C3M0120100J [CREE]

Silicon Carbide Power MOSFET C3M MOSFET Technology;
C3M0120100J
型号: C3M0120100J
厂家: CREE, INC    CREE, INC
描述:

Silicon Carbide Power MOSFET C3M MOSFET Technology

文件: 总10页 (文件大小:1331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VDS  
ID  
1000 V  
22 A  
@
25˚C  
C3M0120100J  
RDS(on)  
120 m  
Silicon Carbide Power MOSFET  
C3MTM MOSFET Technology  
N-Channel Enhancement Mode  
Features  
Package  
TAB  
Drain  
•ꢀ C3MTM SiC MOSFET technology  
•ꢀ Low parasitic inductance with separate driver source pin  
•ꢀ 7mm of creepage distance between drain and source  
•ꢀ High blocking voltage with low On-resistance  
•ꢀ Fast intrinsic diode with low reverse recovery (Qrr)  
•ꢀ Low output capacitance (60pF)  
•ꢀ Halogen free, RoHS compliant  
Benefits  
Drain  
(TAB)  
1
G
2
KS  
3
S
4
S
5
S
6
S
7
S
•ꢀ Reduce switching losses and minimize gate ringing  
•ꢀ Higherꢀsystemꢀefficiency  
•ꢀ Reduce cooling requirements  
•ꢀ Increase power density  
Gate  
(Pin 1)  
•ꢀ Increase system switching frequency  
Driver  
Source  
(Pin 2)  
Power  
Source  
(Pin 3,4,5,6,7)  
Applications  
•ꢀ Renewable energy  
•ꢀ EV battery chargers  
•ꢀ High voltage DC/DC converters  
•ꢀ Switch Mode Power Supplies  
Marking  
Part Number  
Package  
C3M0120100J  
TO-263-7  
C3M0120100J  
Maximum Ratings (TCꢀ=ꢀ25ꢀ˚Cꢀunlessꢀotherwiseꢀspecified)  
Symbol  
Parameter  
Drain - Source Voltage  
Value  
Unit  
Test Conditions  
Note  
VGS = 0 V, IDꢀ=ꢀ100ꢀμA  
AC (f >1 Hz)  
Static  
1000  
-8/+19  
-4/+15  
22  
V
V
V
VDSmax  
VGSmax  
VGSop  
Gate - Source Voltage (dynamic)  
Gate - Source Voltage (static)  
Note: 1  
Note: 2  
Fig. 19  
VGS = 15 V, TC =ꢀ25˚C  
VGS = 15 V, TC =ꢀ100˚C  
Continuous Drain Current  
Pulsed Drain Current  
A
A
ID  
13.5  
50  
83  
Fig. 22  
Fig. 20  
ID(pulse)  
PD  
Pulse width tP limited by Tjmax  
Power Dissipation  
W
˚C  
˚C  
TC=25˚C,ꢀT ꢀ=ꢀ150ꢀ˚C  
J
-55 to  
+150  
Operating Junction and Storage Temperature  
Solder Temperature  
T , Tstg  
J
260  
1.6mm (0.063”) from case for 10s  
TL  
Note (1): When using MOSFET Body Diode VGSmax = -4V/+19V  
Note (2): MOSFET can also safely operate at 0/+15 V  
1
C3M0120100J Rev. -, 04-2017  
Electrical Characteristics (TCꢀ=ꢀ25˚Cꢀunlessꢀotherwiseꢀspecified)  
Typ.  
Symbol  
Parameter  
Min.  
1000  
1.8  
Max. Unit  
Test Conditions  
Note  
V(BR)DSS  
Drain-Source Breakdown Voltage  
V
VGS = 0 V, IDꢀ=ꢀ100ꢀμA  
2.1  
1.6  
1
3.5  
VDS = VGS, ID = 3 mA  
V
V
VGS(th)  
Gate Threshold Voltage  
Fig. 11  
VDS = VGS, ID = 3 mA, TJ = 150ºC  
VDS = 1000 V, VGS = 0 V  
VGS = 15 V, VDS = 0 V  
IDSS  
IGSS  
Zero Gate Voltage Drain Current  
Gate-Source Leakage Current  
100  
250  
155  
μA  
nA  
10  
120  
170  
7.7  
6.7  
VGS = 15 V, ID = 15 A  
Fig. 4,  
5, 6  
RDS(on)  
Drain-Source On-State Resistance  
Transconductance  
mΩ  
VGS = 15 V, ID = 15 A, TJ = 150ºC  
VDS= 20 V, IDS= 15 A  
gfs  
S
Fig. 7  
V
DS= 20 V, IDS= 15 A, TJ = 150ºC  
Ciss  
Coss  
Crss  
Eoss  
Input Capacitance  
350  
40  
3
Fig. 17,  
18  
VGS = 0 V, VDS = 600 V  
Output Capacitance  
Reverse Transfer Capacitance  
Coss Stored Energy  
pF  
f = 1 MHz  
AC  
V
= 25 mV  
9
μJ  
μJ  
Fig. 16  
Fig. 26  
EON  
Turn-On Switching Energy (Body Diode FWD)  
140  
VDS = 700 V, VGS = -4 V/15 V, ID = 15A,  
RG(ext) =ꢀ2.5Ω,ꢀL=ꢀ156ꢀμH,ꢀꢀTJ = 150ºC  
EOFF  
td(on)  
tr  
Turn Off Switching Energy (Body Diode FWD)  
Turn-On Delay Time  
25  
7
V
DD = 700 V, VGS = -4 V/15 V  
Rise Time  
8
ID = 15 A, RG(ext)ꢀ=ꢀ2.5ꢀΩ,ꢀ  
Timing relative to VDS  
Inductive load  
Fig. 27,  
28  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
14  
8
,
RG(int)  
Qgs  
Qgd  
Qg  
Internal Gate Resistance  
Gate to Source Charge  
Gate to Drain Charge  
Total Gate Charge  
16  
f = 1 MHz VAC = 25 mV  
4.8  
V
DS = 700 V, VGS = -4 V/15 V  
10.0  
21.5  
ID = 15 A  
nC  
Fig. 12  
Per IEC60747-8-4 pg 21  
(T ꢀ=ꢀ25˚Cꢀunlessꢀotherwiseꢀspecified)  
Reverse Diode Characteristics  
C
Symbol  
Parameter  
Typ.  
Max.  
Unit  
Test Conditions  
Note  
4.8  
V
V
VGS = -4 V, ISD = 7.5 A  
VGS = -4 V, ISD = 7.5 A, T = 150 °C  
Fig. 8,  
9, 10  
VSD  
Diode Forward Voltage  
4.4  
J
IS  
IS, pulse  
trr  
Continuous Diode Forward Current  
Diode pulse Current  
16.5  
50  
A
VGS = -4 V  
Note 1  
Note 1  
A
VGS = -4 V, pulse width tP limited by Tjmax  
Reverse Recover time  
16  
ns  
VGS = -4 V, ISD = 15 A, VR = 700 V  
Note 1  
Qrr  
Irrm  
Reverse Recovery Charge  
154  
15  
nC  
A
dif/dt = 2400 A/µs, T = 150 °C  
J
Peak Reverse Recovery Current  
Thermal Characteristics  
Symbol  
RθJC  
Parameter  
Max.  
1.5  
Unit  
Test Conditions  
Note  
Thermal Resistance from Junction to Case  
°C/W  
Fig. 21  
RθJA  
Thermal Resistance From Junction to Ambient  
40  
2
C3M0120100J Rev. -, 04-2017  
Typical Performance  
45  
45  
40  
35  
30  
25  
20  
15  
10  
5
VGS = 15 V  
Conditions:  
TJ = -55 °C  
Conditions:  
TJ = 25 °C  
tp = < 200 µs  
VGS = 15 V  
40  
tp = < 200 µs  
35  
VGS = 13 V  
VGS = 13 V  
VGS = 11 V  
30  
25  
20  
15  
10  
5
VGS = 11 V  
VGS = 9 V  
VGS = 9 V  
VGS = 7 V  
VGS = 7 V  
0
0
0
2
4
6
8
10  
11  
0
2
4
6
8
10  
11  
Drain-Source Voltage, VDS (V)  
Drain-Source Voltage, VDS (V)  
Figure 1. Output Characteristics TJ = -55 ºC  
Figure 2. Output Characteristics TJ = 25 ºC  
45  
40  
35  
30  
25  
20  
15  
10  
5
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VGS = 15 V  
Conditions:  
TJ = 150 °C  
tp = < 200 µs  
Conditions:  
IDS = 15 A  
VGS = 15 V  
tp < 200 µs  
VGS = 13 V  
VGS = 11 V  
VGS = 9 V  
VGS = 7 V  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
2
4
6
8
10  
11  
Junction Temperature, TJ (°C)  
Drain-Source Voltage, VDS (V)  
Figure 3. Output Characteristics TJ = 150 ºC  
Figure 4. Normalized On-Resistance vs. Temperature  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
Conditions:  
IDS = 15 A  
tp < 200 µs  
Conditions:  
VGS = 15 V  
tp < 200 µs  
TJ = 150 °C  
TJ = -55 °C  
TJ = 25 °C  
VGS = 11 V  
VGS = 13 V  
VGS = 15 V  
50  
50  
25  
25  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Drain-Source Current, IDS (A)  
Junction Temperature, TJ (°C)  
Figure 5. On-Resistance vs. Drain Current  
For Various Temperatures  
Figure 6. On-Resistance vs. Temperature  
For Various Gate Voltage  
3
C3M0120100J Rev. -, 04-2017  
Typical Performance  
35  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
Conditions:  
VDS = 20 V  
0
30  
25  
20  
15  
10  
5
tp < 200 µs  
-5  
TJ = 150 °C  
VGS = -4 V  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
VGS = 0 V  
TJ = 25 °C  
TJ = -55 °C  
VGS = -2 V  
Conditions:  
TJ = -55°C  
tp < 200 µs  
0
0
2
4
6
8
10  
12  
14  
Drain-Source Voltage VDS (V)  
Gate-SourceVoltage, VGS (V)  
Figure 7. Transfer Characteristic for  
Various Junction Temperatures  
Figure 8. Body Diode Characteristic at -55 ºC  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
0
0
-5  
-5  
V
GS = -4 V  
VGS = -4 V  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-10  
VGS = 0 V  
VGS = 0 V  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
VGS = -2 V  
VGS = -2 V  
Conditions:  
TJ = 150°C  
tp < 200 µs  
Conditions:  
TJ = 25°C  
tp < 200 µs  
Drain-Source Voltage VDS (V)  
Drain-Source Voltage VDS (V)  
Figure 9. Body Diode Characteristic at 25 ºC  
Figure 10. Body Diode Characteristic at 150 ºC  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
16  
Conditons  
GS = VDS  
IDS = 3 mA  
Conditions:  
V
I
DS = 15 A  
IGS = 18 mA  
V
DS = 700 V  
12  
8
TJ = 25 °C  
4
0
-4  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
24  
Junction Temperature TJ (°C)  
Gate Charge, QG (nC)  
Figure 11. Threshold Voltage vs. Temperature  
Figure 12. Gate Charge Characteristics  
4
C3M0120100J Rev. -, 04-2017  
Typical Performance  
-6  
-5  
-4  
-3  
-2  
-1  
0
-6  
-5  
-4  
-3  
-2  
-1  
0
0
0
VGS = 0 V  
VGS = 0 V  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
VGS = 5 V  
VGS = 5 V  
VGS = 10 V  
VGS = 10 V  
VGS = 15 V  
VGS = 15 V  
Conditions:  
TJ = -55 °C  
tp < 200 µs  
Conditions:  
TJ = 25 °C  
tp < 200 µs  
Drain-Source Voltage VDS (V)  
Drain-Source Voltage VDS (V)  
Figure 13. 3rd Quadrant Characteristic at -55 ºC  
Figure 14. 3rd Quadrant Characteristic at 25 ºC  
25  
20  
15  
10  
5
-6  
-5  
-4  
-3  
-2  
-1  
0
0
VGS = 0 V  
-10  
-20  
-30  
-40  
VGS = 5 V  
VGS = 10 V  
VGS = 15 V  
Conditions:  
TJ = 150 °C  
tp < 200 µs  
0
0
200  
400  
600  
800  
1000  
1200  
Drain to Source Voltage, VDS (V)  
Drain-Source Voltage VDS (V)  
Figure 15. 3rd Quadrant Characteristic at 150 ºC  
Figure 16. Output Capacitor Stored Energy  
1000  
1000  
100  
10  
Conditions:  
TJ = 25 °C  
Conditions:  
TJ = 25 °C  
Ciss  
Ciss  
VAC = 25 mV  
V
AC = 25 mV  
f = 1 MHz  
f = 1 MHz  
Coss  
100  
10  
1
Coss  
Crss  
Crss  
1
0
50  
100  
Drain-Source Voltage, VDS (V)  
150  
200  
0
200  
400  
600  
800  
1000  
Drain-Source Voltage, VDS (V)  
Figure 17. Capacitances vs. Drain-Source  
Voltage (0 - 200V)  
Figure 18. Capacitances vs. Drain-Source  
Voltage (0 - 1000V)  
5
C3M0120100J Rev. -, 04-2017  
Typical Performance  
25  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Conditions:  
TJ ≤ 150 °C  
Conditions:  
TJ ≤ 150 °C  
20  
15  
10  
5
0
-55  
-30  
-5  
20  
45  
70  
95  
120  
145  
-55  
-30  
-5  
20  
45  
70  
95  
120  
145  
Case Temperature, TC (°C)  
Case Temperature, TC (°C)  
Figure 19. Continuous Drain Current Derating vs.  
Case Temperature  
Figure 20. Maximum Power Dissipation Derating vs.  
Case Temperature  
1  
10 µs  
0.5  
0.3  
Limited by RDS On  
100 µs  
10.00  
1 ms  
100 ms  
0.1  
1.00  
0.10  
0.01  
0.05  
100E-3  
0.02  
Conditions:  
TC = 25 °C  
D = 0,  
SinglePulse  
0.01  
Parameter: tp  
10E-3  
1E-6  
0.1  
1
10  
100  
1000  
10E-6  
100E-6  
1E-3  
10E-3  
100E-3  
1  
Drain-Source Voltage, VDS (V)  
Time, t (s)  
p  
Figure 21. Transient Thermal Impedance  
(Junction - Case)  
Figure 22. Safe Operating Area  
150  
125  
100  
75  
250  
Conditions:  
TJ = 25 °C  
VDD = 500 V  
RG(ext) = 2.5 Ω  
VGS = -4V/+15 V  
FWD = C3M0120100J  
L = 156 μH  
Conditions:  
TJ = 25 °C  
VDD = 700 V  
RG(ext) = 2.5 Ω  
VGS = -4V/+15 V  
FWD = C3M0120100J  
L = 156 μH  
200  
150  
100  
50  
ETotal  
ETotal  
EOn  
EOn  
50  
25  
EOff  
EOff  
0
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Drain to Source Current, IDS (A)  
Drain to Source Current, IDS (A)  
Figure 23. Clamped Inductive Switching Energy vs.  
Drain Current (VDD = 500V)  
Figure 24. Clamped Inductive Switching Energy vs.  
Drain Current (VDD = 700V)  
6
C3M0120100J Rev. -, 04-2017  
Typical Performance  
300  
250  
200  
150  
100  
50  
Conditions:  
IDS = 20 A  
VDD = 700 V  
RG(ext) = 2.5 Ω  
VGS = -4V/+15 V  
FWD = C3M0120100J  
L = 156 μH  
Conditions:  
TJ = 25 °C  
VDD = 700 V  
IDS = 15 A  
VGS = -4V/+15 V  
FWD = C3M0120100J  
L = 156 μH  
250  
ETotal  
200  
150  
100  
50  
ETotal  
EOn  
EOn  
EOff  
EOff  
0
0
0
5
10  
15  
20  
25  
0
25  
50  
75  
100  
125  
150  
175  
External Gate Resistor RG(ext) (Ohms)  
Junction Temperature, TJ (°C)  
Figure 26. Clamped Inductive Switching Energy vs.  
Temperature  
Figure 25. Clamped Inductive Switching Energy vs. RG(ext)  
35  
Conditions:  
TJ = 25 °C  
VDD = 700 V  
IDS = 15 A  
VGS = -4V/+15 V  
FWD = C3M0120100J  
L = 156 μH  
30  
25  
20  
15  
10  
5
td(off)  
td(on)  
tr  
tf  
0
0
5
10  
15  
20  
25  
External Gate Resistor RG(ext) (Ohms)  
Figure 27. Switching Times vs. RG(ext)  
Figureꢀ28.ꢀSwitchingꢀTimesꢀDefinition  
7
C3M0120100J Rev. -, 04-2017  
Test Circuit Schematic  
RG  
Q1  
L
VGS= - 4 V  
KS  
VDC  
CDC  
Q2  
RG  
D.U.T  
KS  
Figure 29. Clamped Inductive Switching  
Waveform Test Circuit  
Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above.  
8
C3M0120100J Rev. -, 04-2017  
Package Dimensions  
Package 7L D2PAK  
All Dimensions in Millimeters  
Dim  
Min  
4.300  
0.00  
typ  
4.435  
0.125  
0.600  
0.800  
0.490  
1.285  
9.075  
4.800  
10.180  
7.550  
7.223  
1.27  
Max  
4.570  
0.25  
A
A1  
b
0.500  
0.600  
0.330  
1.170  
9.025  
4.700  
10.130  
6.500  
6.778  
0.700  
1.000  
0.650  
1.400  
9.125  
4.900  
10.230  
8.600  
7.665  
b2  
c
C2  
D
D1  
E
E1  
E2  
e
H
15.043  
2.324  
0.968  
0˚  
16.178  
2.512  
1.418  
4˚  
17.313  
2.700  
1.868  
8˚  
L
L1  
Ø
Ø1  
4.5˚  
5˚  
5.5˚  
9
C3M0120100J Rev. -, 04-2017  
Notes  
•ꢀ RoHSꢀCompliance  
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the  
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/  
EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or  
from the Product Documentation sections of www.cree.com.  
•ꢀ REAChꢀCompliance  
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA)  
has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree represen-  
tative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is  
also available upon request.  
•ꢀ This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body  
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited  
toꢀequipmentꢀusedꢀinꢀtheꢀoperationꢀofꢀnuclearꢀfacilities,ꢀlife-supportꢀmachines,ꢀcardiacꢀdefibrillatorsꢀorꢀsimilarꢀemergencyꢀmedicalꢀ  
equipment,ꢀaircraftꢀnavigationꢀorꢀcommunicationꢀorꢀcontrolꢀsystems,ꢀairꢀtrafficꢀcontrolꢀsystems.  
Related Links  
•ꢀ SPICE Models: http://wolfspeed.com/power/tools-and-support  
•ꢀ SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support  
•ꢀ SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support  
Cree, Inc.  
4600 Silicon Drive  
Durham, NC 27703  
Copyright © 2016 - 2017 Cree, Inc. All rights reserved.  
USA Tel: +1.919.313.5300  
Fax: +1.919.313.5451  
www.wolfspeed.com/power  
The information in this document is subject to change without notice.  
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.  
C3M0120100J Rev. -, 04-2017  
10  

相关型号:

C3M0120100K

C3MTM SiC MOSFET technology
CREE

C3M0280090D

Silicon Carbide Power MOSFET
CREE

C3M0280090J

Silicon Carbide Power MOSFET
CREE

C3P-L67201L-55

FIFO, 512X9, 55ns, Asynchronous, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
TEMIC

C3P-L67201L-60

FIFO, 512X9, 60ns, Asynchronous, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
TEMIC

C3P-L67201L-65

FIFO, 512X9, 65ns, Asynchronous, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
TEMIC

C3P-L67201V-55

FIFO, 512X9, 55ns, Asynchronous, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
TEMIC

C3P-L67201V-60

FIFO, 512X9, 60ns, Asynchronous, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
TEMIC

C3P-L67201V-65

FIFO, 512X9, 65ns, Asynchronous, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
TEMIC

C3P-L67202L-55

FIFO, 1KX9, 55ns, Asynchronous, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
TEMIC

C3P-L67202L-60

FIFO, 1KX9, 60ns, Asynchronous, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
TEMIC

C3P-L67202L-65

FIFO, 1KX9, 65ns, Asynchronous, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
TEMIC