BCM4343W1KUBG [CYPRESS]

Single-Chip IEEE 802.11 b/g/n MAC/ Baseband/Radio with Bluetooth 4.1,an FM Receiver, and Wireless Charging;
BCM4343W1KUBG
型号: BCM4343W1KUBG
厂家: CYPRESS    CYPRESS
描述:

Single-Chip IEEE 802.11 b/g/n MAC/ Baseband/Radio with Bluetooth 4.1,an FM Receiver, and Wireless Charging

无线
文件: 总127页 (文件大小:10739K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYW4343X  
Single-Chip IEEE 802.11 b/g/n MAC/  
Baseband/Radio with Bluetooth 4.1,  
an FM Receiver, and Wireless Charging  
The Cypress CYW4343X is a highly integrated single-chip solution and offers the lowest RBOM in the industry for smartphones  
smartphones wearables, tablets, and a wide range of other portable devices. The chip includes a 2.4 GHz WLAN IEEE 802.11 b/g/n  
MAC/baseband/radio, Bluetooth 4.1 support, and an FM receiver. In addition, it integrates a power amplifier (PA) that meets the out-  
put power requirements of most handheld systems, a low-noise amplifier (LNA) for best-in-class receiver sensitivity, and an internal  
transmit/receive (iTR) RF switch, further reducing the overall solution cost and printed circuit board area.  
The WLAN host interface supports gSPI and SDIO v2.0 modes, providing a raw data transfer rate up to 200 Mbps when operating in  
4-bit mode at a 50 MHz bus frequency. An independent, high-speed UART is provided for the Bluetooth/FM host interface.Using  
advanced design techniques and process technology to reduce active and idle power, the CYW4343X is designed to address the  
needs of highly mobile devices that require minimal power consumption and compact size. It includes a power management unit that  
simplifies the system power topology and allows for operation directly from a rechargeable mobile platform battery while maximizing  
battery life.  
The CYW4343X implements the world’s most advanced Enhanced Collaborative Coexistence algorithms and hardware mecha-  
nisms, allowing for an extremely collaborative WLAN and Bluetooth coexistence.  
Figure 1. CYW4343X System Block Diagram  
VDDIO VBAT  
WL_REG_ON  
WLAN  
WL_IRQ  
Host I/F  
SDIO*/SPI  
2.4 GHz WLAN +  
CLK_REQ  
Bluetooth TX/RX  
BPF  
CYW4343X  
BT_REG_ON  
PCM  
Bluetooth  
Host I/F  
BT_DEV_WAKE  
BT_HOST_WAKE  
FM  
RX  
UART  
I2S  
FM RX  
Host I/F  
Stereo Analog Out  
Cypress Semiconductor Corporation  
Document No. 002-14797 Rev. *H  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised October 19, 2016  
CYW4343X  
Figure 2. CYW4343X System Block Diagram  
VDDIO  
VBAT  
WL_REG_ON  
WLAN  
Host I/F  
WL_IRQ  
SDIO*/SPI  
2.4 GHz WLAN +  
Bluetooth TX/RX  
CLK_REQ  
BT_REG_ON  
PCM  
BPF  
CYW4343X  
Bluetooth  
Host I/F  
BT_DEV_WAKE  
BT_HOST_WAKE  
FM  
RX  
UART  
FM RX  
Host I/F  
Stereo Analog Out  
Document No. 002-14797 Rev. *H  
Page 2 of 128  
CYW4343X  
Features  
IEEE 802.11x Key Features  
Single-band 2.4 GHz IEEE 802.11b/g/n.  
Integrated ARM Cortex-M3 processor and on-chip  
memory for complete WLAN subsystem functionality,  
minimizing the need to wake up the applications pro-  
cessor for standard WLAN functions. This allows for  
further minimization of power consumption, while  
maintaining the ability to field-upgrade with future fea-  
tures. On-chip memory includes 512 KB SRAM and  
640 KB ROM.  
Support for 2.4 GHz Cypress TurboQAM® data rates  
(256-QAM) and 20 MHz channel bandwidth.  
Integrated iTR switch supports a single 2.4 GHz  
antenna shared between WLAN and Bluetooth.  
Supports explicit IEEE 802.11n transmit beamforming  
Tx and Rx Low-density Parity Check (LDPC) support  
for improved range and power efficiency.  
OneDriver™ software architecture for easy migration  
from existing embedded WLAN and Bluetooth devices  
as well as to future devices.  
Supports standard SDIO v2.0 and gSPI host inter-  
faces.  
Supports Space-Time Block Coding (STBC) in the  
receiver.  
Bluetooth and FM Key Features  
Complies with Bluetooth Core Specification Version  
4.1 with provisions for supporting future specifications.  
FM receiver unit supports HCI for communication.  
Low-power consumption improves battery life of hand-  
held devices.  
Bluetooth Class 1 or Class 2 transmitter operation.  
Supports extended Synchronous Connections  
(eSCO), for enhanced voice quality by allowing for  
retransmission of dropped packets.  
FM receiver: 65 MHz to 108 MHz FM bands; supports  
the European Radio Data Systems (RDS) and the  
North American Radio Broadcast Data System  
(RBDS) standards.  
Adaptive Frequency Hopping (AFH) for reducing radio  
frequency interference.  
Supports multiple simultaneous Advanced Audio Dis-  
tribution Profiles (A2DP) for stereo sound.  
Interface support — Host Controller Interface (HCI)  
using a high-speed UART interface and PCM for audio  
data.Bluetooth and FM Key Features (Continued)  
Automatic frequency detection for standard crystal and  
TCXO values.  
General Features  
Supports a battery voltage range from 3.0V to 4.8V  
with an internal switching regulator.  
AES in WLAN hardware for faster data encryption  
and IEEE 802.11i compatibility.  
Programmable dynamic power management.  
Reference WLAN subsystem provides Cisco Com-  
patible Extensions (CCX, CCX 2.0, CCX 3.0, CCX  
4.0, CCX 5.0).  
4 Kbit One-Time Programmable (OTP) memory for  
storing board parameters.  
Reference WLAN subsystem provides Wi–Fi Pro-  
tected Setup (WPS).  
Can be routed on low-cost 1 x 1 PCB stack-ups.  
74-ball[4343W+43CS4343W1]74-ball 63-ball WLBGA  
package (4.87 mm × 2.87 mm, 0.4 mm pitch).  
Worldwide regulatory support: Global products sup-  
ported with worldwide homologated design.  
153-bump WLCSP package (115 μm bump diameter,  
180 μm bump pitch).  
Multimode wireless charging support that complies  
with the Alliance for Wireless Power (A4WP), the  
Wireless Power Consortium (WPC), and the Power  
Matters Alliance (PMA).  
Security:  
WPA and WPA2 (Personal) support for powerful  
encryption and authentication.  
Document No. 002-14797 Rev. *H  
Page 3 of 128  
CYW4343X  
Introduction  
This document provides details of the functional, operational, and electrical characteristics of the Cypress CYW4343X. It is intended  
for hardware design, application, and OEM engineers.  
Cypress part numbering scheme  
Cypress is converting the acquired IoT part numbers from Broadcom to the Cypress part numbering scheme. Due to this conversion,  
there is no change in form, fit, or function as a result of offering the device with Cypress part number marking. The table provides  
Cypress ordering part number that matches an existing IoT part number.  
Table 1. Mapping Table for Part Number between Broadcom and Cypress  
Broadcom Part Number  
Cypress Part Number  
BCM4343SKUBG  
BCM4343WKUBG  
BCM4343WKWBG  
BCM4343W1KUBG  
CYW4343SKUBG  
CYW4343WKUBG  
CYW4343WKWBG  
CYW4343W1KUBG  
IoT Resources  
Cypress provides a wealth of data at http://www.cypress.com/internet-things-iot to help you to select the right IoT device for your  
design, and quickly and effectively integrate the device into your design. Cypress provides customer access to a wide range of infor-  
mation, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software  
updates. Customers can acquire technical documentation and software from the Cypress Support Community website (http://com-  
munity.cypress.com/).  
Document No. 002-14797 Rev. *H  
Page 4 of 128  
CYW4343X  
Contents  
1. Overview............................................................ 7  
1.1 Overview ............................................................. 7  
1.2 Features .............................................................. 9  
1.3 Standards Compliance ........................................ 9  
7. Bluetooth + FM Subsystem Overview........... 40  
7.1 Features .............................................................40  
7.2 Bluetooth Radio ..................................................41  
7.2.1 Transmit ..................................................41  
7.2.2 Digital Modulator .....................................41  
7.2.3 Digital Demodulator and Bit  
2. Power Supplies and Power Management..... 11  
2.1 Power Supply Topology .................................... 11  
2.2 CYW4343X PMU Features ............................... 11  
2.3 WLAN Power Management ............................... 18  
2.4 PMU Sequencing .............................................. 18  
2.5 Power-Off Shutdown ......................................... 19  
2.6 Power-Up/Power-Down/Reset Circuits ............. 19  
2.7 Wireless Charging ............................................. 19  
Synchronizer ...........................................41  
7.2.4 Power Amplifier ......................................42  
7.2.5 Receiver .................................................42  
7.2.6 Digital Demodulator and Bit  
Synchronizer ...........................................42  
7.2.7 Receiver Signal Strength Indicator .........42  
7.2.8 Local Oscillator Generation ....................42  
7.2.9 Calibration ..............................................42  
8. Bluetooth Baseband Core.............................. 43  
8.1 Bluetooth 4.1 Features .......................................43  
8.2 Link Control Layer ..............................................43  
8.3 Test Mode Support .............................................43  
3. Frequency References ................................... 22  
3.1 Crystal Interface and Clock Generation ............ 22  
3.2 TCXO ................................................................ 22  
3.3 External 32.768 kHz Low-Power Oscillator ....... 23  
8.4 Bluetooth Power Management Unit ...................44  
8.4.1 RF Power Management ..........................44  
8.4.2 Host Controller Power Management ......44  
4. WLAN System Interfaces ............................... 25  
4.1 SDIO v2.0 .......................................................... 25  
4.1.1 SDIO Pin Descriptions ........................... 25  
8.5 BBC Power Management ...................................45  
8.5.1 FM Power Management .........................46  
8.5.2 Wideband Speech ..................................46  
4.2 Generic SPI Mode ............................................. 26  
4.3 SPI Protocol ...................................................... 27  
4.3.1 Command Structure .............................. 28  
4.3.1.1.Write ......................................................... 29  
4.3.1.2.Write/Read ............................................... 29  
4.3.1.3.Read ........................................................ 29  
4.3.2 Status .................................................... 29  
8.6 Packet Loss Concealment .................................46  
8.6.1 Codec Encoding .....................................47  
8.6.2 Multiple Simultaneous A2DP  
Audio Streams ........................................47  
8.6.3 FM Over Bluetooth .................................47  
8.7 Adaptive Frequency Hopping .............................47  
8.8 Advanced Bluetooth/WLAN Coexistence ...........47  
4.4 gSPI Host-Device Handshake ........................... 31  
4.4.1 Boot-Up Sequence ................................ 32  
8.9 Fast Connection (Interlaced Page and  
5. Wireless LAN MAC and PHY.......................... 35  
Inquiry Scans) ....................................................47  
5.1 MAC Features ................................................... 35  
5.1.1 MAC Description .................................... 35  
5.1.1.1.PSM ......................................................... 36  
5.1.1.2.WEP ......................................................... 36  
5.1.1.3.TXE .......................................................... 36  
5.1.1.4.RXE .......................................................... 36  
5.1.1.5.IFS ........................................................... 37  
5.1.1.6.TSF .......................................................... 37  
5.1.1.7.NAV .......................................................... 37  
5.1.1.8.MAC-PHY Interface ................................. 37  
9. Microprocessor and Memory Unit for Bluetooth  
48  
9.1 RAM, ROM, and Patch Memory .........................48  
9.2 Reset ..................................................................48  
10.Bluetooth Peripheral Transport Unit............. 48  
10.1 PCM Interface ....................................................48  
10.1.1 Slot Mapping ...........................................48  
10.1.2 Frame Synchronization ...........................48  
10.1.3 Data Formatting ......................................48  
10.1.4 Wideband Speech Support .....................49  
10.1.5 Multiplexed Bluetooth and FM  
5.2 PHY Description ................................................ 37  
5.2.1 PHY Features ........................................ 37  
6. WLAN Radio Subsystem................................ 39  
6.1 Receive Path ..................................................... 39  
6.2 Transmit Path .................................................... 40  
6.3 Calibration ......................................................... 40  
over PCM ................................................49  
10.1.6 PCM Interface Timing .............................50  
10.1.6.1.Short Frame Sync, Master Mode ............50  
10.1.6.2.Short Frame Sync, Slave Mode ..............51  
10.1.6.3.Long Frame Sync, Master Mode .............52  
Document No. 002-14797 Rev. *H  
Page 5 of 128  
CYW4343X  
10.1.6.4.Long Frame Sync, Slave Mode .............. 53  
10.2 UART Interface ................................................. 53  
15.DC Characteristics.......................................... 91  
15.1 Absolute Maximum Ratings ...............................91  
15.2 Environmental Ratings .......................................91  
15.3 Electrostatic Discharge Specifications ...............91  
10.3 I2S Interface ...................................................... 55  
10.3.1 I2S Timing .............................................. 55  
11.FM Receiver Subsystem................................. 57  
11.1 FM Radio ........................................................... 57  
11.2 Digital FM Audio Interfaces ............................... 57  
11.3 Analog FM Audio Interfaces .............................. 57  
11.4 FM Over Bluetooth ............................................ 57  
11.5 eSCO ................................................................ 57  
11.6 Wideband Speech Link ..................................... 57  
11.7 A2DP ................................................................. 58  
11.8 Autotune and Search Algorithms ...................... 58  
11.9 Audio Features .................................................. 58  
11.10RDS/RBDS ....................................................... 60  
15.4 Recommended Operating Conditions and  
DC Characteristics .............................................92  
16.WLAN RF Specifications................................ 93  
16.1 2.4 GHz Band General RF Specifications ..........93  
16.2 WLAN 2.4 GHz Receiver Performance  
Specifications .....................................................93  
16.3 WLAN 2.4 GHz Transmitter Performance  
Specifications .....................................................96  
16.4 General Spurious Emissions Specifications .......97  
17.Bluetooth RF Specifications.......................... 98  
18.FM Receiver Specifications ......................... 104  
12.CPU and Global Functions............................. 61  
12.1 WLAN CPU and Memory Subsystem ............... 61  
12.2 One-Time Programmable Memory .................... 61  
12.3 GPIO Interface .................................................. 61  
19.Internal Regulator Electrical  
Specifications ............................................... 108  
19.1 Core Buck Switching Regulator .......................108  
19.2 3.3V LDO (LDO3P3) ........................................108  
19.3 CLDO ...............................................................109  
19.4 LNLDO .............................................................110  
12.4 External Coexistence Interface ......................... 61  
12.4.1 2-Wire Coexistence ............................... 61  
12.4.2 3-Wire and 4-Wire Coexistence  
20.System Power Consumption....................... 111  
Interfaces ............................................... 62  
12.5 JTAG Interface ................................................. 63  
12.6 UART Interface ................................................ 63  
20.1 WLAN Current Consumption ............................111  
20.1.1 2.4 GHz Mode ......................................111  
20.2 Bluetooth and FM Current Consumption ..........112  
13.WLAN Software Architecture......................... 64  
13.1 Host Software Architecture ............................... 64  
13.2 Device Software Architecture ............................ 64  
13.3 Remote Downloader ......................................... 64  
13.4 Wireless Configuration Utility ............................ 64  
21.Interface Timing and AC Characteristics ... 113  
21.1 SDIO Default Mode Timing ..............................113  
21.2 SDIO High-Speed Mode Timing .......................114  
21.3 gSPI Signal Timing ...........................................115  
21.4 JTAG Timing ....................................................116  
14.Pinout and Signal Descriptions..................... 65  
22.Power-Up Sequence and Timing................. 117  
14.1 Ball Map ............................................................ 65  
22.1 Sequencing of Reset and Regulator  
14.2 WLBGA Ball List in Ball Number Order with  
X-Y Coordinates ................................................ 67  
Control Signals .................................................117  
22.1.1 Description of Control Signals ..............117  
22.1.2 Control Signal Timing Diagrams ...........117  
14.3 WLBGA Ball List in Ball Number Order with  
X-Y Coordinates ................................................ 70  
23.Package Information .................................... 119  
14.4 WLCSP Bump List in Bump Order with  
X-Y Coordinates ................................................ 71  
23.1 Package Thermal Characteristics ....................119  
23.1.1 Junction Temperature Estimation and  
PSI Versus Thetajc ......................................... 119  
14.5 WLBGA Ball List Ordered By Ball Name ........... 76  
14.6 WLBGA Ball List Ordered By Ball Name ........... 77  
14.7 WLCSP Bump List Ordered By Name .............. 78  
14.8 Signal Descriptions ........................................... 80  
14.9 WLAN GPIO Signals and Strapping Options .... 87  
14.10Chip Debug Options ......................................... 87  
14.11I/O States .......................................................... 88  
24.Mechanical Information................................ 120  
25.Ordering Information.................................... 126  
Document History Page............................................... 127  
Sales, Solutions, and Legal Information .................... 128  
Document No. 002-14797 Rev. *H  
Page 6 of 128  
CYW4343X  
1. Overview  
1.1 Overview  
The Cypress CYW4343X provides the highest level of integration for a mobile or handheld wireless system, with integrated IEEE 802.11 b/g/n. It provides a small form-factor  
solution with minimal external components to drive down cost for mass volumes and allows for handheld device flexibility in size, form, and function. The CYW4343X is  
designed to address the needs of highly mobile devices that require minimal power consumption and reliable operation.  
Figure 3 on page 7 Figure 4 on page 8 Figure 3 on page 7 shows the interconnection of all the major physical blocks in the CYW4343X and their associated external inter-  
faces, which are described in greater detail in subsequent sections.  
Figure 3. CYW4343X Block Diagram  
C ortex  
D ebug  
M 3  
AH B  
FM RX  
FM RF  
FM D igital  
AH B to APB  
Bridge  
A D C  
A D C  
FM  
I/F  
RAM  
RO M  
FM D em od.  
M D X RDS  
D ecode  
LN A  
APB  
FM _RX  
Patch  
InterCtrl  
D M A  
W D Tim er  
SW Tim er  
Control  
LO  
G en.  
RSSI  
D PLL  
Bus Arb  
ARM IP  
G PIO  
Ctrl  
JTAG supported over SD IO or BT PC M  
SD IO or gSPI  
SW REG  
LD O x2  
LPO  
XTAL O SC.  
PO R  
Pow er  
Supply  
Sleep C LK  
XTAL  
BPL  
U ART  
PM U  
Control  
Buffer  
SD IO  
gSPI  
M odem  
D igital  
D em od.  
RF  
PA  
APU  
W L_REG _O N  
D ebug  
U ART  
BT C lock/  
H opper  
&
Bit  
Sync  
ARM  
C M 3  
W DT  
O TP  
D igital  
I/O  
BlueRF  
Interface  
I2S/PC M  
D igital  
M od.  
G PIO  
U ART  
JTAG *  
G PIO  
U ART  
LCU  
RAM  
Supported over SDIO or BT PCM  
RX/TX  
Buffer  
RO M  
G PIO  
IF  
PLL  
BT PH Y  
BTW LAN  
ECI  
W ake/  
BTFM Clock Control  
C lock  
2.4 G Hz  
PA  
SleepCtrl  
Sleep‐  
tim e  
Keeping  
PM U  
Ctrl  
PM U  
M anagem ent  
Shared LN A  
BPF  
W iM ax  
Coex.  
XO  
Buffer  
LPO  
PO R  
W LAN  
PTU  
* Via G PIO configuration , JTAG is supported over SDIO or BT PCM  
Document No. 002-14797 Rev. *H  
Page 7 of 128  
CYW4343X  
Figure 4. CYW4343X Block Diagram  
Cortex  
M3  
Debug  
AHB  
FM RX  
FM RF  
FM Digital  
AHB to APB  
FM  
ADC  
ADC  
Bridge  
RAM  
ROM  
FM Demod.  
MDX RDS  
Decode  
I/F  
LNA  
APB  
FM_RX  
Patch  
InterCtrl  
DMA  
WD Timer  
SW Timer  
Control  
LO  
Gen.  
RSSI  
DPLL  
Bus Arb  
ARM IP  
GPIO  
Ctrl  
JTAG supported over SDIO or BT PCM  
SDIO or gSPI  
SWREG  
LDOx2  
LPO  
XTAL OSC.  
POR  
Power  
Supply  
Sleep CLK  
XTAL  
BPL  
UART  
PMU  
Control  
Buffer  
SDIO  
gSPI  
Modem  
RF  
PA  
Digital  
Demod.  
& Bit  
APU  
WL_REG_ON  
Debug  
UART  
BT Clock/  
Hopper  
Sync  
ARM  
CM3  
WDT  
OTP  
Digital  
I/O  
BlueRF  
Interface  
Digital  
Mod.  
PCM  
GPIO  
UART  
JTAG*  
GPIO  
UART  
LCU  
RAM  
Supported over SDIO or BT PCM  
RX/TX  
Buffer  
ROM  
GPIO  
IF  
PLL  
BT PHY  
BTWLAN  
ECI  
Wake/  
Sleep Ctrl  
BTFM Clock Control  
Clock  
2.4 GHz  
PA  
Sleep‐  
time  
Keeping  
PMU  
Ctrl  
PMU  
Management  
Shared LNA  
BPF  
WiMax  
Coex.  
XO  
Buffer  
LPO  
POR  
WLAN  
PTU  
* Via GPIO configuration, JTAG is supported over SDIO or BT PCM  
Document No. 002-14797 Rev. *H  
Page 8 of 128  
CYW4343X  
1.2 Features  
The CYW4343X supports the following WLAN, Bluetooth, and FM features:  
IEEE 802.11b/g/n single-band radio with an internal power amplifier, LNA, and T/R switch  
Bluetooth v4.1 with integrated Class 1 PA  
Concurrent Bluetooth, FM (RX) RDS/RBDS, and WLAN operation  
On-chip WLAN driver execution capable of supporting IEEE 802.11 functionality  
Simultaneous BT/WLAN reception with a single antenna  
WLAN host interface options:  
SDIO v2.0, including default and high-speed timing.  
gSPI—up to a 50 MHz clock rate  
BT UART (up to 4 Mbps) host digital interface that can be used concurrently with the above WLAN host interfaces.  
ECI—enhanced coexistence support, which coordinates BT SCO transmissions around WLAN receptions.  
I2S/PCM for FM/BT audio, HCI for FM block control  
HCI high-speed UART (H4 and H5) transport support  
Wideband speech support (16 bits, 16 kHz sampling PCM, through I2S and PCM interfaces)  
Bluetooth SmartAudio® technology improves voice and music quality to headsets.  
Bluetooth low power inquiry and page scan  
Bluetooth Low Energy (BLE) support  
Bluetooth Packet Loss Concealment (PLC)  
FM advanced internal antenna support  
FM auto searching/tuning functions  
FM multiple audio routing options: I2S, PCM, eSCO, and A2DP  
FM mono-stereo blending and switching, and soft mute support  
FM audio pause detection support  
Multiple simultaneous A2DP audio streams  
FM over Bluetooth operation and on-chip stereo headset emulation  
1.3 Standards Compliance  
The CYW4343X supports the following standards:  
Bluetooth 2.1 + EDR  
Bluetooth 3.0  
Bluetooth 4.1 (Bluetooth Low Energy)  
65 MHz to 108 MHz FM bands (US, Europe, and Japan)  
IEEE 802.11n—Handheld Device Class (Section 11)  
IEEE 802.11b  
IEEE 802.11g  
IEEE 802.11d  
IEEE 802.11h  
IEEE 802.11i  
The CYW4343X will support the following future drafts/standards:  
IEEE 802.11r — Fast Roaming (between APs)  
IEEE 802.11k — Resource Management  
IEEE 802.11w — Secure Management Frames  
IEEE 802.11 Extensions:  
IEEE 802.11e QoS Enhancements (as per the WMM® specification is already supported)  
IEEE 802.11i MAC Enhancements  
IEEE 802.11r Fast Roaming Support  
IEEE 802.11k Radio Resource Measurement  
Document No. 002-14797 Rev. *H  
Page 9 of 128  
CYW4343X  
The CYW4343X supports the following security features and proprietary protocols:  
Security:  
WEP  
WPAPersonal  
WPA2Personal  
WMM  
WMM-PS (U-APSD)  
WMM-SA  
WAPI  
AES (Hardware Accelerator)  
TKIP (host-computed)  
CKIP (SW Support)  
Proprietary Protocols:  
CCXv2  
CCXv3  
CCXv4  
CCXv5  
IEEE 802.15.2 Coexistence Compliance — on silicon solution compliant with IEEE 3-wire requirements.  
Document No. 002-14797 Rev. *H  
Page 10 of 128  
CYW4343X  
2. Power Supplies and Power Management  
2.1 Power Supply Topology  
One Buck regulator, multiple LDO regulators, and a power management unit (PMU) are integrated into the CYW4343X. All regula-  
tors are programmable via the PMU. These blocks simplify power supply design for Bluetooth, WLAN, and FM functions in embed-  
ded designs.  
A single VBAT (3.0V to 4.8V DC maximum) and VDDIO supply (1.8V to 3.3V) can be used, with all additional voltages being pro-  
vided by the regulators in the CYW4343X.  
Two control signals, BT_REG_ON and WL_REG_ON, are used to power up the regulators and take the respective circuit blocks out  
of reset. The CBUCK CLDO and LNLDO power up when any of the reset signals are deasserted. All regulators are powered down  
only when both BT_REG_ON and WL_REG_ON are deasserted. The CLDO and LNLDO can be turned on and off based on the  
dynamic demands of the digital baseband.  
The CYW4343X allows for an extremely low power-consumption mode by completely shutting down the CBUCK, CLDO, and  
LNLDO regulators. When in this state, LPLDO1 provides the CYW4343X with all required voltage, further reducing leakage currents.  
Note: VBAT should be connected to the LDO_VDDBAT5V and SR_VDDBAT5V pins of the device.  
Note: VDDIO should be connected to the SYS_VDDIO and WCC_VDDIO pins WCC_VDDIO pin of the device.  
2.2 CYW4343X PMU Features  
The PMU supports the following:  
VBAT to 1.35Vout (170 mA nominal, 370 mA maximum) Core-Buck (CBUCK) switching regulator  
VBAT to 3.3Vout (250 mA nominal, 450 mA maximum 800 mA peak maximum) LDO3P3  
1.35V to 1.2Vout (100 mA nominal, 150 mA maximum) LNLDO  
1.35V to 1.2Vout (80 mA nominal, 200 mA maximum) CLDO with bypass mode for deep sleep  
Additional internal LDOs (not externally accessible)  
PMU internal timer auto-calibration by the crystal clock for precise wake-up timing from extremely low power-consumption  
mode.  
PMU input supplies automatic sensing and fast switching to support A4WP operations.  
Figure 5 on page 12 Figure 6 on page 13 Figure 7 on page 14 and Figure 8 on page 15Figure 9 on page 16 Figure 10 on page 17  
show the typical power topology of the CYW4343X.  
Document No. 002-14797 Rev. *H  
Page 11 of 128  
CYW4343X  
Figure 5. Typical Power Topology (1 of 2)(4343S)  
SR_VDDBAT5V  
WL RF—TX Mixer and PA  
(not all versions)  
VBAT  
Mini PMU  
CYW4343S_WPT  
1.2V  
Internal VCOLDO  
1.2V  
WL RF—LOGEN  
WL RF—RX LNA  
WL RF—ADC REF  
WL RF—TX  
80 mA (NMOS)  
Internal RXLDO  
1.2V  
10 mA (NMOS)  
VBAT:  
Operational:  
Performance:  
2.4—4.8V  
3.0—4.8V  
VDD1P35  
Internal ADCLDO  
1.2V  
10 mA (NMOS)  
Absolute Maximum: 5.5V  
Internal TXLDO  
VDDIO  
Operational:  
1.2V  
1.2V  
80 mA (PMOS)  
1.8—3.3V  
1.35V  
Internal AFELDO  
80 mA (NMOS)  
WL RF—AFE and TIA  
Core Buck  
Regulator  
10 mA average,  
> 10 mA at startup  
WL RF—RFPLL PFD and MMD  
SR_VLX  
Mini PMU is placed  
in WL radio  
Int_SR_VBAT  
Peak: 370 mA  
WLRF_XTAL_  
VDD1P2  
Avg: 170 mA  
2.2 uH  
(320 mA)  
SW1  
600 @  
100 MHz  
0603  
WL RF—XTAL  
1.2V  
LDO_VDD_1P5  
LNLDO  
SR_VBAT5V  
FM_RFVDD  
FM_RFPLL  
(100 mA)  
VBAT  
GND  
FM LNA, Mixer  
4.7 uF  
0402  
VOUT_LNLDO  
0.1 uF  
0201  
SR_PVSS  
2.2 uF  
0402  
4.6 mA  
PMU_VSS  
FM PLL, LOGEN, Audio DAC  
WCC_VDDIO  
SYS_VDDIO  
WCC_VDDIO  
LPLDO1  
(5 mA)  
1.1V  
1.3V  
(40 mA)  
VSEL1  
WLAN/BT/CLB/Top, Always On  
WL OTP  
SYS_VDDIO  
WPT_1P8  
VDDC1  
VDDC2  
(40 mA)  
(40 mA)  
WPT_1P8  
1.3V, 1.2V,  
or 0.95V  
(AVS)  
CL LDO  
Peak: 200 mA  
Avg: 80 mA  
(Bypass in deep‐  
sleep)  
o_wpt_resetb  
WPTLDO  
(40 mA)  
2.2 uF  
0402  
VOUT_CLDO  
WL Digital and PHY  
WL_REG_ON  
BT_REG_ON  
o_wl_resetb  
o_bt_resetb  
WL VDDM (SROMs & AOS)  
Power switch  
No power switch  
Supply ball  
Ground ball  
Supply bump/pad  
Ground bump/pad  
External to chip  
BT VDDM  
BT Digital  
No dedicated power switch, but internal power  
down modes and blockspecific power switches  
BT/WLAN reset  
balls  
Document No. 002-14797 Rev. *H  
Page 12 of 128  
CYW4343X  
Figure 6. Typical Power Topology (1 of 2)(4343W+43CS4343W1)  
SR_VDDBAT5V  
VBAT  
WL RF—TX Mixer and PA  
(not all versions)  
CYW4343X  
Mini PMU  
Internal VCOLDO  
1.2V  
1.2V  
WL RF—LOGEN  
WL RF—RX LNA  
WL RF—ADC REF  
WL RF—TX  
80 mA (NMOS)  
Internal RXLDO  
1.2V  
VBAT:  
10 mA (NMOS)  
Operational:  
Performance:  
2.4—4.8V  
3.0—4.8V  
VDD1P35  
Internal ADCLDO  
1.2V  
10 mA (NMOS)  
Absolute Maximum: 5.5V  
VDDIO  
Operational:  
Internal TXLDO  
1.2V  
1.8—3.3V  
80 mA (PMOS)  
1.35V  
Internal AFELDO  
1.2V  
WL RF—AFE and TIA  
80 mA (NMOS)  
Core Buck  
Regulator  
10 mA average,  
> 10 mA at startup  
WL RF—RFPLL PFD and MMD  
SR_VLX  
Mini PMU is placed  
in WL radio  
Int_SR_VBAT  
Peak: 370 mA  
WLRF_XTAL_  
VDD1P2  
Avg: 170 mA  
2.2 uH  
0603  
(320 mA)  
SW1  
600 @  
100 MHz  
WL RF—XTAL  
1.2V  
LDO_VDD_1P5  
LNLDO  
SR_VBAT5V  
FM_RFVDD  
FM_RFPLL  
(100 mA)  
VBAT  
GND  
FM LNA, Mixer  
4.7 uF  
0402  
VOUT_LNLDO  
0.1 uF  
0201  
SR_PVSS  
2.2 uF  
0402  
4.6 mA  
PMU_VSS  
FM PLL, LOGEN, Audio DAC  
WCC_VDDIO  
SYS_VDDIO  
WCC_VDDIO  
LPLDO1  
(5 mA)  
1.1V  
1.3V  
(40 mA)  
VSEL1  
WLAN/BT/CLB/Top, Always On  
WL OTP  
SYS_VDDIO  
WPT_1P8  
VDDC1  
VDDC2  
(40 mA)  
(40 mA)  
WPT_1P8  
1.3V, 1.2V,  
or 0.95V  
(AVS)  
CL LDO  
Peak: 200 mA  
Avg: 80 mA  
(Bypass in deep‐  
sleep)  
o_wpt_resetb  
WPTLDO  
(40 mA)  
2.2 uF  
0402  
VOUT_CLDO  
WL Digital and PHY  
WL_REG_ON  
BT_REG_ON  
o_wl_resetb  
o_bt_resetb  
WL VDDM (SROMs & AOS)  
Power switch  
No power switch  
Supply ball  
Ground ball  
Supply bump/pad  
Ground bump/pad  
External to chip  
BT VDDM  
BT Digital  
No dedicated power switch, but internal power‐  
down modes and blockspecific power switches  
BT/WLAN reset  
balls  
Document No. 002-14797 Rev. *H  
Page 13 of 128  
CYW4343X  
Figure 7. Typical Power Topology (1 of 2)  
SR_VDDBAT5V  
WL RF—TX Mixer and PA  
(not all versions)  
VBAT  
Mini PMU  
CYW4343X  
1.2V  
Internal VCOLDO  
1.2V  
1.2V  
1.2V  
WL RF—LOGEN  
WL RF—RX LNA  
WL RF—ADC REF  
WL RF—TX  
80 mA (NMOS)  
Internal RXLDO  
10 mA (NMOS)  
VBAT:  
Operational:  
Performance:  
2.4—4.8V  
3.0—4.8V  
VDD1P35  
Internal ADCLDO  
10 mA (NMOS)  
Absolute Maximum: 5.5V  
VDDIO  
Operational:  
Internal TXLDO  
80 mA (PMOS)  
1.2V  
1.2V  
1.8—3.3V  
1.35V  
Internal AFELDO  
80 mA (NMOS)  
WL RF—AFE and TIA  
Core Buck  
Regulator  
10 mA average,  
> 10 mA at startup  
WL RF—RFPLL PFD and MMD  
SR_VLX  
Mini PMU is placed  
in WL radio  
Int_SR_VBAT  
Peak: 370 mA  
WLRF_XTAL_  
VDD1P2  
Avg: 170 mA  
2.2 uH  
(320 mA)  
SW1  
600 @  
100 MHz  
0603  
WL RF—XTAL  
1.2V  
LDO_VDD_1P5  
LNLDO  
SR_VBAT5V  
FM_RF_VDD  
4.6 mA  
6.4 mA  
(100 mA)  
VBAT  
GND  
FM LNA, Mixer, TIA, VCO  
4.7 uF  
0402  
VOUT_LNLDO  
0.1 uF  
0201  
SR_PVSS  
2.2 uF  
0402  
BTFM_PLL_VDD  
BT_VCO_VDD  
PMU_VSS  
FM PLL, LOGEN, Audio DAC/BT PLL  
BT LNA, Mixer, VCO  
BT_IF_VDD  
BT ADC, Filter  
WCC_VDDIO  
WCC_VDDIO  
LPLDO1  
(5 mA)  
1.1V  
(40 mA)  
WLAN/BT/CLB/Top, Always On  
WL OTP  
VDDC1  
VDDC2  
1.3V, 1.2V,  
or 0.95V  
(AVS)  
CL LDO  
Peak: 200 mA  
Avg: 80 mA  
(Bypass in deep‐  
sleep)  
2.2 uF  
0402  
VOUT_CLDO  
WL Digital and PHY  
WL_REG_ON  
BT_REG_ON  
o_wl_resetb  
o_bt_resetb  
WL VDDM (SROMs & AOS)  
Power switch  
No power switch  
Supply ball  
Ground ball  
Supply bump/pad  
Ground bump/pad  
External to chip  
BT VDDM  
BT Digital  
No dedicated power switch, but internal power‐  
down modes and blockspecific power switches  
BT/WLAN reset  
balls  
Document No. 002-14797 Rev. *H  
Page 14 of 128  
CYW4343X  
Figure 8. Typical Power Topology (2 of 2)(4343S)  
CYW4343S_WPT  
1.8V, 2.5V, and 3.3V  
6.4 mA  
WL BBPLL/DFLL  
WL OTP 3.3V  
LDO3P3 with  
BackPower  
VOUT_3P3  
WLRF_PA_VDD  
480 to 800 mA  
6.4 mA  
VBAT  
Protection  
WL RF—PA (2.4 GHz)  
LDO_  
VDDBAT5V  
1 uF  
0201  
4.7 uF  
0402  
(Peak 450800 mA  
200 mA Average) 3.3V  
2.5V Capless  
LNLDO  
WL RF—ADC, AFE, LOGEN,  
LNA, NMOS MiniPMU LDOs  
22  
ohm  
(10 mA)  
SW2  
Peak: 92 mA  
Average: 75 mA  
Resistance: 1 ohm  
Placed inside WL Radio  
WPT_3P3  
Peak: 70 mA  
Average: 15 mA  
BT_PAVDD  
BT Class 1 PA  
1 uF  
0201  
Power switch  
No power switch  
External to chip  
Supply ball  
No dedicated power switch, but internal power‐  
down modes and blockspecific power switches  
Document No. 002-14797 Rev. *H  
Page 15 of 128  
CYW4343X  
Figure 9. Typical Power Topology (2 of 2)(4343W+43CS4343W1)  
CYW4343X  
6.4 mA  
1.8V, 2.5V, and 3.3V  
WL BBPLL/DFLL  
WL OTP 3.3V  
LDO3P3 with  
BackPower  
VOUT_3P3  
WLRF_PA_VDD  
480 to 800 mA  
6.4 mA  
VBAT  
Protection  
WL RF—PA (2.4 GHz)  
LDO_  
VDDBAT5V  
1 uF  
0201  
4.7 uF  
0402  
(Peak 450800 mA  
200 mA Average) 3.3V  
2.5V Capless  
LNLDO  
WL RF—ADC, AFE, LOGEN,  
LNA, NMOS MiniPMU LDOs  
22  
ohm  
(10 mA)  
SW2  
Peak: 92 mA  
Average: 75 mA  
Resistance: 1 ohm  
Placed inside WL Radio  
WPT_3P3  
Peak: 70 mA  
BT_PAVDD  
Average: 15 mA  
BT Class 1 PA  
1 uF  
0201  
Power switch  
No power switch  
External to chip  
Supply ball  
No dedicated power switch, but internal power‐  
down modes and blockspecific power switches  
Document No. 002-14797 Rev. *H  
Page 16 of 128  
CYW4343X  
Figure 10. Typical Power Topology (2 of 2)  
CYW4343X  
1.8V, 2.5V, and 3.3V  
6.4 mA  
WL BBPLL/DFLL  
WL OTP 3.3V  
LDO3P3 with  
BackPower  
VOUT_3P3  
WLRF_PA_VDD  
480 to 800 mA  
6.4 mA  
VBAT  
Protection  
WL RF—PA (2.4 GHz)  
LDO_  
VDDBAT5V  
1 uF  
0201  
4.7 uF  
0402  
(Peak 450800 mA  
200 mA Average) 3.3V  
2.5V Capless  
WL RF—ADC, AFE, LOGEN,  
LNLDO  
LNA, NMOS MiniPMU LDOs  
22  
ohm  
(10 mA)  
Placed inside WL Radio  
Peak: 70 mA  
Average: 15 mA  
BT_PAVDD  
BT Class 1 PA  
1 uF  
0201  
Power switch  
External to chip  
Supply ball  
No power switch  
No dedicated power switch, but internal power‐  
down modes and blockspecific power switches  
Document No. 002-14797 Rev. *H  
Page 17 of 128  
CYW4343X  
2.3 WLAN Power Management  
The CYW4343X has been designed with the stringent power consumption requirements of mobile devices in mind. All areas of the  
chip design are optimized to minimize power consumption. Silicon processes and cell libraries were chosen to reduce leakage cur-  
rent and supply voltages. Additionally, the CYW4343X integrated RAM is a high volatile memory with dynamic clock control. The  
dominant supply current consumed by the RAM is leakage current only. Additionally, the CYW4343X includes an advanced WLAN  
power management unit (PMU) sequencer. The PMU sequencer provides significant power savings by putting the CYW4343X into  
various power management states appropriate to the operating environment and the activities that are being performed. The power  
management unit enables and disables internal regulators, switches, and other blocks based on a computation of the required  
resources and a table that describes the relationship between resources and the time needed to enable and disable them. Power-up  
sequences are fully programmable. Configurable, free-running counters (running at the 32.768 kHz LPO clock) in the PMU  
sequencer are used to turn on/turn off individual regulators and power switches. Clock speeds are dynamically changed (or gated  
altogether) for the current mode. Slower clock speeds are used wherever possible.  
The CYW4343X WLAN power states are described as follows:  
Active mode— All WLAN blocks in the CYW4343X are powered up and fully functional with active carrier sensing and  
frame transmission and receiving. All required regulators are enabled and put in the most efficient mode based on the load  
current. Clock speeds are dynamically adjusted by the PMU sequencer.  
Doze mode—The radio, analog domains, and most of the linear regulators are powered down. The rest of the CYW4343X  
remains powered up in an IDLE state. All main clocks (PLL, crystal oscillator) are shut down to reduce active power to the  
minimum. The 32.768 kHz LPO clock is available only for the PMU sequencer. This condition is necessary to allow the  
PMU sequencer to wake up the chip and transition to Active mode. In Doze mode, the primary power consumed is due to  
leakage current.  
Deep-sleep mode—Most of the chip, including analog and digital domains, and most of the regulators are powered off.  
Logic states in the digital core are saved and preserved to retention memory in the always-on domain before the digital core  
is powered off. To avoid lengthy hardware reinitialization, the logic states in the digital core are restored to their pre-deep-  
sleep settings when a wake-up event is triggered by an external interrupt, a host resume through the SDIO bus, or by the  
PMU timers.  
Power-down mode—The CYW4343X is effectively powered off by shutting down all internal regulators. The chip is brought  
out of this mode by external logic re-enabling the internal regulators.  
2.4 PMU Sequencing  
The PMU sequencer is used to minimize system power consumption. It enables and disables various system resources based on a  
computation of required resources and a table that describes the relationship between resources and the time required to enable  
and disable them.  
Resource requests can derive from several sources: clock requests from cores, the minimum resources defined in the ResourceMin  
register, and the resources requested by any active resource request timers. The PMU sequencer maps clock requests into a set of  
resources required to produce the requested clocks.  
Each resource is in one of the following four states:  
enabled  
disabled  
transition_on  
transition_off  
The timer value is 0 when the resource is enabled or disabled and nonzero during state transition. The timer is loaded with the  
time_on or time_off value of the resource when the PMU determines that the resource must be enabled or disabled. That timer dec-  
rements on each 32.768 kHz PMU clock. When it reaches 0, the state changes from transition_off to disabled or transition_on to  
enabled. If the time_on value is 0, the resource can transition immediately from disabled to enabled. Similarly, a time_off value of 0  
indicates that the resource can transition immediately from enabled to disabled. The terms enable sequence and disable sequence  
refer to either the immediate transition or the timer load-decrement sequence.  
During each clock cycle, the PMU sequencer performs the following actions:  
Computes the required resource set based on requests and the resource dependency table.  
Decrements all timers whose values are nonzero. If a timer reaches 0, the PMU clears the ResourcePending bit for the  
resource and inverts the ResourceState bit.  
Compares the request with the current resource status and determines which resources must be enabled or disabled.  
Initiates a disable sequence for each resource that is enabled, no longer being requested, and has no powered-up depen-  
dents.  
Document No. 002-14797 Rev. *H  
Page 18 of 128  
CYW4343X  
Initiates an enable sequence for each resource that is disabled, is being requested, and has all of its dependencies  
enabled.  
2.5 Power-Off Shutdown  
The CYW4343X provides a low-power shutdown feature that allows the device to be turned off while the host, and any other devices  
in the system, remain operational. When the CYW4343X is not needed in the system, VDDIO_RF and VDDC are shut down while  
VDDIO remains powered. This allows the CYW4343X to be effectively off while keeping the I/O pins powered so that they do not  
draw extra current from any other devices connected to the I/O.  
During a low-power shutdown state, provided VDDIO remains applied to the CYW4343X, all outputs are tristated, and most input  
signals are disabled. Input voltages must remain within the limits defined for normal operation. This is done to prevent current paths  
or create loading on any digital signals in the system, and enables the CYW4343X to be fully integrated in an embedded device and  
to take full advantage of the lowest power-savings modes.  
When the CYW4343X is powered on from this state, it is the same as a normal power-up, and the device does not retain any infor-  
mation about its state from before it was powered down.  
2.6 Power-Up/Power-Down/Reset Circuits  
The CYW4343X has two signals (see Table 2) that enable or disable the Bluetooth and WLAN circuits and the internal regulator  
blocks, allowing the host to control power consumption. For timing diagrams of these signals and the required power-up sequences,  
see Section 22.: “Power-Up Sequence and Timing,” on page 116.  
Table 2. Power-Up/Power-Down/Reset Control Signals  
Signal  
Description  
WL_REG_ON  
This signal is used by the PMU (with BT_REG_ON) to power-up the WLAN section. It is also OR-gated with the  
BT_REG_ON input to control the internal CYW4343X regulators. When this pin is high, the regulators are enabled and  
the WLAN section is out of reset. When this pin is low, the WLAN section is in reset. If BT_REG_ON and WL_REG_ON  
are both low, the regulators are disabled. This pin has an internal 200 kpull-down resistor that is enabled by default.  
It can be disabled through programming.  
BT_REG_ON  
This signal is used by the PMU (with WL_REG_ON) to decide whether or not to power down the internal CYW4343X  
regulators. If BT_REG_ON and WL_REG_ON are low, the regulators will be disabled. This pin has an internal 200 k  
pull-down resistor that is enabled by default. It can be disabled through programming.  
2.7 Wireless Charging  
The CYW4343X, when paired with a Broadcom BCM5935X wireless power transfer (WPT) front-end device, complies with the fol-  
lowing three wireless charging standards:  
Alliance for Wireless Power (A4WP)  
Wireless Power Consortium (WPC)  
Power Matters Alliance (PMA)  
To support the WPC and PMA standards, control-plane signaling is accomplished using in-band signaling between the BCM5935X  
WPT front-end device (located in the power receiving entity) and the power transmitting wireless charger.  
To support the A4WP standard, energy is transferred from a Power Transmitting Unit (PTU) to a Power Receiving Unit (PRU). The  
energy transferred charges the PRU battery. Bidirectional communication between the PTU and PRU is accomplished using Blue-  
tooth Low Energy (BLE), where the PTU is a BLE client and the PRU is a BLE server. Using a BLE link, the PRU sends performance  
data to the PTU so that it can adapt its power output to meet the needs of the PRU.  
The most common use for wireless charging is to charge a mobile device battery.  
Figure 11 shows a simple block diagram of a system that supports the A4WP standard.  
Document No. 002-14797 Rev. *H  
Page 19 of 128  
CYW4343X  
Figure 11. A4WP System Block Diagram  
BT  
Power Receiving Unit  
(PRU)  
A4WPCompatible Mobile Device  
BLE Server  
Bluetooth lowenergy (BLE) bidirectional  
communication enables the transmitter to  
adapt to mobile device system needs.  
Wireless Power Transfer at 6.78 MHz  
BT  
Power Transmitting Unit  
(PTU)  
aka Power Plate  
BLE Client  
Note: A single PTU can be used to charge multiple devices.  
Figure 12 shows an example of the magnetic coupling between a single PTU and one or more PRUs.  
Figure 12. Magnetic Coupling for Wireless Charging  
Power Transmitting  
Unit  
Power Receiving Unit(s)  
RX1  
TX  
RX2  
RX3  
Figure 13 shows an example A4WP-compliant wireless charging implementation.  
Document No. 002-14797 Rev. *H  
Page 20 of 128  
CYW4343X  
Figure 13. An Example Multimode Wireless Charging Implementation  
Motherboard  
BSC  
BSC  
WPC/PMA  
Coil  
USB  
External Charger  
PMU  
Host (AP)  
NTC  
Battery  
Charging  
WPT Front End (Power IC)  
VDDIO  
VBAT  
Load  
Control  
V1P8SYS  
VBAT  
A4WP  
Coil  
Bridge  
Voltage  
Rectifier  
WPT_3V3 (VBAT)  
VBAT  
SPDT  
Regulator  
3.3V  
LDO  
BT_REG_ON  
WL_REG_ON  
WPT_1V8 (VDDIO)  
1V8  
SPDT  
1.8V  
LDO  
Power  
Monitoring/  
Control  
BSC IF  
Slave  
SYS_VDDIO,  
WCC_VDDIO  
LDO_VDDBAT5V,  
SR_VDDBAT5V  
BCM5935X  
WPT_IRQ  
PMU  
WakeUp  
Internal  
Power  
POR  
WPT_IRQ  
BSC_CLK  
BSC_SDA  
OTP for A4WPT  
Parameters  
NFC_GPIO  
NFC IC  
CYW4343X  
BT_VDDIO Domain  
Figure 14 shows the signal interface between a CYW4343X and a CYW59350.  
Figure 14. CYW4343X Interface to a BCM59350  
BT_GPIO_3 (WPT_INTb)  
BCM59350  
Wireless  
Charging PMU  
BT_GPIO_4 (BSC_SDA)  
BT_GPIO_5 (BSC_SCL)  
CYW4343X  
Document No. 002-14797 Rev. *H  
Page 21 of 128  
CYW4343X  
3. Frequency References  
An external crystal is used for generating all radio frequencies and normal operation clocking. As an alternative, an external fre-  
quency reference driven by a temperature-compensated crystal oscillator (TCXO) signal may be used. No software settings are  
required to differentiate between the two. In addition, a low-power oscillator (LPO) is provided for lower power mode timing.  
3.1 Crystal Interface and Clock Generation  
The CYW4343X can use an external crystal to provide a frequency reference. The recommended configuration for the crystal oscil-  
lator, including all external components, is shown in Figure 15. Consult the reference schematics for the latest configuration.  
Figure 15. Recommended Oscillator Configuration  
C
WLRF_XTAL_XOP  
12 – 27 pF  
C
WLRF_XTAL_XON  
R
12 – 27 pF  
Note: Resistor value determined by crystal drive level.  
See reference schematics for details.  
The CYW4343X uses a fractional-N synthesizer to generate the radio frequencies, clocks, and data/packet timing so that it can  
operate using numerous frequency references. The frequency reference can be an external source such as a TCXO or a crystal  
interfaced directly to the CYW4343X.  
The default frequency reference setting is a 37.4 MHz crystal or TCXO. The signal requirements and characteristics for the crystal  
interface are shown in Table 3 on page 23.  
Note: Although the fractional-N synthesizer can support many reference frequencies, frequencies other than the default require  
support to be added in the driver, plus additional extensive system testing. Contact Broadcom for further details.  
3.2 TCXO  
As an alternative to a crystal, an external precision TCXO can be used as the frequency reference, provided that it meets the phase  
noise requirements listed in Table 3 on page 23.  
If the TCXO is dedicated to driving the CYW4343X, it should be connected to the WLRF_XTAL_XOP pin through an external capac-  
itor with value ranges from 200 pF to 1000 pF as shown in Figure 16.  
Document No. 002-14797 Rev. *H  
Page 22 of 128  
CYW4343X  
Figure 16. Recommended Circuit to Use with an External Dedicated TCXO  
200 pF – 1000 pF  
TCXO  
WLRF_XTAL_XOP  
WLRF_XTAL_XON  
NC  
Table 3. Crystal Oscillator and External Clock Requirements and Performance  
External Frequency  
Reference  
Crystal  
Min. Typ.  
Parameter  
Conditions/Notes  
Max.  
Min. Typ. Max.  
Units  
37.4a  
Frequency  
MHz  
Crystal load capacitance  
ESR  
12  
pF  
60  
Drive level  
External crystal must be able to tolerate 200  
this drive level.  
μW  
Input Impedance  
Resistive  
10k  
100k  
7
(WLRF_XTAL_XOP)  
Capacitive  
pF  
400b  
WLRF_XTAL_XOP input  
voltage  
AC-coupled analog signal  
1260  
mVp-p  
WLRF_XTAL_XOP input  
low level  
DC-coupled digital signal  
0
0.2  
V
WLRF_XTAL_XOP input  
high level  
DC-coupled digital signal  
1.0  
1.26  
20  
V
Frequency tolerance  
Initial + over temperature  
–20  
20  
–20  
ppm  
Duty cycle  
37.4 MHz clock  
40  
50  
60  
%
Phase Noisec, d, e  
(IEEE 802.11 b/g)  
37.4 MHz clock at 10 kHz offset  
37.4 MHz clock at 100 kHz offset  
37.4 MHz clock at 10 kHz offset  
37.4 MHz clock at 100 kHz offset  
37.4 MHz clock at 10 kHz offset  
37.4 MHz clock at 100 kHz offset  
–129  
–136  
–134  
–141  
–140  
–147  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Phase Noisec, d, e  
(IEEE 802.11n, 2.4 GHz)  
Phase Noisec, d, e  
(256-QAM)  
a. The frequency step size is approximately 80 Hz. The CYW4343X does not auto-detect the reference clock frequency; the frequency is specified  
in the software and/or NVRAM file.  
b. To use 256-QAM, a 800 mV minimum voltage is required.  
c. For a clock reference other than 37.4 MHz, 20 × log10(f/37.4) dB should be added to the limits, where f = the reference clock frequency in MHz.  
d. Phase noise is assumed flat above 100 kHz.  
e. The CYW4343X supports a 26 MHz reference clock sharing option. See the phase noise requirement in the table.  
3.3 External 32.768 kHz Low-Power Oscillator  
The CYW4343X uses a secondary low-frequency sleep clock for low-power mode timing. Either the internal low-precision LPO or an  
external 32.768 kHz precision oscillator is required. The internal LPO frequency range is approximately 33 kHz ± 30% over process,  
voltage, and temperature, which is adequate for some applications. However, one trade-off caused by this wide LPO tolerance is a  
small current consumption increase during power save mode that is incurred by the need to wake up earlier to avoid missing bea-  
cons.  
Document No. 002-14797 Rev. *H  
Page 23 of 128  
CYW4343X  
Whenever possible, the preferred approach is to use a precision external 32.768 kHz clock that meets the requirements listed in  
Table 4 on page 24.  
Note: The CYW4343X will auto-detect the LPO clock. If it senses a clock on the EXT_SLEEP_CLK pin, it will use that clock. If it  
doesn't sense a clock, it will use its own internal LPO.  
To use the internal LPO: Tie EXT_SLEEP_CLK to ground. Do not leave this pin floating.  
To use an external LPO: Connect the external 32.768 kHz clock to EXT_SLEEP_CLK.  
Table 4. External 32.768 kHz Sleep-Clock Specifications  
Parameter  
LPO Clock  
Units  
Nominal input frequency  
Frequency accuracy  
Duty cycle  
32.768  
±200  
kHz  
ppm  
%
30–70  
Input signal amplitude  
Signal type  
200–3300  
mV, p-p  
Square wave or sine wave  
Input impedancea  
>100  
<5  
kΩ  
pF  
Clock jitter  
a. When power is applied or switched off.  
<10,000  
ppm  
Document No. 002-14797 Rev. *H  
Page 24 of 128  
CYW4343X  
4. WLAN System Interfaces  
4.1 SDIO v2.0  
The CYW4343X WLAN section supports SDIO version 2.0. for both 1-bit (25 Mbps) and 4-bit modes (100 Mbps), as well as high  
speed 4-bit mode (50 MHz clocks—200 Mbps). It has the ability to map the interrupt signal on a GPIO pin. This out-of-band interrupt  
signal notifies the host when the WLAN device wants to turn on the SDIO interface. The ability to force control of the gated clocks  
from within the WLAN chip is also provided.  
SDIO mode is enabled using the strapping option pins. See Table 24 on page 86 for details.  
Three functions are supported:  
Function 0 standard SDIO function. The maximum block size is 32 bytes.  
Function 1 backplane function to access the internal System-on-a-Chip (SoC) address space. The maximum block size is  
64 bytes.  
Function 2 WLAN function for efficient WLAN packet transfer through DMA. The maximum block size is 512 bytes.  
4.1.1 SDIO Pin Descriptions  
Table 5. SDIO Pin Descriptions  
SD 1-Bit Mode  
SD 4-Bit Mode  
gSPI Mode  
DATA0  
DATA1  
DATA2  
DATA3  
CLK  
Data line 0  
DATA  
Data line  
Interrupt  
DO  
IRQ  
NC  
Data output  
Data line 1 or Interrupt  
Data line 2  
IRQ  
NC  
Interrupt  
Not used  
Card select  
Clock  
Not used  
Not used  
Clock  
Data line 3  
NC  
CS  
Clock  
CLK  
CMD  
SCLK  
DI  
CMD  
Command line  
Command line  
Data input  
Figure 17. Signal Connections to SDIO Host (SD 4-Bit Mode)  
CLK  
CMD  
CYW4343X  
SD Host  
DAT[3:0]  
Figure 18. Signal Connections to SDIO Host (SD 1-Bit Mode)  
CLK  
CMD  
CYW4343X  
SD Host  
DATA  
IRQ  
Document No. 002-14797 Rev. *H  
Page 25 of 128  
CYW4343X  
4.2 Generic SPI Mode  
In addition to the full SDIO mode, the CYW4343X includes the option of using the simplified generic SPI (gSPI) interface/protocol.  
Characteristics of the gSPI mode include:  
Up to 50 MHz operation  
Fixed delays for responses and data from the device  
Alignment to host gSPI frames (16 or 32 bits)  
Up to 2 KB frame size per transfer  
Little-endian and big-endian configurations  
A configurable active edge for shifting  
Packet transfer through DMA for WLAN  
gSPI mode is enabled using the strapping option pins. See Table 24 on page 86 for details.  
Figure 19. Signal Connections to SDIO Host (gSPI Mode)  
SCLK  
DI  
DO  
CYW4343X  
SD Host  
IRQ  
CS  
4.3 SPI Protocol  
The SPI protocol supports both 16-bit and 32-bit word operation. Byte endianess is supported in both modes. Figure 20 and  
Figure 21 on page 27 show the basic write and write/read commands.  
Document No. 002-14797 Rev. *H  
Page 26 of 128  
CYW4343X  
Figure 20. gSPI Write Protocol  
Figure 21. gSPI Read Protocol  
Document No. 002-14797 Rev. *H  
Page 27 of 128  
CYW4343X  
4.3.1 Command Structure  
The gSPI command structure is 32 bits. The bit positions and definitions are shown in Figure 22.  
Figure 22. gSPI Command Structure  
BCM_SPID Command Structure  
27  
31 30 29 28  
11 10  
0
C
A
F1 F0  
Address – 17 bits  
Packet length - 11bits *  
* 11’h0 = 2048 bytes  
Function No: 00 – Func 0: All SPI-specific registers  
01 – Func 1: Registers and memories belonging to other blocks in the chip (64 bytes max)  
10 – Func 2: DMA channel 1. WLAN packets up to 2048 bytes.  
11 – Func 3: DMA channel 2 (optional). Packets up to 2048 bytes.  
Access : 0 – Fixed address  
1 – Incremental address  
Command : 0 – Read  
1 – Write  
4.3.1.1 Write  
The host puts the first bit of the data onto the bus half a clock-cycle before the first active edge following the CS going low. The fol-  
lowing bits are clocked out on the falling edge of the gSPI clock. The device samples the data on the active edge.  
4.3.1.2 Write/Read  
The host reads on the rising edge of the clock requiring data from the device to be made available before the first rising-clock edge  
of the data. The last clock edge of the fixed delay word can be used to represent the first bit of the following data word. This allows  
data to be ready for the first clock edge without relying on asynchronous delays.  
4.3.1.3 Read  
The read command always follows a separate write to set up the WLAN device for a read. This command differs from the write/read  
command in the following respects: a) chip selects go high between the command/address and the data, and b) the time interval  
between the command/address is not fixed.  
4.3.2 Status  
The gSPI interface supports status notification to the host after a read/write transaction. This status notification provides information  
about packet errors, protocol errors, available packets in the RX queue, etc. The status information helps reduce the number of inter-  
rupts to the host. The status-reporting feature can be switched off using a register bit, without any timing overhead. The gSPI bus  
timing for read/write transactions with and without status notification are as shown in Figure 23 below and Figure 24 on page 30.  
See Table 6 on page 30 for information on status-field details.  
Document No. 002-14797 Rev. *H  
Page 28 of 128  
CYW4343X  
Figure 23. gSPI Signal Timing Without Status  
Write  
CS  
SCLK  
MOSI  
C31C30
C1C0D31D30
D1D0
Command 32 bits Write Data 16*n bits  
CS  
Write-Read  
SCLK  
MOSI  
MISO  
C31C30
C0
C0
D31D30
D0
D1
Response  
Delay  
Command  
32 bits  
Read Data 16*n bits  
Read  
CS  
SCLK  
MOSI  
MISO  
C31C30
D31D30
D0
Command  
32 bits  
Response  
Delay  
Read Data  
16*n bits  
Document No. 002-14797 Rev. *H  
Page 29 of 128  
CYW4343X  
Figure 24. gSPI Signal Timing with Status (Response Delay = 0)  
CS  
Write  
SCLK  
MOSI  
C31
C1C0D31
D1D0
S31
S1S0
Status 32 bits  
MISO  
Command 32 bits  
Write Data 16*n bits  
Write-Read  
CS  
SCLK  
MOSI  
MISO  
C31
C0
S31
S0
D31
D1D0
Read Data 16*n bits  
Status 32 bits  
Command 32 bits  
CS  
Read  
SCLK  
MOSI  
MISO  
C31
C0
S31
Status 32 bits  
S0
D31
D1D0
Command 32 bits  
Read Data 16*n bits  
Table 6. gSPI Status Field Details  
Bit  
Name  
Description  
The requested read data is not available.  
FIFO underflow occurred due to current (F2, F3) read command.  
0
Data not available  
Underflow  
1
2
Overflow  
FIFO overflow occurred due to current (F1, F2, F3) write command.  
F2 channel interrupt.  
3
F2 interrupt  
5
F2 RX ready  
Reserved  
F2 FIFO is ready to receive data (FIFO empty).  
7
8
F2 packet available  
F2 packet length  
Packet is available/ready in F2 TX FIFO.  
Length of packet available in F2 FIFO  
9:19  
4.4 gSPI Host-Device Handshake  
To initiate communication through the gSPI after power-up, the host needs to bring up the WLAN chip by writing to the wake-up  
WLAN register bit. Writing a 1 to this bit will start up the necessary crystals and PLLs so that the CYW4343X is ready for data trans-  
fer. The device can signal an interrupt to the host indicating that the device is awake and ready. This procedure also needs to be fol-  
lowed for waking up the device in sleep mode. The device can interrupt the host using the WLAN IRQ line whenever it has any  
information to pass to the host. On getting an interrupt, the host needs to read the interrupt and/or status register to determine the  
cause of the interrupt and then take necessary actions.  
Document No. 002-14797 Rev. *H  
Page 30 of 128  
CYW4343X  
4.4.1 Boot-Up Sequence  
After power-up, the gSPI host needs to wait 50 ms for the device to be out of reset. For this, the host needs to poll with a read com-  
mand to F0 address 0x14. Address 0x14 contains a predefined bit pattern. As soon as the host gets a response back with the correct  
register content, it implies that the device has powered up and is out of reset. After that, the host needs to set the wake-up WLAN bit  
(F0 reg 0x00 bit 7). Wake-up WLAN turns the PLL on; however, the PLL doesn't lock until the host programs the PLL registers to set  
the crystal frequency.  
For the first time after power-up, the host needs to wait for the availability of the low-power clock inside the device. Once it is avail-  
able, the host needs to write to a PMU register to set the crystal frequency. This will turn on the PLL. After the PLL is locked, the chi-  
pActive interrupt is issued to the host. This indicates device awake/ready status. See Table 7 for information on gSPI registers.  
In Table 7, the following notation is used for register access:  
R: Readable from host and CPU  
W: Writable from host  
U: Writable from CPU  
Table 7. gSPI Registers  
Access Default  
Address  
Register  
Word length  
Bit  
Description  
x0000  
0
1
4
R/W/U  
R/W/U  
R/W/U  
0
0
1
0: 16-bit word length  
1: 32-bit word length  
Endianess  
0: Little endian  
1: Big endian  
High-speed mode  
0: Normal mode. Sample on SPICLK rising edge, output on  
falling edge.  
1: High-speed mode. Sample and output on rising edge of  
SPICLK (default).  
Interrupt polarity  
Wake-up  
5
7
R/W/U  
R/W  
1
0
0: Interrupt active polarity is low.  
1: Interrupt active polarity is high (default).  
A write of 1 denotes a wake-up command from host to device.  
This will be followed by an F2 interrupt from the gSPI device  
to host, indicating device awake status.  
x0002  
Status enable  
0
1
R/W  
R/W  
1
0
0: No status sent to host after a read/write.  
1: Status sent to host after a read/write.  
Interrupt with status  
0: Do not interrupt if status is sent.  
1: Interrupt host even if status is sent.  
x0003  
x0004  
Reserved  
0
0
Interrupt register  
R/W  
Requested data not available. Cleared by writing a 1 to this  
location.  
1
2
5
6
7
5
6
7
R
0
0
0
0
0
0
0
0
F2/F3 FIFO underflow from the last read.  
F2/F3 FIFO overflow from the last write.  
F2 packet available  
R
R
R
F3 packet available  
R
F1 overflow from the last write.  
F1 Interrupt  
x0005  
Interrupt register  
R
R
F2 Interrupt  
R
F3 Interrupt  
x0006,  
x0007  
Interrupt enable  
register  
15:0  
R/W/U  
16'hE0E7  
Particular interrupt is enabled if a corresponding bit is set.  
x0008 to  
x000B  
Status register  
31:0  
R
32'h0000  
Same as status bit definitions  
x000C,  
x000D  
F1 info. register  
0
R
1
F1 enabled  
1
R
0
F1 ready for data transfer  
F1 maximum packet size  
13:2  
R/U  
12'h40  
Document No. 002-14797 Rev. *H  
Page 31 of 128  
CYW4343X  
Table 7. gSPI Registers (Cont.)  
Address  
Register  
Bit  
Access  
R/U  
Default  
Description  
x000E,  
x000F  
F2 info. register  
0
1
1
0
F2 enabled  
R
F2 ready for data transfer  
F2 maximum packet size  
15:2  
Test-Read only register 31:0  
R/U  
R
14'h800  
x0014 to  
x0017  
32'hFEEDBEA This register contains a predefined pattern, which the host can  
read to determine if the gSPI interface is working properly.  
D
x0018 to  
x001B  
Test–R/W register  
31:0  
7:0  
R/W/U  
R/W  
32'h00000000 This is a dummy register where the host can write some  
pattern and read it back to determine if the gSPI interface is  
working properly.  
x001C to  
x001F  
Response delay  
registers  
0x1D=4, other Individual response delays for F0, F1, F2, and F3. The value  
registers = 0  
of the registers is the number of byte delays that are  
introduced before data is shifted out of the gSPI interface  
during host reads.  
Figure 25 on page 33 shows the WLAN boot-up sequence from power-up to firmware download, including the initial device power-  
on reset (POR) evoked by the WL_REG_ON signal. After initial power-up, the WL_REG_ON signal can be held low to disable the  
CYW4343X or pulsed low to induce a subsequent reset.  
Note: The CYW4343X has an internal power-on reset (POR) circuit. The device will be held in reset for a maximum of 3 ms after  
VDDC and VDDIO have both passed the 0.6V threshold.  
Document No. 002-14797 Rev. *H  
Page 32 of 128  
CYW4343X  
Figure 25. WLAN Boot-Up Sequence  
Ramp time from 0V to 4.3V > 40 µs  
0.6V  
VBAT  
VDDIO  
> 2 Sleep Clock cycles  
WL_REG_ON  
< 1.5 ms  
< 3 ms  
VDDC  
(from internal PMU)  
Internal POR  
After a fixed delay following internal POR going high,  
the device responds to host F0 (address 0x14) reads.  
< 50 ms  
Device requests a reference clock.  
1
1
15 ms  
After 15 ms the reference clock  
is assumed to be up. Access to  
PLL registers is possible.  
SPI Host Interaction:  
Host polls F0 (address 0x14) until it reads  
a predefined pattern.  
Host sets wakeupwlan bit  
1
and waits 15 ms , the  
maximum time for  
1
After 15 ms, the host  
reference clock availability.  
programs the PLL registers to  
set the crystal frequency.  
Chipactive interrupt is asserted after the PLL locks.  
WL_IRQ  
Host downloads  
code.  
1
This wait time is programmable in sleepclock increments from 1 to 255 (30 us to 15 ms).  
Document No. 002-14797 Rev. *H  
Page 33 of 128  
CYW4343X  
5. Wireless LAN MAC and PHY  
5.1 MAC Features  
The CYW4343X WLAN MAC supports features specified in the IEEE 802.11 base standard, and amended by IEEE 802.11n. The  
salient features are listed below:  
Transmission and reception of aggregated MPDUs (A-MPDU).  
Support for power management schemes, including WMM power-save, power-save multipoll (PSMP) and multiphase  
PSMP operation.  
Support for immediate ACK and Block-ACK policies.  
Interframe space timing support, including RIFS.  
Support for RTS/CTS and CTS-to-self frame sequences for protecting frame exchanges.  
Back-off counters in hardware for supporting multiple priorities as specified in the WMM specification.  
Timing synchronization function (TSF), network allocation vector (NAV) maintenance, and target beacon transmission time  
(TBTT) generation in hardware.  
Hardware off-load for AES-CCMP, legacy WPA TKIP, legacy WEP ciphers, WAPI, and support for key management.  
Support for coexistence with Bluetooth and other external radios.  
Programmable independent basic service set (IBSS) or infrastructure basic service set functionality  
Statistics counters for MIB support.  
5.1.1 MAC Description  
The CYW4343X WLAN MAC is designed to support high throughput operation with low-power consumption. It does so without com-  
promising on Bluetooth coexistence policies, thereby enabling optimal performance over both networks. In addition, several power-  
saving modes that have been implemented allow the MAC to consume very little power while maintaining network-wide timing syn-  
chronization. The architecture diagram of the MAC is shown in Figure 26 on page 34.  
Figure 26. WLAN MAC Architecture  
Embedded CPU Interface  
Host Registers, DMA Engines  
TXFIFO  
32 KB  
RXFIFO  
10 KB  
PSM  
PMQ  
PSM  
UCODE  
Memory  
IFS  
Backoff, BTCX  
WEP  
WEP, TKIP, AES  
TSF  
SHM  
BUS  
IHR  
NAV  
BUS  
Shared Memory  
6 KB  
RXE  
RX AMPDU  
TXE  
TX AMPDU  
EXTIHR  
MAC  
PHY Interface  
Document No. 002-14797 Rev. *H  
Page 34 of 128  
CYW4343X  
The following sections provide an overview of the important modules in the MAC.  
5.1.1.1 PSM  
The programmable state machine (PSM) is a microcoded engine that provides most of the low-level control to the hardware to imple-  
ment the IEEE 802.11 specification. It is a microcontroller that is highly optimized for flow-control operations, which are predominant  
in implementations of communication protocols. The instruction set and fundamental operations are simple and general, which  
allows algorithms to be optimized until very late in the design process. It also allows for changes to the algorithms to track evolving  
IEEE 802.11 specifications.  
The PSM fetches instructions from the microcode memory. It uses the shared memory to obtain operands for instructions, as a data  
store, and to exchange data between both the host and the MAC data pipeline (via the SHM bus). The PSM also uses a scratch-pad  
memory (similar to a register bank) to store frequently accessed and temporary variables.  
The PSM exercises fine-grained control over the hardware engines by programming internal hardware registers (IHR). These IHRs  
are collocated with the hardware functions they control and are accessed by the PSM via the IHR bus.  
The PSM fetches instructions from the microcode memory using an address determined by the program counter, an instruction lit-  
eral, or a program stack. For ALU operations, the operands are obtained from shared memory, scratch-pad memory, IHRs, or  
instruction literals, and the results are written into the shared memory, scratch-pad memory, or IHRs.  
There are two basic branch instructions: conditional branches and ALU-based branches. To better support the many decision points  
in the IEEE 802.11 algorithms, branches can depend on either readily available signals from the hardware modules (branch condi-  
tion signals are available to the PSM without polling the IHRs) or on the results of ALU operations.  
5.1.1.2 WEP  
The wired equivalent privacy (WEP) engine encapsulates all the hardware accelerators to perform the encryption and decryption, as  
well as the MIC computation and verification. The accelerators implement the following cipher algorithms: legacy WEP, WPA TKIP,  
and WPA2 AES-CCMP.  
Based on the frame type and association information, the PSM determines the appropriate cipher algorithm to be used. It supplies  
the keys to the hardware engines from an on-chip key table. The WEP interfaces with the transmit engine (TXE) to encrypt and com-  
pute the MIC on transmit frames and the receive engine (RXE) to decrypt and verify the MIC on receive frames. WAPI is also sup-  
ported.  
5.1.1.3 TXE  
The transmit engine (TXE) constitutes the transmit data path of the MAC. It coordinates the DMA engines to store the transmit  
frames in the TXFIFO. It interfaces with WEP module to encrypt frames and transfers the frames across the MAC-PHY interface at  
the appropriate time determined by the channel access mechanisms.  
The data received from the DMA engines are stored in transmit FIFOs. The MAC supports multiple logical queues to support traffic  
streams that have different QoS priority requirements. The PSM uses the channel access information from the IFS module to sched-  
ule a queue from which the next frame is transmitted. Once the frame is scheduled, the TXE hardware transmits the frame based on  
a precise timing trigger received from the IFS module.  
The TXE module also contains the hardware that allows the rapid assembly of MPDUs into an A-MPDU for transmission. The hard-  
ware module aggregates the encrypted MPDUs by adding appropriate headers and pad delimiters as needed.  
5.1.1.4 RXE  
The receive engine (RXE) constitutes the receive data path of the MAC. It interfaces with the DMA engine to drain the received  
frames from the RX FIFO. It transfers bytes across the MAC-PHY interface and interfaces with the WEP module to decrypt frames.  
The decrypted data is stored in the RX FIFO.  
The RXE module contains programmable filters that are programmed by the PSM to accept or filter frames based on several criteria  
such as receiver address, BSSID, and certain frame types.  
The RXE module also contains the hardware required to detect A-MPDUs, parse the headers of the containers, and disaggregate  
them into component MPDUS.  
Document No. 002-14797 Rev. *H  
Page 35 of 128  
CYW4343X  
5.1.1.5 IFS  
The IFS module contains the timers required to determine interframe space timing including RIFS timing. It also contains multiple  
back-off engines required to support prioritized access to the medium as specified by WMM.  
The interframe spacing timers are triggered by the cessation of channel activity on the medium, as indicated by the PHY. These tim-  
ers provide precise timing to the TXE to begin frame transmission. The TXE uses this information to send response frames or per-  
form transmit frame-bursting (RIFS or SIFS separated, as within a TXOP).  
The back-off engines (for each access category) monitor channel activity, in each slot duration, to determine whether to continue or  
pause the back-off counters. When the back-off counters reach 0, the TXE gets notified so that it may commence frame transmis-  
sion. In the event of multiple back-off counters decrementing to 0 at the same time, the hardware resolves the conflict based on pol-  
icies provided by the PSM.  
The IFS module also incorporates hardware that allows the MAC to enter a low-power state when operating under the IEEE power-  
saving mode. In this mode, the MAC is in a suspended state with its clock turned off. A sleep timer, whose count value is initialized  
by the PSM, runs on a slow clock and determines the duration over which the MAC remains in this suspended state. Once the timer  
expires, the MAC is restored to its functional state. The PSM updates the TSF timer based on the sleep duration, ensuring that the  
TSF is synchronized to the network.  
The IFS module also contains the PTA hardware that assists the PSM in Bluetooth coexistence functions.  
5.1.1.6 TSF  
The timing synchronization function (TSF) module maintains the TSF timer of the MAC. It also maintains the target beacon transmis-  
sion time (TBTT). The TSF timer hardware, under the control of the PSM, is capable of adopting timestamps received from beacon  
and probe response frames in order to maintain synchronization with the network.  
The TSF module also generates trigger signals for events that are specified as offsets from the TSF timer, such as uplink and down-  
link transmission times used in PSMP.  
5.1.1.7 NAV  
The network allocation vector (NAV) timer module is responsible for maintaining the NAV information conveyed through the duration  
field of MAC frames. This ensures that the MAC complies with the protection mechanisms specified in the standard.  
The hardware, under the control of the PSM, maintains the NAV timer and updates the timer appropriately based on received  
frames. This timing information is provided to the IFS module, which uses it as a virtual carrier-sense indication.  
5.1.1.8 MAC-PHY Interface  
The MAC-PHY interface consists of a data path interface to exchange RX/TX data from/to the PHY. In addition, there is a program-  
ming interface, which can be controlled either by the host or the PSM to configure and control the PHY.  
5.2 PHY Description  
The CYW4343X WLAN digital PHY is designed to comply with IEEE 802.11b/g/n single stream to provide wireless LAN connectivity  
supporting data rates from 1 Mbps to 96 Mbps for low-power, high-performance handheld applications.  
The PHY has been designed to meet specification requirements in the presence of interference, radio nonlinearity, and impairments.  
It incorporates efficient implementations of the filters, FFT, and Viterbi decoder algorithms. Efficient algorithms have been designed  
to achieve maximum throughput and reliability, including algorithms for carrier sense/rejection, frequency/phase/timing acquisition  
and tracking, and channel estimation and tracking. The PHY receiver also contains a robust IEEE 802.11b demodulator. The PHY  
carrier sense has been tuned to provide high throughput for IEEE 802.11g/IEEE 802.11b hybrid networks with Bluetooth coexis-  
tence.  
5.2.1 PHY Features  
Supports the IEEE 802.11b/g/n single-stream standards.  
Explicit IEEE 802.11n transmit beamforming.  
Supports optional Greenfield mode in TX and RX.  
Tx and Rx LDPC for improved range and power efficiency.  
Supports IEEE 802.11h/d for worldwide operation.  
Algorithms achieving low power, enhanced sensitivity, range, and reliability.  
Document No. 002-14797 Rev. *H  
Page 36 of 128  
CYW4343X  
Algorithms to maximize throughput performance in the presence of Bluetooth signals.  
Automatic gain control scheme for blocking and nonblocking application scenarios for cellular applications.  
Closed-loop transmit power control.  
Designed to meet FCC and other regulatory requirements.  
Support for 2.4 GHz Broadcom TurboQAM data rates and 20 MHz channel bandwidth.  
Figure 27. WLAN PHY Block Diagram  
CCK/DSSS  
Demodulate  
Filters  
and  
Radio  
Comp  
Frequency  
and Timing  
Synch  
Descramble  
and  
Deframe  
OFDM  
Demodulate  
Viterbi  
Decoder  
Carrier Sense,  
AGC, and Rx  
FSM  
Buffers  
Radio  
Control  
Block  
MAC  
Interface  
FFT/IFFT  
AFE  
and  
Radio  
Modulation  
and Coding  
Tx FSM  
Frame and  
Scramble  
Filters and  
Radio Comp  
Modulate/  
Spread  
PA Comp  
COEX  
The PHY is capable of fully calibrating the RF front-end to extract the highest performance. On power-up, the PHY performs a full  
calibration suite to correct for IQ mismatch and local oscillator leakage. The PHY also performs periodic calibration to compensate  
for any temperature related drift, thus maintaining high-performance over time. A closed-loop transmit control algorithm maintains  
the output power at its required level and can control TX power on a per-packet basis.  
Document No. 002-14797 Rev. *H  
Page 37 of 128  
CYW4343X  
6. WLAN Radio Subsystem  
The CYW4343X includes an integrated WLAN RF transceiver that has been optimized for use in 2.4 GHz Wireless LAN systems. It  
is designed to provide low power, low cost, and robust communications for applications operating in the globally available 2.4 GHz  
unlicensed ISM band. The transmit and receive sections include all on-chip filtering, mixing, and gain control functions. Improve-  
ments to the radio design include shared TX/RX baseband filters and high immunity to supply noise.  
Figure 28 shows the radio functional block diagram.  
Figure 28. Radio Functional Block Diagram  
WL DAC  
WL TXLPF  
WL DAC  
WL PA  
WL PGA  
WL TX GMixer WL TXLPF  
Voltage  
Regulators  
WLAN BB  
WLRF_2G_RF  
4 ~ 6 nH  
Recommend  
Q = 40  
WL ADC  
WL ADC  
10 pF  
WL RXLPF  
WLRF_2G_eLG  
SLNA  
WL GLNA12  
WL RXLPF  
WL RX GMixer  
WL ATX  
WL ARX  
WL GTX  
WL GRX  
Gm  
BT LNA GM  
CLB  
WL LOGEN  
WL PLL  
BT PLL  
Shared XO  
BT RX  
BT TX  
BT LOGEN  
LPO/Ext LPO/RCAL  
BT ADC  
BT ADC  
BT RXLPF  
BT LNA Load  
BT PA  
BT RX Mixer  
BT RXLPF  
BT BB  
BT FM  
BT DAC  
BT DAC  
BT TX Mixer  
BT TXLPF  
6.1 Receive Path  
The CYW4343X has a wide dynamic range, direct conversion receiver. It employs high-order on-chip channel filtering to ensure reli-  
able operation in the noisy 2.4 GHz ISM band.  
Document No. 002-14797 Rev. *H  
Page 38 of 128  
CYW4343X  
6.2 Transmit Path  
Baseband data is modulated and upconverted to the 2.4 GHz ISM band. A linear on-chip power amplifier is included, which is capa-  
ble of delivering high output powers while meeting IEEE 802.11b/g/n specifications without the need for an external PA. This PA is  
supplied by an internal LDO that is directly supplied by VBAT, thereby eliminating the need for a separate PALDO. Closed-loop out-  
put power control is integrated.  
6.3 Calibration  
The CYW4343X features dynamic on-chip calibration, eliminating process variation across components. This enables the  
CYW4343X to be used in high-volume applications because calibration routines are not required during manufacturing testing.  
These calibration routines are performed periodically during normal radio operation. Automatic calibration examples include base-  
band filter calibration for optimum transmit and receive performance and LOFT calibration for leakage reduction. In addition, I/Q cal-  
ibration, R calibration, and VCO calibration are performed on-chip.  
7. Bluetooth + FM Subsystem Overview  
The Cypress CYW4343X is a Bluetooth 4.1-compliant, baseband processor and 2.4 GHz transceiver with an integrated FM/RDS/  
RBDS receiver. It features the highest level of integration and eliminates all critical external components, thus minimizing the foot-  
print, power consumption, and system cost of a Bluetooth plus FM radio solution.  
The CYW4343X is the optimal solution for any Bluetooth voice and/or data application that also requires an FM radio receiver. The  
Bluetooth subsystem presents a standard Host Controller Interface (HCI) via a high speed UART and PCM interface for audio. The  
FM subsystem supports the HCI control interface as well as I2S, PCM, and stereo analog interfaces. The CYW4343X incorporates  
all Bluetooth 4.1 features including secure simple pairing, sniff subrating, and encryption pause and resume.  
The CYW4343X Bluetooth radio transceiver provides enhanced radio performance to meet the most stringent mobile phone tem-  
perature applications and the tightest integration into mobile handsets and portable devices. It is fully compatible with any of the  
standard TCXO frequencies and provides full radio compatibility to operate simultaneously with GPS, WLAN, NFC, and cellular  
radios.  
The Bluetooth transmitter also features a Class 1 power amplifier with Class 2 capability.  
7.1 Features  
Major Bluetooth features of the CYW4343X include:  
Supports key features of upcoming Bluetooth standards  
Fully supports Bluetooth Core Specification version 4.1 plus enhanced data rate (EDR) features:  
Adaptive Frequency Hopping (AFH)  
Quality of Service (QoS)  
Extended Synchronous Connections (eSCO)—voice connections  
Fast connect (interlaced page and inquiry scans)  
Secure Simple Pairing (SSP)  
Sniff Subrating (SSR)  
Encryption Pause Resume (EPR)  
Extended Inquiry Response (EIR)  
Link Supervision Timeout (LST)  
UART baud rates up to 4 Mbps  
Supports all Bluetooth 4.1 packet types  
Supports maximum Bluetooth data rates over HCI UART  
Multipoint operation with up to seven active slaves  
Maximum of seven simultaneous active ACL links  
Maximum of three simultaneous active SCO and eSCO connections with scatternet support  
Trigger Beacon fast connect (TBFC)  
Narrowband and wideband packet loss concealment  
Scatternet operation with up to four active piconets with background scan and support for scatter mode  
Document No. 002-14797 Rev. *H  
Page 39 of 128  
CYW4343X  
High-speed HCI UART transport support with low-power out-of-band BT_DEV_WAKE and BT_HOST_WAKE signaling  
(see Host Controller Power Management on page 43)  
Channel-quality driven data rate and packet type selection  
Standard Bluetooth test modes  
Extended radio and production test mode features  
Full support for power savings modes  
Bluetooth clock request  
Bluetooth standard sniff  
Deep-sleep modes and software regulator shutdown  
TCXO input and auto-detection of all standard handset clock frequencies. Also supports a low-power crystal, which can be  
used during power save mode for better timing accuracy.  
Major FM Radio features include:  
65 MHz to 108 MHz FM bands supported (US, Europe, and Japan)  
FM subsystem control using the Bluetooth HCI interface  
FM subsystem operates from reference clock inputs.  
Improved audio interface capabilities with full-featured bidirectional PCM, I2S, and stereo analog output.  
I2S can be master or slave.  
FM Receiver-Specific Features Include:  
Excellent FM radio performance with 1 µV sensitivity for 26 dB (S+N)/N  
Signal-dependent stereo/mono blending  
Signal dependent soft mute  
Auto search and tuning modes  
Audio silence detection  
RSSI and IF frequency status indicators  
RDS and RBDS demodulator and decoder with filter and buffering functions  
Automatic frequency jump  
7.2 Bluetooth Radio  
The CYW4343X has an integrated radio transceiver that has been optimized for use in 2.4 GHz Bluetooth wireless systems. It has  
been designed to provide low-power, low-cost, robust communications for applications operating in the globally available 2.4 GHz  
unlicensed ISM band. It is fully compliant with the Bluetooth Radio Specification and EDR specification and meets or exceeds the  
requirements to provide the highest communication link quality of service.  
7.2.1 Transmit  
The CYW4343X features a fully integrated zero-IF transmitter. The baseband transmit data is GFSK-modulated in the modem block  
and upconverted to the 2.4 GHz ISM band in the transmitter path. The transmitter path has signal filters, an I/Q upconverter, an out-  
put power amplifier, and RF filters. The transmitter path also incorporates /4–DQPSK for 2 Mbps and 8–DPSK for 3 Mbps to sup-  
port EDR. The transmitter section is compatible with the Bluetooth Low Energy specification. The transmitter PA bias can also be  
adjusted to provide Bluetooth Class 1 or Class 2 operation.  
7.2.2 Digital Modulator  
The digital modulator performs the data modulation and filtering required for the GFSK, /4–DQPSK, and 8–DPSK signal. The fully  
digital modulator minimizes any frequency drift or anomalies in the modulation characteristics of the transmitted signal and is much  
more stable than direct VCO modulation schemes.  
7.2.3 Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency tracking and bit-syn-  
chronization algorithm.  
Document No. 002-14797 Rev. *H  
Page 40 of 128  
CYW4343X  
7.2.4 Power Amplifier  
The fully integrated PA supports Class 1 or Class 2 output using a highly linearized, temperature-compensated design. This provides  
greater flexibility in front-end matching and filtering. Due to the linear nature of the PA combined with some integrated filtering, exter-  
nal filtering is required to meet the Bluetooth and regulatory harmonic and spurious requirements. For integrated mobile handset  
applications in which Bluetooth is integrated next to the cellular radio, external filtering can be applied to achieve near-thermal noise  
levels for spurious and radiated noise emissions. The transmitter features a sophisticated on-chip transmit signal strength indicator  
(TSSI) block to keep the absolute output power variation within a tight range across process, voltage, and temperature.  
7.2.5 Receiver  
The receiver path uses a low-IF scheme to downconvert the received signal for demodulation in the digital demodulator and bit syn-  
chronizer. The receiver path provides a high degree of linearity, an extended dynamic range, and high-order on-chip channel filtering  
to ensure reliable operation in the noisy 2.4 GHz ISM band. The front-end topology with built-in out-of-band attenuation enables the  
CYW4343X to be used in most applications with minimal off-chip filtering. For integrated handset operation, in which the Bluetooth  
function is integrated close to the cellular transmitter, external filtering is required to eliminate the desensitization of the receiver by  
the cellular transmit signal.  
7.2.6 Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency tracking and bit syn-  
chronization algorithm.  
7.2.7 Receiver Signal Strength Indicator  
The radio portion of the CYW4343X provides a Receiver Signal Strength Indicator (RSSI) signal to the baseband so that the control-  
ler can take part in a Bluetooth power-controlled link by providing a metric of its own receiver signal strength to determine whether  
the transmitter should increase or decrease its output power.  
7.2.8 Local Oscillator Generation  
Local Oscillator (LO) generation provides fast frequency hopping (1600 hops/second) across the 79 maximum available channels.  
The LO generation subblock employs an architecture for high immunity to LO pulling during PA operation. The CYW4343X uses an  
internal RF and IF loop filter.  
7.2.9 Calibration  
The CYW4343X radio transceiver features an automated calibration scheme that is self contained in the radio. No user interaction is  
required during normal operation or during manufacturing to optimize performance. Calibration optimizes the performance of all the  
major blocks within the radio to within 2% of optimal conditions, including filter gain and phase characteristics, matching between  
key components, and key gain blocks. This takes into account process variation and temperature variation. Calibration occurs trans-  
parently during normal operation during the settling time of the hops and calibrates for temperature variations as the device cools  
and heats during normal operation in its environment.  
Document No. 002-14797 Rev. *H  
Page 41 of 128  
CYW4343X  
8. Bluetooth Baseband Core  
The Bluetooth Baseband Core (BBC) implements all of the time-critical functions required for high-performance Bluetooth operation.  
The BBC manages the buffering, segmentation, and routing of data for all connections. It also buffers data that passes through it,  
handles data flow control, schedules SCO/ACL TX/RX transactions, monitors Bluetooth slot usage, optimally segments and pack-  
ages data into baseband packets, manages connection status indicators, and composes and decodes HCI packets. In addition to  
these functions, it independently handles HCI event types and HCI command types.  
The following transmit and receive functions are also implemented in the BBC hardware to increase the reliability and security of  
data before sending and receiving it over the air:  
Symbol timing recovery, data deframing, forward error correction (FEC), header error control (HEC), cyclic redundancy  
check (CRC), data decryption, and data dewhitening in the receiver.  
Data framing, FEC generation, HEC generation, CRC generation, key generation, data encryption, and data whitening in  
the transmitter.  
8.1 Bluetooth 4.1 Features  
The BBC supports all Bluetooth 4.1 features, with the following benefits:  
Dual-mode classic Bluetooth and classic Low Energy (BT and BLE) operation.  
Low energy physical layer  
Low energy link layer  
Enhancements to HCI for low energy  
Low energy direct test mode  
128 AES-CCM secure connection for both BT and BLE  
Note: The CYW4343X is compatible with the Bluetooth Low Energy operating mode, which provides a dramatic reduction in the power  
consumption of the Bluetooth radio and baseband. The primary application for this mode is to provide support for low data rate  
devices, such as sensors and remote controls.  
8.2 Link Control Layer  
The link control layer is part of the Bluetooth link control functions that are implemented in dedicated logic in the link control unit  
(LCU). This layer contains the command controller that takes commands from the software, and other controllers that are activated  
or configured by the command controller, to perform the link control tasks. Each task performs a different state in the Bluetooth link  
controller.  
Major states:  
Standby  
Connection  
Substates:  
Page  
Page Scan  
Inquiry  
Inquiry Scan  
Sniff  
BLE Adv  
BLE Scan/Initiation  
8.3 Test Mode Support  
The CYW4343X fully supports Bluetooth Test mode as described in Part I:1 of the Specification of the Bluetooth System Version 3.0.  
This includes the transmitter tests, normal and delayed loopback tests, and reduced hopping sequence.  
In addition to the standard Bluetooth Test Mode, the CYW4343X also supports enhanced testing features to simplify RF debugging  
and qualification as well as type-approval testing. These features include:  
Fixed frequency carrier-wave (unmodulated) transmission  
Simplifies some type-approval measurements (Japan)  
Aids in transmitter performance analysis  
Document No. 002-14797 Rev. *H  
Page 42 of 128  
CYW4343X  
Fixed frequency constant receiver mode  
Receiver output directed to an I/O pin  
Allows for direct BER measurements using standard RF test equipment  
Facilitates spurious emissions testing for receive mode  
Fixed frequency constant transmission  
Eight-bit fixed pattern or PRBS-9  
Enables modulated signal measurements with standard RF test equipment  
8.4 Bluetooth Power Management Unit  
The Bluetooth Power Management Unit (PMU) provides power management features that can be invoked by either software through  
power management registers or packet handling in the baseband core. The power management functions provided by the  
CYW4343X are:  
RF Power Management  
Host Controller Power Management  
BBC Power Management  
FM Power Management  
8.4.1 RF Power Management  
The BBC generates power-down control signals for the transmit path, receive path, PLL, and power amplifier to the 2.4 GHz trans-  
ceiver. The transceiver then processes the power-down functions accordingly.  
8.4.2 Host Controller Power Management  
When running in UART mode, the CYW4343X can be configured so that dedicated signals are used for power management hand-  
shaking between the CYW4343X and the host. The basic power saving functions supported by those handshaking signals include  
the standard Bluetooth defined power savings modes and standby modes of operation.  
Table 8 describes the power-control handshake signals used with the UART interface.  
Table 8. Power Control Pin Description  
Signal  
Type  
Description  
BT_DEV_WAKE  
I
Bluetooth device wake-up signal: Signal from the host to the CYW4343X indicating that the host  
requires attention.  
Asserted: The Bluetooth device must wake up or remain awake.  
Deasserted: The Bluetooth device may sleep when sleep criteria are met.  
The polarity of this signal is software configurable and can be asserted high or low.  
BT_HOST_WAKE  
CLK_REQ  
O
O
Host wake-up signal. Signal from the CYW4343X to the host indicating that the CYW4343X requires  
attention.  
Asserted: Host device must wake up or remain awake.  
Deasserted: Host device may sleep when sleep criteria are met.  
The polarity of this signal is software configurable and can be asserted high or low.  
The CYW4343X asserts CLK_REQ when Bluetooth or WLAN directs the host to turn on the reference  
clock. The CLK_REQ polarity is active-high. Add an external 100 kpull-down resistor to ensure the  
signal is deasserted when the CYW4343X powers up or resets when VDDIO is present.  
Note: Pad function Control Register is set to 0 for these pins.  
Document No. 002-14797 Rev. *H  
Page 43 of 128  
CYW4343X  
Figure 29. Startup Signaling Sequence  
LPO  
Host IOs unconfigured  
Host IOs configured  
VDDIO  
T1  
HostResetX  
BT_GPIO_0  
(BT_DEV_WAKE)  
T2  
BTH IOs unconfiguredBTH IOs configured  
BT_REG_ON  
BT_GPIO_1  
(BT_HOST_WAKE)  
T3  
Host side drives  
this line low  
BT_UART_CTS_N  
BT_UART_RTS_N  
BTH device drives this  
line low indicating  
transport is ready  
T4  
CLK_REQ_OUT  
Notes :  
T5  
Driven  
Pulled  
T1 is the time for host to settle it’s IOs after a reset.  
T2 is the time for host to drive BT_REG_ON high after the Host IOs are configured.  
T3 is the time for BTH (Bluetooth) device to settle its IOs after a reset and reference clock settling time has  
elapsed.  
T4 is the time for BTH device to drive BT_UART_RTS_N low after the host drives BT_UART_CTS_N low. This  
assumes the BTH device has already completed initialization.  
T5 is the time for BTH device to drive CLK_REQ_OUT high after BT_REG_ON goes high. Note this pin is used for  
designs that use an external reference clock source from the Host. This pin is irrelevant for Crystal reference  
clock based designs where the BTH device generates it’s own reference clock from an external crystal connected  
to it’s oscillator circuit.  
Timing diagram assumes VBAT is present.  
8.5 BBC Power Management  
The following are low-power operations for the BBC:  
Physical layer packet-handling turns the RF on and off dynamically within transmit/receive packets.  
Bluetooth-specified low-power connection modes: sniff and hold. While in these modes, the CYW4343X runs on the low-  
power oscillator and wakes up after a predefined time period.  
Document No. 002-14797 Rev. *H  
Page 44 of 128  
CYW4343X  
A low-power shutdown feature allows the device to be turned off while the host and any other devices in the system remain  
operational. When the CYW4343X is not needed in the system, the RF and core supplies are shut down while the I/O  
remains powered. This allows the CYW4343X to effectively be off while keeping the I/O pins powered, so they do not draw  
extra current from any other I/O-connected devices.  
During the low-power shut-down state, provided VDDIO remains applied to the CYW4343X, all outputs are tristated, and most input  
signals are disabled. Input voltages must remain within the limits defined for normal operation. This is done to prevent current paths  
or create loading on digital signals in the system and enables the CYW4343X to be fully integrated in an embedded device to take  
full advantage of the lowest power-saving modes.  
Two CYW4343X input signals are designed to be high-impedance inputs that do not load the driving signal even if the chip does not  
have VDDIO power supplied to it: the frequency reference input (WRF_TCXO_IN) and the 32.768 kHz input (LPO). When the  
CYW4343X is powered on from this state, it is the same as a normal power-up, and the device does not contain any information  
about its state from the time before it was powered down.  
8.5.1 FM Power Management  
The CYW4343X FM subsystem can operate independently of, or in tandem with, the Bluetooth RF and BBC subsystems. The FM  
subsystem power management scheme operates in conjunction with the Bluetooth RF and BBC subsystems. The FM block does  
not have a low power state, it is either on or off.  
8.5.2 Wideband Speech  
The CYW4343X provides support for wideband speech (WBS) technology. The CYW4343X can perform subband-codec (SBC), as  
well as mSBC, encoding and decoding of linear 16 bits at 16 kHz (256 kbps rate) transferred over the PCM bus.  
8.6 Packet Loss Concealment  
Packet Loss Concealment (PLC) improves the apparent audio quality for systems with marginal link performance. Bluetooth mes-  
sages are sent in packets. When a packet is lost, it creates a gap in the received audio bit-stream. Packet loss can be mitigated in  
several ways:  
Fill in zeros.  
Ramp down the output audio signal toward zero (this is the method used in current Bluetooth headsets).  
Repeat the last frame (or packet) of the received bit-stream and decode it as usual (frame repeat).  
These techniques cause distortion and popping in the audio stream. The CYW4343X uses a proprietary waveform extension algo-  
rithm to provide dramatic improvement in the audio quality. Figure 30 and Figure 31 show audio waveforms with and without Packet  
Loss Concealment. Cypress PLC/BEC algorithms also support wideband speech.  
Figure 30. CVSD Decoder Output Waveform Without PLC  
Packet losses causes ramp-down  
Document No. 002-14797 Rev. *H  
Page 45 of 128  
CYW4343X  
Figure 31. CVSD Decoder Output Waveform After Applying PLC  
8.6.1 Codec Encoding  
The CYW4343X can support SBC and mSBC encoding and decoding for wideband speech.  
8.6.2 Multiple Simultaneous A2DP Audio Streams  
The CYW4343X has the ability to take a single audio stream and output it to multiple Bluetooth devices simultaneously. This allows  
a user to share his or her music (or any audio stream) with a friend.  
8.6.3 FM Over Bluetooth  
FM Over Bluetooth enables the CYW4343X to stream data from FM over Bluetooth without requiring the host to be awake. This can  
significantly extend battery life for usage cases where someone is listening to FM radio on a Bluetooth headset.  
8.7 Adaptive Frequency Hopping  
The CYW4343X gathers link quality statistics on a channel by channel basis to facilitate channel assessment and channel map  
selection. The link quality is determined using both RF and baseband signal processing to provide a more accurate frequency-hop  
map.  
8.8 Advanced Bluetooth/WLAN Coexistence  
The CYW4343X includes advanced coexistence technologies that are only possible with a Bluetooth/WLAN integrated die solution.  
These coexistence technologies are targeted at small form-factor platforms, such as cell phones and media players, including appli-  
cations such as VoWLAN + SCO and Video-over-WLAN + High Fidelity BT Stereo.  
Support is provided for platforms that share a single antenna between Bluetooth and WLAN. Dual-antenna applications are also  
supported. The CYW4343X radio architecture allows for lossless simultaneous Bluetooth and WLAN reception for shared antenna  
applications. This is possible only via an integrated solution (shared LNA and joint AGC algorithm). It has superior performance ver-  
sus implementations that need to arbitrate between Bluetooth and WLAN reception.  
The CYW4343X integrated solution enables MAC-layer signaling (firmware) and a greater degree of sharing via an enhanced coex-  
istence interface. Information is exchanged between the Bluetooth and WLAN cores without host processor involvement.  
The CYW4343X also supports Transmit Power Control (TPC) on the STA together with standard Bluetooth TPC to limit mutual inter-  
ference and receiver desensitization. Preemption mechanisms are utilized to prevent AP transmissions from colliding with Bluetooth  
frames. Improved channel classification techniques have been implemented in Bluetooth for faster and more accurate detection and  
elimination of interferers (including non-WLAN 2.4 GHz interference).  
The Bluetooth AFH classification is also enhanced by the WLAN core’s channel information.  
8.9 Fast Connection (Interlaced Page and Inquiry Scans)  
The CYW4343X supports page scan and inquiry scan modes that significantly reduce the average inquiry response and connection  
times. These scanning modes are compatible with the Bluetooth version 2.1 page and inquiry procedures.  
Document No. 002-14797 Rev. *H  
Page 46 of 128  
CYW4343X  
9. Microprocessor and Memory Unit for Bluetooth  
The Bluetooth microprocessor core is based on the ARM Cortex-M3 32-bit RISC processor with embedded ICE-RT debug and  
JTAG interface units. It runs software from the link control (LC) layer up to the host controller interface (HCI).  
The ARM core is paired with a memory unit that contains 576 KB of ROM for program storage and boot ROM, and 160 KB of RAM  
for data scratch-pad and patch RAM code. The internal ROM allows for flexibility during power-on reset (POR) to enable the same  
device to be used in various configurations. At power-up, the lower-layer protocol stack is executed from the internal ROM memory.  
External patches may be applied to the ROM-based firmware to provide flexibility for bug fixes or feature additions. These patches  
may be downloaded from the host to the CYW4343X through the UART transports.  
9.1 RAM, ROM, and Patch Memory  
The CYW4343X Bluetooth core has 160 KB of internal RAM which is mapped between general purpose scratch-pad memory and  
patch memory, and 576 KB of ROM used for the lower-layer protocol stack, test mode software, and boot ROM. The patch memory  
is used for bug fixes and feature additions to ROM memory code.  
9.2 Reset  
The CYW4343X has an integrated power-on reset circuit that resets all circuits to a known power-on state. The BT POR circuit is out  
of reset after BT_REG_ON goes high. If BT_REG_ON is low, then the POR circuit is held in reset.  
10. Bluetooth Peripheral Transport Unit  
10.1 PCM Interface  
The CYW4343X supports two independent PCM interfaces that share pins with the I2S interfaces. The PCM interface on the  
CYW4343X can connect to linear PCM codec devices in master or slave mode. In master mode, the CYW4343X generates the  
PCM_CLK and PCM_SYNC signals, and in slave mode, these signals are provided by another master on the PCM interface and are  
inputs to the CYW4343X. The configuration of the PCM interface may be adjusted by the host through the use of vendor-specific  
HCI commands.  
10.1.1 Slot Mapping  
The CYW4343X supports up to three simultaneous full-duplex SCO or eSCO channels through the PCM interface. These three  
channels are time-multiplexed onto the single PCM interface by using a time-slotting scheme where the 8 kHz or 16 kHz audio sam-  
ple interval is divided into as many as 16 slots. The number of slots is dependent on the selected interface rate of 128 kHz, 512 kHz,  
or 1024 kHz. The corresponding number of slots for these interface rates is 1, 2, 4, 8, and 16, respectively. Transmit and receive  
PCM data from an SCO channel is always mapped to the same slot. The PCM data output driver tristates its output on unused slots  
to allow other devices to share the same PCM interface signals. The data output driver tristates its output after the falling edge of the  
PCM clock during the last bit of the slot.  
10.1.2 Frame Synchronization  
The CYW4343X supports both short- and long-frame synchronization in both master and slave modes. In short-frame synchroniza-  
tion mode, the frame synchronization signal is an active-high pulse at the audio frame rate that is a single-bit period in width and is  
synchronized to the rising edge of the bit clock. The PCM slave looks for a high on the falling edge of the bit clock and expects the  
first bit of the first slot to start at the next rising edge of the clock. In long-frame synchronization mode, the frame synchronization sig-  
nal is again an active-high pulse at the audio frame rate; however, the duration is three bit periods and the pulse starts coincident  
with the first bit of the first slot.  
10.1.3 Data Formatting  
The CYW4343X may be configured to generate and accept several different data formats. For conventional narrowband speech  
mode, the CYW4343X uses 13 of the 16 bits in each PCM frame. The location and order of these 13 bits can be configured to sup-  
port various data formats on the PCM interface. The remaining three bits are ignored on the input and may be filled with 0’s, 1’s, a  
sign bit, or a programmed value on the output. The default format is 13-bit 2’s complement data, left justified, and clocked MSB first.  
Document No. 002-14797 Rev. *H  
Page 47 of 128  
CYW4343X  
10.1.4 Wideband Speech Support  
When the host encodes Wideband Speech (WBS) packets in transparent mode, the encoded packets are transferred over the PCM  
bus for an eSCO voice connection. In this mode, the PCM bus is typically configured in master mode for a 4 kHz sync rate with 16-  
bit samples, resulting in a 64 kbps bit rate. The CYW4343X also supports slave transparent mode using a proprietary rate-matching  
scheme. In SBC-code mode, linear 16-bit data at 16 kHz (256 kbps rate) is transferred over the PCM bus.  
10.1.5 Multiplexed Bluetooth and FM over PCM  
In this mode of operation, the CYW4343X multiplexes both FM and Bluetooth audio PCM channels over the same interface, reduc-  
ing the number of required I/Os. This mode of operation is initiated through an HCI command from the host. The data stream format  
contains three channels: a Bluetooth channel followed by two FM channels (audio left and right). In this mode of operation, the bus  
data rate only supports 48 kHz operation per channel with 16 bits sent for each channel. This is done to allow the low data rate Blue-  
tooth data to coexist in the same interface as the higher speed I2S data. To accomplish this, the Bluetooth data is repeated six times  
for 8 kHz data and three times for 16 kHz data. An initial sync pulse on the PCM_SYNC line is used to indicate the beginning of the  
frame.  
To support multiple Bluetooth audio streams within the Bluetooth channel, both 16 kHz and 8 kHz streams can be multiplexed. This  
mode of operation is only supported when the Bluetooth host is the master. Figure 32 shows the operation of the multiplexed trans-  
port with three simultaneous SCO connections. To accommodate additional SCO channels, the transport clock speed is increased.  
To change between modes of operation, the transport must be halted and restarted in the new configuration.  
Figure 32. Functional Multiplex Data Diagram  
1 Frame  
BT SCO 1 RX  
BT SCO 1 TX  
BT SCO 2 RX  
BT SCO 2 TX  
BT SCO 3 RX  
FM right  
FM right  
FM left  
FM left  
PCM_OUT  
BT SCO 3 TX  
PCM_IN  
PCM_SYNC  
PCM_CLK  
CLK  
16 bits per SCO frame  
16 bits per frame  
16 bits per frame  
Each SCO channel duplicates the data 6 times.  
Each WBS frame duplicates the data 3 times per frame.  
Document No. 002-14797 Rev. *H  
Page 48 of 128  
CYW4343X  
10.1.6 PCM Interface Timing  
10.1.6.1 Short Frame Sync, Master Mode  
Figure 33. PCM Timing Diagram (Short Frame Sync, Master Mode)  
1
2
3
PCM_BCLK  
4
PCM_SYNC  
PCM_OUT  
8
High Impedance  
7
5
6
PCM_IN  
Table 9. PCM Interface Timing Specifications (Short Frame Sync, Master Mode)  
Ref No.  
Characteristics  
Minimum  
Typical  
Maximum  
12  
Unit  
1
2
3
4
5
6
7
8
PCM bit clock frequency  
MHz  
ns  
PCM bit clock low  
PCM bit clock high  
PCM_SYNC delay  
PCM_OUT delay  
PCM_IN setup  
41  
41  
0
ns  
25  
25  
ns  
0
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit period to  
PCM_OUT becoming high impedance  
0
25  
ns  
Document No. 002-14797 Rev. *H  
Page 49 of 128  
CYW4343X  
10.1.6.2 Short Frame Sync, Slave Mode  
Figure 34. PCM Timing Diagram (Short Frame Sync, Slave Mode)  
1
2
3
PCM_BCLK  
4
5
PCM_SYNC  
PCM_OUT  
9
High Impedance  
8
6
7
PCM_IN  
Table 10. PCM Interface Timing Specifications (Short Frame Sync, Slave Mode)  
Characteristics Minimum Typical Maximum  
Ref No.  
Unit  
1
2
3
4
5
6
7
8
9
PCM bit clock frequency  
12  
MHz  
ns  
PCM bit clock low  
PCM bit clock high  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_OUT delay  
PCM_IN setup  
41  
41  
8
ns  
ns  
8
ns  
0
25  
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit period to  
PCM_OUT becoming high impedance  
0
25  
ns  
Document No. 002-14797 Rev. *H  
Page 50 of 128  
CYW4343X  
10.1.6.3 Long Frame Sync, Master Mode  
Figure 35. PCM Timing Diagram (Long Frame Sync, Master Mode)  
1
2
3
PCM_BCLK  
4
PCM_SYNC  
PCM_OUT  
8
High Impedance  
7
Bit 0  
Bit 0  
Bit 1  
Bit 1  
5
6
PCM_IN  
Table 11. PCM Interface Timing Specifications (Long Frame Sync, Master Mode)  
Ref No.  
Characteristics  
Minimum  
Typical  
Maximum  
12  
Unit  
1
2
3
4
5
6
7
8
PCM bit clock frequency  
PCM bit clock low  
PCM bit clock high  
PCM_SYNC delay  
PCM_OUT delay  
PCM_IN setup  
MHz  
ns  
41  
41  
0
ns  
25  
25  
ns  
0
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit period to  
PCM_OUT becoming high impedance  
0
25  
ns  
Document No. 002-14797 Rev. *H  
Page 51 of 128  
CYW4343X  
10.1.6.4 Long Frame Sync, Slave Mode  
Figure 36. PCM Timing Diagram (Long Frame Sync, Slave Mode)  
1
2
3
PCM_BCLK  
4
5
PCM_SYNC  
PCM_OUT  
9
Bit 0  
Bit 0  
HIGH IMPEDANCE  
8
Bit 1  
6
7
Bit 1  
PCM_IN  
Table 12. PCM Interface Timing Specifications (Long Frame Sync, Slave Mode)  
Ref No.  
Characteristics  
Minimum  
Typical  
Maximum  
12  
Unit  
1
2
3
4
5
6
7
8
9
PCM bit clock frequency  
PCM bit clock low  
PCM bit clock high  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_OUT delay  
PCM_IN setup  
MHz  
ns  
41  
41  
8
ns  
ns  
8
ns  
0
25  
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit period to  
PCM_OUT becoming high impedance  
0
25  
ns  
10.2 UART Interface  
The CYW4343X shares a single UART for Bluetooth and FM. The UART is a standard 4-wire interface (RX, TX, RTS, and CTS) with  
adjustable baud rates from 9600 bps to 4.0 Mbps. The interface features an automatic baud rate detection capability that returns a  
baud rate selection. Alternatively, the baud rate may be selected through a vendor-specific UART HCI command.  
The UART has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support EDR. Access to the FIFOs is conducted through  
the Advanced High Performance Bus (AHB) interface through either DMA or the CPU. The UART supports the Bluetooth 4.1 UART  
HCI specification: H4 and H5. The default baud rate is 115.2 Kbaud.  
The UART supports the 3-wire H5 UART transport as described in the Bluetooth specification (Three-wire UART Transport Layer).  
Compared to H4, the H5 UART transport reduces the number of signal lines required by eliminating the CTS and RTS signals.  
The CYW4343X UART can perform XON/XOFF flow control and includes hardware support for the Serial Line Input Protocol (SLIP).  
It can also perform a wake-on activity function. For example, activity on the RX or CTS inputs can wake the chip from a sleep state.  
Normally, the UART baud rate is set by a configuration record downloaded after device reset or by automatic baud rate detection,  
and the host does not need to adjust the baud rate. Support for changing the baud rate during normal HCI UART operation is  
included through a vendor-specific command that allows the host to adjust the contents of the baud rate registers. The CYW4343X  
UARTs operate correctly with the host UART as long as the combined baud rate error of the two devices is within ±2% (see  
Table 13).  
Document No. 002-14797 Rev. *H  
Page 52 of 128  
CYW4343X  
Table 13. Example of Common Baud Rates  
Actual Rate  
Desired Rate  
Error (%)  
4000000  
3692000  
3000000  
2000000  
1500000  
1444444  
921600  
460800  
230400  
115200  
57600  
4000000  
3692308  
3000000  
2000000  
1500000  
1454544  
923077  
461538  
230796  
115385  
57692  
0.00  
0.01  
0.00  
0.00  
0.00  
0.70  
0.16  
0.16  
0.17  
0.16  
0.16  
0.00  
0.16  
0.00  
0.16  
0.00  
38400  
38400  
28800  
28846  
19200  
19200  
14400  
14423  
9600  
9600  
UART timing is defined in Figure 37 and Table 14.  
Figure 37. UART Timing  
UART_CTS_N  
1
2
UART_TXD  
Midpoint of STOP bit  
Midpoint of STOP bit  
UART_RXD  
3
UART_RTS_N  
Table 14. UART Timing Specifications  
Characteristics Minimum  
Ref No.  
Typical  
Maximum  
Unit  
1
2
Delay time, UART_CTS_N low to UART_TXD valid  
1.5  
Bit periods  
Bit periods  
Setup time, UART_CTS_N high before midpoint  
of stop bit  
0.5  
3
Delay time, midpoint of stop bit to UART_RTS_N high  
0.5  
Bit periods  
Document No. 002-14797 Rev. *H  
Page 53 of 128  
CYW4343X  
2
10.3 I S Interface  
The CYW4343X supports an independent I2S digital audio port for high-fidelity FM audio or Bluetooth audio. The I2S interface sup-  
ports both master and slave modes. The I2S signals are:  
I2S Clock: I2S SCK  
I2S Word Select: I2S WS  
I2S Data Out: I2S SDO  
I2S Data In: I2S SDI  
I2S SCK and I2S WS become outputs in master mode and inputs in slave mode, while I2S SDO is always an output. The channel  
word length is 16 bits and the data is justified so that the MSB of the left-channel data is aligned with the MSB of the I2S bus, per the  
I2S specification. The MSB of each data word is transmitted one bit-clock cycle after the I2S WS transition, synchronous with the fall-  
ing edge of the bit clock. Left-channel data is transmitted when I2S WS is low, and right-channel data is transmitted when I2S WS is  
high. Data bits sent by the CYW4343X are synchronized with the falling edge of I2S_SCK and should be sampled by the receiver on  
the rising edge of I2S_SSCK.  
The clock rate in master mode is either of the following:  
48 kHz x 32 bits per frame = 1.536 MHz  
48 kHz x 50 bits per frame = 2.400 MHz  
The master clock is generated from the input reference clock using an N/M clock divider.  
In slave mode, clock rates up to 3.072 MHz are supported.  
10.3.1 I2S Timing  
Note: Timing values specified in Table 15 are relative to high and low threshold levels  
Table 15. Timing for I2S Transmitters and Receivers  
Transmitter  
Lower LImit Upper Limit  
Receiver  
Lower Limit Upper Limit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Notes  
Clock period T  
T
T
1
tr  
r
Master mode: Clock generated by transmitter or receiver.  
High tHC  
Low tLC  
0.35T  
0.35T  
0.35T  
0.35T  
2
2
tr  
tr  
tr  
tr  
Slave mode: Clock accepted by transmitter or receiver.  
High tHC  
0.35T  
0.35T  
0.35T  
0.35T  
3
3
4
tr  
tr  
tr  
tr  
Low tLC  
Rise time tRC  
0.15T  
tr  
Transmitter  
Delay tdtr  
0
0.8T  
5
4
Hold time thtr  
Receiver  
Setup time tsr  
Hold time thr  
0.2T  
0
6
6
r
Document No. 002-14797 Rev. *H  
Page 54 of 128  
CYW4343X  
Note:  
The system clock period T must be greater than Ttr and Tr because both the transmitter and receiver have to be able to  
handle the data transfer rate.  
At all data rates in master mode, the transmitter or receiver generates a clock signal with a fixed mark/space ratio. For this  
reason, tHC and tLC are specified with respect to T.  
In slave mode, the transmitter and receiver need a clock signal with minimum high and low periods so that they can detect  
the signal. As long as the minimum periods are greater than 0.35Tr, any clock that meets the requirements can be used.  
Because the delay (tdtr) and the maximum transmitter speed (defined by Ttr) are related, a fast transmitter driven by a slow  
clock edge can result in tdtr not exceeding tRC, which means thtr becomes zero or negative. Therefore, the transmitter has  
to guarantee that thtr is greater than or equal to zero, as long as the clock rise-time, tRC, does not exceed tRCmax, where  
tRCmax is not less than 0.15Ttr.  
To allow data to be clocked out on a falling edge, the delay is specified with respect to the rising edge of the clock signal  
and T, always giving the receiver sufficient setup time.  
The data setup and hold time must not be less than the specified receiver setup and hold time.  
Note: The time periods specified in Figure 38 and Figure 39 are defined by the transmitter speed. The receiver specifications must  
match transmitter performance.  
Figure 38. I2S Transmitter Timing  
T
tRC*  
tLC > 0.35T  
tHC > 0.35T  
VH = 2.0V  
VL = 0.8V  
SCK  
thtr > 0  
tdtr < 0.8T  
SD and WS  
T = Clock period  
Ttr = Minimum allowed clock period for transmitter  
T = Ttr  
* tRC is only relevant for transmitters in slave mode.  
Document No. 002-14797 Rev. *H  
Page 55 of 128  
CYW4343X  
Figure 39. I2S Receiver Timing  
T
tLC > 0.35T  
tHC > 0.35  
VH = 2.0V  
VL = 0.8V  
SCK  
tsr > 0.2T  
thr > 0  
SD and WS  
T = Clock period  
Tr = Minimum allowed clock period for transmitter  
T > Tr  
11. FM Receiver Subsystem  
11.1 FM Radio  
The CYW4343X includes a completely integrated FM radio receiver with RDS/RBDS covering all FM bands from 65 MHz to 108  
MHz. The receiver is controlled through commands on the HCI. FM received audio is available as a stereo analog output or in digital  
form through I2S or PCM. The FM radio operates from the external clock reference.  
11.2 Digital FM Audio Interfaces  
The FM audio can be transmitted via the shared PCM and I2S pins, and the sampling rate is programmable. The CYW4343X sup-  
ports a three-wire PCM or I2S audio interface in either a master or slave configuration. The master or slave configuration is selected  
using vendor specific commands over the HCI interface. In addition, multiple sampling rates are supported, derived from either the  
FM or Bluetooth clocks. In master mode, the clock rate is either of the following:  
48 kHz x 32 bits per frame = 1.536 MHz  
48 kHz x 50 bits per frame = 2.400 MHz  
In slave mode, clock rates up to 3.072 MHz are supported.  
11.3 Analog FM Audio Interfaces  
The demodulated FM audio signal is available as line-level analog stereo output, generated by twin internal high SNR audio DACs.  
11.4 FM Over Bluetooth  
The CYW4343X can output received FM audio onto Bluetooth using one of following three links: eSCO, WBS, or A2DP. For all link  
types, after a link has been established, the host processor can enter sleep mode while the CYW4343X streams FM audio to the  
remote Bluetooth device, thus minimizing system current consumption.  
11.5 eSCO  
In this use case, the stereo FM audio is downsampled to 8 kHz and a mono or stereo stream is sent through the Bluetooth eSCO link  
to a remote Bluetooth device, typically a headset. Two Bluetooth voice connections must be used to transport stereo.  
11.6 Wideband Speech Link  
In this case, the stereo FM audio is downsampled to 16 kHz and a mono or stereo stream is sent through the Bluetooth wideband  
speech link to a remote Bluetooth device, typically a headset. Two Bluetooth voice connections must be used to transport stereo.  
Document No. 002-14797 Rev. *H  
Page 56 of 128  
CYW4343X  
11.7 A2DP  
In this case, the stereo FM audio is encoded by the on-chip SBC encoder and transported as an A2DP link to a remote Bluetooth  
device. Sampling rates of 48 kHz, 44.1 kHz, and 32 kHz joint stereo are supported. An A2DP lite stack is implemented in the  
CYW4343X to support this use case, which eliminates the need to route the SBC-encoded audio back to the host to create the  
A2DP packets.  
11.8 Autotune and Search Algorithms  
The CYW4343X supports a number of FM search and tune functions, allowing the host to implement many convenient user func-  
tions by accessing the Broadcom FM stack.  
Tune to Play—Allows the FM receiver to be programmed to a specific frequency.  
Search for SNR > Threshold—Checks the power level of the available channel and the estimated SNR of the channel to  
help achieve precise control of the expected sound quality for the selected FM channel. Specifically, the host can adjust its  
SNR requirements to retrieve a signal with a specific sound quality, or adjust this to return the weakest channels.  
Alternate Frequency Jump—Allows the FM receiver to automatically jump to an alternate FM channel that carries the same  
information, but has a better SNR. For example, when traveling, a user may pass through a region where a number of  
channels carry the same station. When the user passes from one area to the next, the FM receiver can automatically switch  
to another channel with a stronger signal to spare the user from having to manually change the channel to continue listen-  
ing to the same station.  
11.9 Audio Features  
A number of features are implemented in the CYW4343X to provide the best possible audio experience for the user.  
Mono/Stereo Blend or Switch—The CYW4343X provides automatic control of the stereo or mono settings based on the FM  
signal carrier-to-noise ratio (C/N). This feature is used to maintain the best possible audio SNR based on the FM channel  
condition. Two modes of operation are supported:  
Blend: In this mode, fine control of stereo separation is used to achieve optimal audio quality over a wide range of input  
C/N. The amount of separation is fully programmable. In Figure 40, the separation is programmed to maintain a mini-  
mum 50 dB SNR across the blend range.  
Switch: In this mode, the audio switches from full stereo to full mono at a predetermined level to maintain optimal audio  
quality. The stereo-to-mono switch point and the mono-to-stereo switch points are fully programmable to provide the  
desired amount of audio SNR. In Figure 41, the switch point is programmed to switch to mono to maintain a 40 dB SNR.  
Document No. 002-14797 Rev. *H  
Page 57 of 128  
CYW4343X  
Figure 40. Blending and Switching Usage  
Input C/N (dB)  
Figure 41. Blending and Switching Separation  
Input C/N (dB)  
Soft Mute—Improves the user experience by dynamically muting the output audio proportionate to the FM signal C/N. This  
prevents a blast of static to the user. The mute characteristic is fully programmable to accommodate fine tuning of the out-  
put signal level. An example mute characteristic is shown in Figure 42.  
Document No. 002-14797 Rev. *H  
Page 58 of 128  
CYW4343X  
Figure 42. Soft Muting Characteristic  
Input C/N (dB)  
High Cut—A programmable high-cut filter is provided to reduce the amount of high-frequency noise caused by static in the  
output audio signal. Like the soft mute circuit, it is fully programmable to provide any amount of high cut based on the FM  
signal C/N.  
Audio Pause Detect—The FM receiver monitors the magnitude of the audio signal and notifies the host through an inter-  
rupt when the magnitude of the signal has fallen below the threshold set for a programmable period. This feature can be  
used to provide alternate frequency jumps during periods of silence to minimize disturbances to the listener. Filtering tech-  
niques are used within the audio pause detection block to provide more robust presence-to-silence detection and silence-  
to-presence detection.  
Automatic Antenna Tuning—The CYW4343X has an on-chip automatic antenna tuning network. When used with a single  
off-chip inductor, the on-chip circuitry automatically chooses an optimal on-chip matching component to obtain the highest  
signal strength for the desired frequency. The high-Q nature of this matching network simultaneously provides out-of-band  
blocking protection as well as a reduction of radiated spurious emissions from the FM antenna. It is designed to accommo-  
date a wide range of external wire antennas.  
11.10 RDS/RBDS  
The CYW4343X integrates a RDS/RBDS modem, the decoder includes programmable filtering and buffering functions. The RDS/  
RBDS data can be read out through the HCI interface.  
In addition, the RDS/RBDS receive functionality supports the following:  
Block decoding, error correction, and synchronization  
A flywheel synchronization feature, allowing the host to set parameters for acquisition, maintenance, and loss of sync. (It is  
possible to set up the CYW4343X such that synchronization is achieved when a minimum of two good blocks (error free)  
are decoded in sequence. The number of good blocks required for sync is programmable.)  
Storage capability up to 126 blocks of RDS data  
Full or partial block-B match detection with host interruption  
Audio pause detection with programmable parameters  
Program Identification (PI) code detection with host interruption  
Automatic frequency jumping  
Block-E filtering  
Soft muting  
Document No. 002-14797 Rev. *H  
Page 59 of 128  
CYW4343X  
Signal dependent mono/stereo blending  
12. CPU and Global Functions  
12.1 WLAN CPU and Memory Subsystem  
The CYW4343X includes an integrated ARM Cortex-M3 processor with internal RAM and ROM. The ARM Cortex-M3 processor is a  
low-power processor that features low gate count, low interrupt latency, and low-cost debugging. It is intended for deeply embedded  
applications that require fast interrupt response features. The processor implements the ARM architecture v7-M with support for the  
Thumb-2 instruction set. ARM Cortex-M3 provides a 30% performance gain over ARM7TDMI.  
At 0.19 µW/MHz, the Cortex-M3 is the most power efficient general purpose microprocessor available, outperforming 8- and 16-bit  
devices on MIPS/µW. It supports integrated sleep modes.  
ARM Cortex-M3 uses multiple technologies to reduce cost through improved memory utilization, reduced pin overhead, and reduced  
silicon area. ARM Cortex-M3 supports independent buses for code and data access (ICode/DCode and system buses). ARM Cor-  
tex-M3 supports extensive debug features including real-time tracing of program execution.  
On-chip memory for the CPU includes 512 KB SRAM and 640 KB ROM.  
12.2 One-Time Programmable Memory  
Various hardware configuration parameters may be stored in an internal 4096-bit One-Time Programmable (OTP) memory, which is  
read by system software after a device reset. In addition, customer-specific parameters, including the system vendor ID and the  
MAC address, can be stored, depending on the specific board design.  
The initial state of all bits in an unprogrammed OTP device is 0. After any bit is programmed to a 1, it cannot be reprogrammed to 0.  
The entire OTP array can be programmed in a single write cycle using a utility provided with the Broadcom WLAN manufacturing  
test tools. Alternatively, multiple write cycles can be used to selectively program specific bytes, but only bits which are still in the 0  
state can be altered during each programming cycle.  
Prior to OTP memory programming, all values should be verified using the appropriate editable nvram.txt file, which is provided with  
the reference board design package. Documentation on the OTP development process is available on the Broadcom customer sup-  
port portal (http://www.broadcom.com/support).  
12.3 GPIO Interface  
Five general purpose I/O (GPIO) pins are available on the CYW4343X that can be used to connect to various external devices.  
GPIOs are tristated by default. Subsequently, they can be programmed to be either input or output pins via the GPIO control register.  
They can also be programmed to have internal pull-up or pull-down resistors.  
GPIO_0 is normally used as a WL_HOST_WAKE signal.  
The CYW4343X supports a 2-wire coexistence configuration using GPIO_1 and GPIO_2. The CYW4343X supports 2-wire, 3-wire,  
and 4-wire coexistence configurations using GPIO_1 through GPIO_4. The signal functions of GPIO_1 through GPIO_4 are pro-  
grammable to support the three coexistence configurations.  
12.4 External Coexistence Interface  
The CYW4343X supports a 2-wire, 3-wire, and 4-wire coexistence interfaceinterfaces to enable signaling between the device and an  
external colocated wireless device in order to manage wireless medium sharing for optimal performance. The external colocated  
device can be any of the following ICs: GPS, WiMAX, LTE, or UWB. An LTE IC is used in this section for illustration.  
12.4.1 2-Wire Coexistence  
Figure 43 shows a 2-wire LTE coexistence example. The following definitions apply to the GPIOs in the figure:  
GPIO_1: WLAN_SECI_TX output to an LTE IC.  
GPIO_2: WLAN_SECI_RX input from an LTE IC.  
Document No. 002-14797 Rev. *H  
Page 60 of 128  
CYW4343X  
Figure 43. 2-Wire Coexistence Interface to an LTE IC  
GPIO_1  
GPIO_2  
WLAN_SECI_TX  
WLAN_SECI_RX  
UART_IN  
WLAN  
BT/FM  
UART_OUT  
Coexistence  
Interface  
CYW4343X  
LTE/IC  
Notes:  
OR’ing to generate ISM_RX_PRIORITY for ERCX_TXCONF or BT_RX_PRIORITY is achieved by  
setting the GPIO mask registers appropriately.  
WLAN_SECI_OUT and WLAN_SECI_IN are multiplexed on the GPIOs.  
See Figure 37 on page 53 and Table 14, “UART Timing Specifications,” on page 53 for UART timing.  
12.4.2 3-Wire and 4-Wire Coexistence Interfaces  
Figure 44 and Figure 45 show 3-wire and 4-wire LTE coexistence examples, respectively. The following definitions apply to the  
GPIOs in the figures:  
For the 3-wire coexistence interface:  
GPIO_2: WLAN priority output to an LTE IC.  
GPIO_3: LTE_RX input from an LTE IC.  
GPIO_4: LTE_TX input from an LTE IC.  
For the 4-wire coexistence interface:  
GPIO_1: WLAN priority output to an LTE IC.  
GPIO_2: LTE frame sync input from an LTE IC. This GPIO applies only to the 4-wire coexistence interface.  
GPIO_3: LTE_RX input from an LTE IC.  
GPIO_4: LTE_TX input from an LTE IC.  
Figure 44. 3-Wire Coexistence Interface to an LTE IC  
GPIO_2  
WLAN  
BT/FM  
WLAN Priority  
LTE_RX  
GPIO_3  
GPIO_4  
Coexistence  
Interface  
LTE_TX  
CYW4343X  
LTE/IC  
Note: OR’ing to generate WCN_PRIORITY for ERCX_TXCONF or BT_RX_PRIORITY is achieved by  
setting the GPIO mask registers appropriately.  
Document No. 002-14797 Rev. *H  
Page 61 of 128  
CYW4343X  
Figure 45. 4-Wire Coexistence Interface to an LTE IC  
GPIO_1  
WLAN Priority  
WLAN  
BT/FM  
GPIO_2  
GPIO_3  
GPIO_4  
LTE_Frame_Sync  
Coexistence  
Interface  
LTE_RX  
LTE_TX  
CYW4343X  
LTE/IC  
Note: OR’ing to generate WCN_PRIORITY for ERCX_TXCONF or BT_RX_PRIORITY is achieved by  
setting the GPIO mask registers appropriately.  
12.5 JTAG Interface  
The CYW4343X supports the IEEE 1149.1 JTAG boundary scan standard over SDIO for performing device package and PCB  
assembly testing during manufacturing. In addition, the JTAG interface allows Cypress to assist customers by using proprietary  
debug and characterization test tools during board bring-up. Therefore, it is highly recommended to provide access to the JTAG pins  
by means of test points or a header on all PCB designs.  
12.6 UART Interface  
One UART interface can be enabled by software as an alternate function on the JTAG pins. UART_RX is available on the JTAG_TDI  
pin, and UART_TX is available on the JTAG_TDO pin.  
The UART is primarily for debugging during development. By adding an external RS-232 transceiver, this UART enables the  
CYW4343X to operate as RS-232 data termination equipment (DTE) for exchanging and managing data with other serial devices. It  
is compatible with the industry standard 16550 UART, and it provides a FIFO size of 64 × 8 in each direction.  
Document No. 002-14797 Rev. *H  
Page 62 of 128  
CYW4343X  
13. WLAN Software Architecture  
13.1 Host Software Architecture  
The host driver (DHD) provides a transparent connection between the host operating system and the CYW4343X media (for exam-  
ple, WLAN) by presenting a network driver interface to the host operating system and communicating with the CYW4343X over an  
interface-specific bus (SPI, SDIO, and so on) to:  
Forward transmit and receive frames between the host network stack and the CYW4343X device.  
Pass control requests from the host to the CYW4343X device, returning the CYW4343X device responses.  
The driver communicates with the CYW4343X over the bus using a control channel and a data channel to pass control messages  
and data messages. The actual message format is based on the BDC protocol.  
13.2 Device Software Architecture  
The wireless device, protocol, and bus drivers are run on the embedded ARM processor using a Broadcom-defined operating sys-  
tem called HNDRTE, which transfers data over a propriety Broadcom format over the SDIO/SPI interface between the host and  
device (BDC/LMAC). The data portion of the format consists of IEEE 802.11 frames wrapped in a Broadcom encapsulation. The host  
architecture provides all missing functionality between a network device and the Broadcom device interface. The host can also be  
customized to provide functionality between the Broadcom device interface and a full network device interface.  
This transfer requires a message-oriented (framed) interconnect between the host and device. The SDIO bus is an addressed bus—  
each host-initiated bus operation contains an explicit device target address—and does not natively support a higher-level data frame  
concept. Broadcom has implemented a hardware/software message encapsulation scheme that ignores the bus operation code  
address and prefixes each frame with a 4-byte length tag for framing. The device presents a packet-level interface over which data,  
control, and asynchronous event (from the device) packets are supported.  
The data and control packets received from the bus are initially processed by the bus driver and then passed on to the protocol  
driver. If the packets are data packets, they are transferred to the wireless device driver (and out through its medium), and a data  
packet received from the device medium follows the same path in the reverse direction. If the packets are control packets, the proto-  
col header is decoded by the protocol driver. If the packets are wireless IOCTL packets, the IOCTL API of the wireless driver is  
called to configure the wireless device. The microcode running in the D11 core processes all time-critical tasks.  
13.3 Remote Downloader  
When the CYW4343X powers up, the DHD initializes and downloads the firmware to run in the device.  
Figure 46. WLAN Software Architecture  
DHD Host Driver  
SPI/SDIO  
BDC/LMAC Protocol  
Wireless Device Driver  
D11 Core  
13.4 Wireless Configuration Utility  
The device driver that supports the Cypress IEEE 802.11 family of wireless solutions provides an input/output control (IOCTL) inter-  
face for making advanced configuration settings. The IOCTL interface makes it possible to make settings that are normally not pos-  
sible when using just the native operating system-specific IEEE 802.11 configuration mechanisms. The utility uses IOCTLs to query  
or set a number of different driver/chip operating properties.  
Document No. 002-14797 Rev. *H  
Page 63 of 128  
CYW4343X  
14. Pinout and Signal Descriptions  
14.1 Ball Map  
Figure 48 on page 65 shows the 63-ball WLBGA ball map.Figure 47 shows the 74-ball WLBGA ball map. Figure 49 on page 66 shows the 153-bump  
WLCSP.  
Figure 47. 74-Ball WLBGA Ball Map (Bottom View)  
A
B
C
D
E
F
G
H
J
K
L
M
BT_UART_ BT_DEV_ BT_HOST_  
BT_VCO_V  
DD  
WLRF_2G_ WLRF_2G_  
WLRF_PA_  
VDD  
FM_RF_IN  
BT_IF_VDD BT_PAVDD  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
RXD  
WAKE  
WAKE  
eLG  
RF  
WLRF_GE  
NERAL_GN  
D
WLRF_VD  
D_  
1P35  
BT_UART_ BT_UART_  
FM_RF_VD BTFM_PLL BTFM_PLL  
WLRF_LNA  
_GND  
WLRF_PA_  
GND  
FM_OUT1 FM_OUT2  
BT_IF_VSS  
TXD  
CTS_N  
D
_VDD  
_VSS  
WLRF_XTA  
L_  
VDD1P2  
BT_I2S_  
WS  
BT_UART_  
VDDC  
FM_RF_VS  
S
BT_VCO_V WLRF_GPI  
WLRF_VC  
O_GND  
BT_I2S_DO  
RTS_N  
SS  
O
BT_I2S_CL BT_PCM_O BT_PCM_I  
UT  
WLRF_AFE  
_GND  
WLRF_XTA WLRF_XTA  
VSSC  
BT_GPIO_3  
VDDC  
GPIO_3  
GPIO_4  
K
N
L_GND  
L_XOP  
BT_PCM_C BT_PCM_S SYS_VDDI  
WLRF_XTA  
L_XON  
WPT_1P8 WPT_3P3  
LPO_IN BT_GPIO_4 BT_GPIO_5  
VSSC  
GPIO_2  
LK  
YNC  
O
PMU_AVS VOUT_CLD VOUT_LNL BT_REG_O WCC_VDDI WL_REG_  
SDIO_DAT  
A_0  
SR_VLX  
GPIO_1  
GPIO_0  
SDIO_CMD CLK_REQ  
S
O
DO  
N
O
ON  
SR_VDDB LDO_VDD1  
LDO_VDD  
BAT5V  
SDIO_DAT SDIO_DAT  
SDIO_DAT  
SDIO_CLK  
A_2  
SR_PVSS  
VOUT_3P3  
AT5V  
P5  
A_1  
A_3  
A
B
C
D
E
F
G
H
J
K
L
M
Document No. 002-14797 Rev. *H  
Page 64 of 128  
CYW4343X  
Figure 48. 63-Ball WLBGA Ball Map (Bottom View)  
A
B
C
D
E
F
G
H
J
K
L
M
BT_UART_ BT_DEV_ BT_HOST_  
RXD WAKE WAKE  
BT_VCO_  
VDD  
BT_IF_  
VDD  
WLRF_  
2G_eLG  
WLRF_  
2G_RF  
WLRF_  
PA_VDD  
FM_RF_IN  
BT_PAVDD  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
WLRF_  
GENERAL_  
GND  
WLRF_VD  
D_  
1P35  
BT_UART_ BT_UART_  
TXD CTS_N  
FM_RF_  
VDD  
BTFM_  
PLL_VDD PLL_VSS  
BTFM_  
WLRF_  
LNA_GND  
WLRF_PA_  
GND  
FM_OUT1 FM_OUT2  
BT_IF_VSS  
BT_UART_  
VDDC  
FM_RF_VS  
S
BT_VCO_V WLRF_GPI  
WLRF_VC WLRF_XTA  
O_GND L_VDD1P2  
RTS_N  
SS  
O
BT_PCM_ BT_PCM_I  
OUT  
WLRF_AFE  
_GND  
WLRF_XTA WLRF_XTA  
VSSC  
VDDC  
N
L_GND  
L_XOP  
BT_PCM_ BT_PCM_  
WLRF_XTA  
L_XON  
LPO_IN  
VSSC  
GPIO_2  
CLK  
SYNC  
PMU_AVS VOUT_CLD VOUT_LNL BT_REG_O WCC_VDDI WL_REG_  
SDIO_  
DATA_0  
SR_VLX  
GPIO_1  
GPIO_0  
SDIO_CMD CLK_REQ  
S
O
DO  
N
O
ON  
SR_  
VDDBAT5V  
LDO_VDD1  
P5  
LDO_  
VDDBAT5V  
SDIO_  
DATA_1  
SDIO_  
DATA_3  
SDIO_  
SR_PVSS  
VOUT_3P3  
SDIO_CLK  
DATA_2  
A
B
C
D
E
F
G
H
J
K
L
M
Document No. 002-14797 Rev. *H  
Page 65 of 128  
CYW4343X  
Figure 49. 153-Bump WLCSP (Top View)(4343W)  
14.2 WLBGA Ball List in Ball Number Order with X-Y Coordinates  
Table 16 provides ball numbers and names in ball number order. The table includes the X and Y coordinates for a top  
view with a (0,0) center.  
Table 16. CYW4343X WLBGA Ball List — Ordered By Ball Number  
Ball Number  
Ball Name  
X Coordinate  
–1200.006  
–799.992  
Y Coordinate  
2199.996  
2199.996  
A1  
A2  
BT_UART_RXD  
BT_UART_TXD  
Document No. 002-14797 Rev. *H  
Page 66 of 128  
CYW4343X  
Table 16. CYW4343X WLBGA Ball List — Ordered By Ball Number (Cont.)  
Ball Number  
Ball Name  
BT_I2S_WS or BT_PCM_SYNC  
BT_I2S_CLK or BT_PCM_CLK  
BT_PCM_CLK or BT_I2S_CLK  
SR_VLX  
X Coordinate  
–399.996  
Y Coordinate  
2199.996  
A3  
A4  
A5  
A6  
A7  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
D2  
D3  
D4  
D5  
D6  
E1  
E2  
E3  
E5  
E6  
E7  
F1  
F2  
F4  
F5  
F6  
F7  
G1  
G2  
0
2199.996  
2199.996  
2199.978  
2199.978  
1800  
399.996  
799.992  
1199.988  
–1200.006  
–799.992  
–399.996  
0
SR_PVSS  
BT_DEV_WAKE  
BT_UART_CTS_N  
BT_I2S_DO or BT_PCM_OUT  
BT_PCM_OUT or BT_I2S_DO  
BT_PCM_SYNC or BT_I2S_WS  
PMU_AVSS  
1800  
1800  
1800  
399.996  
799.992  
1199.988  
–1200.006  
–799.992  
–399.996  
0
1800  
1799.982  
1799.982  
1399.995  
1399.986  
1399.995  
1399.995  
1399.986  
1399.986  
1399.986  
999.99  
SR_VBAT5V  
BT_HOST_WAKE  
FM_OUT1  
BT_UART_RTS_N  
BT_PCM_IN or BT_I2S_DI  
SYS_VDDIO  
399.996  
799.992  
1199.988  
–799.992  
–399.996  
0
VOUT_CLDO  
LDO_VDD15V  
FM_OUT2  
VDDC  
999.999  
999.999  
999.99  
VSSC  
WPT_1P8  
399.996  
799.992  
–1199.988  
–799.992  
–399.996  
399.996  
799.992  
1199.988  
–1199.988  
–799.992  
0
VOUT_LNLDO  
FM_RF_IN  
999.99  
599.994  
599.994  
599.994  
599.994  
599.994  
599.994  
199.998  
199.998  
199.998  
199.998  
199.998  
199.998  
–199.998  
–199.998  
FM_RF_VDD  
FM_RF_VSS  
WPT_3P3  
BT_REG_ON  
VOUT_3P3  
BT_VCO_VDD  
BTFM_PLL_VDD  
BT_GPIO_3  
LPO_IN  
399.996  
800.001  
1199.988  
–1199.988  
–799.992  
WCC_VDDIO  
LDO_VBAT5V  
BT_IF_VDD  
BTFM_PLL_VSS  
Document No. 002-14797 Rev. *H  
Page 67 of 128  
CYW4343X  
Table 16. CYW4343X WLBGA Ball List — Ordered By Ball Number (Cont.)  
Ball Number  
Ball Name  
X Coordinate  
Y Coordinate  
–199.998  
G4  
G5  
G6  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
J1  
VDDC  
0
BT_GPIO_4  
WL_REG_ON  
BT_PAVDD  
BT_IF_VSS  
BT_VCO_VSS  
399.996  
800.001  
–199.998  
–199.998  
–599.994  
–599.994  
–599.994  
–599.994  
–599.994  
–599.994  
–599.994  
–999.99  
–1199.988  
–799.992  
–399.996  
0
WLRF_AFE_GND  
BT_GPIO_5  
399.996  
800.001  
1200.006  
–1199.988  
–799.992  
–399.996  
399.996  
800.001  
1200.006  
–1199.988  
–799.992  
0
GPIO_1  
SDIO_DATA_1  
WLRF_2G_eLG  
WLRF_LNA_GND  
WLRF_GPIO  
J2  
–999.99  
J3  
–999.99  
J5  
VSSC  
–999.999  
–999.999  
–999.999  
–1399.986  
–1399.986  
–1399.995  
–1399.995  
–1399.995  
–1799.982  
–1799.982  
–1799.982  
–1799.991  
–1799.991  
–1799.991  
–2199.978  
–2199.978  
–2199.978  
–2199.978  
–2199.978  
–2199.996  
–2199.996  
J6  
GPIO_0  
J7  
SDIO_DATA_3  
WLRF_2G_RF  
WLRF_GENERAL_GND  
GPIO_3  
K1  
K2  
K4  
K5  
K6  
L2  
GPIO_4  
399.996  
800.001  
–799.992  
–399.996  
0
SDIO_DATA_0  
WLRF_PA_GND  
WLRF_VCO_GND  
WLRF_XTAL_GND  
GPIO_2  
L3  
L4  
L5  
399.996  
800.001  
1200.006  
–1199.988  
–799.992  
–399.996  
0
L6  
SDIO_CMD  
L7  
SDIO_DATA_2  
WLRF_PA_VDD  
WLRF_VDD_1P35  
WLRF_XTAL_VDD1P2  
WLRF_XTAL_XOP  
WLRF_XTAL_XON  
CLK_REQ  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
399.996  
800.001  
1200.006  
SDIO_CLK  
Document No. 002-14797 Rev. *H  
Page 68 of 128  
CYW4343X  
14.3 WLBGA Ball List in Ball Number Order with X-Y Coordinates  
Table 17 provides ball numbers and names in ball number order. The table includes the X and Y coordinates for a top view with a  
(0,0) center.  
Table 17. CYW4343X WLBGA Ball List — Ordered By Ball Number  
Ball Number  
Ball Name  
X Coordinate  
–1200.006  
Y Coordinate  
2199.996  
A1  
A2  
A5  
A6  
A7  
B1  
B2  
B4  
B5  
B6  
B7  
C1  
C2  
C3  
C4  
C6  
C7  
D2  
D3  
D4  
D6  
E1  
E2  
E3  
E6  
E7  
F1  
F2  
F5  
F6  
F7  
G1  
G2  
G4  
BT_UART_RXD  
BT_UART_TXD  
–799.992  
399.996  
799.992  
1199.988  
–1200.006  
–799.992  
0
2199.996  
2199.996  
2199.978  
2199.978  
1800  
BT_PCM_CLK or BT_I2S_CLK  
SR_VLX  
SR_PVSS  
BT_DEV_WAKE  
BT_UART_CTS_N  
BT_PCM_OUT or BT_I2S_DO  
BT_PCM_SYNC or BT_I2S_WS  
PMU_AVSS  
1800  
1800  
399.996  
799.992  
1199.988  
–1200.006  
–799.992  
–399.996  
0
1800  
1799.982  
1799.982  
1399.995  
1399.986  
1399.995  
1399.995  
1399.986  
1399.986  
999.99  
SR_VBAT5V  
BT_HOST_WAKE  
FM_OUT1  
BT_UART_RTS_N  
BT_PCM_IN or BT_I2S_DI  
VOUT_CLDO  
LDO_VDD15V  
FM_OUT2  
799.992  
1199.988  
–799.992  
–399.996  
0
VDDC  
999.999  
999.999  
999.99  
VSSC  
VOUT_LNLDO  
FM_RF_IN  
799.992  
–1199.988  
–799.992  
–399.996  
799.992  
1199.988  
–1199.988  
–799.992  
399.996  
800.001  
1199.988  
–1199.988  
–799.992  
0
599.994  
599.994  
599.994  
599.994  
599.994  
199.998  
199.998  
199.998  
199.998  
199.998  
–199.998  
–199.998  
–199.998  
FM_RF_VDD  
FM_RF_VSS  
BT_REG_ON  
VOUT_3P3  
BT_VCO_VDD  
BTFM_PLL_VDD  
LPO_IN  
WCC_VDDIO  
LDO_VBAT5V  
BT_IF_VDD  
BTFM_PLL_VSS  
VDDC  
Document No. 002-14797 Rev. *H  
Page 69 of 128  
CYW4343X  
Table 17. CYW4343X WLBGA Ball List — Ordered By Ball Number (Cont.)  
Ball Number  
Ball Name  
X Coordinate  
Y Coordinate  
–199.998  
G6  
H1  
H2  
H3  
H4  
H6  
H7  
J1  
WL_REG_ON  
BT_PAVDD  
800.001  
–1199.988  
–799.992  
–399.996  
0
–599.994  
–599.994  
–599.994  
–599.994  
–599.994  
–599.994  
–999.99  
BT_IF_VSS  
BT_VCO_VSS  
WLRF_AFE_GND  
GPIO_1  
800.001  
1200.006  
–1199.988  
–799.992  
–399.996  
399.996  
800.001  
1200.006  
–1199.988  
–799.992  
800.001  
–799.992  
–399.996  
0
SDIO_DATA_1  
WLRF_2G_eLG  
WLRF_LNA_GND  
WLRF_GPIO  
J2  
–999.99  
J3  
–999.99  
J5  
VSSC  
–999.999  
–999.999  
–999.999  
–1399.986  
–1399.986  
–1399.995  
–1799.982  
–1799.982  
–1799.982  
–1799.991  
–1799.991  
–1799.991  
–2199.978  
–2199.978  
–2199.978  
–2199.978  
–2199.978  
–2199.996  
–2199.996  
J6  
GPIO_0  
J7  
SDIO_DATA_3  
WLRF_2G_RF  
WLRF_GENERAL_GND  
SDIO_DATA_0  
WLRF_PA_GND  
WLRF_VCO_GND  
WLRF_XTAL_GND  
GPIO_2  
K1  
K2  
K6  
L2  
L3  
L4  
L5  
L6  
L7  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
399.996  
800.001  
1200.006  
–1199.988  
–799.992  
–399.996  
0
SDIO_CMD  
SDIO_DATA_2  
WLRF_PA_VDD  
WLRF_VDD_1P35  
WLRF_XTAL_VDD1P2  
WLRF_XTAL_XOP  
WLRF_XTAL_XON  
CLK_REQ  
399.996  
800.001  
1200.006  
SDIO_CLK  
14.4 WLCSP Bump List in Bump Order with X-Y Coordinates  
Table 18. CYW4343X WLCSP Bump List — Ordered By Bump Number  
Bump View  
(0,0 Center of Die)  
Top View  
(0,0 Center of Die)  
Bump  
Number  
Bump Name  
BT_UART_RXD  
X Coordinate  
Y Coordinate  
X Coordinate Y Coordinate  
1
2
3
1228.248  
944.082  
238.266  
2133.594  
2195.919  
2275.020  
–1228.248  
–944.082  
–238.266  
2133.594  
2195.919  
2275.020  
BT_VDDC_ISO_2  
BT_PCM_CLK or BT_I2S_CLK  
Document No. 002-14797 Rev. *H  
Page 70 of 128  
CYW4343X  
Table 18. CYW4343X WLCSP Bump List — Ordered By Bump Number (Cont.)  
Bump View  
(0,0 Center of Die)  
Top View  
(0,0 Center of Die)  
Bump  
Number  
Bump Name  
X Coordinate  
Y Coordinate  
X Coordinate Y Coordinate  
4
5
6
7
8
9
BT_TM1  
–327.438  
662.544  
379.692  
1086.822  
521.118  
–44.586  
–327.438  
1228.248  
945.396  
662.544  
379.692  
–186.012  
516.501  
1086.822  
238.266  
–327.438  
662.544  
96.840  
2275.020  
2133.594  
2133.594  
1992.168  
1992.168  
1992.168  
1992.168  
1850.742  
1850.742  
1850.742  
1850.742  
1850.742  
1717.578  
1709.316  
1709.316  
1709.316  
1567.890  
1567.890  
1567.890  
1426.464  
1426.464  
1285.038  
1189.863  
860.760  
327.438  
2275.020  
2133.594  
2133.594  
1992.168  
1992.168  
1992.168  
1992.168  
1850.742  
1850.742  
1850.742  
1850.742  
1850.742  
1717.578  
1709.316  
1709.316  
1709.316  
1567.890  
1567.890  
1567.890  
1426.464  
1426.464  
1285.038  
1189.863  
860.760  
BT_GPIO_3  
–662.544  
–379.692  
–1086.822  
–521.118  
44.586  
BT_DEV_WAKE  
BT_UART_RTS_N  
BT_GPIO_4  
BT_VDDC_ISO_1  
BT_GPIO_5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
327.438  
BT_HOST_WAKE  
BT_UART_TXD  
BT_GPIO_2  
–1228.248  
–945.396  
–662.544  
–379.692  
186.012  
BT_VDDC  
BT_I2S_CLK or BT_PCM_CLK  
BT_VDDC  
–516.501  
–1086.822  
–238.266  
327.438  
BT_PCM_SYNC or BT_I2S_WS  
BT_I2S_WS or BT_PCM_SYNC  
BT_PCM_OUT or BT_I2S_DO  
BT_PCM_IN or BT_I2S_DI  
VSSC  
–662.544  
–96.840  
BT_UART_CTS_N  
BT_I2S_DI or BT_PCM_IN  
BT_I2S_DO or BT_PCM_OUT  
VSSC  
–186.012  
238.266  
–327.438  
96.840  
186.012  
–238.266  
327.438  
–96.840  
BT_VDDC  
518.391  
238.266  
–44.586  
110.286  
–327.438  
521.118  
238.266  
–44.586  
229.986  
1185.471  
–875.142  
1243.031  
1043.033  
820.485  
1243.031  
1043.033  
1252.220  
–518.391  
–238.266  
44.586  
VSSC  
BT_VDDC  
719.334  
719.334  
VSSC  
561.303  
–110.286  
327.438  
561.303  
VSSC  
436.482  
436.482  
BT_VDDC  
436.473  
–521.118  
–238.266  
44.586  
436.473  
VSSC  
153.630  
153.630  
VSSC  
153.630  
153.630  
BT_VDDC  
–185.976  
–455.270  
–836.352  
1443.096  
1443.096  
1275.098  
1243.098  
1243.098  
1043.100  
–229.986  
–1185.471  
875.142  
–185.976  
–455.270  
–836.352  
1443.096  
1443.096  
1275.098  
1243.098  
1243.098  
1043.100  
BT_PAVSS  
VSSC  
FM_DAC_VOUT1  
FM_DAC_AVSS  
FM_PLLAVSS  
FM_DAC_VOUT2  
FM_DAC_AVDD  
FM_VCOVSS  
–1243.031  
–1043.033  
–820.485  
–1243.031  
–1043.033  
–1252.220  
Document No. 002-14797 Rev. *H  
Page 71 of 128  
CYW4343X  
Table 18. CYW4343X WLCSP Bump List — Ordered By Bump Number (Cont.)  
Bump View  
(0,0 Center of Die)  
Top View  
(0,0 Center of Die)  
Bump  
Number  
Bump Name  
FM_PLLDVDD1P2  
X Coordinate  
Y Coordinate  
X Coordinate Y Coordinate  
43  
820.485  
1120.383  
1274.787  
1172.988  
972.990  
772.304  
1276.551  
686.628  
886.626  
1185.471  
1185.462  
781.893  
781.893  
429.885  
1185.471  
786.393  
429.885  
583.250  
1262.642  
1082.642  
1206.990  
628.713  
986.531  
451.188  
799.992  
612.878  
986.531  
1249.686  
1069.686  
274.613  
75.519  
960.593  
–820.485  
–1120.383  
–1274.787  
–1172.988  
–972.990  
–772.304  
–1276.551  
–686.628  
–886.626  
–1185.471  
–1185.462  
–781.893  
–781.893  
–429.885  
–1185.471  
–786.393  
–429.885  
–583.250  
–1262.642  
–1082.642  
–1206.990  
–628.713  
–986.531  
–451.188  
–799.992  
–612.878  
–986.531  
–1249.686  
–1069.686  
–274.613  
–75.519  
960.593  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
FM_VCOVDD1P2  
FM_RFVDD1P2  
FM_RFVSS  
892.373  
892.373  
764.213  
764.213  
563.990  
563.990  
FM_IFVSS  
563.990  
563.990  
FM_IFDVDD1P2  
FM_RFINMAIN  
BT_DVSS  
563.990  
563.990  
383.225  
383.225  
160.911  
160.911  
BT_IFVDD1P2  
BT_AGPIO  
148.775  
148.775  
–55.274  
–55.274  
BT_PAVDD2P5  
BT_LNAVDD1P2  
BT_LNAVSS  
–255.272  
–263.768  
–463.766  
–499.995  
–655.268  
–663.764  
–699.993  
–999.990  
–1006.290  
–1006.290  
–1458.198  
–1590.210  
–1649.615  
–1682.370  
–1729.224  
–1800.135  
–1829.615  
–2016.945  
–2016.945  
–2086.677  
–2106.621  
–2298.978  
–2298.978  
2133.594  
2133.594  
1850.742  
1002.186  
436.482  
–255.272  
–263.768  
–463.766  
–499.995  
–655.268  
–663.764  
–699.993  
–999.990  
–1006.290  
–1006.290  
–1458.198  
–1590.210  
–1649.615  
BT_PLLVSS  
BT_VCOVDD1P2  
BT_VCOVSS  
BT_PLLVDD1P2  
WRF_AFE_GND  
WRF_RFIN_ELG_2G  
WRF_RX2G_GND  
WRF_RFIO_2G  
WRF_GENERAL_GND  
WRF_PA_GND3P3  
WRF_VCO_GND  
WRF_GPAIO_OUT  
WRF_PMU_VDD1P35  
WRF_PA_GND3P3  
WRF_PA_VDD3P3  
WRF_PA_VDD3P3  
WRF_XTAL_GND1P2  
WRF_XTAL_VDD1P2  
WRF_XTAL_XOP  
WRF_XTAL_XON  
LPO_IN  
–1682.370  
–1729.224  
–1800.135  
–1829.615  
–2016.945  
–2016.945  
–2086.677  
–2106.621  
–2298.978  
–2298.978  
2133.594  
2133.594  
1850.742  
1002.186  
436.482  
311.126  
131.126  
96.840  
–311.126  
–131.126  
–96.840  
WCC_VDDIO  
–186.012  
96.813  
186.012  
VSSC  
–96.813  
WCC_VDDIO  
–44.586  
–1299.420  
–1157.994  
44.586  
GPIO_12  
1299.420  
1157.994  
GPIO_11  
295.056  
295.056  
Document No. 002-14797 Rev. *H  
Page 72 of 128  
CYW4343X  
Table 18. CYW4343X WLCSP Bump List — Ordered By Bump Number (Cont.)  
Bump View  
(0,0 Center of Die)  
Top View  
(0,0 Center of Die)  
Bump  
Number  
Bump Name  
X Coordinate  
Y Coordinate  
X Coordinate Y Coordinate  
82  
GPIO_9  
GPIO_10  
GPIO_8  
VSSC  
–1016.568  
–1299.420  
–1157.994  
–186.012  
–468.864  
–1299.420  
–610.290  
–1157.994  
–44.586  
153.630  
1016.568  
1299.420  
1157.994  
186.012  
468.864  
1299.420  
610.290  
1157.994  
44.586  
153.630  
83  
153.630  
153.630  
84  
12.204  
12.204  
85  
–129.222  
–129.222  
–129.222  
–270.648  
–270.648  
–412.074  
–412.074  
–553.500  
–553.500  
–553.500  
–694.926  
–694.926  
–694.926  
–836.352  
–977.778  
–977.778  
–1119.204  
–1120.266  
–1260.630  
–1260.630  
–1268.568  
–1402.056  
–1543.482  
–1543.482  
–1551.420  
–1551.420  
–1682.775  
–1684.908  
–1692.846  
–1826.334  
–1826.334  
–1834.272  
–1834.272  
–1967.760  
–2056.131  
–2109.186  
–129.222  
–129.222  
–129.222  
–270.648  
–270.648  
–412.074  
–412.074  
–553.500  
–553.500  
–553.500  
–694.926  
–694.926  
–694.926  
–836.352  
–977.778  
–977.778  
–1119.204  
–1120.266  
–1260.630  
–1260.630  
–1268.568  
–1402.056  
–1543.482  
–1543.482  
–1551.420  
86  
VDDC  
87  
GPIO_7  
VSSC  
88  
89  
GPIO_6  
VSSC  
90  
91  
GPIO_4  
VSSC  
–1299.420  
96.840  
1299.420  
–96.840  
186.012  
1157.994  
44.586  
92  
93  
VDDC  
–186.012  
–1157.994  
–44.586  
94  
GPIO_5  
VDDC  
95  
96  
WL_VDDP_ISO  
GPIO_2  
–733.716  
–1299.420  
–1157.994  
–1016.568  
–1299.420  
–1157.994  
–720.954  
–1016.568  
–1299.420  
–137.700  
–841.113  
–1016.568  
–1299.420  
109.152  
733.716  
1299.420  
1157.994  
1016.568  
1299.420  
1157.994  
720.954  
1016.568  
1299.420  
137.700  
841.113  
1016.568  
1299.420  
–109.152  
173.700  
843.237  
1157.994  
32.274  
97  
98  
GPIO_3  
99  
WCC_VDDIO  
GPIO_0  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
GPIO_1  
VSSC  
WCC_VDDIO  
SDIO_CMD  
GPIO_14  
VSSC  
VDDC  
SDIO_CLK  
GPIO_15  
PACKAGEOPTION_0  
VSSC  
–173.700  
–843.237  
–1157.994  
–32.274  
–1551.420  
–1682.775  
–1684.908  
–1692.846  
–1826.334  
–1826.334  
–1834.272  
–1834.272  
–1967.760  
–2056.131  
–2109.186  
SDIO_DATA_0  
PACKAGEOPTION_1  
VDDC  
–1016.568  
–1299.420  
109.152  
1016.568  
1299.420  
–109.152  
173.700  
1157.994  
232.227  
1016.568  
SDIO_DATA_1  
PACKAGEOPTION_2  
JTAG_SEL  
SDIO_DATA_2  
GPIO_13  
–173.700  
–1157.994  
–232.227  
–1016.568  
WCC_VDDIO  
Document No. 002-14797 Rev. *H  
Page 73 of 128  
CYW4343X  
Table 18. CYW4343X WLCSP Bump List — Ordered By Bump Number (Cont.)  
Bump View  
(0,0 Center of Die)  
Top View  
(0,0 Center of Die)  
Bump  
Number  
Bump Name  
X Coordinate  
Y Coordinate  
X Coordinate Y Coordinate  
121  
VSSC  
–1299.420  
–1157.994  
–739.130  
–1021.973  
–597.708  
–880.551  
–1163.394  
–739.130  
–1021.973  
–1304.816  
–597.708  
–880.551  
–1021.973  
–880.551  
–1163.394  
–739.130  
–597.708  
–880.551  
–1163.394  
–739.130  
–1304.816  
–597.708  
–880.551  
–1163.394  
–739.130  
–1021.973  
–1304.816  
–597.708  
–880.551  
–875.142  
–116.586  
29.286  
–2109.186  
–2250.612  
2274.984  
2274.984  
2133.563  
2133.563  
2133.563  
1992.141  
1992.141  
1992.141  
1850.720  
1850.720  
1709.298  
1567.877  
1567.877  
1426.455  
1285.034  
1285.034  
1285.034  
1143.612  
1143.612  
1002.191  
1002.191  
1002.191  
860.769  
1299.420  
1157.994  
739.130  
1021.973  
597.708  
880.551  
1163.394  
739.130  
1021.973  
1304.816  
597.708  
880.551  
1021.973  
880.551  
1163.394  
739.130  
597.708  
880.551  
1163.394  
739.130  
1304.816  
597.708  
880.551  
1163.394  
739.130  
1021.973  
1304.816  
597.708  
880.551  
875.142  
116.586  
–29.286  
–238.266  
–2109.186  
–2250.612  
2274.984  
2274.984  
2133.563  
2133.563  
2133.563  
1992.141  
1992.141  
1992.141  
1850.720  
1850.720  
1709.298  
1567.877  
1567.877  
1426.455  
1285.034  
1285.034  
1285.034  
1143.612  
1143.612  
1002.191  
1002.191  
1002.191  
860.769  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
SDIO_DATA_3  
SR_PVSS  
SR_PVSS  
VSSC  
SR_VLX  
SR_VLX  
SR_VLX  
SR_VDDBAT5V  
SR_VDDBAT5V  
PMU_AVSS  
SR_VDDBAT5V  
LDO_VDD1P5  
VOUT_CLDO  
LDO_VDD1P5  
VOUT_CLDO  
WCC_VDDIO  
VOUT_LNLDO  
VOUT_3P3  
SYS_VDDIO  
LDO_VDDBAT5V  
VSSC  
VOUT_3P3_SENSE  
VOUT_3P3  
WPT_1P8  
WPT_3P3  
860.769  
860.769  
LDO_VDDBAT5V  
WL_REG_ON  
BT_REG_ON  
WL_VDDM_ISO  
PLL_VSSC  
860.769  
860.769  
719.348  
719.348  
719.348  
719.348  
12.204  
12.204  
–985.716  
–1130.076  
1992.168  
-985.716  
–1130.076  
1992.168  
PLL_VDDC  
CLK_REQ  
238.266  
Document No. 002-14797 Rev. *H  
Page 74 of 128  
CYW4343X  
14.5 WLBGA Ball List Ordered By Ball Name  
Table 19 provides the ball numbers and names in ball name order.  
Table 19. CYW4343X WLBGA Ball List — Ordered By Ball Name  
Ball Name  
Ball Number  
Ball Name  
BT_DEV_WAKE  
Ball Number  
B1  
LPO_IN  
F5  
PMU_AVSS  
SDIO_CLK  
SDIO_CMD  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
SR_PVSS  
B6  
M7  
L6  
BT_GPIO_3  
F4  
G5  
H5  
C1  
A4  
B3  
A3  
G1  
H2  
H1  
A5  
C4  
B4  
B5  
E6  
B2  
C3  
A1  
A2  
F1  
H3  
F2  
G2  
M6  
C2  
D2  
E1  
E2  
E3  
J6  
BT_GPIO_4  
BT_GPIO_5  
K6  
H7  
L7  
BT_HOST_WAKE  
BT_I2S_CLK or BT_PCM_CLK  
BT_I2S_DO or BT_PCM_OUT  
BT_I2S_WS or BT_PCM_SYNC  
BT_IF_VDD  
J7  
A7  
B7  
A6  
C5  
D3  
G4  
E7  
C6  
D6  
D4  
J5  
SR_VDDBAT5V  
SR_VLX  
BT_IF_VSS  
BT_PAVDD  
SYS_VDDIO  
VDDC  
BT_PCM_CLK or BT_I2S_CLK  
BT_PCM_IN or BT_I2S_DI  
BT_PCM_OUT or BT_I2S_DO  
BT_PCM_SYNC or BT_I2S_WS  
BT_REG_ON  
VDDC  
VOUT_3P3  
VOUT_CLDO  
VOUT_LNLDO  
VSSC  
BT_UART_CTS_N  
BT_UART_RTS_N  
BT_UART_RXD  
BT_UART_TXD  
BT_VCO_VDD  
VSSC  
WCC_VDDIO  
WL_REG_ON  
WLRF_2G_eLG  
WLRF_2G_RF  
F6  
G6  
J1  
BT_VCO_VSS  
K1  
H4  
K2  
J3  
BTFM_PLL_VDD  
BTFM_PLL_VSS  
CLK_REQ  
WLRF_AFE_GND  
WLRF_GENERAL_GND  
WLRF_GPIO  
FM_OUT1  
WLRF_LNA_GND  
WLRF_PA_GND  
WLRF_PA_VDD  
WLRF_VCO_GND  
WLRF_VDD_1P35  
WLRF_XTAL_GND  
WLRF_XTAL_VDD1P2  
WLRF_XTAL_XON  
WLRF_XTAL_XOP  
WPT_1P8  
J2  
FM_OUT2  
L2  
FM_RF_IN  
M1  
L3  
FM_RF_VDD  
FM_RF_VSS  
M2  
L4  
GPIO_0  
GPIO_1  
H6  
L5  
M3  
M5  
M4  
D5  
E5  
GPIO_2  
GPIO_3  
K4  
K5  
C7  
F7  
GPIO_4  
LDO_VDD1P5  
WPT_3P3  
LDO_VDDBAT5V  
Document No. 002-14797 Rev. *H  
Page 75 of 128  
CYW4343X  
14.6 WLBGA Ball List Ordered By Ball Name  
Table 20 provides the ball numbers and names in ball name order.  
Table 20. CYW4343X WLBGA Ball List — Ordered By Ball Name  
Ball Name  
Ball Number  
Ball Name  
BT_DEV_WAKE  
Ball Number  
SDIO_CMD  
L6  
K6  
H7  
L7  
J7  
B1  
C1  
G1  
H2  
H1  
A5  
C4  
B4  
B5  
E6  
B2  
C3  
A1  
A2  
F1  
H3  
F2  
G2  
M6  
C2  
D2  
E1  
E2  
E3  
J6  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
SR_PVSS  
BT_HOST_WAKE  
BT_IF_VDD  
BT_IF_VSS  
BT_PAVDD  
A7  
B7  
A6  
D3  
G4  
E7  
C6  
D6  
D4  
J5  
BT_PCM_CLK or BT_I2S_CLK  
BT_PCM_IN or BT_I2S_DI  
BT_PCM_OUT or BT_I2S_DO  
BT_PCM_SYNC or BT_I2S_WS  
BT_REG_ON  
SR_VDDBAT5V  
SR_VLX  
VDDC  
VDDC  
VOUT_3P3  
BT_UART_CTS_N  
BT_UART_RTS_N  
BT_UART_RXD  
BT_UART_TXD  
BT_VCO_VDD  
BT_VCO_VSS  
BTFM_PLL_VDD  
BTFM_PLL_VSS  
CLK_REQ  
VOUT_CLDO  
VOUT_LNLDO  
VSSC  
VSSC  
WCC_VDDIO  
WL_REG_ON  
WLRF_2G_eLG  
WLRF_2G_RF  
WLRF_AFE_GND  
WLRF_GENERAL_GND  
WLRF_GPIO  
F6  
G6  
J1  
K1  
H4  
K2  
J3  
FM_OUT1  
FM_OUT2  
FM_RF_IN  
WLRF_LNA_GND  
WLRF_PA_GND  
WLRF_PA_VDD  
WLRF_VCO_GND  
WLRF_VDD_1P35  
WLRF_XTAL_GND  
WLRF_XTAL_VDD1P2  
WLRF_XTAL_XON  
WLRF_XTAL_XOP  
J2  
FM_RF_VDD  
L2  
M1  
L3  
M2  
L4  
M3  
M5  
M4  
FM_RF_VSS  
GPIO_0  
GPIO_1  
H6  
L5  
GPIO_2  
LDO_VDD1P5  
LDO_VDDBAT5V  
LPO_IN  
C7  
F7  
F5  
B6  
M7  
PMU_AVSS  
SDIO_CLK  
Document No. 002-14797 Rev. *H  
Page 76 of 128  
CYW4343X  
14.7 WLCSP Bump List Ordered By Name  
Table 21 provides the bump numbers and names in bump name order.  
Table 21. CYW4343X WLCSP Bump List — Ordered By Bump Name  
Bump Name  
FM_DAC_VOUT1  
Bump Number(s)  
Bump Name  
Bump Number(s)  
52  
37  
BT_AGPIO  
FM_DAC_VOUT2  
FM_IFDVDD1P2  
FM_IFVSS  
40  
BT_DEV_WAKE  
BT_DVSS  
6
48  
50  
47  
BT_GPIO_2  
13  
FM_PLLAVSS  
FM_PLLDVDD1P2  
FM_RFINMAIN  
FM_RFVDD1P2  
FM_RFVSS  
FM_VCOVDD1P2  
FM_VCOVSS  
GPIO_0  
39  
BT_GPIO_3  
5
43  
BT_GPIO_4  
8
49  
BT_GPIO_5  
10  
45  
BT_HOST_WAKE  
BT_I2S_CLK or BT_PCM_CLK  
BT_I2S_DI or BT_PCM_IN  
BT_I2S_DO or BT_PCM_OUT  
BT_I2S_WS or BT_PCM_SYNC  
BT_IFVDD1P2  
11  
46  
15  
44  
23  
42  
24  
100  
101  
97  
18  
GPIO_1  
51  
GPIO_2  
BT_LNAVDD1P2  
BT_LNAVSS  
54  
GPIO_3  
98  
55  
GPIO_4  
91  
BT_PAVDD2P5  
53  
GPIO_5  
94  
BT_PAVSS  
35  
GPIO_6  
89  
BT_PCM_CLK or BT_I2S_CLK  
BT_PCM_IN or BT_I2S_DI  
BT_PCM_OUT or BT_I2S_DO  
BT_PCM_SYNC or BT_I2S_WS  
BT_PLLVDD1P2  
BT_PLLVSS  
3
GPIO_7  
87  
20  
GPIO_8  
84  
19  
GPIO_9  
82  
17  
GPIO_10  
83  
59  
GPIO_11  
81  
56  
GPIO_12  
80  
BT_REG_ON  
149  
GPIO_13  
119  
105  
109  
117  
133, 135  
141, 147  
76  
BT_TM1  
4
GPIO_14  
BT_UART_CTS_N  
BT_UART_RTS_N  
BT_UART_RXD  
22  
GPIO_15  
7
JTAG_SEL  
1
LDO_VDD1P5  
LDO_VDDBAT5V  
LPO_IN  
BT_UART_TXD  
12  
BT_VCOVDD1P2  
BT_VCOVSS  
57  
58  
PACKAGEOPTION_0  
PACKAGEOPTION_1  
PACKAGEOPTION_2  
PLL_VDDC  
PLL_VSSC  
PMU_AVSS  
110  
113  
116  
152  
151  
131  
BT_VDDC  
14, 16, 26, 28, 31, 34  
BT_VDDC_ISO_1  
BT_VDDC_ISO_2  
CLK_REQ  
9
2
153  
41  
38  
FM_DAC_AVDD  
FM_DAC_AVSS  
Document No. 002-14797 Rev. *H  
Page 77 of 128  
CYW4343X  
Bump Name  
Bump Number(s)  
108  
SDIO_CLK  
SDIO_CMD  
104  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
SR_PVSS  
112  
115  
118  
122  
123, 124  
129, 130, 132  
126, 127, 128  
140  
SR_VDDBAT5V  
SR_VLX  
SYS_VDDIO  
VDDC  
86, 93, 95, 107, 114  
139, 144  
143  
VOUT_3P3  
VOUT_3P3_SENSE  
VOUT_CLDO  
VOUT_LNLDO  
VSSC  
134, 136  
138  
21, 25, 27, 29, 30, 32,  
33, 36, 78, 85, 88, 90,  
92, 102, 106, 111, 121,  
125, 142  
WCC_VDDIO  
77, 79, 99, 103, 120,  
137  
WL_REG_ON  
148  
WL_VDDM_ISO  
WL_VDDP_ISO  
150  
96  
WPT_1P8  
145  
WPT_3P3  
146  
WRF_AFE_GND  
WRF_GENERAL_GND  
WRF_GPAIO_OUT  
WRF_PA_GND3P3  
WRF_PMU_VDD1P35  
WRF_RFIN_ELG_2G  
WRF_RFIO_2G  
60  
64  
67  
65, 69, 70, 71  
68  
61  
63  
62  
66  
72  
73  
75  
74  
WRF_RX2G_GND  
WRF_VCO_GND  
WRF_XTAL_GND1P2  
WRF_XTAL_VDD1P2  
WRF_XTAL_XON  
WRF_XTAL_XOP  
Document No. 002-14797 Rev. *H  
Page 78 of 128  
CYW4343X  
14.8 Signal Descriptions  
Table 22 provides the WLBGA package signal descriptions.  
Table 22. WLBGA Signal Descriptions  
Signal Name  
WLBGA Ball Type  
Description  
RF Signal Interface  
O
WLRF_2G_RF  
K1  
2.4 GHz BT and WLAN RF output port  
SDIO Bus Interface  
SDIO_CLK  
M7  
L6  
K6  
H7  
L7  
I
SDIO clock input  
SDIO command line  
SDIO data line 0  
SDIO data line 1.  
SDIO_CMD  
I/O  
I/O  
I/O  
I/O  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO data line 2. Also used as a strapping option (see  
Table 26 on page 87).  
SDIO_DATA_3  
J7  
I/O  
SDIO data line 3  
Note: Per Section 6 of the SDIO specification, 10 to 100 kpull-ups are required on the four DATA lines and the CMD line.  
This requirement must be met during all operating states by using external pull-up resistors or properly programming internal  
SDIO host pull-ups.  
WLAN GPIO Interface  
WLRF_GPIO  
J3  
I/O  
Test pin. Not connected in normal operation.  
Clocks  
WLRF_XTAL_XON  
WLRF_XTAL_XOP  
CLK_REQ  
M5  
M4  
M6  
O
I
XTAL oscillator output  
XTAL oscillator input  
O
External system clock request—Used when the system  
clock is not provided by a dedicated crystal (for example,  
when a shared TCXO is used). Asserted to indicate to the  
host that the clock is required. Shared by BT, and WLAN.  
LPO_IN  
F5  
I
External sleep clock input (32.768 kHz). If an external  
32.768 kHz clock cannot be provided, pull this pin low.  
However, BLE will be always on and cannot go to deep  
sleep.  
FM Receiver  
FM_OUT1  
FM_OUT2  
FM_RF_IN  
FM_RF_VDD  
C2  
D2  
E1  
E2  
O
O
I
FM analog output 1  
FM analog output 2  
FM radio antenna port  
FM power supply  
I
Bluetooth PCM  
PCM or I2S clock; can be master (output) or slave (input)  
PCM or I2S data input sensing  
BT_PCM_CLK or BT_I2S_CLK  
BT_PCM_IN or BT_I2S_DI  
A5  
C4  
B4  
B5  
I/O  
I
PCM or I2S data output  
BT_PCM_OUT or BT_I2S_DO  
BT_PCM_SYNC or BT_I2S_WS  
O
I/O  
PCM SYNC or I2S_WS; can be master (output) or slave  
(input)  
Bluetooth GPIO  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
F4  
G5  
H5  
I/O  
Bluetooth general purpose I/O.WPT_INTb to wireless  
charging PMU.  
I/O  
I/O  
Bluetooth general purpose I/O.BSC_SDA to/from  
wireless charging PMU.  
Bluetooth general purpose I/O.BSC_SCL from wireless  
charging PMU.  
Document No. 002-14797 Rev. *H  
Page 79 of 128  
CYW4343X  
Table 22. WLBGA Signal Descriptions (Cont.)  
Signal Name  
WLBGA Ball  
Type  
Description  
Bluetooth UART and Wake  
BT_UART_CTS_N  
B2  
C3  
A1  
A2  
I
UART clear-to-send. Active-low clear-to-send signal for  
the HCI UART interface.  
BT_UART_RTS_N  
BT_UART_RXD  
BT_UART_TXD  
O
I
UART request-to-send. Active-low request-to-send  
signal for the HCI UART interface.  
UART serial input. Serial data input for the HCI UART  
interface.  
O
UART serial output. Serial data output for the HCI UART  
interface.  
BT_DEV_WAKE  
BT_HOST_WAKE  
B1  
C1  
I/O  
I/O  
DEV_WAKE or general-purpose I/O signal.  
HOST_WAKE or general-purpose I/O signal.  
Note: By default, the Bluetooth BT WAKE signals provide GPIO/WAKE functionality, and the UART pins provide UART functionality.  
Through software configuration, the PCM interface can also be routed over the  
BT_WAKE/UART signals as follows:  
PCM_CLK on the UART_RTS_N pin  
PCM_OUT on the UART_CTS_N pin  
PCM_SYNC on the BT_HOST_WAKE pin  
PCM_IN on the BT_DEV_WAKE pin  
In this case, the BT HCI transport included sleep signaling will operate using UART_RXD and UART_TXD; that is, using a 3-Wire UART  
Transport.  
Bluetooth/FM I2S  
I2S or PCM clock; can be master (output) or slave (input)  
I2S or PCM data output  
BT_I2S_CLK or BT_PCM_CLK  
BT_I2S_DO or BT_PCM_OUT  
BT_I2S_WS or BT_PCM_SYNC  
A4  
B3  
A3  
I/O  
I/O  
I/O  
I2S WS or PCM sync; can be master (output) or slave  
(input)  
Miscellaneous  
WL_REG_ON  
BT_REG_ON  
G6  
E6  
I
Used by PMU to power up or power down the internal  
regulators used by the WLAN section. Also, when  
deasserted, this pin holds the WLAN section in reset.  
This pin has an internal 200 kpull-down resistor that is  
enabled by default. It can be disabled through  
programming.  
I
Used by PMU to power up or power down the internal  
regulators used by the Bluetooth/FM section. Also, when  
deasserted, this pin holds the Bluetooth/FM section in  
reset. This pin has an internal 200 kpull-down resistor  
that is enabled by default. It can be disabled through  
programming.  
WPT_3P3  
WPT_1P8  
GPIO_0  
E5  
D5  
J6  
N/A  
N/A  
I/O  
Not used. Do not connect to this pin.  
Not used. Do not connect to this pin.  
Programmable GPIO pins. This pin becomes an output  
pin when it is used as WLAN_HOST_WAKE/out-of-band  
signal.  
GPIO_1  
H6  
L5  
K4  
K5  
J1  
I/O  
I/O  
I/O  
I/O  
I
Programmable GPIO pins  
Programmable GPIO pins  
Programmable GPIO pins  
Programmable GPIO pins  
GPIO_2  
GPIO_3  
GPIO_4  
WLRF_2G_eLG  
Connect to an external inductor. See the reference  
schematic for details.  
Document No. 002-14797 Rev. *H  
Page 80 of 128  
CYW4343X  
Table 22. WLBGA Signal Descriptions (Cont.)  
Signal Name  
WLBGA Ball  
Type  
Description  
Integrated Voltage Regulators  
SR_VDDBAT5V  
SR_VLX  
B7  
I
SR VBAT input power supply  
A6  
O
CBUCK switching regulator output. See Table 42 on  
page 107 for details of the inductor and capacitor  
required on this output.  
LDO_VDDBAT5V  
LDO_VDD1P5  
VOUT_LNLDO  
VOUT_CLDO  
F7  
C7  
D6  
C6  
I
LDO VBAT  
I
LNLDO input  
O
O
Output of low-noise LNLDO  
Output of core LDO  
Bluetooth Power Supplies  
BT_PAVDD  
H1  
G1  
F2  
F1  
I
I
I
I
Bluetooth PA power supply  
BT_IF_VDD  
Bluetooth IF block power supply  
Bluetooth RF PLL power supply  
Bluetooth RF power supply  
BTFM_PLL_VDD  
BT_VCO_VDD  
Document No. 002-14797 Rev. *H  
Page 81 of 128  
CYW4343X  
Table 22. WLBGA Signal Descriptions (Cont.)  
WLBGA Ball Type  
Signal Name  
Description  
Power Supplies  
WLRF_XTAL_VDD1P2  
M3  
I
XTAL oscillator supply  
WLRF_PA_VDD  
M1  
I
Power amplifier supply  
WCC_VDDIO  
F6  
I
VDDIO input supply. Connect to VDDIO.  
VDDIO input supply. Connect to VDDIO.  
LNLDO input supply  
SYS_VDDIO[4343S+4343W+43CS4343W1]  
C5  
I
WLRF_VDD_1P35  
VDDC  
M2  
I
D3, G4  
E7  
I
Core supply for WLAN and BT.  
VOUT_3P3  
O
3.3V output supply. See the reference schematic for  
details.  
Ground  
BT_IF_VSS  
H2  
G2  
H3  
E3  
B6  
A7  
D4, J5  
H4  
J2  
I
I
I
I
I
I
I
I
I
I
I
I
I
1.2V Bluetooth IF block ground  
Bluetooth/FM RF PLL ground  
1.2V Bluetooth RF ground  
FM RF ground  
BTFM_PLL_VSS  
BT_VCO_VSS  
FM_RF_VSS  
PMU_AVSS  
Quiet ground  
SR_PVSS  
Switcher-power ground  
Core ground for WLAN and BT  
AFE ground  
VSSC  
WLRF_AFE_GND  
WLRF_LNA_GND  
WLRF_GENERAL_GND  
WLRF_PA_GND  
WLRF_VCO_GND  
WLRF_XTAL_GND  
2.4 GHz internal LNA ground  
Miscellaneous RF ground  
2.4 GHz PA ground  
K2  
L2  
L3  
VCO/LO generator ground  
XTAL ground  
L4  
[4343W]Table 23 provides the WLCSP package signal descriptions.  
Table 23. WLCSP Signal Descriptions  
Signal Name  
WLCSP Bump  
Type  
Description or Instruction  
RF Signal Interface  
WRF_RFIN_ELG_2G  
61  
63  
I
Connect to an external inductor. See the  
reference schematic for details.  
WRF_RFIO_2G  
I/O  
2.4 GHz BT and WLAN RF input/output port  
SDIO Bus Interface  
SDIO_CLK  
108  
104  
112  
115  
118  
I
SDIO clock input  
SDIO_CMD  
I/O  
I/O  
I/O  
I/O  
SDIO command line  
SDIO data line 0  
SDIO data line 1.  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO data line 2. Also used as a strapping option (see  
Table 26 on page 87).  
SDIO_DATA_3  
122  
I/O  
SDIO data line 3  
Note: Per Section 6 of the SDIO specification, 10 to 100 kpull-ups are required on the four DATA lines and the CMD line.  
This requirement must be met during all operating states by using external pull-up resistors or properly programming internal  
SDIO host pull-ups.  
Document No. 002-14797 Rev. *H  
Page 82 of 128  
CYW4343X  
Table 23. WLCSP Signal Descriptions (Cont.)  
Signal Name  
WLCSP Bump  
Type  
Description or Instruction  
WLAN GPIO Interface  
WRF_GPAIO_OUT  
67  
O
Test pin. Not connected in normal operation.  
Clocks  
WRF_XTAL_XON  
WRF_XTAL_XOP  
CLK_REQ  
75  
O
I
XTAL oscillator output  
XTAL oscillator input  
74  
153  
O
External system clock request—Used when the system  
clock is not provided by a dedicated crystal (for example,  
when a shared TCXO is used). Asserted to indicate to the  
host that the clock is required. Shared by BT, and WLAN.  
LPO_IN  
76  
I
External sleep clock input (32.768 kHz). If an external 32.768  
kHz clock cannot be provided, pull this pin low. However,  
BLE will be always on and cannot go to deep sleep.  
FM  
FM_DAC_VOUT1  
FM_DAC_VOUT2  
FM_RFINMAIN  
37  
40  
49  
O
O
I
FM DAC output 1  
FM DAC output 2  
FM RF input  
Bluetooth PCM  
PCM or I2S clock; can be master (output) or slave (input)  
PCM or I2S data input sensing  
BT_PCM_CLK or BT_I2S_CLK  
BT_PCM_IN or BT_I2S_DI  
3
I/O  
I
20  
19  
17  
PCM or I2S data output  
BT_PCM_OUT or BT_I2S_DO  
BT_PCMM_SYNC or BT_I2S_WS  
O
I/O  
PCM SYNC or I2S WS; can be master (output) or slave  
(input)  
Bluetooth GPIO  
BT_AGPIO  
BT_GPIO_2  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
BT_TM1  
52  
13  
5
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Bluetooth analog GPIO  
Bluetooth general purpose I/O  
WPT_INTb to wireless charging PMU.  
BSC_SDA to/from wireless charging PMU.  
BSC_SCL from wireless charging PMU  
ARM JTAG mode  
8
10  
4
Bluetooth UART and Wake  
BT_UART_CTS_N  
BT_UART_RTS_N  
BT_UART_RXD  
BT_UART_TXD  
BT_DEV_WAKE  
BT_HOST_WAKE  
22  
7
I
UART clear-to-send. Active-low clear-to-send signal for the  
HCI UART interface.  
O
I
UART request-to-send. Active-low request-to-send signal for  
the HCI UART interface.  
1
UART serial input. Serial data input for the HCI UART  
interface.  
12  
6
O
I/O  
I/O  
UART serial output. Serial data output for the HCI UART  
interface.  
DEV_WAKE or general-purpose  
I/O signal  
11  
HOST_WAKE or general-purpose I/O signal  
Note: By default, the Bluetooth BT WAKE signals provide GPIO/WAKE functionality, and the UART pins provide UART functionality.  
Through software configuration, the PCM interface can also be routed over the  
BT_WAKE/UART signals as follows:  
PCM_CLK on the UART_RTS_N pin  
PCM_OUT on the UART_CTS_N pin  
PCM_SYNC on the BT_HOST_WAKE pin  
PCM_IN on the BT_DEV_WAKE pin  
In this case, the BT HCI transport included sleep signaling will operate using UART_RXD and UART_TXD; that is, using a 3-Wire UART  
Transport.  
Document No. 002-14797 Rev. *H  
Page 83 of 128  
CYW4343X  
Table 23. WLCSP Signal Descriptions (Cont.)  
WLCSP Bump Type Description or Instruction  
Signal Name  
Bluetooth/FM I2S  
I2S or PCM clock; can be master (output) or slave (input)  
I2S or PCM data input  
BT_I2S_CLK or BT_PCM_CLK  
BT_I2S_DI or BT_PCM_IN  
15  
23  
24  
18  
I/O  
I
I2S or PCM data output  
BT_I2S_DO or BT_PCM_OUT  
BT_I2S_WS or BT_PCM_SYNC  
O
I/O  
I2S WS or PCM SYNC; can be master (output) or slave  
(input)  
Miscellaneous  
WL_REG_ON  
BT_REG_ON  
148  
149  
I
Used by PMU to power up or power down the internal  
regulators used by the WLAN section. Also, when  
deasserted, this pin holds the WLAN section in reset. This  
pin has an internal 200 kpull-down resistor that is enabled  
by default. It can be disabled through programming.  
I
Used by PMU to power up or power down the internal  
regulators used by the Bluetooth/FM section. Also, when  
deasserted, this pin holds the Bluetooth/FM section in reset.  
This pin has an internal 200 kpull-down resistor that is  
enabled by default. It can be disabled through programming.  
WPT_3P3  
WPT_1P8  
GPIO_0  
146  
145  
100  
N/A  
N/A  
I/O  
Not used. Do not connect to this pin.  
Not used. Do not connect to this pin.  
Programmable GPIO pin. This pin becomes an output pin  
when it is used as WLAN_HOST_WAKE/out-of-band signal.  
GPIO_1  
101  
97  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
VDDIO  
GPIO_2  
GPIO_3  
98  
GPIO_4  
91  
GPIO_5  
94  
GPIO_6  
89  
GPIO_7  
87  
GPIO_8  
84  
GPIO_9  
82  
GPIO_10  
83  
GPIO_11  
81  
GPIO_12  
80  
GPIO_13  
119  
105  
109  
110  
113  
116  
117  
GPIO_14  
GPIO_15  
PACKAGEOPTION_0  
PACKAGEOPTION_1  
PACKAGEOPTION_2  
JTAG_SEL  
I
Ground  
I
Ground  
I
JTAG select. Connect to ground.  
Integrated Voltage Regulators  
SR_VDDBAT5V  
SR_VLX  
129, 130, 132  
126, 127, 128  
I
SR VBAT input power supply  
O
CBUCK switching regulator output. See Table 42 on  
page 107 for details of the inductor and capacitor required on  
this output.  
LDO_VDDBAT5V  
LDO_VDD1P5  
VOUT_LNLDO  
VOUT_CLDO  
141, 147  
133, 135  
138  
I
LDO VBAT  
I
LNLDO input  
O
O
Output of low-noise LDO (LNLDO)  
Output of core LDO  
134, 136  
Document No. 002-14797 Rev. *H  
Page 84 of 128  
CYW4343X  
Table 23. WLCSP Signal Descriptions (Cont.)  
Signal Name  
WLCSP Bump  
Type  
Description or Instruction  
Bluetooth Power Supplies  
BT_IFVDD1P2  
51  
54  
53  
59  
57  
PWR  
PWR  
PWR  
PWR  
PWR  
Bluetooth IF-block power supply  
Bluetooth RF LNA power supply  
BT_LNAVDD1P2  
BT_PAVDD2P5  
BT_PLLVDD1P2  
BT_VCOVDD1P2  
BT_VDDC  
Bluetooth RF PA power supply  
Bluetooth RF PLL power supply  
Bluetooth RF power supply  
Bluetooth core power supply  
14, 16, 26, 28, 31, PWR  
34  
BT_VDDC_ISO_1  
BT_VDDC_ISO_2  
9
2
PWR  
PWR  
Bluetooth core power supply  
Bluetooth core power supply  
Power Supplies  
FM_DAC_AVDD  
FM_IFDVDD1P2  
FM_PLLDVDD1P2  
FM_RFVDD1P2  
FM_VCOVDD1P2  
PLL_VDDC  
41  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
I
FM DAC power supply  
48  
FM IF power supply  
43  
FM PLL power supply  
45  
FM RF power supply  
44  
FM VCO power supply  
152  
140  
Core PLL power supply  
VDDIO input supply. Connect to VDDIO.  
Core supply for WLAN and BT  
SYS_VDDIO  
VDDC  
86, 93, 95, 107, 114 I  
VOUT_3P3  
139, 144  
143  
O
3.3V output supply. See the reference schematic for details.  
Voltage sense pin for LDO 3.3V output  
VOUT_3P3_SENSE  
WCC_VDDIO  
O
I
77, 79, 99, 103,  
120, 137  
VDDIO input supply. Connect to VDDIO.  
WL_VDDM_ISO  
150  
96  
I
Test pin. Not connected in normal operation.  
Test pin. Not connected in normal operation.  
XTAL oscillator supply  
WL_VDDP_ISO  
WRF_XTAL_VDD1P2  
WRF_PA_VDD3P3  
WRF_PMU_VDD1P35  
73  
70, 71  
68  
I
Power amplifier supply  
I
LNLDO input supply  
Document No. 002-14797 Rev. *H  
Page 85 of 128  
CYW4343X  
Table 23. WLCSP Signal Descriptions (Cont.)  
WLCSP Bump Type Description or Instruction  
Signal Name  
Ground  
BT_DVSS  
50  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I
Bluetooth digital ground  
BT_LNAVSS  
BT_PAVSS  
BT_PLLVSS  
BT_VCOVSS  
55  
Bluetooth LNA ground  
Bluetooth PA ground  
Bluetooth PLL ground  
Bluetooth VCO ground  
FM DAC analog ground  
FM IF-block ground  
FM PLL analog ground  
FM RF ground  
35  
56  
58  
FM_DAC_AVSS  
FM_IFVSS  
FM_PLLAVSS  
FM_RFVSS  
FM_VCOVSS  
PLL_VSSC  
PMU_AVSS  
SR_PVSS  
38  
47  
39  
46  
42  
FM VCO ground  
151  
131  
123, 124  
PLL core ground  
Quiet ground  
I
Switcher-power ground  
Core ground for WLAN and BT  
VSSC  
21, 25, 27, 29, 30,  
32, 33, 36, 78, 85,  
88, 90, 92, 102,  
106, 111, 121, 125,  
142  
I
WRF_AFE_GND  
60  
I
I
I
I
I
I
AFE ground  
WRF_RX2G_GND  
WRF_GENERAL_GND  
WRF_PA_GND3P3  
WRF_VCO_GND  
62  
2.4 GHz internal LNA ground  
Miscellaneous RF ground  
2.4 GHz PA ground  
VCO/LO generator ground  
XTAL ground  
64  
65, 69  
66  
WRF_XTAL_GND1P2  
72  
14.9 WLAN GPIO Signals and Strapping Options  
The pins listed in Table 24 are sampled at power-on reset (POR) to determine the various operating modes. Sampling occurs a few  
milliseconds after an internal POR or deassertion of the external POR. After the POR, each pin assumes the GPIO or alternative  
function specified in the signal descriptions table. Each strapping option pin has an internal pull-up (PU) or pull-down (PD) resistor  
that determines the default mode. To change the mode, connect an external PU resistor to VDDIO or a PD resistor to ground using  
a 10 kresistor or less.  
Note: Refer to the reference board schematics for more information.  
Table 24. GPIO Functions and Strapping Options  
Pin Name  
WLBGA Pin # Default  
L7  
Function  
Description  
SDIO_DATA_2  
1
WLAN host interface  
select  
This pin selects the WLAN host interface mode. The  
default is SDIO. For gSPI, pull this pin low.  
14.10 Chip Debug Options  
The chip can be accessed for debugging via the JTAG interface, multiplexed on the SDIO_DATA_0 through SDIO_DATA_3 (and  
SDIO_CLK) I/O or the Bluetooth PCM I/O depending on the bootstrap state of GPIO_1 and GPIO_2.  
Table 25 shows the debug options of the device.  
Table 25. Chip Debug Options  
BT PCM I/O Pad  
Function  
JTAG_SEL  
GPIO_2  
GPIO_1  
Function  
Normal mode  
JTAG over SDIO  
SDIO I/O Pad Function  
0
0
0
0
0
1
SDIO  
JTAG  
BT PCM  
BT PCM  
Document No. 002-14797 Rev. *H  
Page 86 of 128  
CYW4343X  
Table 25. Chip Debug Options (Cont.)  
BT PCM I/O Pad  
Function  
JTAG_SEL  
GPIO_2  
GPIO_1  
Function  
SDIO I/O Pad Function  
0
0
1
1
0
1
JTAG over BT PCM  
SDIO  
SDIO  
JTAG  
SWD over GPIO_1/  
GPIO_2  
BT PCM  
14.11 I/O States  
The following notations are used in Table 26 on page 87:  
I: Input signal  
O: Output signal  
I/O: Input/Output signal  
PU = Pulled up  
PD = Pulled down  
NoPull = Neither pulled up nor pulled down  
Table 26. I/O Statesa  
Out-of-Reset;  
Out-of-Reset;  
(WL_REG_ON = 1 (WL_REG_ON = 0  
BT_REG_ON = 0) BT_REG_ON = 1)  
Power-Downc  
Low Power State/Sleep WL_REG_ON = 0  
(WL_REG_ON = 1;  
BT_REG_ON =  
Do Not Care)  
Name  
I/O Keeperb Active Mode  
(All Power Present)  
BT_REG_ON = 0  
VDDIOs Present  
VDDIOs Present  
Power Rail  
WL_REG_ON  
BT_REG_ON  
CLK_REQ  
I
N
N
Y
Input; PD (pull-down can Input; PD (pull-down can Input; PD (of 200K)  
be disabled) be disabled)  
Input; PD (200k)  
Input; PD (200k)  
I
Input; PD (pull down can Input; PD (pull down can Input; PD (of 200K)  
be disabled) be disabled)  
Input; PD (200k)  
Input; PD (200k)  
Input; PD (200k)  
I/O  
Open drain or push-pull Open drain or push-pull PD  
(programmable). Active (programmable). Active  
Open drain,  
active high.  
Open drain,  
active high.  
Open drain,  
active high.  
WCC_VDDIO  
high.  
high  
BT_HOST_  
WAKE  
I/O  
Y
Y
I/O; PU, PD, NoPull  
(programmable)  
I/O; PU, PD, NoPull  
(programmable)  
High-Z, NoPull  
High-Z, NoPull  
Input, PD  
Input, PD  
Output, Drive low  
Input, PD  
WCC_VDDIO  
WCC_VDDIO  
BT_DEV_WAKE I/O  
I/O; PU, PD, NoPull  
(programmable)  
Input; PU, PD, NoPull  
(programmable)  
BT_UART_CTS  
BT_UART_RTS  
BT_UART_RXD  
BT_UART_TXD  
I
Y
Y
Y
Y
N
Input; NoPull  
Output; NoPull  
Input; PU  
Input; NoPull  
Output; NoPull  
Input; NoPull  
Output; NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
Input; PU  
Input; PU  
Input; PU  
Input; PU  
Input, NoPull  
Output, NoPull  
Input, NoPull  
Output, NoPull  
Input; PU  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
O
I
O
Output; NoPull  
SDIO_DATA_0 I/O  
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> PU  
SDIO MODE ->  
NoPull  
SDIO_DATA_1 I/O  
N
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> PU  
SDIO MODE ->  
NoPull  
Input; PU  
WCC_VDDIO  
Document No. 002-14797 Rev. *H  
Page 87 of 128  
CYW4343X  
Table 26. I/O Statesa (Cont.)  
Out-of-Reset;  
Out-of-Reset;  
(WL_REG_ON = 1 (WL_REG_ON = 0  
BT_REG_ON = 0) BT_REG_ON = 1)  
Power-Downc  
Low Power State/Sleep WL_REG_ON = 0  
(WL_REG_ON = 1;  
BT_REG_ON =  
Do Not Care)  
Name  
I/O Keeperb Active Mode  
(All Power Present)  
BT_REG_ON = 0  
VDDIOs Present  
VDDIOs Present  
Power Rail  
SDIO_DATA_2 I/O  
N
N
N
N
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> PU  
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> PU  
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> PU  
SDIO MODE ->  
NoPull  
Input; PU  
WCC_VDDIO  
SDIO_DATA_3 I/O  
SDIO MODE ->  
NoPull  
Input; PU  
Input; PU  
Input  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
SDIO_CMD  
SDIO_CLK  
I/O  
I
SDIO MODE ->  
NoPull  
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE ->  
NoPull  
Input; NoPulld  
Input; NoPulld  
Input; NoPulld  
Input; NoPulld  
Input; NoPulle  
Input; NoPulle  
Input; NoPulld  
Input; NoPulld  
Input; NoPulld  
Input; NoPulld  
Input; NoPulle  
Input; NoPulle  
BT_PCM_CLK  
BT_PCM_IN  
I/O  
I/O  
Y
Y
Y
Y
Y
Y
Y
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPullf  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
PD  
Input, PD  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
Input, PD  
BT_PCM_OUT I/O  
BT_PCM_SYNC I/O  
Input, PD  
Input, PD  
BT_I2S_WS  
BT_I2S_CLK ]  
BT_I2S_DO [  
I/O  
I/O  
I/O  
Input, PD  
Output, Drive low  
Input, PD  
Input; NoPulle  
Input; NoPulle  
PD  
JTAG_SEL  
GPIO_0  
I
Y
Y
PD  
Input, PD  
Input, PD  
WCC_VDDIO  
WCC_VDDIO  
I/O  
TBD  
Active mode  
Input, SDIO OOB Int, Active mode  
NoPull  
Input, NoPull  
High-Z, NoPullf  
High-Z, NoPullf  
GPIO_1  
GPIO_2  
I/O  
I/O  
Y
Y
TBD  
TBD  
Active mode  
Active mode  
Input, PD  
Active mode  
Active mode  
Input, Strap, PD  
WCC_VDDIO  
Input, GCI GPIO[7],  
NoPull  
Input, Strap, NoPull WCC_VDDIO  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Y
Y
N
Y
Y
Y
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Active mode  
Active mode  
Active mode  
Active mode  
Active mode  
Active mode  
Input, GCI GPIO[0],  
PU  
Active mode  
Active mode  
Active mode  
Active mode  
Input, PU  
Input, PU  
Input, PU  
Input, NoPull  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
Input, GCI GPIO[1],  
PU  
Input, GCI GPIO[2],  
PU  
Input, GCI GPIO[3],  
NoPull  
Output, WLAN UART Active mode  
RTS#, NoPull  
Output, NoPull, Low WCC_VDDIO  
Input, WLAN UART  
CTS#, NoPull  
Active mode  
Input, NoPull  
WCC_VDDIO  
Document No. 002-14797 Rev. *H  
Page 88 of 128  
CYW4343X  
Table 26. I/O Statesa (Cont.)  
Out-of-Reset;  
Out-of-Reset;  
(WL_REG_ON = 1 (WL_REG_ON = 0  
BT_REG_ON = 0) BT_REG_ON = 1)  
Power-Downc  
Low Power State/Sleep WL_REG_ON = 0  
(WL_REG_ON = 1;  
BT_REG_ON =  
Do Not Care)  
Name  
I/O Keeperb Active Mode  
(All Power Present)  
BT_REG_ON = 0  
VDDIOs Present  
VDDIOs Present  
Power Rail  
High-Z, NoPullf  
GPIO_9  
I/O  
Y
TBD  
Active mode  
Input, WLAN UART  
RX, NoPull  
Active mode  
Input, NoPull  
WCC_VDDIO  
High-Z, NoPullf  
GPIO_10  
I/O  
Y
TBD  
Active mode  
Output, WLAN UART Active mode  
TX, NoPull  
Output, NoPull, Low WCC_VDDIO  
High-Z, NoPullf  
High-Z, NoPullf  
GPIO_11  
GPIO_12  
I/O  
I/O  
Y
Y
TBD  
TBD  
Active mode  
Active mode  
Input, Low, NoPull  
Active mode  
Active mode  
Input, NoPull  
Input, NoPull  
WCC_VDDIO  
WCC_VDDIO  
Input, GCI GPIO[6],  
NoPull  
High-Z, NoPullf  
GPIO_13  
I/O  
Y
TBD  
Active mode  
Input, GCI GPIO[7],  
NoPull  
Active mode  
Input, NoPull  
WCC_VDDIO  
High-Z, NoPullf  
High-Z, NoPullf  
GPIO_14  
GPIO_15  
I/O  
I/O  
Y
Y
TBD  
TBD  
Active mode  
Active mode  
Input, PD  
Input, PD  
Active mode  
Active mode  
Input, PD  
Input, PD  
WCC_VDDIO  
WCC_VDDIO  
a. PU = pulled up, PD = pulled down.  
b. N = pad has no keeper. Y = pad has a keeper. Keeper is always active except in the power-down state. If there is no keeper, and it is an input and there is NoPull, then the pad should be driven to prevent  
leakage due to floating pad, for example, SDIO_CLK.  
c. In the Power-down state (xx_REG_ON = 0): High-Z; NoPull => The pad is disabled because power is not supplied.  
d. Depending on whether the PCM interface is enabled and the configuration is master or slave mode, it can be either an output or input.  
e. Depending on whether the I2S interface is enabled and the configuration is master or slave mode, it can be either an output or input.  
f.  
The GPIO pull states for the active and low-power states are hardware defaults. They can all be subsequently programmed as a pull-up or pull-down.  
Document No. 002-14797 Rev. *H  
Page 89 of 128  
CYW4343X  
15. DC Characteristics  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
15.1 Absolute Maximum Ratings  
Caution! The absolute maximum ratings in Table 27 indicate levels where permanent damage to the device can occur, even if these  
limits are exceeded for only a brief duration. Functional operation is not guaranteed under these conditions. Excluding VBAT,  
operation at the absolute maximum conditions for extended periods can adversely affect long-term reliability of the device.  
Table 27. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
–0.5 to +6.0a  
–0.5 to 3.9  
–0.5 to 3.9  
–0.5 to 1.575  
–0.5 to 1.32  
–0.5 to 1.32  
–0.5  
DC supply for VBAT and PA driver supply  
VBAT  
V
DC supply voltage for digital I/O  
DC supply voltage for RF switch I/Os  
DC input supply voltage for CLDO and LNLDO  
DC supply voltage for RF analog  
DC supply voltage for core  
VDDIO  
V
V
V
V
V
V
VDDIO_RF  
VDDRF  
VDDC  
Maximum undershoot voltage for I/Ob  
Vundershoot  
Maximum overshoot voltage for I/Ob  
Maximum junction temperature  
Vovershoot  
Tj  
VDDIO + 0.5  
125  
V
°C  
a. Continuous operation at 6.0V is supported.  
b. Duration not to exceed 25% of the duty cycle.  
15.2 Environmental Ratings  
The environmental ratings are shown in Table 28.  
Table 28. Environmental Ratings  
Value  
Characteristic  
Ambient temperature (TA)  
Units  
Conditions/Comments  
Operation  
–30 to +70°C a  
–40 to +125°C  
Less than 60  
Less than 85  
C  
Storage temperature  
Relative humidity  
C  
%
%
Storage  
Operation  
a. Functionality is guaranteed, but specifications require derating at extreme temperatures (see the specification tables for details).  
15.3 Electrostatic Discharge Specifications  
Extreme caution must be exercised to prevent electrostatic discharge (ESD) damage. Proper use of wrist and heel grounding straps  
to discharge static electricity is required when handling these devices. Always store unused material in its antistatic packaging.  
Table 29. ESD Specifications  
Pin Type  
Symbol  
Condition  
ESD Rating  
Unit  
ESD, Handling Reference:  
NQY00083, Section 3.4, Group  
D9, Table B  
ESD_HAND_HBM  
Human Body Model Contact Discharge per 1000  
JEDEC EID/JESD22-A114  
V
Machine Model (MM)  
CDM  
ESD_HAND_MM  
ESD_HAND_CDM  
Machine Model Contact  
30  
V
V
Charged Device Model Contact Discharge 300  
per JEDEC EIA/JESD22-C101  
Document No. 002-14797 Rev. *H  
Page 90 of 128  
CYW4343X  
15.4 Recommended Operating Conditions and DC Characteristics  
Functional operation is not guaranteed outside the limits shown in Table 30, and operation outside these limits for extended periods  
can adversely affect long-term reliability of the device.  
Table 30. Recommended Operating Conditions and DC Characteristics  
Value  
Element  
DC supply voltage for VBAT  
Symbol  
VBAT  
Minimum  
Typical  
Maximum Unit  
3.0a  
1.14  
4.8b  
V
DC supply voltage for core  
VDD  
1.2  
1.2  
1.26  
1.26  
3.63  
V
V
V
DC supply voltage for RF blocks in chip  
DC supply voltage for digital I/O  
VDDRF  
1.14  
1.71  
VDDIO,  
VDDIO_SD  
DC supply voltage for RF switch I/Os  
External TSSI input  
VDDIO_RF  
TSSI  
3.13  
0.15  
0.4  
3.3  
3.46  
0.95  
0.7  
V
V
V
Internal POR threshold  
Vth_POR  
SDIO Interface I/O Pins  
For VDDIO_SD = 1.8V:  
Input high voltage  
VIH  
VIL  
1.27  
V
V
V
V
Input low voltage  
0.58  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
For VDDIO_SD = 3.3V:  
Input high voltage  
VOH  
VOL  
1.40  
0.45  
VIH  
0.625 × VDDIO  
V
Input low voltage  
VIL  
0.25 × VDDIO V  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
VOH  
VOL  
0.75 × VDDIO  
V
V
0.125 ×  
VDDIO  
Other Digital I/O Pins  
For VDDIO = 1.8V:  
Input high voltage  
VIH  
0.65 × VDDIO  
V
Input low voltage  
VIL  
0.35 × VDDIO V  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
For VDDIO = 3.3V:  
VOH  
VOL  
VDDIO – 0.45  
V
V
0.45  
Input high voltage  
VIH  
VIL  
2.00  
V
V
V
V
Input low voltage  
0.80  
Output high voltage @ 2 mA  
Output low Voltage @ 2 mA  
VOH  
VOL  
VDDIO – 0.4  
0.40  
RF Switch Control Output Pinsc  
For VDDIO_RF = 3.3V:  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
Input capacitance  
VOH  
VOL  
CIN  
VDDIO – 0.4  
V
0.40  
5
V
pF  
a. The CYW4343X is functional across this range of voltages. However, optimal RF performance specified in the data sheet is guaranteed only for  
3.2V < VBAT < 4.8V.  
b. The maximum continuous voltage is 4.8V. Voltages up to 6.0V for up to 10 seconds, cumulative duration over the lifetime of the device are  
allowed. Voltages as high as 5.0V for up to 250 seconds, cumulative duration over the lifetime of the device are allowed.  
c. Programmable 2 mA to 16 mA drive strength. Default is 10 mA.  
Document No. 002-14797 Rev. *H  
Page 91 of 128  
CYW4343X  
16. WLAN RF Specifications  
The CYW4343X includes an integrated direct conversion radio that supports the 2.4 GHz band. This section describes the RF char-  
acteristics of the 2.4 GHz radio.  
Note: Values in this data sheet are design goals and may change based on device characterization results.  
Unless otherwise stated, the specifications in this section apply when the operating conditions are within the limits specified in  
Table 28, “Environmental Ratings,” on page 90 and Table 30, “Recommended Operating Conditions and DC Characteristics,” on  
page 91. Functional operation outside these limits is not guaranteed.  
Typical values apply for the following conditions:  
VBAT = 3.6V.  
Ambient temperature +25°C.  
Figure 50. RF Port Location  
Chip  
Port  
C2  
TX  
Filter  
Antenna  
Port  
10 pF  
C1  
CYW4343X  
L1  
RX  
4.7 nH  
10 pF  
Note: All specifications apply at the chip port unless otherwise specified.  
16.1 2.4 GHz Band General RF Specifications  
Table 31. 2.4 GHz Band General RF Specifications  
Item  
TX/RX switch time  
RX/TX switch time  
Condition  
Minimum  
Typical  
Maximum  
Unit  
µs  
µs  
Including TX ramp down  
Including TX ramp up  
5
2
16.2 WLAN 2.4 GHz Receiver Performance Specifications  
Note: Unless otherwise specified, the specifications in Table 32 are measured at the chip port (for the location of the chip port, see  
Figure 50 on page 92).  
Table 32. WLAN 2.4 GHz Receiver Performance Specifications  
Parameter  
Frequency range  
Condition/Notes  
Minimum  
2400  
Typical  
Maximum Unit  
2500  
MHz  
dBm  
dBm  
dBm  
dBm  
RX sensitivity (8% PER for 1024  
octet PSDU) a  
1 Mbps DSSS  
2 Mbps DSSS  
–97.5  
–93.5  
–91.5  
–88.5  
–99.5  
–95.5  
–93.5  
–90.5  
5.5 Mbps DSSS  
11 Mbps DSSS  
Document No. 002-14797 Rev. *H  
Page 92 of 128  
CYW4343X  
Table 32. WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum  
–91.5  
Typical  
–93.5  
Maximum Unit  
RX sensitivity (10% PER for 1000 6 Mbps OFDM  
octet PSDU) at WLAN RF port a  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
9 Mbps OFDM  
–90.5  
–87.5  
–85.5  
–82.5  
–80.5  
–76.5  
–75.5  
–92.5  
–89.5  
–87.5  
–84.5  
–82.5  
–78.5  
–77.5  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
RX sensitivity  
20 MHz channel spacing for all MCS rates (Mixed mode)  
(10% PER for 4096 octet PSDU).  
Defined for default parameters:  
Mixed mode, 800 ns GI.  
256-QAM, R = 5/6  
256-QAM, R = 3/4  
MCS7  
–67.5  
–69.5  
–71.5  
–73.5  
–74.5  
–79.5  
–82.5  
–84.5  
–86.5  
–90.5  
–69.5  
–71.5  
–73.5  
–75.5  
–76.5  
–81.5  
–84.5  
–86.5  
–88.5  
–92.5  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
MCS6  
MCS5  
MCS4  
MCS3  
MCS2  
MCS1  
MCS0  
Document No. 002-14797 Rev. *H  
Page 93 of 128  
CYW4343X  
Table 32. WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum  
Typical  
–13  
Maximum Unit  
Blocking level for 3 dB RX  
704–716 MHz  
777–787 MHz  
776–794 MHz  
815–830 MHz  
816–824 MHz  
816–849 MHz  
824–849 MHz  
824–849 MHz  
824–849 MHz  
824–849 MHz  
830–845 MHz  
832–862 MHz  
880–915 MHz  
880–915 MHz  
880–915 MHz  
LTE  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dB  
sensitivity degradation (without  
LTE  
–13  
external filtering).b  
CDMA2000  
LTE  
–13.5  
–12.5  
–13.5  
–11.5  
–11.5  
–12.5  
–11.5  
–8  
CDMA2000  
LTE  
WCDMA  
CDMA2000  
LTE  
GSM850  
LTE  
–11.5  
–11.5  
–10  
LTE  
WCDMA  
LTE  
–12  
E-GSM  
–9  
1710–1755 MHz  
1710–1755 MHz  
1710–1755 MHz  
1710–1785 MHz  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1850–1910 MHz  
1850–1910 MHz  
1850–1915 MHz  
1920–1980 MHz  
1920–1980 MHz  
1920–1980 MHz  
2300–2400 MHz  
2500–2570 MHz  
2570–2620 MHz  
5G  
WCDMA  
LTE  
–13  
–14.5  
–14.5  
–13  
CDMA2000  
WCDMA  
LTE  
–14.5  
–12.5  
–11.5  
–16  
GSM1800  
GSM1900  
CDMA2000  
WCDMA  
LTE  
–13.5  
–16  
LTE  
–17  
WCDMA  
CDMA2000  
LTE  
–17.5  
–19.5  
–19.5  
–44  
LTE  
LTE  
–43  
LTE  
–34  
WLAN  
>–4  
Maximum receive level  
@ 2.4 GHz  
@ 1, 2 Mbps (8% PER, 1024 octets)  
@ 5.5, 11 Mbps (8% PER, 1024 octets)  
@ 6–54 Mbps (10% PER, 1000 octets)  
–6  
–12  
–15.5  
35  
Adjacent channel rejection-DSSS. 11 Mbps DSSS  
–70 dBm  
(Difference between interfering and  
desired signal [25 MHz apart] at 8%  
PER for 1024 octet PSDU with  
desired signal level as specified in  
Condition/Notes.)  
Document No. 002-14797 Rev. *H  
Page 94 of 128  
CYW4343X  
Table 32. WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum  
16  
Typical  
Maximum Unit  
Adjacent channel rejection-OFDM. 6 Mbps OFDM  
–79 dBm  
–78 dBm  
–76 dBm  
–74 dBm  
–71 dBm  
–67 dBm  
–63 dBm  
–62 dBm  
–61 dBm  
3
5
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
(Difference between interfering and  
9 Mbps OFDM  
15  
13  
11  
8
desired signal (25 MHz apart) at  
10% PER for 1000c octet PSDU  
12 Mbps OFDM  
with desired signal level as  
18 Mbps OFDM  
specified in Condition/Notes.)  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
65 Mbps OFDM  
4
0
–1  
–2  
–3  
–5  
10  
RCPI accuracyd  
Return loss  
Range –98 dBm to –75 dBm  
Range above –75 dBm  
Zo = 50across the dynamic range.  
a. Optimal RF performance, as specified in this data sheet, is guaranteed only for temperatures between –10°C and 55°C.  
b. The cellular standard listed for each band indicates the type of modulation used to generate the interfering signal in that band for the purpose of  
this test. It is not intended to indicate any specific usage of each band in any specific country.  
c. For 65 Mbps, the size is 4096.  
d. The minimum and maximum values shown have a 95% confidence level.  
16.3 WLAN 2.4 GHz Transmitter Performance Specifications  
Note: Unless otherwise specified, the specifications in Table 32 are measured at the chip port (for the location of the chip port, see  
Figure 50 on page 92).  
Table 33. WLAN 2.4 GHz Transmitter Performance Specifications  
Parameter  
Frequency range  
Condition/Notes  
Minimum Typical Maximum  
Unit  
MHz  
Transmitted power in cellular and 776–794 MHz  
CDMA2000  
–167.5  
–163.5  
–154.5  
–152.5  
–149.5  
–145.5  
–143.5  
–140.5  
–138.5  
–139  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
WLAN 5G bands (at 21 dBm,  
869–960 MHz  
CDMAOne, GSM850  
90% duty cycle, 1 Mbps CCK).a  
1450–1495 MHz  
1570–1580 MHz  
1592–1610 MHz  
1710–1800 MHz  
1805–1880 MHz  
1850–1910 MHz  
1910–1930 MHz  
1930–1990 MHz  
DAB  
GPS  
GLONASS  
DSC-1800-Uplink  
GSM1800  
GSM1900  
TDSCDMA, LTE  
GSM1900, CDMAOne,  
WCDMA  
2010–2075 MHz  
2110–2170 MHz  
2305–2370 MHz  
2370–2400 MHz  
2496–2530 MHz  
2530–2560 MHz  
2570–2690 MHz  
5000–5900 MHz  
TDSCDMA  
WCDMA  
–127.5  
–124.5  
–104.5  
–81.5  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
LTE Band 40  
LTE Band 40  
LTE Band 41  
LTE Band 41  
LTE Band 41  
WLAN 5G  
–94.5  
–120.5  
–121.5  
–109.5  
Document No. 002-14797 Rev. *H  
Page 95 of 128  
CYW4343X  
Table 33. WLAN 2.4 GHz Transmitter Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum Typical Maximum  
Unit  
Harmonic level (at 21 dBm with 4.8–5.0 GHz  
2nd harmonic  
3rd harmonic  
4th harmonic  
–26.5  
–23.5  
–32.5  
dBm/ MHz  
dBm/ MHz  
dBm/ MHz  
90% duty cycle, 1 Mbps CCK)  
7.2–7.5 GHz  
9.6–10 GHz  
TX power at the chip port for the  
highest power level setting at  
25°C, VBA = 3.6V, and spectral  
mask and EVM complianceb, c  
EVM Does Not Exceed  
IEEE 802.11b  
(DSSS/CCK)  
–9 dB  
21  
dBm  
OFDM, BPSK  
OFDM, QPSK  
OFDM, 16-QAM  
–8 dB  
20.5  
20.5  
20.5  
18  
dBm  
dBm  
dBm  
dBm  
–13 dB  
–19 dB  
–25 dB  
OFDM, 64-QAM  
(R = 3/4)  
OFDM, 64-QAM  
(R = 5/6)  
–27 dB  
17.5  
15  
9
dBm  
dBm  
dB  
OFDM, 256-QAM(R= 32 dB  
5/6)  
TX power control  
dynamic range  
Closed loop TX power variation at Across full temperature and voltage range. Applies  
±1.5  
dB  
highest power level setting  
Carrier suppression  
Gain control step  
Return loss  
across 5 to 21 dBm output power range.  
15  
dBc  
dB  
0.25  
6
Zo = 50  
4
dB  
Load pull variation for output  
power, EVM, and Adjacent  
Channel Power Ratio (ACPR)  
VSWR = 2:1.  
VSWR = 3:1.  
EVM degradation  
3.5  
±2  
15  
4
dB  
Output power variation  
dB  
ACPR-compliant power level –  
dBm  
dB  
EVM degradation  
Output power variation  
±3  
15  
dB  
ACPR-compliant power level –  
dBm  
a. The cellular standards listed indicate only typical usages of that band in some countries. Other standards may also be used within those bands.  
b. TX power for channel 1 and channel 11 is specified separately by nonvolatile memory parameters to ensure band-edge compliance.  
c. Optimal RF performance, as specified in this data sheet, is guaranteed only for temperatures between –10°C and 55°C.  
16.4 General Spurious Emissions Specifications  
Table 34. General Spurious Emissions Specifications  
Parameter  
Condition/Notes  
Minimum  
2400  
General Spurious Emissions  
Typical  
Maximum  
2500  
Unit  
MHz  
Frequency range  
TX emissions  
30 MHz < f < 1 GHz  
RBW = 100 kHz  
RBW = 1 MHz  
RBW = 1 MHz  
RBW = 1 MHz  
RBW = 100 kHz  
RBW = 1 MHz  
RBW = 1 MHz  
RBW = 1 MHz  
–99  
–44  
–68  
–88  
–99  
–54  
–88  
–88  
–96  
–41  
–65  
–85  
–96  
–51  
–85  
–85  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
1 GHz < f < 12.75 GHz  
1.8 GHz < f < 1.9 GHz  
5.15 GHz < f < 5.3 GHz  
30 MHz < f < 1 GHz  
RX/standby  
emissions  
1 GHz < f < 12.75 GHz  
1.8 GHz < f < 1.9 GHz  
5.15 GHz < f < 5.3 GHz  
Note: The specifications in this table apply at the chip port.  
Document No. 002-14797 Rev. *H  
Page 96 of 128  
CYW4343X  
17. Bluetooth RF Specifications  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
Unless otherwise stated, limit values apply for the conditions specified in Table 28, “Environmental Ratings,” on page 90 and  
Table 30, “Recommended Operating Conditions and DC Characteristics,” on page 91. Typical values apply for the following condi-  
tions:  
VBAT = 3.6V.  
Ambient temperature +25°C.  
Note: All Bluetooth specifications apply at the chip port. For the location of the chip port, see Figure 50: “RF Port Location,” on page  
92.  
Table 35. Bluetooth Receiver RF Specifications  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
Note: The specifications in this table are measured at the chip output port unless otherwise specified.  
General  
Frequency range  
RX sensitivity  
2402  
2480  
MHz  
dBm  
dBm  
dBm  
dBm  
dBm  
GFSK, 0.1% BER, 1 Mbps  
–94  
–96  
–90  
/4–DQPSK, 0.01% BER, 2 Mbps –  
8–DPSK, 0.01% BER, 3 Mbps  
Input IP3  
–16  
Maximum input at antenna  
–20  
Interference Performancea  
GFSK, 0.1% BER  
C/I co-channel  
11  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
0.0  
–30  
–40  
–9  
C/I 1 MHz adjacent to image channel GFSK, 0.1% BER  
–20  
13  
C/I co-channel  
/4–DQPSK, 0.1% BER  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
/4–DQPSK, 0.1% BER  
/4–DQPSK, 0.1% BER  
/4–DQPSK, 0.1% BER  
/4–DQPSK, 0.1% BER  
0.0  
–30  
–40  
–7  
C/I 1 MHz adjacent to image channel /4–DQPSK, 0.1% BER  
–20  
21  
C/I co-channel  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I Image channel  
5.0  
–25  
–33  
0.0  
–13  
C/I 1 MHz adjacent to image channel 8–DPSK, 0.1% BER  
Out-of-Band Blocking Performance (CW)  
30–2000 MHz  
0.1% BER  
–10.0  
dBm  
dBm  
dBm  
dBm  
2000–2399 MHz  
2498–3000 MHz  
3000 MHz–12.75 GHz  
0.1% BER  
0.1% BER  
0.1% BER  
–27  
–27  
–10.0  
Document No. 002-14797 Rev. *H  
Page 97 of 128  
CYW4343X  
Table 35. Bluetooth Receiver RF Specifications (Cont.)  
Conditions Minimum Typical  
Parameter  
Maximum  
Unit  
Out-of-Band Blocking Performance, Modulated Interferer (LTE)  
GFSK (1 Mbps)  
2310 MHz  
2330 MHz  
2350 MHz  
2370 MHz  
2510 MHz  
2530 MHz  
2550 MHz  
2570 MHz  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
–20  
–19  
–20  
–24  
–24  
–21  
–21  
–20  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
/4 DPSK (2 Mbps)  
2310 MHz  
2330 MHz  
2350 MHz  
2370 MHz  
2510 MHz  
2530 MHz  
2550 MHz  
2570 MHz  
LTE band40 TDD 20M BW  
–20  
–19  
–20  
–24  
–24  
–20  
–20  
–20  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
8DPSK (3 Mbps)  
2310 MHz  
2330 MHz  
2350 MHz  
2370 MHz  
2510 MHz  
2530 MHz  
2550 MHz  
2570 MHz  
LTE band40 TDD 20M BW  
–20  
–19  
–20  
–24  
–24  
–21  
–20  
–20  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
Out-of-Band Blocking Performance, Modulated Interferer (Non-LTE)  
a
GFSK (1 Mbps)  
698–716 MHz  
776–849 MHz  
824–849 MHz  
824–849 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
–12  
–12  
–12  
dBm  
dBm  
dBm  
dBm  
–11  
–11  
–16  
–15  
–18  
–20  
880–915 MHz  
E-GSM  
dBm  
dBm  
dBm  
dBm  
dBm  
880–915 MHz  
WCDMA  
GSM1800  
WCDMA  
GSM1900  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
Document No. 002-14797 Rev. *H  
Page 98 of 128  
CYW4343X  
Table 35. Bluetooth Receiver RF Specifications (Cont.)  
Parameter  
1850–1910 MHz  
Conditions  
Minimum  
Typical  
–17  
Maximum  
Unit  
WCDMA  
dBm  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
TD-SCDMA  
WCDMA  
–18  
–18  
–18  
–21  
dBm  
dBm  
dBm  
dBm  
TD–SCDMA  
WCDMA  
a
/4 DPSK (2 Mbps)  
698–716 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–8  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
776–794 MHz  
–8  
824–849 MHz  
–9  
824–849 MHz  
–9  
880–915 MHz  
–8  
880–915 MHz  
WCDMA  
GSM1800  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
WCDMA  
TD-SCDMA  
WCDMA  
–8  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
–14  
–14  
–15  
–14  
–16  
–15  
–17  
–21  
a
8DPSK (3 Mbps)  
698–716 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–11  
–11  
–11  
–12  
–11  
–11  
–16  
–15  
–17  
–17  
–17  
–17  
–18  
–21  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
776–794 MHz  
824–849 MHz  
824–849 MHz  
880–915 MHz  
880–915 MHz  
WCDMA  
GSM1800  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
WCDMA  
TD-SCDMA  
WCDMA  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
RX LO Leakage  
2.4 GHz band  
–90.0  
–80.0  
dBm  
Spurious Emissions  
30 MHz–1 GHz  
1–12.75 GHz  
–95  
–62  
–47  
dBm  
–70  
dBm  
869–894 MHz  
925–960 MHz  
1805–1880 MHz  
1930–1990 MHz  
–147  
–147  
–147  
–147  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
Document No. 002-14797 Rev. *H  
Page 99 of 128  
CYW4343X  
Table 35. Bluetooth Receiver RF Specifications (Cont.)  
Parameter  
2110–2170 MHz  
Conditions  
Minimum  
Typical  
–147  
Maximum  
Unit  
dBm/Hz  
a. The Bluetooth reference level for the required signal at the Bluetooth chip port is 3 dB higher than the typical sensitivity level.  
Table 36. LTE Specifications for Spurious Emissions  
Parameter  
Conditions  
Typical  
Unit  
dBm/Hz  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
Band 7  
–147  
–147  
–147  
–147  
Band 40  
Band 38  
XGP Band  
dBm/Hz  
dBm/Hz  
dBm/Hz  
Document No. 002-14797 Rev. *H  
Page 100 of 128  
CYW4343X  
Table 37. Bluetooth Transmitter RF Specificationsa  
Parameter  
Conditions  
General  
Minimum Typical Maximum  
Unit  
Frequency range  
2402  
2480  
MHz  
Basic rate (GFSK) TX power at Bluetooth  
QPSK TX power at Bluetooth  
8PSK TX power at Bluetooth  
Power control step  
2
12.0  
8.0  
8.0  
4
8
dBm  
dBm  
dBm  
dB  
GFSK In-Band Spurious Emissions  
–20 dBc BW  
0.93  
1
MHz  
EDR In-Band Spurious Emissions  
1.0 MHz < |M – N| < 1.5 MHz  
1.5 MHz < |M – N| < 2.5 MHz  
M – N = the frequency range for which  
the spurious emission is measured  
relative to the transmit center frequency.  
–38  
–31  
–43  
–26.0  
–20.0  
–40.0  
dBc  
dBm  
dBm  
|M – N| 2.5 MHzb  
Out-of-Band Spurious Emissions  
–36.0 c,d  
30 MHz to 1 GHz  
dBm  
dBm  
–30.0 d,e,f  
–47.0  
1 GHz to 12.75 GHz  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
dBm  
dBm  
–47.0  
GPS Band Spurious Emissions  
Spurious emissions  
–103  
dBm  
Out-of-Band Noise Floorg  
65–108 MHz  
FM RX  
–147  
–146  
–146  
–146  
–146  
–144  
–143  
–137  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
776–794 MHz  
869–960 MHz  
925–960 MHz  
1570–1580 MHz  
1805–1880 MHz  
1930–1990 MHz  
2110–2170 MHz  
CDMA2000  
cdmaOne, GSM850  
E-GSM  
GPS  
GSM1800  
GSM1900, cdmaOne, WCDMA  
WCDMA  
a. Unless otherwise specified, the specifications in this table apply at the chip output port, and output power specifications are with the temperature  
correction algorithm and TSSI enabled.  
b. Typically measured at an offset of ±3 MHz.  
c. The maximum value represents the value required for Bluetooth qualification as defined in the v4.1 specification.  
d. The spurious emissions during Idle mode are the same as specified in Table 37 on page 101.  
e. Specified at the Bluetooth antenna port.  
f.  
Meets this specification using a front-end band-pass filter.  
g. Transmitted power in cellular and FM bands at the Bluetooth antenna port. See Figure 50 on page 92 for location of the port.  
Table 38. LTE Specifications for Out-of-Band Noise Floor  
Parameter  
Conditions  
Typical  
Unit  
dBm/Hz  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
Band 7  
–130  
–130  
–130  
Band 40  
Band 38  
dBm/Hz  
dBm/Hz  
Document No. 002-14797 Rev. *H  
Page 101 of 128  
CYW4343X  
Table 38. LTE Specifications for Out-of-Band Noise Floor (Cont.)  
Parameter Conditions Typical  
Unit  
dBm/Hz  
2545–2575 MHz  
XGP Band  
–130  
Table 39. Local Oscillator Performance  
Parameter  
Minimum  
Typical  
Maximum  
Unit  
LO Performance  
Lock time  
72  
±25  
s  
Initial carrier frequency tolerance  
±75  
kHz  
Frequency Drift  
DH1 packet  
DH3 packet  
DH5 packet  
Drift rate  
±8  
±8  
±8  
5
±25  
±40  
±40  
20  
kHz  
kHz  
kHz  
kHz/50 µs  
Frequency Deviation  
00001111 sequence in payloada  
140  
115  
155  
140  
1
175  
kHz  
kHz  
MHz  
10101010 sequence in payloadb  
Channel spacing  
a. This pattern represents an average deviation in payload.  
b. Pattern represents the maximum deviation in payload for 99.9% of all frequency deviations.  
Table 40. BLE RF Specifications  
Parameter  
Frequency range  
Conditions  
Minimum  
2402  
Typical  
Maximum  
Unit  
2480  
MHz  
dBm  
RX sensea  
GFSK, 0.1% BER, 1 Mbps  
–97  
TX powerb  
8.5  
dBm  
Mod Char: delta f1 average  
225  
255  
275  
kHz  
%
Mod Char: delta f2 maxc  
Mod Char: ratio  
99.9  
0.8  
0.95  
%
a. The Bluetooth tester is set so that Dirty TX is on.  
b. BLE TX power can be increased to compensate for front-end losses such as BPF, diplexer, switch, etc.). The output is capped at 12 dBm. The  
BLE TX power at the antenna port cannot exceed the 10 dBm specification limit.  
c. At least 99.9% of all delta F2 max. frequency values recorded over 10 packets must be greater than 185 kHz.  
Document No. 002-14797 Rev. *H  
Page 102 of 128  
CYW4343X  
18. FM Receiver Specifications  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
Unless otherwise stated, limit values apply for the conditions specified inTable 28, “Environmental Ratings,” on page 90 and  
Table 30, “Recommended Operating Conditions and DC Characteristics,” on page 91. Typical values apply for the following condi-  
tions:  
VBAT = 3.6V.  
Ambient temperature +25°C.  
Table 41. FM Receiver Specifications  
Parameter  
Conditionsa  
RF Parameters  
Minimum Typical Maximum  
Units  
Operating frequencyb  
Sensitivityc  
Frequencies inclusive  
65  
108  
MHz  
FM only,  
SNR 26 dB  
1
dBµV EMF  
µV EMF  
dBµV  
1.1  
–5  
Receiver adjacent channel Measured for 30 dB SNR at audio output.  
selectivityc,d  
Signal of interest: 23 dBµV EMF (14.1 µV EMF).  
At ±200 kHz.  
51  
62  
53  
dB  
dB  
dB  
At ±400 kHz.  
Intermediate signal-plus-  
Vin = 20 dBµV (10 µV EMF).  
45  
noise to noise ratio (S + N)/  
N, stereoc  
Intermodulation  
performancec,d  
Blocker level increased until desired at  
30 dB SNR.  
Wanted signal: 33 dBµV EMF (45 µV EMF)  
55  
dBc  
Modulated interferer: At fWanted + 400 kHz and + 4 MHz.  
CW interferer: At fWanted + 800 kHz and + 8 MHz.  
AM suppression, monoc  
RDS sensitivitye,f  
Vin = 23 dBµV EMF (14.1 µV EMF).  
AM at 400 Hz with m = 0.3.  
No A-weighted or any other filtering applied.  
40  
dB  
RDS  
RDS deviation = 1.2 kHz.  
17  
7.1  
11  
13  
4.4  
7
dBµV EMF  
µV EMF  
dBµV  
RDS deviation = 2 kHz.  
dBµV EMF  
µV EMF  
dBµV  
RDS selectivityf  
Wanted Signal: 33 dBµV EMF (45 µV EMF),  
2 kHz RDS deviation.  
Interferer: f = 40 kHz, fmod = 1 kHz.  
±200 kHz  
±300 kHz  
±400 kHz  
49  
52  
52  
dB  
dB  
dB  
RF Input  
RF input impedance  
Antenna tuning cap  
1.5  
2.5  
kΩ  
30  
pF  
Document No. 002-14797 Rev. *H  
Page 103 of 128  
CYW4343X  
Table 41. FM Receiver Specifications (Cont.)  
Conditionsa  
Minimum Typical Maximum  
Parameter  
Units  
Maximum input  
SNR > 26 dB.  
113  
446  
107  
–55  
dBµV EMF  
mV EMF  
dBµV  
levelc  
RF conducted emissions  
Local oscillator breakthrough measured on the  
reference port.  
dBm  
869–894 MHz, 925–960 MHz,  
7
–90  
dBm  
dBm  
1805–1880 MHz, and 1930–1990 MHz. GPS.  
RF blocking levels at the FM GSM850, E-GSM (standard); BW = 0.2 MHz.  
antenna input with a 40 dB 824–849 MHz,  
SNR (assumes a 50input 880–915 MHz.  
and excludes spurs)  
GSM 850, E-GSM (edge); BW = 0.2 MHz.  
824–849 MHz,  
880–915 MHz.  
0
dBm  
dBm  
GSM DCS 1800, PCS 1900 (standard, edge);  
BW = 0.2 MHz.  
1710–1785 MHz,  
1850–1910 MHz.  
12  
WCDMA: II (I), III (IV,X); BW = 5 MHz.  
1710–1785 MHz (1710–1755 MHz,  
1710–1770 MHz),  
12  
5
dBm  
dBm  
dBm  
dBm  
dBm  
1850–1980 MHz (1920–1980 MHz).  
WCDMA: V (VI), VIII, XII, XIII, XIV;  
BW = 5 MHz.  
824–849 MHz (830–840 MHz),  
880–915 MHz.  
CDMA2000, CDMA One; BW = 1.25 MHz.  
776–794 MHz,  
824–849 MHz,  
887–925 MHz.  
0
CDMA2000, CDMA One; BW= 1.25 MHz.  
1750–1780 MHz,  
1850–1910 MHz,  
1920–1980 MHz.  
12  
Bluetooth; BW = 1 MHz.  
2402–2480 MHz.  
11  
LTE, Band 38, Band 40, XGP Band  
11  
11  
dBm  
dBm  
WLAN-g/b; BW = 20 MHz.  
2400–2483.5 MHz.  
WLAN-a; BW = 20 MHz.  
4915–5825 MHz.  
6
dBm  
Tuning  
Frequency step  
Settling time  
10  
kHz  
µs  
Single frequency switch in any direction  
to a frequency within the 88–108 MHz or  
76–90 MHz bands. Time measured to within 5 kHz of  
the final frequency.  
150  
Search time  
Total time for an automatic search to  
sweep from 88–108 MHz or 76–90 MHz  
(or in the reverse direction) assuming no channels are  
found.  
8
sec  
Document No. 002-14797 Rev. *H  
Page 104 of 128  
CYW4343X  
Table 41. FM Receiver Specifications (Cont.)  
Parameter  
Conditionsa  
General Audio  
Minimum Typical Maximum  
Units  
Audio output levelg  
–14.5  
–12.5  
0
dBFS  
dBFS  
Maximum audio output  
levelh  
DAC audio output level  
Conditions:  
72  
88  
mV RMS  
Vin = 66 dBµV EMF (2 mV EMF),  
f = 22.5 kHz, fmod = 1 kHz,  
f Pilot = 6.75 kHz  
Maximum DAC audio output –  
levelh  
333  
1
mV RMS  
dB  
Audio DAC output level  
differencei  
–1  
Left and right AC mute  
Left and right hard mute  
FM input signal fully muted with DAC enabled  
FM input signal fully muted with DAC disabled  
60  
80  
dB  
dB  
Soft mute attenuation and Muting is performed dynamically, proportional to the desired FM input signal C/N. The muting characteristic  
start level  
is fully programmable. See Audio Features on page 57.  
Maximum signal plus noise- –  
to-noise ratio  
69  
64  
dB  
dB  
(S + N)/N, monoi  
Maximum signal plus noise- –  
to-noise ratio (S + N)/N,  
stereog  
Total harmonic distortion,  
mono  
Vin = 66 dBµV EMF(2 mV EMF):  
f = 75 kHz, fmod = 400 Hz.  
f = 75 kHz, fmod = 1 kHz.  
0.8  
0.8  
%
%
f = 75 kHz, fmod = 3 kHz.  
f = 100 kHz, fmod = 1 kHz.  
0.8  
%
1.0  
1.5  
%
%
Total harmonic distortion,  
stereo  
Vin = 66 dBµV EMF (2 mV EMF),  
f = 67.5 kHz, fmod = 1 kHz,  
f pilot = 6.75 kHz, L = R  
Audio spurious productsi  
Range from 300 Hz to 15 kHz  
with respect to a 1 kHz tone.  
–60  
dBc  
kHz  
Hz  
Audio bandwidth, upper (– Vin = 66 dBµV EMF (2 mV EMF)  
15  
3 dB point)  
f = 8 kHz, for 50 µs  
Audio bandwidth, lower (–  
3 dB point)  
20  
0.5  
Audio in-band ripple  
100 Hz to 13 kHz,  
Vin = 66 dBµV EMF (2 mV EMF),  
f = 8 kHz, for 50 µs.  
–0.5  
dB  
Deemphasis time constant With respect to 50 and 75 µs.  
tolerance  
3
±5  
83  
%
RSSI range  
With 1 dB resolution and ±5 dB accuracy  
at room temperature.  
dBµV EMF  
1.41  
–3  
1.41E+4  
77  
µV EMF  
dBµV  
Stereo Decoder  
Stereo channel separation Forced Stereo mode  
Vin = 66 dBµV EMF (2 mV EMF),  
44  
dB  
f = 67.5 kHz, fmod = 1 kHz,  
f Pilot = 6.75 kHz,  
R = 0, L = 1  
Document No. 002-14797 Rev. *H  
Page 105 of 128  
CYW4343X  
Table 41. FM Receiver Specifications (Cont.)  
Conditionsa  
Minimum Typical Maximum  
Parameter  
Units  
Mono stereo blend and  
switching  
Dynamically proportional to the desired FM input signal C/N. The blending and switching characteristics are  
fully programmable. See Audio Features on page 57.  
Pilot suppression  
Vin = 66 dBµV EMF (2 mV EMF),  
f = 75 kHz, fmod = 1 kHz.  
46  
dB  
Pause Detection  
Audio level at which  
a pause is detected  
Relative to 1-kHz tone, f = 22.5 kHz.  
4 values in 3 dB steps  
4 values  
–21  
20  
–12  
40  
dB  
ms  
Audio pause  
duration  
a. The following conditions are applied to all relevant tests unless otherwise indicated: Preemphasis and deemphasis of 50 µs, R = L for mono,  
BAF = 300 Hz to 15 kHz, A-weighted filtering applied.  
b. Contact your Broadcom representative for applications operating between 65–76 MHz.  
c. Signal of interest: f = 22.5 kHz, fmod = 1 kHz.  
d. Interferer: f = 22.5 kHz, fmod = 1 kHz.  
e. RDS sensitivity numbers are for 87.5–108 MHz only.  
f.  
Vin = f = 32 kHz, fmod = 1 kHz, f pilot = 7.5 kHz, and with an interferer for 95% of blocks decoded with no errors after correction, over a  
sample of 5000 blocks.  
g. Vin = 66 dBµV EMF (2 mV EMF), f = 22.5 kHz, fmod = 1 kHz, f pilot = 6.75 kHz.  
h. Vin = 66 dBµV EMF (2 mV EMF), f = 100 kHz, fmod = 1 kHz, f pilot = 6.75 kHz.  
i.  
Vin = 66 dBµV EMF (2 mV EMF), f = 22.5 kHz, fmod = 1 kHz.  
Document No. 002-14797 Rev. *H  
Page 106 of 128  
CYW4343X  
19. Internal Regulator Electrical Specifications  
Note: Values in this data sheet are design goals and are subject to change based on device characterization results.  
Functional operation is not guaranteed outside of the specification limits provided in this section.  
19.1 Core Buck Switching Regulator  
Table 42. Core Buck Switching Regulator (CBUCK) Specifications  
Specification  
Notes  
Min.  
2.4  
Typ.  
3.6  
Max.  
4.8a  
Units  
Input supply voltage (DC)  
DC voltage range inclusive of disturbances.  
CCM, load > 100 mA VBAT = 3.6V.  
V
PWM mode switching  
frequency  
4
MHz  
PWM output current  
Output current limit  
Output voltage range  
370  
mA  
mA  
V
1400  
1.35  
Programmable, 30 mV steps.  
Default = 1.35V.  
1.2  
1.5  
PWM output voltage  
DC accuracy  
Includes load and line regulation.  
Forced PWM mode.  
–4  
7
4
%
PWM ripple voltage, static  
Measure with 20 MHz bandwidth limit.  
20  
mVpp  
Static load, max. ripple based on VBAT = 3.6V,  
Vout = 1.35V,  
Fsw = 4 MHz, 2.2 μH inductor L > 1.05 μH, Cap +  
Board total-ESR < 20 m,  
Cout > 1.9 μF, ESL<200 pH  
PWM mode peak efficiency  
PFM mode efficiency  
Peak efficiency at 200 mA load, inductor DCR = 200  
85  
%
%
µs  
m, VBAT = 3.6V, VOUT = 1.35V  
10 mA load current, inductor DCR = 200 m, VBAT = –  
3.6V, VOUT = 1.35V  
77  
Start-up time from  
power down  
VDDIO already ON and steady.  
Time from REG_ON rising edge to CLDO reaching  
1.2V  
400  
500  
External inductor  
0603 size, 2.2 μH ±20%,  
DCR = 0.2± 25%  
2.2  
4.7  
4.7  
µH  
µF  
µF  
2.0b  
10c  
External output capacitor  
External input capacitor  
Ceramic, X5R, 0402,  
ESR <30 mat 4 MHz, 4.7 μF ±20%, 10V  
0.67b  
For SR_VDDBATP5V pin,  
ceramic, X5R, 0603,  
ESR < 30 mat 4 MHz, ±4.7 μF ±20%, 10V  
Input supply voltage ramp-up time  
0 to 4.3V  
40  
µs  
a. The maximum continuous voltage is 4.8V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over the lifetime of the device are  
allowed. Voltages as high as 5.0V for up to 250 seconds, cumulative duration, over the lifetime of the device are allowed.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and  
aging.  
c. Total capacitance includes those connected at the far end of the active load.  
19.2 3.3V LDO (LDO3P3)  
Table 43. LDO3P3 Specifications  
Specification  
Input supply voltage, Vin  
Notes  
Min.  
3.1  
Typ.  
3.6  
Max.  
4.8a  
Units  
Min. = Vo + 0.2V = 3.5V dropout voltage  
requirement must be met under maximum load  
for performance specifications.  
V
Output current  
0.001  
450  
mA  
V
Nominal output voltage, Vo  
Default = 3.3V.  
3.3  
Dropout voltage  
At max. load.  
200  
mV  
Document No. 002-14797 Rev. *H  
Page 107 of 128  
CYW4343X  
Table 43. LDO3P3 Specifications (Cont.)  
Notes  
Specification  
Min.  
–5  
Typ.  
Max.  
+5  
Units  
Output voltage DC accuracy  
Quiescent current  
Includes line/load regulation.  
No load  
%
66  
85  
µA  
Line regulation  
Vin from (Vo + 0.2V) to 4.8V, max. load  
3.5  
mV/V  
Load regulation  
PSRR  
load from 1 mA to 450 mA  
0.3  
mV/mA  
dB  
Vin Vo + 0.2V,  
20  
Vo = 3.3V, Co = 4.7 µF,  
Max. load, 100 Hz to 100 kHz  
LDO turn-on time  
Chip already powered up.  
1.0b  
160  
4.7  
250  
µs  
External output capacitor, Co  
Ceramic, X5R, 0402,  
(ESR: 5 m–240 m), ± 10%, 10V  
5.64  
µF  
External input capacitor  
For SR_VDDBATA5V pin (shared with band gap) –  
Ceramic, X5R, 0402,  
4.7  
µF  
(ESR: 30m-200 m), ± 10%, 10V.  
Not needed if sharing VBAT capacitor 4.7 µF with  
SR_VDDBATP5V.  
a. The maximum continuous voltage is 4.8V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over the lifetime of the device are  
allowed. Voltages as high as 5.0V for up to 250 seconds, cumulative duration, over the lifetime of the device are allowed.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and  
aging.  
19.3 CLDO  
Table 44. CLDO Specifications  
Specification  
Input supply voltage, Vin  
Notes  
Min. Typ. Max.  
Units  
Min. = 1.2 + 0.15V = 1.35V dropout voltage requirement 1.3  
must be met under maximum load.  
1.35  
1.5  
V
Output current  
0.2  
200  
mA  
V
Output voltage, Vo  
Programmable in 10 mV steps.  
Default = 1.2.V  
0.95  
1.2  
1.26  
Dropout voltage  
At max. load  
150  
+4  
mV  
%
Output voltage DC accuracy  
Quiescent current  
Includes line/load regulation  
No load  
–4  
13  
1.24  
µA  
200 mA load  
mA  
mV/V  
Line regulation  
Vin from (Vo + 0.15V) to 1.5V,  
maximum load  
5
Load regulation  
Leakage current  
Load from 1 mA to 300 mA  
Power down  
0.02  
0.05  
20  
3
mV/mA  
µA  
5
1
Bypass mode  
µA  
PSRR  
@1 kHz, Vin 1.35V, Co = 4.7 µF  
20  
dB  
Start-up time of PMU  
VDDIO up and steady. Time from the REG_ON rising  
edge to the CLDO  
700  
180  
µs  
µs  
reaching 1.2V.  
LDO turn-on time  
LDO turn-on time when rest of the  
chip is up.  
140  
1.1a  
External output capacitor, Co  
External input capacitor  
Total ESR: 5 m–240 mΩ  
2.2  
1
µF  
µF  
Only use an external input capacitor  
at the VDD_LDO pin if it is not supplied  
from CBUCK output.  
2.2  
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and  
aging.  
Document No. 002-14797 Rev. *H  
Page 108 of 128  
CYW4343X  
19.4 LNLDO  
Table 45. LNLDO Specifications  
Notes  
Specification  
Min.  
1.3  
Typ.  
1.35  
Max.  
1.5  
Units  
Input supply voltage, Vin  
Min. VIN = VO + 0.15V = 1.35V  
V
(where VO = 1.2V) dropout voltage requirement must be  
met under maximum load.  
Output current  
0.1  
1.1  
150  
mA  
V
Output voltage, Vo  
Programmable in 25 mV steps.  
Default = 1.2V  
1.2  
1.275  
Dropout voltage  
At maximum load  
Includes line/load regulation  
No load  
150  
+4  
12  
mV  
%
Output voltage DC accuracy  
Quiescent current  
–4  
10  
970  
µA  
Max. load  
990  
5
µA  
Line regulation  
Load regulation  
V
in from (Vo + 0.15V) to 1.5V,  
mV/V  
200 mA load  
Load from 1 mA to 200 mA:  
Vin (Vo + 0.12V)  
0.025  
0.045  
mV/mA  
µA  
Leakage current  
Output noise  
Power-down, junction temp. = 85°C  
5
20  
@30 kHz, 60–150 mA load Co = 2.2 µF  
@100 kHz, 60–150 mA load Co = 2.2 µF  
60  
35  
nV/ Hz  
PSRR  
@1 kHz, Vin (Vo + 0.15V), Co = 4.7 µF  
20  
dB  
LDO turn-on time  
LDO turn-on time when rest of chip is up  
140  
2.2  
180  
4.7  
µs  
0.5a  
External output capacitor, Co  
Total ESR (trace/capacitor):  
5 m–240 mΩ  
µF  
External input capacitor  
Only use an external input capacitor at the VDD_LDO  
pin if it is not supplied from CBUCK output.  
Total ESR (trace/capacitor): 30 m–200 mΩ  
1
2.2  
µF  
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and  
aging.  
Document No. 002-14797 Rev. *H  
Page 109 of 128  
CYW4343X  
20. System Power Consumption  
Note: The values in this data sheet are design goals and are subject to change based on device characterization.Unless otherwise  
stated, these values apply for the conditions specified in Table 30, “Recommended Operating Conditions and DC Characteristics,” on  
page 91.  
20.1 WLAN Current Consumption  
Table 46 shows typical currents consumed by the CYW4343X’s WLAN section. All values shown are with the Bluetooth core in Reset  
mode with Bluetooth and FM off.  
20.1.1 2.4 GHz Mode  
Table 46. 2.4 GHz Mode WLAN Power Consumption  
VBAT = 3.6V, VDDIO = 1.8V, TA 25°C  
Mode  
Rate  
VBAT (mA)  
Vio (µA)  
Sleep Modes  
Leakage (OFF)  
N/A  
N/A  
0.0035  
0.08  
80  
Sleep (idle, unassociated) a  
0.0058  
0.0058  
1.05  
Sleep (idle, associated, inter-beacons) b  
IEEE Power Save PM1 DTIM1 (Avg.) c  
IEEE Power Save PM1 DTIM3 (Avg.) d  
IEEE Power Save PM2 DTIM1 (Avg.) c  
Rate 1  
Rate 1  
Rate 1  
Rate 1  
Rate 1  
80  
74  
86  
74  
86  
0.35  
1.05  
IEEE Power Save PM2 DTIM3 (Avg.) d  
0.35  
Active Modes  
Rx Listen Mode e  
N/A  
37  
12  
Rx Active (at –50dBm RSSI) f  
Rate 1  
39  
12  
12  
12  
12  
15  
15  
15  
15  
Rate 11  
Rate 54  
Rate MCS7  
40  
40  
41  
Tx f  
Rate 1 @ 20 dBm  
320  
290  
260  
260  
Rate 11 @ 18 dBm  
Rate 54 @ 15 dBm  
Rate MCS7 @ 15 dBm  
a. Device is initialized in Sleep mode, but not associated.  
b. Device is associated, and then enters Power Save mode (idle between beacons).  
c. Beacon interval = 100 ms; beacon duration = 1 ms @ 1 Mbps (Integrated Sleep + wakeup + beacon).  
d. Beacon interval = 300 ms; beacon duration = 1 ms @ 1 Mbps (Integrated Sleep + wakeup + beacon).  
e. Carrier sense (CCA) when no carrier present.  
f.  
Tx output power is measured on the chip-out side; duty cycle =100%. Tx Active mode is measured in Packet Engine mode (pseudo-random data)  
Document No. 002-14797 Rev. *H  
Page 110 of 128  
CYW4343X  
20.2 Bluetooth and FM Current Consumption  
The Bluetooth, BLE, and FM current consumption measurements are shown in Table 47.  
Note:  
The WLAN core is in reset (WLAN_REG_ON = low) for all measurements provided in Table 47.  
For FM measurements, the Bluetooth core is in Sleep mode.  
The BT current consumption numbers are measured based on GFSK TX output power = 10 dBm.  
Table 47. Bluetooth BLE and FM Current Consumption  
VBAT (VBAT = 3.6V)  
Typical  
VDDIO (VDDIO = 1.8V)  
Typical  
Operating Mode  
Units  
Sleep  
6
150  
162  
172  
µA  
Standard 1.28s Inquiry Scan  
500 ms Sniff Master  
DM1/DH1 Master  
193  
305  
23.3  
28.4  
29.1  
25.1  
11.8  
8.6  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
DM3/DH3 Master  
DM5/DH5 Master  
3DH5/3DH5 Master  
SCO HV3 Master  
FMRX Analog Audio onlya  
FMRX I2S Audioa  
8
mA  
mA  
mA  
µA  
FMRX I2S Audio + RDSa  
FMRX Analog Audio + RDSa  
8
8.6  
187  
BLE Scanb  
164  
BLE Adv. – Unconnectable 1.00 sec  
BLE Connected 1 sec  
93  
71  
163  
163  
µA  
µA  
a. In Mono/Stereo blend mode.  
b. No devices present. A 1.28 second interval with a scan window of 11.25 ms.  
Document No. 002-14797 Rev. *H  
Page 111 of 128  
CYW4343X  
21. Interface Timing and AC Characteristics  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
Unless otherwise stated, the specifications in this section apply when the operating conditions are within the limits specified in  
Table 28 on page 90 and Table 30 on page 91. Functional operation outside of these limits is not guaranteed.  
21.1 SDIO Default Mode Timing  
SDIO default mode timing is shown by the combination of Figure 51 and Table 48 on page 113.  
Figure 51. SDIO Bus Timing (Default Mode)  
fPP  
tWL  
tWH  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
Input  
Output  
tODLY  
tODLY  
(max)  
(min)  
Document No. 002-14797 Rev. *H  
Page 112 of 128  
CYW4343X  
Table 48. SDIO Bus Timing a Parameters (Default Mode)  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
SDIO CLK (All values are referred to minimum VIH and maximum VILb)  
Frequency—Data Transfer mode  
Frequency—Identification mode  
Clock low time  
fPP  
0
25  
400  
MHz  
fOD  
tWL  
tWH  
tTLH  
tTHL  
0
kHz  
ns  
10  
10  
Clock high time  
ns  
Clock rise time  
10  
10  
ns  
Clock fall time  
ns  
Inputs: CMD, DAT (referenced to CLK)  
Input setup time  
Input hold time  
tISU  
tIH  
5
5
ns  
ns  
Outputs: CMD, DAT (referenced to CLK)  
Output delay time—Data Transfer mode  
tODLY  
tODLY  
0
0
14  
50  
ns  
ns  
Output delay time—Identification mode  
a. Timing is based on CL 40 pF load on command and data.  
b. min(Vih) = 0.7 × VDDIO and max(Vil) = 0.2 × VDDIO.  
21.2 SDIO High-Speed Mode Timing  
SDIO high-speed mode timing is shown by the combination of Figure 52 and Table 49.  
Figure 52. SDIO Bus Timing (High-Speed Mode)  
fPP  
tWL  
tWH  
50% VDD  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
Input  
Output  
tODLY  
tOH  
Document No. 002-14797 Rev. *H  
Page 113 of 128  
CYW4343X  
Table 49. SDIO Bus Timing a Parameters (High-Speed Mode)  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
SDIO CLK (all values are referred to minimum VIH and maximum VILb)  
Frequency – Data Transfer Mode  
Frequency – Identification Mode  
Clock low time  
fPP  
0
0
7
7
50  
400  
MHz  
fOD  
tWL  
tWH  
tTLH  
tTHL  
kHz  
ns  
Clock high time  
ns  
Clock rise time  
3
ns  
Clock fall time  
3
ns  
Inputs: CMD, DAT (referenced to CLK)  
Input setup time  
Input hold time  
tISU  
tIH  
6
2
ns  
ns  
Outputs: CMD, DAT (referenced to CLK)  
Output delay time – Data Transfer Mode  
Output hold time  
tODLY  
tOH  
14  
ns  
ns  
pF  
2.5  
Total system capacitance (each line)  
a. Timing is based on CL 40 pF load on command and data.  
b. min(Vih) = 0.7 × VDDIO and max(Vil) = 0.2 × VDDIO.  
CL  
40  
21.3 gSPI Signal Timing  
The gSPI device always samples data on the rising edge of the clock.  
Figure 53. gSPI Timing  
T1  
T2  
T4  
T5  
T3  
SPI_CLK  
SPI_DIN  
T6  
T7  
T8  
T9  
SPI_DOUT  
(falling edge)  
Table 50. gSPI Timing Parameters  
Minimum Maximum  
Parameter  
Clock period  
Clock high/low  
Clock rise/fall time  
Symbol  
Units  
Note  
T1  
20.8  
ns  
Fmax = 50 MHz  
T2/T3  
T4/T5  
(0.45 × T1) – T4  
(0.55 × T1) – T4  
2.5  
ns  
ns  
Document No. 002-14797 Rev. *H  
Page 114 of 128  
CYW4343X  
Table 50. gSPI Timing Parameters (Cont.)  
Parameter  
Input setup time  
Symbol  
Minimum  
Maximum  
Units  
ns  
Note  
T6  
T7  
T8  
T9  
5.0  
5.0  
5.0  
5.0  
Setup time, SIMO valid to SPI_CLK  
active edge  
Input hold time  
ns  
ns  
ns  
Hold time, SPI_CLK active edge to  
SIMO invalid  
Output setup time  
Output hold time  
Setup time, SOMI valid before  
SPI_CLK rising  
Hold time, SPI_CLK active edge to  
SOMI invalid  
CSX to clocka  
Clock to CSXc  
7.86  
ns  
ns  
CSX fall to 1st rising edge  
Last falling edge to CSX high  
a. SPI_CSx remains active for entire duration of gSPI read/write/write_read transaction (that is, overall words for multiple word transaction)  
21.4 JTAG Timing  
Table 51. JTAG Timing Characteristics  
Output  
Output  
Signal Name  
Period  
125 ns  
Maximum  
Minimum  
Setup  
Hold  
TCK  
TDI  
20 ns  
20 ns  
0 ns  
0 ns  
TMS  
TDO  
100 ns  
0 ns  
JTAG_TRST  
250 ns  
Document No. 002-14797 Rev. *H  
Page 115 of 128  
CYW4343X  
22. Power-Up Sequence and Timing  
22.1 Sequencing of Reset and Regulator Control Signals  
The CYW4343X has two signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN,  
and internal regulator blocks. These signals are described below. Additionally, diagrams are provided to indicate proper sequencing  
of the signals for various operational states (see Figure 54 on page 116 through Figure 57 on page 117). The timing values indicated  
are minimum required values; longer delays are also acceptable.  
Note:  
The WL_REG_ON and BT_REG_ON signals are OR’ed in the CYW4343X. The diagrams show both signals going high at  
the same time (as would be the case if both REG signals were controlled by a single host GPIO). If two independent host  
GPIOs are used (one for WL_REG_ON and one for BT_REG_ON), then only one of the two signals needs to be high to  
enable the CYW4343X regulators.  
The reset requirements for the Bluetooth core are also applicable for the FM core. In other words, if FM is to be used, then  
the Bluetooth core must be enabled.  
The CYW4343X has an internal power-on reset (POR) circuit. The device will be held in reset for a maximum of 110 ms  
after VDDC and VDDIO have both passed the POR threshold (see Table 30, “Recommended Operating Conditions and DC  
Characteristics,” on page 91). Wait at least 150 ms after VDDC and VDDIO are available before initiating SDIO accesses.  
VBAT and VDDIO should not rise faster than 40 µs. VBAT should be up before or at the same time as VDDIO. VDDIO  
should not be present first or be held high before VBAT is high.  
22.1.1 Description of Control Signals  
WL_REG_ON: Used by the PMU to power up the WLAN section. It is also OR-gated with the BT_REG_ON input to control  
the internal CYW4343X regulators. When this pin is high, the regulators are enabled and the WLAN section is out of reset.  
When this pin is low the WLAN section is in reset. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators  
are disabled.  
BT_REG_ON: Used by the PMU (OR-gated with WL_REG_ON) to power up the internal CYW4343X regulators. If both the  
BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled. When this pin is low and WL_REG_ON is high,  
the BT section is in reset.  
Note: For both the WL_REG_ON and BT_REG_ON pins, there should be at least a 10 ms time delay between consecutive toggles  
(where both signals have been driven low). This is to allow time for the CBUCK regulator to discharge. If this delay is not followed,  
then there may be a VDDIO in-rush current on the order of 36 mA during the next PMU cold start.  
22.1.2 Control Signal Timing Diagrams  
Figure 54. WLAN = ON, Bluetooth = ON  
32.678 kHz  
Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
Document No. 002-14797 Rev. *H  
Page 116 of 128  
CYW4343X  
Figure 55. WLAN = OFF, Bluetooth = OFF  
32.678 kHz  
Sleep Clock  
VBAT  
VDDIO  
WL_REG_ON  
BT_REG_ON  
Figure 56. WLAN = ON, Bluetooth = OFF  
32.678 kHz  
Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
Figure 57. WLAN = OFF, Bluetooth = ON  
32.678 kHz  
Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
Document No. 002-14797 Rev. *H  
Page 117 of 128  
CYW4343X  
23. Package Information  
23.1 Package Thermal Characteristics  
Table 52. Package Thermal Characteristicsa  
Characteristic  
Value in Still Air  
53.11  
54.75  
JA (°C/W)  
JB (°C/W)  
JC (°C/W)  
13.14  
15.38  
6.36  
7.16  
JT (°C/W)  
JB (°C/W)  
0.04  
14.21  
125  
Maximum Junction Temperature Tj (°C)b  
Maximum Power Dissipation (W)  
1.2  
a. No heat sink, TA = 70°C. This is an estimate based on a 4-layer PCB that conforms to EIA/JESD51–7  
(101.6 mm x 114.3 mm x 1.6 mm) and P = 1.2W continuous dissipation.  
b. Absolute junction temperature limits maintained through active thermal monitoring and dynamic TX duty cycle limiting.  
23.1.1 Junction Temperature Estimation and PSI Versus Thetajc  
Package thermal characterization parameter PSI-JT () yields a better estimation of actual junction temperature (T ) versus using  
JT  
J
the junction-to-case thermal resistance parameter Theta-J (JC). The reason for this is JC assumes that all the power is dissipated  
C
through the top surface of the package case. In actual applications, some of the power is dissipated through the bottom and sides of  
the package. takes into account power dissipated through the top, bottom, and sides of the package. The equation for calculat-  
JT  
ing the device junction temperature is as follows:  
T = T + P   
JT  
J
T
Where:  
T = junction temperature at steady-state condition, °C  
J
T = package case top center temperature at steady-state condition, °C  
T
P = device power dissipation, Watts  
= package thermal characteristics (no airflow), °C/W  
JT  
Document No. 002-14797 Rev. *H  
Page 118 of 128  
CYW4343X  
24. Mechanical Information  
Figure 58 shows the mechanical drawing for the CYW4343X WLBGA package.  
Figure 58. 74-Ball WLBGA Mechanical Information  
Document No. 002-14797 Rev. *H  
Page 119 of 128  
CYW4343X  
Figure 59 shows the mechanical drawing for the CYW4343X WLBGA package.  
Figure 59. 63-Ball WLBGA Mechanical Information  
Document No. 002-14797 Rev. *H  
Page 120 of 128  
CYW4343X  
Figure 60 shows the mechanical drawing for the CYW4343X WLCSP package. Figure 61 shows the WLCSP keep-out areas.  
Figure 60. 153-Bump WLCSP Mechanical Information  
Document No. 002-14797 Rev. *H  
Page 121 of 128  
CYW4343X  
Note: No top-layer metal is allowed in the keep-out areas.  
Note: A DXF file containing WLBGA keep-outs can be imported into a layout program. Contact your Cypress FAE for more  
information.[  
Figure 61. WLCSP Package Keep-Out Areas—Top View with the Bumps Facing Down  
Document No. 002-14797 Rev. *H  
Page 122 of 128  
CYW4343X  
Figure 62. WLBGA Package Keep-Out Areas—Top View with the Bumps Facing Down  
Document No. 002-14797 Rev. *H  
Page 123 of 128  
CYW4343X  
Figure 63. WLBGA Package Keep-Out Areas—Top View with the Bumps Facing Down[  
Document No. 002-14797 Rev. *H  
Page 124 of 128  
CYW4343X  
25. Ordering Information  
Table 53. Part Ordering Information  
Operating  
Ambient  
Temperature  
Part Number a  
Package  
Description  
CYW4343SKUBG  
74-ball WLBGA halogen-free package  
(4.87 mm x 2.87 mm, 0.40 pitch)  
2.4 GHzsingle-band WLAN IEEE 802.11n –30°C to +70°C  
+ BT 4.1 + FMRX  
CYW4343WKUBG  
74-ball WLBGA halogen-free package  
(4.87 mm x 2.87 mm, 0.40 pitch)  
2.4 GHzsingle-band WLAN IEEE 802.11n –30°C to +70°C  
+ BT 4.1 + FMRX + Wireless Charging  
CYW4343WKWBG  
CYW4343W1KUBG  
153-bump WLCSP  
2.4 GHzsingle-band WLAN IEEE 802.11n –30°C to +70°C  
+ BT 4.1 + FMRX + Wireless Charging  
74-ball WLBGA halogen-free package  
(4.87 mm x 2.87 mm, 0.40 pitch)  
2.4 GHzsingle-band WLAN IEEE 802.11n –30°C to +70°C  
+ BT 4.1 + FMRX + Wireless Charging  
a. Add “T” to the end of the part number to specify “Tape and Reel.”  
Document No. 002-14797 Rev. *H  
Page 125 of 128  
CYW4343X  
1
Document History Page  
Document Title: CYW4343X Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio with Bluetooth 4.1, an FM Receiver, and  
Wireless Charging  
Document Number: 002-14797  
Orig. of Submission  
Revision  
ECN  
Description of Change  
Change  
Date  
4343W-DS100-R  
Initial release  
**  
03/10/14  
04/08/2014 to (4343W-DS101-R  
*A to *F  
07/01/2015  
4343W-DS102-R  
4343W-DS103-R  
4343W-DS104-R  
4343W-DS105-R  
4343W-DS106-R)  
Updated:  
Table 26, “I/O States,” on page 87.  
Table 29, “ESD Specifications,” on page 90.  
Table 32, “WLAN 2.4 GHz Receiver Performance Specifications,” on page 92.  
Table 33, “WLAN 2.4 GHz Transmitter Performance Specifications,” on page 95.  
Table 41, “FM Receiver Specifications,” on page 103.  
Table 46, “2.4 GHz Mode WLAN Power Consumption,” on page 110.  
[4343W]Table 53, “Part Ordering Information,” on page 125.  
*G  
UTSV  
4343W-DS107-R  
Updated:  
08/24/15  
Figure 5: “Typical Power Topology (1 of 2)(4343S),” on page 12Figure 6: “Typical  
Power Topology (1 of 2)(4343W+43CS4343W1),” on page 13 Figure 7: “Typical  
Power Topology (1 of 2),” on page 14 and [4343S]Figure 8: “Typical Power Topology  
(2 of 2)(4343S),” on page 15[4343W+43CS4343W1]Figure 9: “Typical Power  
Topology (2 of 2)(4343W+43CS4343W1),” on page 16 Figure 10: “Typical Power  
Topology (2 of 2),” on page 17.  
Table 3, “Crystal Oscillator and External Clock Requirements and Performance,” on  
page 23.  
Table 26, “I/O States,” on page 87.  
*H  
UTSV  
10/19/2016  
Migrated to Cypress template format  
Added Cypress part numbering scheme  
5445248  
1.  
Document No. 002-14797 Rev. *H  
Page 127 of 128  
CYW4343X  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
®
®
ARM Cortex Microcontrollers  
Automotive  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IoT Forum | Projects | Video | Blogs | Training  
Components  
Internet of Things  
Lighting & Power Control  
Memory  
Technical Support  
cypress.com/powerpsoc  
cypress.com/memory  
cypress.com/psoc  
cypress.com/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
128  
© Cypress Semiconductor Corporation, 2014-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document No. 002-14797 Rev. *H  
Revised October 19, 2016  
Page 128 of 128  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY