient response. A higher- value input  
capacitor (10µF) may be necessary if large, fast tran-  
sients are anticipated and the device is located several  
inches from the power source.  
Power-Supply Rejection and Operation from Sources  
Other than Batteries  
The G913 is designed to deliver low dropout voltages and  
low quiescent currents in battery powered systems.  
Power-supply rejection is 42dB at low frequencies. As the  
frequency increases above 20kHz, the output capacitor is  
the major contributor to the rejection of power-supply  
noise.  
When operating from sources other than batteries, im-  
prove supply-noise rejection and transient response by  
increasing the values of the input and output capacitors,  
and using passive filtering techniques.  
Over Temperature Protection  
To prevent abnormal temperature from occurring, the  
G913 has a built-in temperature monitoring circuit. When  
it detects the temperature is above 150oC, the output  
transistor is turned off. When the IC is cooled down to  
below 135oC, the output is turned on again. In this way,  
the G913 will be protected against abnormal junction  
temperature during operation.  
Load Transient Considerations  
The G913 load-transient response graphs show two  
components of the output response: a DC shift of the  
output voltage due to the different load currents, and the  
transient response. Typical overshoot for step changes in  
the load current from 0mA to 100mA is 12mV. Increasing  
the output capacitor's value and decreasing its ESR at-  
tenuates transient spikes.  
Shutdown Mode  
When the SHDN pin is connected a logic low voltage,  
the G913 enters shutdown mode. All the analog circuits  
are turned off completely, which reduces the current  
consumption to only the leakage current. The output is  
disconnected from the input. When the output has no  
load at all, the output voltage will be discharged to ground  
through the internal resistor voltage divider.  
Input-Output (Dropout) Voltage  
A regulator's minimum input-output voltage differential (or  
dropout voltage) determines the lowest usable supply  
voltage. In battery-powered systems, this will determine  
the useful end-of-life battery voltage. Because the G913  
use a P-channel MOSFET pass transistor, their dropout  
voltage is a function of RDS(ON) multiplied by the load cur-  
rent.  
Operating Region and Power Dissipation  
Since the G913 is a linear regulator, its power dissipation  
is always given by P = IOUT (VIN – VOUT). The maximum  
power dissipation is given by:  
PD(MAX) = (TJ–TA)/θJA,=150oC-25oC/240oC/W= 520mW  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver 0.9 Preliminary  
Jan 25, 2002  
8
Global Mixed-mode Technology Inc.  
G913  
Layout Guide  
The output capacitor also must be located a distance  
of not more than 1cm from output to a clean analog  
ground. Because it can filter out the output spike  
caused by the surge current due to the inductive effect  
of the package pin and the printed circuit board’s  
routing wire. Figure 6 is adjustable mode of G913 PCB  
layout. Figure 7 is a PCB layout of G913 fixed mode.  
An input capacitance of 1µF is required between the  
G913 input pin and ground (the amount of the capaci-  
tance may be increased without limit), This capacitor  
must be located a distance of not more than 1cm from  
the input and return to a clean analog ground.  
Input capacitor can filter out the input voltage spike  
caused by the surge current due to the inductive effect  
of the package pin and the printed circuit board’s  
routing wire. Otherwise, the actual voltage at the IN  
pin may exceed the absolute maximum rating.  
Figure 3. Recommended Minimum Footprint  
Safe Operating Area of G913 [Power Dissipation Limit]  
Maximum Power Dissipation of SOT-23-5  
200  
0.7  
Still Air  
0.6  
Maximum Recommended Output Current  
1oz Copper on SOT-23-5 Package  
Mounted on recommend mimimum footprint (RθJA=240°C/W)  
150  
0.5  
TA=25  
TA=55℃  
TA=85℃  
0.4  
0.3  
0.2  
100  
TA=25°C,Still Air  
50 1oz Copper on SOT-23-5 Package  
Mounted on recommended mimimum footprint (RθJA=240°C/W)  
0.1  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
25  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
Input-Output Voltage Differential VIN-VOUT (V)  
Note : VIN(max) <=5.5V  
Amibent Temperature TA (°C)  
Figure 4 Safe Operating Area  
Figure 5 Power Dissipation vs. Temperature  
Figure 6. Adjustable Mode  
Figure 7. Fixed Mode  
*Distance between pin & capacitor must no more than 1cm  
*Distance between pin & capacitor must no more than 1cm  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver 0.9 Preliminary  
Jan 25, 2002  
9
Global Mixed-mode Technology Inc.  
G913  
Package Information  
C
D
L
H
E
θ1  
e1  
e
A
A2  
A1  
b
Note:  
1. Package body sizes exclude mold flash protrusions or gate burrs  
2. Tolerance ±0.1000 mm (4mil) unless otherwise specified  
3. Coplanarity: 0.1000mm  
4. Dimension L is measured in gage plane  
DIMENSIONS IN MILLIMETERS  
NOM  
SYMBOLS  
MAX  
MIN  
A
A1  
A2  
b
1.00  
0.00  
0.70  
0.35  
0.10  
2.70  
1.40  
-----  
-----  
2.60  
0.37  
1º  
1.10  
-----  
1.30  
0.10  
0.90  
0.50  
0.25  
3.10  
1.80  
-----  
-----  
3.00  
-----  
9º  
0.80  
0.40  
C
0.15  
D
2.90  
E
1.60  
e
1.90(TYP)  
0.95  
e1  
H
2.80  
L
θ1  
------  
5º  
Taping Specification  
Feed Direction  
SOT23-5 Package Orientation  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver 0.9 Preliminary  
Jan 25, 2002  
10  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY