BCM4343WKUBGT [CYPRESS]

Telecom Circuit, 1-Func, PBGA74, WLBGA-74;
BCM4343WKUBGT
型号: BCM4343WKUBGT
厂家: CYPRESS    CYPRESS
描述:

Telecom Circuit, 1-Func, PBGA74, WLBGA-74

电信 电信集成电路
文件: 总157页 (文件大小:3788K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The following document contains information on Cypress products. Although the document is marked with the name  
Broadcom”, the company that originally developed the specification, Cypress will continue to offer these products to  
new and existing customers.  
CONTINUITY OF SPECIFICATIONS  
There is no change to this document as a result of offering the device as a Cypress product. Any changes that have  
been made are the result of normal document improvements and are noted in the document history page, where  
supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.  
CONTINUITY OF ORDERING PART NUMBERS  
Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part  
Numbers listed in this document.  
FOR MORE INFORMATION  
Please visit our website at www.cypress.com or contact your local sales office for additional information about  
Cypress products and services.  
OUR CUSTOMERS  
Cypress is for true innovators in companies both large and small.  
Our customers are smart, aggressive, out-of-the-box thinkers who design and develop game-changing products that  
revolutionize their industries or create new industries with products and solutions that nobody ever thought of before.  
ABOUT CYPRESS  
Founded in 1982, Cypress is the leader in advanced embedded system solutions for the world’s most innovative  
automotive, industrial, home automation and appliances, consumer electronics and medical products. Cypress’s  
programmable systems-on-chip, general-purpose microcontrollers, analog ICs, wireless and USB-based connectivity  
solutions and reliable, high-performance memories help engineers design differentiated products and get them to  
market first.  
Cypress is committed to providing customers with the best support and engineering resources on the planet enabling  
innovators and out-of-the-box thinkers to disrupt markets and create new product categories in record time. To learn  
more, go to www.cypress.com.  
Cypress Semiconductor Corporation  
Document Number: 002-14797 Rev. *G  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised July 1, 2016  
DataSheet  
BCM4343W  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/  
Radio with Bluetooth 4.1, an FM Receiver, and  
Wireless Charging  
GENERAL DESCRIPTION  
®
The Broadcom BCM4343W is a highly integrated  
Using advanced design techniques and process  
technology to reduce active and idle power, the  
BCM4343W is designed to address the needs of  
highly mobile devices that require minimal power  
consumption and compact size. It includes a power  
management unit that simplifies the system power  
topology and allows for operation directly from a  
rechargeable mobile platform battery while  
maximizing battery life.  
single-chip solution and offers the lowest RBOM in  
the industry for wearables, tablets, and a wide range  
of other portable devices. The chip includes a 2.4  
GHz WLAN IEEE 802.11 b/g/n MAC/baseband/radio,  
Bluetooth 4.1 support, and an FM receiver. In  
addition, it integrates a power amplifier (PA) that  
meets the output power requirements of most  
handheld systems, a low-noise amplifier (LNA) for  
best-in-class receiver sensitivity, and an internal  
transmit/receive (iTR) RF switch, further reducing the  
overall solution cost and printed circuit board area.  
The BCM4343W implements the world’s most  
advanced Enhanced Collaborative Coexistence  
algorithms and hardware mechanisms, allowing for  
an extremely collaborative WLAN and Bluetooth  
coexistence.  
The WLAN host interface supports gSPI and SDIO  
v2.0 modes, providing a raw data transfer rate up to  
200 Mbps when operating in 4-bit mode at a 50 MHz  
bus frequency. An independent, high-speed UART is  
provided for the Bluetooth/FM host interface.  
Figure 1: BCM4343W System Block Diagram  
VDDIO VBAT  
WL_REG_ON  
WLAN  
Host I/F  
WL_IRQ  
SDIO*/SPI  
2.4 GHz WLAN +  
Bluetooth TX/RX  
CLK_REQ  
BT_REG_ON  
PCM  
BPF  
BCM4343W  
Bluetooth  
Host I/F  
BT_DEV_WAKE  
BT_HOST_WAKE  
FM  
RX  
UART  
I2S  
FM RX  
Host I/F  
Stereo Analog Out  
4343W-DS107-R  
August 24, 2015  
5300 California Avenue • Irvine, CA 92617 • Phone: 949-926-5000 • Fax: 949-926-5203  
Broadcom Corporation  
5300 California Avenue  
Irvine, CA 92617  
© 2015 by Broadcom Corporation  
All rights reserved  
Printed in the U.S.A.  
®
®
Broadcom , the pulse logo, Connecting everything , the Connecting everything logo, OneDriver ,  
®
®
SmartAudio , and TurboQAM are among the trademarks of Broadcom Corporation and/or its affiliates in the  
United States, certain other countries and/or the EU. Any other trademarks or trade names mentioned are the  
property of their respective owners.  
This data sheet (including, without limitation, the Broadcom component(s) identified herein) is not designed,  
intended, or certified for use in any military, nuclear, medical, mass transportation, aviation, navigations,  
pollution control, hazardous substances management, or other high-risk application. BROADCOM  
PROVIDES THIS DATA SHEET “AS-IS,” WITHOUT WARRANTY OF ANY KIND. BROADCOM DISCLAIMS  
ALL WARRANTIES, EXPRESSED AND IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-  
INFRINGEMENT.  
BCM4343W Data Sheet  
Revision History  
FEATURES  
FEATURES  
Bluetooth and FM Key Features (Continued)  
IEEE 802.11x Key Features  
Single-band 2.4 GHz IEEE 802.11b/g/n.  
FM receiver unit supports HCI for communication.  
®
Support for 2.4 GHz Broadcom TurboQAM data  
rates (256-QAM) and 20 MHz channel  
bandwidth.  
Low-power consumption improves battery life of  
handheld devices.  
FM receiver: 65 MHz to 108 MHz FM bands;  
supports the European Radio Data Systems  
(RDS) and the North American Radio Broadcast  
Data System (RBDS) standards.  
Integrated iTR switch supports a single 2.4 GHz  
antenna shared between WLAN and Bluetooth.  
Supports explicit IEEE 802.11n transmit  
beamforming.  
Supports multiple simultaneous Advanced Audio  
Distribution Profiles (A2DP) for stereo sound.  
Tx and Rx Low-density Parity Check (LDPC)  
support for improved range and power efficiency.  
Automatic frequency detection for standard  
crystal and TCXO values.  
Supports standard SDIO v2.0 and gSPI host  
interfaces.  
General Features  
Supports Space-Time Block Coding (STBC) in  
the receiver.  
Supports a battery voltage range from 3.0V to  
4.8V with an internal switching regulator.  
Integrated ARM Cortex-M3 processor and on-  
chip memory for complete WLAN subsystem  
functionality, minimizing the need to wake up the  
applications processor for standard WLAN  
functions. This allows for further minimization of  
power consumption, while maintaining the ability  
to field-upgrade with future features. On-chip  
memory includes 512 KB SRAM and 640 KB  
ROM.  
Programmable dynamic power management.  
4 Kbit One-Time Programmable (OTP) memory  
for storing board parameters.  
Can be routed on low-cost 1 x 1 PCB stack-ups.  
74-ball WLBGA package (4.87 mm × 2.87 mm,  
0.4 mm pitch).  
153-bump WLCSP package (115 μm bump  
diameter, 180 μm bump pitch).  
Security:  
OneDriver software architecture for easy  
– WPA and WPA2 (Personal) support for  
powerful encryption and authentication.  
migration from existing embedded WLAN and  
Bluetooth devices as well as to future devices.  
– AES in WLAN hardware for faster data  
encryption and IEEE 802.11i compatibility.  
Bluetooth and FM Key Features  
Complies with Bluetooth Core Specification  
Version 4.1 with provisions for supporting future  
specifications.  
– Reference WLAN subsystem provides Cisco  
Compatible Extensions (CCX, CCX 2.0, CCX  
3.0, CCX 4.0, CCX 5.0).  
Bluetooth Class 1 or Class 2 transmitter  
operation.  
– Reference WLAN subsystem provides Wi–Fi  
Protected Setup (WPS).  
Supports extended Synchronous Connections  
(eSCO), for enhanced voice quality by allowing  
for retransmission of dropped packets.  
Worldwide regulatory support: Global products  
supported with worldwide homologated design.  
Multimode wireless charging support that  
complies with the Alliance for Wireless Power  
(A4WP), the Wireless Power Consortium (WPC),  
and the Power Matters Alliance (PMA).  
Adaptive Frequency Hopping (AFH) for reducing  
radio frequency interference.  
Interface support — Host Controller Interface  
(HCI) using a high-speed UART interface and  
PCM for audio data.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 3  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Revision History  
Revision History  
Revision  
Date  
Change Description  
4343W-DS107-R  
08/24/15  
Updated:  
Figure 3: “Typical Power Topology (1 of 2),” on page 21 and  
Figure 4: “Typical Power Topology (2 of 2),” on page 22 .  
Table 2: “Crystal Oscillator and External Clock Requirements and  
Performance,” on page 30.  
Table 23: “I/O States,” on page 110.  
4343W-DS106-R  
07/01/15  
Updated:  
Table 23: “I/O States,” on page 110.  
Table 26: “ESD Specifications,” on page 114.  
Table 29: “WLAN 2.4 GHz Receiver Performance Specifications,”  
on page 118.  
Table 30: “WLAN 2.4 GHz Transmitter Performance  
Specifications,” on page 121.  
Table 38: “FM Receiver Specifications,” on page 130.  
Table 43: “2.4 GHz Mode WLAN Power Consumption,” on  
page 140.  
Table 50: “Part Ordering Information,” on page 155.  
4343W-DS105-R  
4343W-DS104-R  
4343W-DS103-R  
4343W-DS102-R  
4343W-DS101-R  
4343W-DS100-R  
01/12/15  
10/03/14  
09/05/14  
6/09/14  
4/18/14  
4/07/14  
Refer to the earlier release for detailed revision history.  
Refer to the earlier release for detailed revision history.  
Refer to the earlier release for detailed revision history.  
Refer to the earlier release for detailed revision history.  
Refer to the earlier release for detailed revision history.  
Initial release.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 4  
August 24, 2015 • 4343W-DS107-R  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Table of Contents  
Table of Contents  
About This Document ................................................................................................................................ 14  
Purpose and Audience.......................................................................................................................... 14  
Acronyms and Abbreviations................................................................................................................. 14  
Document Conventions......................................................................................................................... 14  
Technical Support ...................................................................................................................................... 14  
Section 1: Overview .......................................................................................................... 15  
Overview...................................................................................................................................................... 15  
Features....................................................................................................................................................... 17  
Standards Compliance...............................................................................................................................18  
Section 2: Power Supplies and Power Management ..................................................... 19  
Power Supply Topology............................................................................................................................. 19  
BCM4343W PMU Features......................................................................................................................... 20  
WLAN Power Management........................................................................................................................ 23  
PMU Sequencing ........................................................................................................................................ 24  
Power-Off Shutdown.................................................................................................................................. 25  
Power-Up/Power-Down/Reset Circuits..................................................................................................... 25  
Wireless Charging...................................................................................................................................... 26  
Section 3: Frequency References.................................................................................... 29  
Crystal Interface and Clock Generation ................................................................................................... 29  
TCXO............................................................................................................................................................ 30  
External 32.768 kHz Low-Power Oscillator .............................................................................................. 31  
Section 4: WLAN System Interfaces................................................................................ 33  
SDIO v2.0..................................................................................................................................................... 33  
SDIO Pin Descriptions........................................................................................................................... 33  
Generic SPI Mode....................................................................................................................................... 35  
SPI Protocol .......................................................................................................................................... 36  
Command Structure....................................................................................................................... 38  
Write............................................................................................................................................... 38  
Write/Read ..................................................................................................................................... 38  
Read............................................................................................................................................... 38  
Status............................................................................................................................................. 39  
gSPI Host-Device Handshake............................................................................................................... 41  
Boot-Up Sequence................................................................................................................................ 41  
Section 5: Wireless LAN MAC and PHY .......................................................................... 44  
MAC Features ............................................................................................................................................. 44  
MAC Description ................................................................................................................................... 44  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 5  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Table of Contents  
PSM ............................................................................................................................................... 45  
WEP............................................................................................................................................... 46  
TXE ................................................................................................................................................ 46  
RXE................................................................................................................................................ 46  
IFS.................................................................................................................................................. 47  
TSF ................................................................................................................................................ 47  
NAV................................................................................................................................................ 47  
MAC-PHY Interface........................................................................................................................ 47  
PHY Description ......................................................................................................................................... 48  
PHY Features........................................................................................................................................ 48  
Section 6: WLAN Radio Subsystem ................................................................................ 50  
Receive Path ............................................................................................................................................... 51  
Transmit Path.............................................................................................................................................. 51  
Calibration................................................................................................................................................... 51  
Section 7: Bluetooth + FM Subsystem Overview ........................................................... 52  
Features....................................................................................................................................................... 52  
Bluetooth Radio.......................................................................................................................................... 54  
Transmit ................................................................................................................................................ 54  
Digital Modulator ................................................................................................................................... 54  
Digital Demodulator and Bit Synchronizer............................................................................................. 54  
Power Amplifier ..................................................................................................................................... 54  
Receiver ................................................................................................................................................ 55  
Digital Demodulator and Bit Synchronizer............................................................................................. 55  
Receiver Signal Strength Indicator........................................................................................................ 55  
Local Oscillator Generation................................................................................................................... 55  
Calibration ............................................................................................................................................. 55  
Section 8: Bluetooth Baseband Core .............................................................................. 56  
Bluetooth 4.1 Features...............................................................................................................................56  
Link Control Layer...................................................................................................................................... 57  
Test Mode Support..................................................................................................................................... 57  
Bluetooth Power Management Unit.......................................................................................................... 58  
RF Power Management ........................................................................................................................ 58  
Host Controller Power Management ..................................................................................................... 58  
BBC Power Management...................................................................................................................... 60  
FM Power Management........................................................................................................................ 60  
Wideband Speech................................................................................................................................. 60  
Packet Loss Concealment..................................................................................................................... 61  
Codec Encoding.................................................................................................................................... 61  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 6  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Table of Contents  
Multiple Simultaneous A2DP Audio Streams ........................................................................................ 61  
FM Over Bluetooth ................................................................................................................................ 62  
Adaptive Frequency Hopping.................................................................................................................... 62  
Advanced Bluetooth/WLAN Coexistence................................................................................................. 62  
Fast Connection (Interlaced Page and Inquiry Scans) ........................................................................... 62  
Section 9: Microprocessor and Memory Unit for Bluetooth.......................................... 63  
RAM, ROM, and Patch Memory................................................................................................................. 63  
Reset............................................................................................................................................................ 63  
Section 10: Bluetooth Peripheral Transport Unit ........................................................... 64  
PCM Interface.............................................................................................................................................. 64  
Slot Mapping ......................................................................................................................................... 64  
Frame Synchronization ......................................................................................................................... 64  
Data Formatting..................................................................................................................................... 64  
Wideband Speech Support ................................................................................................................... 65  
Multiplexed Bluetooth and FM over PCM.............................................................................................. 65  
PCM Interface Timing............................................................................................................................ 66  
Short Frame Sync, Master Mode ................................................................................................... 66  
Short Frame Sync, Slave Mode ..................................................................................................... 67  
Long Frame Sync, Master Mode.................................................................................................... 68  
Long Frame Sync, Slave Mode...................................................................................................... 69  
UART Interface............................................................................................................................................ 70  
2
I S Interface................................................................................................................................................. 72  
2
I S Timing.............................................................................................................................................. 72  
Section 11: FM Receiver Subsystem............................................................................... 75  
FM Radio ..................................................................................................................................................... 75  
Digital FM Audio Interfaces ....................................................................................................................... 75  
Analog FM Audio Interfaces...................................................................................................................... 75  
FM Over Bluetooth ..................................................................................................................................... 75  
eSCO............................................................................................................................................................ 75  
Wideband Speech Link .............................................................................................................................. 76  
A2DP............................................................................................................................................................ 76  
Autotune and Search Algorithms ............................................................................................................. 76  
Audio Features ........................................................................................................................................... 77  
RDS/RBDS................................................................................................................................................... 79  
Section 12: CPU and Global Functions........................................................................... 80  
WLAN CPU and Memory Subsystem........................................................................................................ 80  
One-Time Programmable Memory............................................................................................................ 80  
GPIO Interface............................................................................................................................................. 81  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 7  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Table of Contents  
External Coexistence Interface ................................................................................................................. 81  
2-Wire Coexistence............................................................................................................................... 81  
3-Wire and 4-Wire Coexistence Interfaces............................................................................................ 82  
JTAG Interface ........................................................................................................................................... 83  
UART Interface ........................................................................................................................................... 83  
Section 13: WLAN Software Architecture ....................................................................... 84  
Host Software Architecture ....................................................................................................................... 84  
Device Software Architecture.................................................................................................................... 84  
Remote Downloader.............................................................................................................................. 85  
Wireless Configuration Utility ................................................................................................................... 85  
Section 14: Pinout and Signal Descriptions ................................................................... 86  
Ball Map....................................................................................................................................................... 86  
WLBGA Ball List in Ball Number Order with X-Y Coordinates .............................................................. 88  
WLCSP Bump List in Bump Order with X-Y Coordinates....................................................................... 91  
WLBGA Ball List Ordered By Ball Name.................................................................................................. 96  
WLCSP Bump List Ordered By Name....................................................................................................... 97  
Signal Descriptions.................................................................................................................................... 99  
WLAN GPIO Signals and Strapping Options ......................................................................................... 108  
Chip Debug Options................................................................................................................................. 109  
I/O States................................................................................................................................................... 109  
Section 15: DC Characteristics ...................................................................................... 113  
Absolute Maximum Ratings .................................................................................................................... 113  
Environmental Ratings ............................................................................................................................ 114  
Electrostatic Discharge Specifications .................................................................................................. 114  
Recommended Operating Conditions and DC Characteristics ........................................................... 115  
Section 16: WLAN RF Specifications ............................................................................ 117  
2.4 GHz Band General RF Specifications............................................................................................... 117  
WLAN 2.4 GHz Receiver Performance Specifications .......................................................................... 118  
WLAN 2.4 GHz Transmitter Performance Specifications ..................................................................... 121  
General Spurious Emissions Specifications......................................................................................... 123  
Section 17: Bluetooth RF Specifications ...................................................................... 124  
Section 18: FM Receiver Specifications........................................................................ 130  
Section 19: Internal Regulator Electrical Specifications ............................................. 135  
Core Buck Switching Regulator.............................................................................................................. 135  
3.3V LDO (LDO3P3) .................................................................................................................................. 137  
CLDO ......................................................................................................................................................... 138  
LNLDO ....................................................................................................................................................... 139  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 8  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Table of Contents  
Section 20: System Power Consumption...................................................................... 140  
WLAN Current Consumption................................................................................................................... 140  
2.4 GHz Mode ..................................................................................................................................... 140  
Bluetooth and FM Current Consumption............................................................................................... 141  
Section 21: Interface Timing and AC Characteristics.................................................. 142  
SDIO Default Mode Timing ...................................................................................................................... 142  
SDIO High-Speed Mode Timing............................................................................................................... 144  
gSPI Signal Timing................................................................................................................................... 145  
JTAG Timing ............................................................................................................................................. 146  
Section 22: Power-Up Sequence and Timing ............................................................... 147  
Sequencing of Reset and Regulator Control Signals ........................................................................... 147  
Description of Control Signals............................................................................................................. 147  
Control Signal Timing Diagrams.......................................................................................................... 148  
Section 23: Package Information................................................................................... 150  
Package Thermal Characteristics........................................................................................................... 150  
Junction Temperature Estimation and PSI Versus Theta ................................................................. 150  
jc  
Section 24: Mechanical Information .............................................................................. 151  
Section 25: Ordering Information .................................................................................. 155  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 9  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
List of Figures  
List of Figures  
Figure 1: BCM4343W System Block Diagram................................................................................................... 1  
Figure 2: BCM4343W Block Diagram.............................................................................................................. 16  
Figure 3: Typical Power Topology (1 of 2)....................................................................................................... 21  
Figure 4: Typical Power Topology (2 of 2)....................................................................................................... 22  
Figure 5: A4WP System Block Diagram .......................................................................................................... 26  
Figure 6: Magnetic Coupling for Wireless Charging ........................................................................................ 27  
Figure 7: An Example Multimode Wireless Charging Implementation............................................................. 27  
Figure 8: BCM4343W Interface to a BCM59350 ............................................................................................. 28  
Figure 9: Recommended Oscillator Configuration........................................................................................... 29  
Figure 10: Recommended Circuit to Use with an External Dedicated TCXO.................................................. 30  
Figure 11: Signal Connections to SDIO Host (SD 4-Bit Mode)........................................................................ 33  
Figure 12: Signal Connections to SDIO Host (SD 1-Bit Mode)........................................................................ 34  
Figure 13: Signal Connections to SDIO Host (gSPI Mode) ............................................................................. 35  
Figure 14: gSPI Write Protocol ........................................................................................................................ 36  
Figure 15: gSPI Read Protocol ........................................................................................................................ 37  
Figure 16: gSPI Command Structure............................................................................................................... 38  
Figure 17: gSPI Signal Timing Without Status................................................................................................. 39  
Figure 18: gSPI Signal Timing with Status (Response Delay = 0)................................................................... 40  
Figure 19: WLAN Boot-Up Sequence.............................................................................................................. 43  
Figure 20: WLAN MAC Architecture ................................................................................................................ 45  
Figure 21: WLAN PHY Block Diagram............................................................................................................. 49  
Figure 22: Radio Functional Block Diagram .................................................................................................... 50  
Figure 23: Startup Signaling Sequence ........................................................................................................... 59  
Figure 24: CVSD Decoder Output Waveform Without PLC............................................................................. 61  
Figure 25: CVSD Decoder Output Waveform After Applying PLC................................................................... 61  
Figure 26: Functional Multiplex Data Diagram................................................................................................. 65  
Figure 27: PCM Timing Diagram (Short Frame Sync, Master Mode).............................................................. 66  
Figure 28: PCM Timing Diagram (Short Frame Sync, Slave Mode) ................................................................ 67  
Figure 29: PCM Timing Diagram (Long Frame Sync, Master Mode)............................................................... 68  
Figure 30: PCM Timing Diagram (Long Frame Sync, Slave Mode)................................................................. 69  
Figure 31: UART Timing .................................................................................................................................. 71  
2
Figure 32: I S Transmitter Timing.................................................................................................................... 74  
2
Figure 33: I S Receiver Timing........................................................................................................................ 74  
Figure 34: Blending and Switching Usage....................................................................................................... 77  
Figure 35: Blending and Switching Separation................................................................................................ 78  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 10  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
List of Figures  
Figure 36: Soft Muting Characteristic............................................................................................................... 78  
Figure 37: 2-Wire Coexistence Interface to an LTE IC .................................................................................... 81  
Figure 38: 3-Wire Coexistence Interface to an LTE IC .................................................................................... 82  
Figure 39: 4-Wire Coexistence Interface to an LTE IC .................................................................................... 83  
Figure 40: WLAN Software Architecture.......................................................................................................... 85  
Figure 41: 74-Ball WLBGA Ball Map (Bottom View)........................................................................................ 86  
Figure 42: 153-Bump WLCSP (Top View)....................................................................................................... 87  
Figure 43: RF Port Location........................................................................................................................... 117  
Figure 44: SDIO Bus Timing (Default Mode) ................................................................................................. 142  
Figure 45: SDIO Bus Timing (High-Speed Mode).......................................................................................... 144  
Figure 46: gSPI Timing .................................................................................................................................. 145  
Figure 47: WLAN = ON, Bluetooth = ON ....................................................................................................... 148  
Figure 48: WLAN = OFF, Bluetooth = OFF.................................................................................................... 148  
Figure 49: WLAN = ON, Bluetooth = OFF ..................................................................................................... 148  
Figure 50: WLAN = OFF, Bluetooth = ON ..................................................................................................... 149  
Figure 51: 74-Ball WLBGA Mechanical Information ...................................................................................... 151  
Figure 52: 153-Bump WLCSP Mechanical Information ................................................................................. 152  
Figure 53: WLCSP Package Keep-Out Areas—Top View with the Bumps Facing Down ............................ 153  
Figure 54: WLBGA Package Keep-Out Areas—Top View with the Bumps Facing Down ............................ 154  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 11  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
List of Tables  
List of Tables  
Table 1: Power-Up/Power-Down/Reset Control Signals.................................................................................. 25  
Table 2: Crystal Oscillator and External Clock Requirements and Performance............................................. 30  
Table 3: External 32.768 kHz Sleep-Clock Specifications............................................................................... 31  
Table 4: SDIO Pin Descriptions ....................................................................................................................... 33  
Table 5: gSPI Status Field Details ................................................................................................................... 40  
Table 6: gSPI Registers................................................................................................................................... 41  
Table 7: Power Control Pin Description........................................................................................................... 58  
Table 8: PCM Interface Timing Specifications (Short Frame Sync, Master Mode).......................................... 66  
Table 9: PCM Interface Timing Specifications (Short Frame Sync, Slave Mode)............................................ 67  
Table 10: PCM Interface Timing Specifications (Long Frame Sync, Master Mode) ........................................ 68  
Table 11: PCM Interface Timing Specifications (Long Frame Sync, Slave Mode) .......................................... 69  
Table 12: Example of Common Baud Rates.................................................................................................... 70  
Table 13: UART Timing Specifications ............................................................................................................ 71  
2
Table 14: Timing for I S Transmitters and Receivers...................................................................................... 73  
Table 15: BCM4343W WLBGA Ball List — Ordered By Ball Number ............................................................. 88  
Table 16: BCM4343W WLCSP Bump List — Ordered By Bump Number....................................................... 91  
Table 17: BCM4343W WLBGA Ball List — Ordered By Ball Name ................................................................ 96  
Table 18: BCM4343W WLCSP Bump List — Ordered By Bump Name.......................................................... 97  
Table 19: WLBGA Signal Descriptions ............................................................................................................ 99  
Table 20: WLCSP Signal Descriptions .......................................................................................................... 103  
Table 21: GPIO Functions and Strapping Options......................................................................................... 108  
Table 22: Chip Debug Options....................................................................................................................... 109  
Table 23: I/O States....................................................................................................................................... 110  
Table 24: Absolute Maximum Ratings ........................................................................................................... 113  
Table 25: Environmental Ratings................................................................................................................... 114  
Table 26: ESD Specifications ........................................................................................................................ 114  
Table 27: Recommended Operating Conditions and DC Characteristics...................................................... 115  
Table 28: 2.4 GHz Band General RF Specifications...................................................................................... 117  
Table 29: WLAN 2.4 GHz Receiver Performance Specifications .................................................................. 118  
Table 30: WLAN 2.4 GHz Transmitter Performance Specifications .............................................................. 121  
Table 31: General Spurious Emissions Specifications .................................................................................. 123  
Table 32: Bluetooth Receiver RF Specifications............................................................................................ 124  
Table 33: LTE Specifications for Spurious Emissions ................................................................................... 127  
Table 34: Bluetooth Transmitter RF Specifications........................................................................................ 128  
Table 35: LTE Specifications for Out-of-Band Noise Floor............................................................................ 129  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 12  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
List of Tables  
Table 36: Local Oscillator Performance......................................................................................................... 129  
Table 37: BLE RF Specifications ................................................................................................................... 129  
Table 38: FM Receiver Specifications ........................................................................................................... 130  
Table 39: Core Buck Switching Regulator (CBUCK) Specifications.............................................................. 135  
Table 40: LDO3P3 Specifications.................................................................................................................. 137  
Table 41: CLDO Specifications...................................................................................................................... 138  
Table 42: LNLDO Specifications.................................................................................................................... 139  
Table 43: 2.4 GHz Mode WLAN Power Consumption................................................................................... 140  
Table 44: Bluetooth BLE and FM Current Consumption................................................................................ 141  
Table 45: SDIO Bus Timing Parameters (Default Mode).............................................................................. 143  
Table 46: SDIO Bus Timing Parameters (High-Speed Mode) ...................................................................... 144  
Table 47: gSPI Timing Parameters................................................................................................................ 145  
Table 48: JTAG Timing Characteristics ......................................................................................................... 146  
Table 49: Package Thermal Characteristics.................................................................................................. 150  
Table 50: Part Ordering Information .............................................................................................................. 155  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 13  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
About This Document  
About This Document  
Purpose and Audience  
This document provides details of the functional, operational, and electrical characteristics of the  
®
Broadcom BCM4343W. It is intended for hardware design, application, and OEM engineers.  
Acronyms and Abbreviations  
In most cases, acronyms and abbreviations are defined on first use.  
For a comprehensive list of acronyms and other terms used in Broadcom documents, go to:  
http://www.broadcom.com/press/glossary.php.  
Document Conventions  
The following conventions may be used in this document:  
Convention  
Description  
Bold  
User input and actions: for example, type exit, click OK, press Alt+C  
Monospace  
Code: #include <iostream>  
HTML: <td rowspan = 3>  
Command line commands and parameters: wl [l] <command>  
< >  
[ ]  
Placeholders for required elements: enter your <username> or wl <command>  
Indicates optional command-line parameters: wl [l]  
Indicates bit and byte ranges (inclusive): [0:3] or [7:0]  
Technical Support  
Broadcom provides customer access to a wide range of information, including technical documentation,  
schematic diagrams, product bill of materials, PCB layout information, and software updates through its  
customer support portal (https://support.broadcom.com). For a CSP account, contact your Sales or Engineering  
support representative.  
In addition, Broadcom provides other product support through its Downloads and Support site  
(http://www.broadcom.com/support/).  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 14  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Overview  
Section 1: Overview  
Overview  
®
The Broadcom BCM4343W provides the highest level of integration for a mobile or handheld wireless system,  
with integrated IEEE 802.11 b/g/n. It provides a small form-factor solution with minimal external components to  
drive down cost for mass volumes and allows for handheld device flexibility in size, form, and function. The  
BCM4343W is designed to address the needs of highly mobile devices that require minimal power consumption  
and reliable operation.  
Figure 2 on page 16 shows the interconnection of all the major physical blocks in the BCM4343W and their  
associated external interfaces, which are described in greater detail in subsequent sections.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 15  
BROADCOM CONFIDENTIAL  
Overview  
BCM4343W Data Sheet  
Figure 2: BCM4343W Block Diagram  
Cortex  
M3  
Debug  
AHB  
FM RX  
FM RF  
FM Digital  
AHB to APB  
FM  
ADC  
ADC  
Bridge  
RAM  
ROM  
FM Demod.  
MDX RDS  
Decode  
I/F  
LNA  
APB  
FM_RX  
Patch  
WD Timer  
SW Timer  
InterCtrl  
DMA  
Control  
LO  
Gen.  
RSSI  
DPLL  
Bus Arb  
ARM IP  
GPIO  
Ctrl  
JTAG supported over SDIO or BT PCM  
SDIO or gSPI  
SWREG  
LDOx2  
LPO  
XTAL OSC.  
POR  
Power  
Supply  
Sleep CLK  
XTAL  
BPL  
UART  
PMU  
Control  
Buffer  
SDIO  
gSPI  
Modem  
RF  
PA  
Digital  
Demod.  
& Bit  
APU  
WL_REG_ON  
Debug  
UART  
BT Clock/  
Hopper  
Sync  
ARM  
CM3  
WDT  
OTP  
Digital  
I/O  
BlueRF  
Interface  
I2S/PCM  
Digital  
Mod.  
GPIO  
UART  
JTAG*  
GPIO  
UART  
LCU  
RAM  
Supported over SDIO or BT PCM  
RX/TX  
Buffer  
ROM  
GPIO  
IF  
PLL  
BT PHY  
BTWLAN  
ECI  
Wake/  
Sleep Ctrl  
BTFM Clock Control  
Clock  
2.4 GHz  
PA  
Sleep‐  
time  
Keeping  
PMU  
Ctrl  
PMU  
Management  
Shared LNA  
BPF  
WiMax  
Coex.  
XO  
Buffer  
LPO  
POR  
WLAN  
PTU  
* Via GPIO configuration, JTAG is supported over SDIO or BT PCM  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 16  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Features  
Features  
The BCM4343W supports the following WLAN, Bluetooth, and FM features:  
IEEE 802.11b/g/n single-band radio with an internal power amplifier, LNA, and T/R switch  
Bluetooth v4.1 with integrated Class 1 PA  
Concurrent Bluetooth, FM (RX) RDS/RBDS, and WLAN operation  
On-chip WLAN driver execution capable of supporting IEEE 802.11 functionality  
Simultaneous BT/WLAN reception with a single antenna  
WLAN host interface options:  
– SDIO v2.0, including default and high-speed timing.  
– gSPI—up to a 50 MHz clock rate  
BT UART (up to 4 Mbps) host digital interface that can be used concurrently with the above WLAN host  
interfaces.  
ECI—enhanced coexistence support, which coordinates BT SCO transmissions around WLAN receptions.  
2
I S/PCM for FM/BT audio, HCI for FM block control  
HCI high-speed UART (H4 and H5) transport support  
2
Wideband speech support (16 bits, 16 kHz sampling PCM, through I S and PCM interfaces)  
®
Bluetooth SmartAudio technology improves voice and music quality to headsets.  
Bluetooth low power inquiry and page scan  
Bluetooth Low Energy (BLE) support  
Bluetooth Packet Loss Concealment (PLC)  
FM advanced internal antenna support  
FM auto searching/tuning functions  
2
FM multiple audio routing options: I S, PCM, eSCO, and A2DP  
FM mono-stereo blending and switching, and soft mute support  
FM audio pause detection support  
Multiple simultaneous A2DP audio streams  
FM over Bluetooth operation and on-chip stereo headset emulation  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 17  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Standards Compliance  
Standards Compliance  
The BCM4343W supports the following standards:  
Bluetooth 2.1 + EDR  
Bluetooth 3.0  
Bluetooth 4.1 (Bluetooth Low Energy)  
65 MHz to 108 MHz FM bands (US, Europe, and Japan)  
IEEE 802.11n—Handheld Device Class (Section 11)  
IEEE 802.11b  
IEEE 802.11g  
IEEE 802.11d  
IEEE 802.11h  
IEEE 802.11i  
The BCM4343W will support the following future drafts/standards:  
IEEE 802.11r — Fast Roaming (between APs)  
IEEE 802.11k — Resource Management  
IEEE 802.11w — Secure Management Frames  
IEEE 802.11 Extensions:  
®
IEEE 802.11e QoS Enhancements (as per the WMM specification is already supported)  
IEEE 802.11i MAC Enhancements  
IEEE 802.11r Fast Roaming Support  
IEEE 802.11k Radio Resource Measurement  
The BCM4343W supports the following security features and proprietary protocols:  
Security:  
– WEP  
– WPA Personal  
– WPA2 Personal  
– WMM  
– WMM-PS (U-APSD)  
– WMM-SA  
– WAPI  
– AES (Hardware Accelerator)  
– TKIP (host-computed)  
– CKIP (SW Support)  
Proprietary Protocols:  
– CCXv2  
– CCXv3  
– CCXv4  
– CCXv5  
IEEE 802.15.2 Coexistence Compliance — on silicon solution compliant with IEEE 3-wire requirements.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 18  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Power Supplies and Power Management  
Section 2: Power Supplies and Power  
Management  
Power Supply Topology  
One Buck regulator, multiple LDO regulators, and a power management unit (PMU) are integrated into the  
BCM4343W. All regulators are programmable via the PMU. These blocks simplify power supply design for  
Bluetooth, WLAN, and FM functions in embedded designs.  
A single VBAT (3.0V to 4.8V DC maximum) and VDDIO supply (1.8V to 3.3V) can be used, with all additional  
voltages being provided by the regulators in the BCM4343W.  
Two control signals, BT_REG_ON and WL_REG_ON, are used to power up the regulators and take the  
respective circuit blocks out of reset. The CBUCK CLDO and LNLDO power up when any of the reset signals  
are deasserted. All regulators are powered down only when both BT_REG_ON and WL_REG_ON are  
deasserted. The CLDO and LNLDO can be turned on and off based on the dynamic demands of the digital  
baseband.  
The BCM4343W allows for an extremely low power-consumption mode by completely shutting down the  
CBUCK, CLDO, and LNLDO regulators. When in this state, LPLDO1 provides the BCM4343W with all required  
voltage, further reducing leakage currents.  
Note: VBAT should be connected to the LDO_VDDBAT5V and SR_VDDBAT5V pins of the device.  
Note: VDDIO should be connected to the SYS_VDDIO and WCC_VDDIO pins of the device.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 19  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
BCM4343W PMU Features  
BCM4343W PMU Features  
The PMU supports the following:  
VBAT to 1.35Vout (170 mA nominal, 370 mA maximum) Core-Buck (CBUCK) switching regulator  
VBAT to 3.3Vout (250 mA nominal, 450 mA maximum 800 mA peak maximum) LDO3P3  
1.35V to 1.2Vout (100 mA nominal, 150 mA maximum) LNLDO  
1.35V to 1.2Vout (80 mA nominal, 200 mA maximum) CLDO with bypass mode for deep sleep  
Additional internal LDOs (not externally accessible)  
PMU internal timer auto-calibration by the crystal clock for precise wake-up timing from extremely low  
power-consumption mode.  
PMU input supplies automatic sensing and fast switching to support A4WP operations.  
Figure 3 on page 21 and Figure 4 on page 22 show the typical power topology of the BCM4343W.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 20  
August 24, 2015 • 4343W-DS107-R  
BROADCOM CONFIDENTIAL  
BCM4343W PMU Features  
BCM4343W Data Sheet  
Figure 3: Typical Power Topology (1 of 2)  
SR_VDDBAT5V  
WL RF—TX Mixer and PA  
VBAT  
(not all versions)  
BCM4343W  
Mini PMU  
Internal VCOLDO  
1.2V  
1.2V  
WL RF—LOGEN  
WL RF—RX LNA  
WL RF—ADC REF  
WL RF—TX  
80 mA (NMOS)  
Internal RXLDO  
1.2V  
VBAT:  
10 mA (NMOS)  
Operational:  
Performance:  
2.4—4.8V  
3.0—4.8V  
VDD1P35  
Internal ADCLDO  
1.2V  
10 mA (NMOS)  
Absolute Maximum: 5.5V  
VDDIO  
Operational:  
Internal TXLDO  
1.2V  
1.8—3.3V  
80 mA (PMOS)  
1.35V  
Internal AFELDO  
1.2V  
WL RF—AFE and TIA  
80 mA (NMOS)  
Core Buck  
Regulator  
10 mA average,  
> 10 mA at startup  
WL RF—RFPLL PFD and MMD  
SR_VLX  
Mini PMU is placed  
in WL radio  
Int_SR_VBAT  
Peak: 370 mA  
WLRF_XTAL_  
VDD1P2  
Avg: 170 mA  
2.2 uH  
(320 mA)  
SW1  
600 @  
100 MHz  
0603  
WL RF—XTAL  
1.2V  
LDO_VDD_1P5  
LNLDO  
SR_VBAT5V  
FM_RFVDD  
FM_RFPLL  
(100 mA)  
VBAT  
GND  
FM LNA, Mixer  
4.7 uF  
0402  
VOUT_LNLDO  
0.1 uF  
0201  
SR_PVSS  
2.2 uF  
0402  
4.6 mA  
PMU_VSS  
FM PLL, LOGEN, Audio DAC  
WCC_VDDIO  
SYS_VDDIO  
WCC_VDDIO  
LPLDO1  
(5 mA)  
1.1V  
1.3V  
(40 mA)  
VSEL1  
WLAN/BT/CLB/Top, Always On  
WL OTP  
SYS_VDDIO  
WPT_1P8  
VDDC1  
VDDC2  
(40 mA)  
(40 mA)  
WPT_1P8  
1.3V, 1.2V,  
or 0.95V  
(AVS)  
CL LDO  
Peak: 200 mA  
Avg: 80 mA  
(Bypass in deep‐  
sleep)  
o_wpt_resetb  
WPTLDO  
(40 mA)  
2.2 uF  
0402  
VOUT_CLDO  
WL Digital and PHY  
WL_REG_ON  
BT_REG_ON  
o_wl_resetb  
o_bt_resetb  
WL VDDM (SROMs & AOS)  
Power switch  
No power switch  
Supply ball  
Ground ball  
Supply bump/pad  
Ground bump/pad  
External to chip  
BT VDDM  
BT Digital  
No dedicated power switch, but internal power  
down modes and blockspecific power switches  
BT/WLAN reset  
balls  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 21  
BROADCOM CONFIDENTIAL  
BCM4343W PMU Features  
BCM4343W Data Sheet  
Figure 4: Typical Power Topology (2 of 2)  
BCM4343W  
6.4 mA  
1.8V, 2.5V, and 3.3V  
WL BBPLL/DFLL  
WL OTP 3.3V  
LDO3P3 with  
BackPower  
VOUT_3P3  
WLRF_PA_VDD  
480 to 800 mA  
6.4 mA  
VBAT  
Protection  
WL RF—PA (2.4 GHz)  
LDO_  
VDDBAT5V  
1 uF  
0201  
4.7 uF  
0402  
(Peak 450800 mA  
200 mA Average) 3.3V  
2.5V Capless  
LNLDO  
WL RF—ADC, AFE, LOGEN,  
LNA, NMOS MiniPMU LDOs  
22  
ohm  
(10 mA)  
SW2  
Peak: 92 mA  
Average: 75 mA  
Resistance: 1 ohm  
Placed inside WL Radio  
WPT_3P3  
Peak: 70 mA  
BT_PAVDD  
Average: 15 mA  
BT Class 1 PA  
1 uF  
0201  
Power switch  
No power switch  
External to chip  
Supply ball  
No dedicated power switch, but internal power‐  
down modes and blockspecific power switches  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 22  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLAN Power Management  
WLAN Power Management  
The BCM4343W has been designed with the stringent power consumption requirements of mobile devices in  
mind. All areas of the chip design are optimized to minimize power consumption. Silicon processes and cell  
libraries were chosen to reduce leakage current and supply voltages. Additionally, the BCM4343W integrated  
RAM is a high volatile memory with dynamic clock control. The dominant supply current consumed by the RAM  
is leakage current only. Additionally, the BCM4343W includes an advanced WLAN power management unit  
(PMU) sequencer. The PMU sequencer provides significant power savings by putting the BCM4343W into  
various power management states appropriate to the operating environment and the activities that are being  
performed. The power management unit enables and disables internal regulators, switches, and other blocks  
based on a computation of the required resources and a table that describes the relationship between resources  
and the time needed to enable and disable them. Power-up sequences are fully programmable. Configurable,  
free-running counters (running at the 32.768 kHz LPO clock) in the PMU sequencer are used to turn on/turn off  
individual regulators and power switches. Clock speeds are dynamically changed (or gated altogether) for the  
current mode. Slower clock speeds are used wherever possible.  
The BCM4343W WLAN power states are described as follows:  
Active mode— All WLAN blocks in the BCM4343W are powered up and fully functional with active carrier  
sensing and frame transmission and receiving. All required regulators are enabled and put in the most  
efficient mode based on the load current. Clock speeds are dynamically adjusted by the PMU sequencer.  
Doze mode—The radio, analog domains, and most of the linear regulators are powered down. The rest of  
the BCM4343W remains powered up in an IDLE state. All main clocks (PLL, crystal oscillator) are shut  
down to reduce active power to the minimum. The 32.768 kHz LPO clock is available only for the PMU  
sequencer. This condition is necessary to allow the PMU sequencer to wake up the chip and transition to  
Active mode. In Doze mode, the primary power consumed is due to leakage current.  
Deep-sleep mode—Most of the chip, including analog and digital domains, and most of the regulators are  
powered off. Logic states in the digital core are saved and preserved to retention memory in the always-on  
domain before the digital core is powered off. To avoid lengthy hardware reinitialization, the logic states in  
the digital core are restored to their pre-deep-sleep settings when a wake-up event is triggered by an  
external interrupt, a host resume through the SDIO bus, or by the PMU timers.  
Power-down mode—The BCM4343W is effectively powered off by shutting down all internal regulators.  
The chip is brought out of this mode by external logic re-enabling the internal regulators.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 23  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
PMU Sequencing  
PMU Sequencing  
The PMU sequencer is used to minimize system power consumption. It enables and disables various system  
resources based on a computation of required resources and a table that describes the relationship between  
resources and the time required to enable and disable them.  
Resource requests can derive from several sources: clock requests from cores, the minimum resources defined  
in the ResourceMin register, and the resources requested by any active resource request timers. The PMU  
sequencer maps clock requests into a set of resources required to produce the requested clocks.  
Each resource is in one of the following four states:  
enabled  
disabled  
transition_on  
transition_off  
The timer value is 0 when the resource is enabled or disabled and nonzero during state transition. The timer is  
loaded with the time_on or time_off value of the resource when the PMU determines that the resource must be  
enabled or disabled. That timer decrements on each 32.768 kHz PMU clock. When it reaches 0, the state  
changes from transition_off to disabled or transition_on to enabled. If the time_on value is 0, the resource can  
transition immediately from disabled to enabled. Similarly, a time_off value of 0 indicates that the resource can  
transition immediately from enabled to disabled. The terms enable sequence and disable sequence refer to  
either the immediate transition or the timer load-decrement sequence.  
During each clock cycle, the PMU sequencer performs the following actions:  
Computes the required resource set based on requests and the resource dependency table.  
Decrements all timers whose values are nonzero. If a timer reaches 0, the PMU clears the  
ResourcePending bit for the resource and inverts the ResourceState bit.  
Compares the request with the current resource status and determines which resources must be enabled  
or disabled.  
Initiates a disable sequence for each resource that is enabled, no longer being requested, and has no  
powered-up dependents.  
Initiates an enable sequence for each resource that is disabled, is being requested, and has all of its  
dependencies enabled.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 24  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Power-Off Shutdown  
Power-Off Shutdown  
The BCM4343W provides a low-power shutdown feature that allows the device to be turned off while the host,  
and any other devices in the system, remain operational. When the BCM4343W is not needed in the system,  
VDDIO_RF and VDDC are shut down while VDDIO remains powered. This allows the BCM4343W to be  
effectively off while keeping the I/O pins powered so that they do not draw extra current from any other devices  
connected to the I/O.  
During a low-power shutdown state, provided VDDIO remains applied to the BCM4343W, all outputs are  
tristated, and most input signals are disabled. Input voltages must remain within the limits defined for normal  
operation. This is done to prevent current paths or create loading on any digital signals in the system, and  
enables the BCM4343W to be fully integrated in an embedded device and to take full advantage of the lowest  
power-savings modes.  
When the BCM4343W is powered on from this state, it is the same as a normal power-up, and the device does  
not retain any information about its state from before it was powered down.  
Power-Up/Power-Down/Reset Circuits  
The BCM4343W has two signals (see Table 1) that enable or disable the Bluetooth and WLAN circuits and the  
internal regulator blocks, allowing the host to control power consumption. For timing diagrams of these signals  
and the required power-up sequences, see Section 22: “Power-Up Sequence and Timing,” on page 147.  
Table 1: Power-Up/Power-Down/Reset Control Signals  
Signal  
Description  
WL_REG_ON This signal is used by the PMU (with BT_REG_ON) to power-up the WLAN section. It is also  
OR-gated with the BT_REG_ON input to control the internal BCM4343W regulators. When this  
pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin is  
low, the WLAN section is in reset. If BT_REG_ON and WL_REG_ON are both low, the  
regulators are disabled. This pin has an internal 200 kpull-down resistor that is enabled by  
default. It can be disabled through programming.  
BT_REG_ON This signal is used by the PMU (with WL_REG_ON) to decide whether or not to power down  
the internal BCM4343W regulators. If BT_REG_ON and WL_REG_ON are low, the regulators  
will be disabled. This pin has an internal 200 kpull-down resistor that is enabled by default.  
It can be disabled through programming.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 25  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Wireless Charging  
Wireless Charging  
The BCM4343W, when paired with a Broadcom BCM5935X wireless power transfer (WPT) front-end device,  
complies with the following three wireless charging standards:  
Alliance for Wireless Power (A4WP)  
Wireless Power Consortium (WPC)  
Power Matters Alliance (PMA)  
To support the WPC and PMA standards, control-plane signaling is accomplished using in-band signaling  
between the BCM5935X WPT front-end device (located in the power receiving entity) and the power  
transmitting wireless charger.  
To support the A4WP standard, energy is transferred from a Power Transmitting Unit (PTU) to a Power  
Receiving Unit (PRU). The energy transferred charges the PRU battery. Bidirectional communication between  
the PTU and PRU is accomplished using Bluetooth Low Energy (BLE), where the PTU is a BLE client and the  
PRU is a BLE server. Using a BLE link, the PRU sends performance data to the PTU so that it can adapt its  
power output to meet the needs of the PRU.  
The most common use for wireless charging is to charge a mobile device battery.  
Figure 5 shows a simple block diagram of a system that supports the A4WP standard.  
Figure 5: A4WP System Block Diagram  
BT  
Power Receiving Unit  
(PRU)  
Bluetooth lowenergy (BLE) bidirectional  
communication enables the transmitter to  
adapt to mobile device system needs.  
A4WPCompatible Mobile Device  
BLE Server  
Wireless Power Transfer at 6.78 MHz  
BT  
Power Transmitting Unit  
(PTU)  
aka Power Plate  
BLE Client  
Note: A single PTU can be used to charge multiple devices.  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 26  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Wireless Charging  
Figure 6 shows an example of the magnetic coupling between a single PTU and one or more PRUs.  
Figure 6: Magnetic Coupling for Wireless Charging  
Power Transmitting  
Unit  
Power Receiving Unit(s)  
RX1  
TX  
RX2  
RX3  
Figure 7 shows an example A4WP-compliant wireless charging implementation.  
Figure 7: An Example Multimode Wireless Charging Implementation  
Motherboard  
BSC  
BSC  
WPC/PMA  
Coil  
USB  
External Charger  
PMU  
Host (AP)  
NTC  
Battery  
Charging  
WPT Front End (Power IC)  
VDDIO  
VBAT  
Load  
Control  
V1P8SYS  
VBAT  
A4WP  
Coil  
Bridge  
Voltage  
Rectifier  
WPT_3V3 (VBAT)  
VBAT  
SPDT  
Regulator  
3.3V  
LDO  
BT_REG_ON  
WL_REG_ON  
WPT_1V8 (VDDIO)  
1V8  
SPDT  
1.8V  
LDO  
Power  
Monitoring/  
Control  
BSC IF  
Slave  
LDO_VDDBAT5V,  
SR_VDDBAT5V  
SYS_VDDIO,  
WCC_VDDIO  
BCM5935X  
WPT_IRQ  
PMU  
WakeUp  
Internal  
Power  
POR  
WPT_IRQ  
BSC_CLK  
BSC_SDA  
OTP for A4WPT  
Parameters  
NFC_GPIO  
NFC IC  
BCM4343W  
BT_VDDIO Domain  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 27  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Wireless Charging  
Figure 8 shows the signal interface between a BCM4343W and a BCM59350.  
Figure 8: BCM4343W Interface to a BCM59350  
BT_GPIO_3 (WPT_INTb)  
BCM59350  
Wireless  
Charging PMU  
BT_GPIO_4 (BSC_SDA)  
BT_GPIO_5 (BSC_SCL)  
BCM4343W  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 28  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Frequency References  
Section 3: Frequency References  
An external crystal is used for generating all radio frequencies and normal operation clocking. As an alternative,  
an external frequency reference driven by a temperature-compensated crystal oscillator (TCXO) signal may be  
used. No software settings are required to differentiate between the two. In addition, a low-power oscillator  
(LPO) is provided for lower power mode timing.  
Crystal Interface and Clock Generation  
The BCM4343W can use an external crystal to provide a frequency reference. The recommended configuration  
for the crystal oscillator, including all external components, is shown in Figure 9. Consult the reference  
schematics for the latest configuration.  
Figure 9: Recommended Oscillator Configuration  
C
WLRF_XTAL_XOP  
12 – 27 pF  
C
WLRF_XTAL_XON  
R
12 – 27 pF  
Note: Resistor value determined by crystal drive level.  
See reference schematics for details.  
The BCM4343W uses a fractional-N synthesizer to generate the radio frequencies, clocks, and data/packet  
timing so that it can operate using numerous frequency references. The frequency reference can be an external  
source such as a TCXO or a crystal interfaced directly to the BCM4343W.  
The default frequency reference setting is a 37.4 MHz crystal or TCXO. The signal requirements and  
characteristics for the crystal interface are shown in Table 2 on page 30.  
Note: Although the fractional-N synthesizer can support many reference frequencies, frequencies  
other than the default require support to be added in the driver, plus additional extensive system  
testing. Contact Broadcom for further details.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 29  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
TCXO  
TCXO  
As an alternative to a crystal, an external precision TCXO can be used as the frequency reference, provided  
that it meets the phase noise requirements listed in Table 2 on page 30.  
If the TCXO is dedicated to driving the BCM4343W, it should be connected to the WLRF_XTAL_XOP pin  
through an external capacitor with value ranges from 200 pF to 1000 pF as shown in Figure 10.  
Figure 10: Recommended Circuit to Use with an External Dedicated TCXO  
200 pF – 1000 pF  
TCXO  
WLRF_XTAL_XOP  
WLRF_XTAL_XON  
NC  
Table 2: Crystal Oscillator and External Clock Requirements and Performance  
External Frequency  
Crystal  
Reference  
Parameter  
Conditions/Notes  
Min. Typ. Max. Min. Typ. Max.  
Units  
MHz  
pF  
a
Frequency  
37.4  
12  
Crystal load  
capacitance  
ESR  
60  
Drive level  
External crystal must be able to 200  
tolerate this drive level.  
μW  
Input Impedance  
(WLRF_XTAL_XOP)  
Resistive  
10k  
100k –  
Capacitive  
7
pF  
b
WLRF_XTAL_XOP  
input voltage  
AC-coupled analog signal  
1260  
mV  
p-p  
400  
WLRF_XTAL_XOP  
input low level  
DC-coupled digital signal  
0
0.2  
1.26  
20  
V
WLRF_XTAL_XOP  
input high level  
DC-coupled digital signal  
1.0  
V
Frequency tolerance  
Initial + over  
–20  
20  
–20  
ppm  
temperature  
Duty cycle  
37.4 MHz clock  
40  
50  
60  
%
c, d, e  
37.4 MHz clock at 10 kHz offset –  
37.4 MHz clock at 100 kHz offset –  
–129  
–136  
dBc/Hz  
dBc/Hz  
Phase Noise  
(IEEE 802.11 b/g)  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 30  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
External 32.768 kHz Low-Power Oscillator  
Table 2: Crystal Oscillator and External Clock Requirements and Performance (Cont.)  
External Frequency  
Crystal  
Reference  
Parameter  
Conditions/Notes  
Min. Typ. Max. Min. Typ. Max.  
Units  
c, d, e  
37.4 MHz clock at 10 kHz offset –  
37.4 MHz clock at 100 kHz offset –  
–134  
–141  
dBc/Hz  
dBc/Hz  
Phase Noise  
(IEEE 802.11n,  
2.4 GHz)  
c, d, e  
37.4 MHz clock at 10 kHz offset –  
37.4 MHz clock at 100 kHz offset –  
–140  
–147  
dBc/Hz  
dBc/Hz  
Phase Noise  
(256-QAM)  
a. The frequency step size is approximately 80 Hz. The BCM4343W does not auto-detect the reference clock  
frequency; the frequency is specified in the software and/or NVRAM file.  
b. To use 256-QAM, a 800 mV minimum voltage is required.  
c. For a clock reference other than 37.4 MHz, 20 × log10(f/37.4) dB should be added to the limits, where f = the  
reference clock frequency in MHz.  
d. Phase noise is assumed flat above 100 kHz.  
e. The BCM4343W supports a 26 MHz reference clock sharing option. See the phase noise requirement in the  
table.  
External 32.768 kHz Low-Power Oscillator  
The BCM4343W uses a secondary low-frequency sleep clock for low-power mode timing. Either the internal  
low-precision LPO or an external 32.768 kHz precision oscillator is required. The internal LPO frequency range  
is approximately 33 kHz ± 30% over process, voltage, and temperature, which is adequate for some  
applications. However, one trade-off caused by this wide LPO tolerance is a small current consumption increase  
during power save mode that is incurred by the need to wake up earlier to avoid missing beacons.  
Whenever possible, the preferred approach is to use a precision external 32.768 kHz clock that meets the  
requirements listed in Table 3 on page 31.  
Note: The BCM4343W will auto-detect the LPO clock. If it senses a clock on the EXT_SLEEP_CLK  
pin, it will use that clock. If it doesn't sense a clock, it will use its own internal LPO.  
To use the internal LPO: Tie EXT_SLEEP_CLK to ground. Do not leave this pin floating.  
To use an external LPO: Connect the external 32.768 kHz clock to EXT_SLEEP_CLK.  
Table 3: External 32.768 kHz Sleep-Clock Specifications  
Parameter  
LPO Clock  
Units  
Nominal input frequency  
Frequency accuracy  
Duty cycle  
32.768  
kHz  
ppm  
%
±200  
30–70  
Input signal amplitude  
Signal type  
200–3300  
mV, p-p  
Square wave or sine wave  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 31  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
External 32.768 kHz Low-Power Oscillator  
Table 3: External 32.768 kHz Sleep-Clock Specifications (Cont.)  
Parameter  
LPO Clock  
Units  
a
>100  
<5  
k  
Input impedance  
pF  
Clock jitter  
<10,000  
ppm  
a. When power is applied or switched off.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 32  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLAN System Interfaces  
Section 4: WLAN System Interfaces  
SDIO v2.0  
The BCM4343W WLAN section supports SDIO version 2.0. for both 1-bit (25 Mbps) and 4-bit modes (100  
Mbps), as well as high speed 4-bit mode (50 MHz clocks—200 Mbps). It has the ability to map the interrupt  
signal on a GPIO pin. This out-of-band interrupt signal notifies the host when the WLAN device wants to turn on  
the SDIO interface. The ability to force control of the gated clocks from within the WLAN chip is also provided.  
SDIO mode is enabled using the strapping option pins. See Table 21 on page 108 for details.  
Three functions are supported:  
Function 0 standard SDIO function. The maximum block size is 32 bytes.  
Function 1 backplane function to access the internal System-on-a-Chip (SoC) address space. The  
maximum block size is 64 bytes.  
Function 2 WLAN function for efficient WLAN packet transfer through DMA. The maximum block size is  
512 bytes.  
SDIO Pin Descriptions  
Table 4: SDIO Pin Descriptions  
SD 4-Bit Mode  
SD 1-Bit Mode  
gSPI Mode  
Data output  
DATA0  
DATA1  
DATA2  
DATA3  
CLK  
Data line 0  
DATA Data line  
DO  
IRQ  
NC  
CS  
Data line 1 or Interrupt IRQ  
Interrupt  
Not used  
Not used  
Clock  
Interrupt  
Data line 2  
Data line 3  
Clock  
NC  
Not used  
Card select  
NC  
CLK  
SCLK Clock  
DI Data input  
CMD  
Command line  
CMD Command line  
Figure 11: Signal Connections to SDIO Host (SD 4-Bit Mode)  
CLK  
CMD  
BCM4343W  
SD Host  
DAT[3:0]  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 33  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
SDIO v2.0  
Figure 12: Signal Connections to SDIO Host (SD 1-Bit Mode)  
CLK  
CMD  
BCM4343W  
SD Host  
DATA  
IRQ  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 34  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Generic SPI Mode  
Generic SPI Mode  
In addition to the full SDIO mode, the BCM4343W includes the option of using the simplified generic SPI (gSPI)  
interface/protocol. Characteristics of the gSPI mode include:  
Up to 50 MHz operation  
Fixed delays for responses and data from the device  
Alignment to host gSPI frames (16 or 32 bits)  
Up to 2 KB frame size per transfer  
Little-endian and big-endian configurations  
A configurable active edge for shifting  
Packet transfer through DMA for WLAN  
gSPI mode is enabled using the strapping option pins. See Table 21 on page 108 for details.  
Figure 13: Signal Connections to SDIO Host (gSPI Mode)  
SCLK  
DI  
DO  
BCM4343W  
SD Host  
IRQ  
CS  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 35  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Generic SPI Mode  
SPI Protocol  
The SPI protocol supports both 16-bit and 32-bit word operation. Byte endianess is supported in both modes.  
Figure 14 and Figure 15 on page 37 show the basic write and write/read commands.  
Figure 14: gSPI Write Protocol  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 36  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Generic SPI Mode  
Figure 15: gSPI Read Protocol  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 37  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Generic SPI Mode  
Command Structure  
The gSPI command structure is 32 bits. The bit positions and definitions are shown in Figure 16.  
Figure 16: gSPI Command Structure  
BCM_SPID Command Structure  
27  
31 30 29 28  
11 10  
0
C
A
F1 F0  
Address – 17 bits  
Packet length - 11bits *  
* 11’h0 = 2048 bytes  
Function No: 00 – Func 0: All SPI-specific registers  
01 – Func 1: Registers and memories belonging to other blocks in the chip (64 bytes max)  
10 – Func 2: DMA channel 1. WLAN packets up to 2048 bytes.  
11 – Func 3: DMA channel 2 (optional). Packets up to 2048 bytes.  
Access : 0 – Fixed address  
1 – Incremental address  
Command : 0 – Read  
1 – Write  
Write  
The host puts the first bit of the data onto the bus half a clock-cycle before the first active edge following the CS  
going low. The following bits are clocked out on the falling edge of the gSPI clock. The device samples the data  
on the active edge.  
Write/Read  
The host reads on the rising edge of the clock requiring data from the device to be made available before the  
first rising-clock edge of the data. The last clock edge of the fixed delay word can be used to represent the first  
bit of the following data word. This allows data to be ready for the first clock edge without relying on  
asynchronous delays.  
Read  
The read command always follows a separate write to set up the WLAN device for a read. This command differs  
from the write/read command in the following respects: a) chip selects go high between the command/address  
and the data, and b) the time interval between the command/address is not fixed.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 38  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Generic SPI Mode  
Status  
The gSPI interface supports status notification to the host after a read/write transaction. This status notification  
provides information about packet errors, protocol errors, available packets in the RX queue, etc. The status  
information helps reduce the number of interrupts to the host. The status-reporting feature can be switched off  
using a register bit, without any timing overhead. The gSPI bus timing for read/write transactions with and  
without status notification are as shown in Figure 17 below and Figure 18 on page 40. See Table 5 on page 40  
for information on status-field details.  
Figure 17: gSPI Signal Timing Without Status  
Write  
CS  
SCLK  
MOSI  
C31C30
C1C0D31D30
D1D0
Command 32 bits Write Data 16*n bits  
CS  
Write-Read  
SCLK  
MOSI  
MISO  
C31C30
C0
C0
D31D30
D0
D1
Response  
Delay  
Command  
32 bits  
Read Data 16*n bits  
Read  
CS  
SCLK  
MOSI  
MISO  
C31C30
D31D30
D0
Command  
32 bits  
Response  
Delay  
Read Data  
16*n bits  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 39  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Generic SPI Mode  
Figure 18: gSPI Signal Timing with Status (Response Delay = 0)  
CS  
Write  
SCLK  
C31
C1C0D31
D1D0
MOSI  
MISO  
S31
S1S0
Status 32 bits  
Command 32 bits  
Write Data 16*n bits  
Write-Read  
CS  
SCLK  
MOSI  
MISO  
C31
C0
S31
S0
D31
D1D0
Read Data 16*n bits  
Status 32 bits  
Command 32 bits  
CS  
Read  
SCLK  
MOSI  
MISO  
C31
C0
S31
Status 32 bits  
S0
D31
D1D0
Command 32 bits  
Read Data 16*n bits  
Table 5: gSPI Status Field Details  
Bit  
Name  
Description  
The requested read data is not available.  
0
1
Data not available  
Underflow  
FIFO underflow occurred due to current (F2, F3) read  
command.  
2
Overflow  
FIFO overflow occurred due to current (F1, F2, F3) write  
command.  
3
F2 interrupt  
F2 channel interrupt.  
5
F2 RX ready  
F2 FIFO is ready to receive data (FIFO empty).  
7
Reserved  
8
F2 packet available  
F2 packet length  
Packet is available/ready in F2 TX FIFO.  
Length of packet available in F2 FIFO  
9:19  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 40  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Generic SPI Mode  
gSPI Host-Device Handshake  
To initiate communication through the gSPI after power-up, the host needs to bring up the WLAN chip by writing  
to the wake-up WLAN register bit. Writing a 1 to this bit will start up the necessary crystals and PLLs so that the  
BCM4343W is ready for data transfer. The device can signal an interrupt to the host indicating that the device  
is awake and ready. This procedure also needs to be followed for waking up the device in sleep mode. The  
device can interrupt the host using the WLAN IRQ line whenever it has any information to pass to the host. On  
getting an interrupt, the host needs to read the interrupt and/or status register to determine the cause of the  
interrupt and then take necessary actions.  
Boot-Up Sequence  
After power-up, the gSPI host needs to wait 50 ms for the device to be out of reset. For this, the host needs to  
poll with a read command to F0 address 0x14. Address 0x14 contains a predefined bit pattern. As soon as the  
host gets a response back with the correct register content, it implies that the device has powered up and is out  
of reset. After that, the host needs to set the wake-up WLAN bit (F0 reg 0x00 bit 7). Wake-up WLAN turns the  
PLL on; however, the PLL doesn't lock until the host programs the PLL registers to set the crystal frequency.  
For the first time after power-up, the host needs to wait for the availability of the low-power clock inside the  
device. Once it is available, the host needs to write to a PMU register to set the crystal frequency. This will turn  
on the PLL. After the PLL is locked, the chipActive interrupt is issued to the host. This indicates device awake/  
ready status. See Table 6 for information on gSPI registers.  
In Table 6, the following notation is used for register access:  
R: Readable from host and CPU  
W: Writable from host  
U: Writable from CPU  
Table 6: gSPI Registers  
Access Default Description  
Address Register  
Bit  
x0000  
Word length  
0
R/W/U  
R/W/U  
R/W/U  
0
0
1
0: 16-bit word length  
1: 32-bit word length  
0: Little endian  
Endianess  
1
1: Big endian  
High-speed mode 4  
0: Normal mode. Sample on SPICLK rising edge,  
output on falling edge.  
1: High-speed mode. Sample and output on rising  
edge of SPICLK (default).  
Interrupt polarity  
Wake-up  
5
7
R/W/U  
R/W  
1
0
0: Interrupt active polarity is low.  
1: Interrupt active polarity is high (default).  
A write of 1 denotes a wake-up command from  
host to device. This will be followed by an F2  
interrupt from the gSPI device to host, indicating  
device awake status.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 41  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Generic SPI Mode  
Table 6: gSPI Registers (Cont.)  
Access Default Description  
Address Register  
Bit  
x0002  
Status enable  
0
R/W  
1
0: No status sent to host after a read/write.  
1: Status sent to host after a read/write.  
0: Do not interrupt if status is sent.  
1: Interrupt host even if status is sent.  
Interrupt with  
status  
1
R/W  
0
x0003  
x0004  
Reserved  
0
0
Interrupt register  
R/W  
Requested data not available. Cleared by writing  
a 1 to this location.  
1
2
5
6
7
5
6
7
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
F2/F3 FIFO underflow from the last read.  
F2/F3 FIFO overflow from the last write.  
F2 packet available  
F3 packet available  
F1 overflow from the last write.  
F1 Interrupt  
x0005  
Interrupt register  
F2 Interrupt  
F3 Interrupt  
x0006,  
x0007  
Interrupt enable  
register  
15:0 R/W/U 16'hE0E7 Particular interrupt is enabled if a corresponding  
bit is set.  
x0008 to Status register  
x000B  
31:0  
R
32'h0000  
Same as status bit definitions  
x000C,  
x000D  
F1 info. register  
0
1
R
R
1
F1 enabled  
0
F1 ready for data transfer  
F1 maximum packet size  
F2 enabled  
13:2 R/U  
12'h40  
x000E,  
x000F  
F2 info. register  
0
1
R/U  
R
1
0
F2 ready for data transfer  
F2 maximum packet size  
15:2 R/U  
31:0  
14'h800  
x0014 to Test-Read only  
x0017 register  
R
32'hFEEDB This register contains a predefined pattern, which  
EAD  
the host can read to determine if the gSPI  
interface is working properly.  
x0018 to Test–R/W register 31:0 R/W/U 32'h000000 This is a dummy register where the host can write  
x001B  
00  
some pattern and read it back to determine if the  
gSPI interface is working properly.  
x001C to Response delay 7:0  
R/W  
0x1D = 4, Individual response delays for F0, F1, F2, and F3.  
other The value of the registers is the number of byte  
registers = delays that are introduced before data is shifted  
out of the gSPI interface during host reads.  
x001F  
registers  
0
Figure 19 on page 43 shows the WLAN boot-up sequence from power-up to firmware download, including the  
initial device power-on reset (POR) evoked by the WL_REG_ON signal. After initial power-up, the  
WL_REG_ON signal can be held low to disable the BCM4343W or pulsed low to induce a subsequent reset.  
Note: The BCM4343W has an internal power-on reset (POR) circuit. The device will be held in reset  
for a maximum of 3 ms after VDDC and VDDIO have both passed the 0.6V threshold.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 42  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Generic SPI Mode  
Figure 19: WLAN Boot-Up Sequence  
Ramp time from 0V to 4.3V > 40 µs  
0.6V  
VBAT  
VDDIO  
> 2 Sleep Clock cycles  
WL_REG_ON  
< 1.5 ms  
< 3 ms  
VDDC  
(from internal PMU)  
Internal POR  
After a fixed delay following internal POR going high,  
the device responds to host F0 (address 0x14) reads.  
< 50 ms  
Device requests a reference clock.  
1
1
15 ms  
After 15 ms the reference clock  
is assumed to be up. Access to  
PLL registers is possible.  
SPI Host Interaction:  
Host polls F0 (address 0x14) until it reads  
a predefined pattern.  
Host sets wakeupwlan bit  
1
and waits 15 ms , the  
maximum time for  
1
After 15 ms, the host  
reference clock availability.  
programs the PLL registers to  
set the crystal frequency.  
Chipactive interrupt is asserted after the PLL locks.  
WL_IRQ  
Host downloads  
code.  
1
This wait time is programmable in sleepclock increments from 1 to 255 (30 us to 15 ms).  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 43  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Wireless LAN MAC and PHY  
Section 5: Wireless LAN MAC and PHY  
MAC Features  
The BCM4343W WLAN MAC supports features specified in the IEEE 802.11 base standard, and amended by  
IEEE 802.11n. The salient features are listed below:  
Transmission and reception of aggregated MPDUs (A-MPDU).  
Support for power management schemes, including WMM power-save, power-save multipoll (PSMP) and  
multiphase PSMP operation.  
Support for immediate ACK and Block-ACK policies.  
Interframe space timing support, including RIFS.  
Support for RTS/CTS and CTS-to-self frame sequences for protecting frame exchanges.  
Back-off counters in hardware for supporting multiple priorities as specified in the WMM specification.  
Timing synchronization function (TSF), network allocation vector (NAV) maintenance, and target beacon  
transmission time (TBTT) generation in hardware.  
Hardware off-load for AES-CCMP, legacy WPA TKIP, legacy WEP ciphers, WAPI, and support for key  
management.  
Support for coexistence with Bluetooth and other external radios.  
Programmable independent basic service set (IBSS) or infrastructure basic service set functionality  
Statistics counters for MIB support.  
MAC Description  
The BCM4343W WLAN MAC is designed to support high throughput operation with low-power consumption. It  
does so without compromising on Bluetooth coexistence policies, thereby enabling optimal performance over  
both networks. In addition, several power-saving modes that have been implemented allow the MAC to  
consume very little power while maintaining network-wide timing synchronization. The architecture diagram of  
the MAC is shown in Figure 20 on page 45.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 44  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
MAC Features  
Figure 20: WLAN MAC Architecture  
Embedded CPU Interface  
Host Registers, DMA Engines  
TXFIFO  
32 KB  
RXFIFO  
10 KB  
PSM  
PMQ  
PSM  
UCODE  
Memory  
IFS  
Backoff, BTCX  
WEP  
WEP, TKIP, AES  
TSF  
SHM  
BUS  
IHR  
NAV  
BUS  
Shared Memory  
6 KB  
RXE  
RX AMPDU  
TXE  
TX AMPDU  
EXTIHR  
MAC  
PHY Interface  
The following sections provide an overview of the important modules in the MAC.  
PSM  
The programmable state machine (PSM) is a microcoded engine that provides most of the low-level control to  
the hardware to implement the IEEE 802.11 specification. It is a microcontroller that is highly optimized for flow-  
control operations, which are predominant in implementations of communication protocols. The instruction set  
and fundamental operations are simple and general, which allows algorithms to be optimized until very late in  
the design process. It also allows for changes to the algorithms to track evolving IEEE 802.11 specifications.  
The PSM fetches instructions from the microcode memory. It uses the shared memory to obtain operands for  
instructions, as a data store, and to exchange data between both the host and the MAC data pipeline (via the  
SHM bus). The PSM also uses a scratch-pad memory (similar to a register bank) to store frequently accessed  
and temporary variables.  
The PSM exercises fine-grained control over the hardware engines by programming internal hardware registers  
(IHR). These IHRs are collocated with the hardware functions they control and are accessed by the PSM via  
the IHR bus.  
The PSM fetches instructions from the microcode memory using an address determined by the program  
counter, an instruction literal, or a program stack. For ALU operations, the operands are obtained from shared  
memory, scratch-pad memory, IHRs, or instruction literals, and the results are written into the shared memory,  
scratch-pad memory, or IHRs.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 45  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
MAC Features  
There are two basic branch instructions: conditional branches and ALU-based branches. To better support the  
many decision points in the IEEE 802.11 algorithms, branches can depend on either readily available signals  
from the hardware modules (branch condition signals are available to the PSM without polling the IHRs) or on  
the results of ALU operations.  
WEP  
The wired equivalent privacy (WEP) engine encapsulates all the hardware accelerators to perform the  
encryption and decryption, as well as the MIC computation and verification. The accelerators implement the  
following cipher algorithms: legacy WEP, WPA TKIP, and WPA2 AES-CCMP.  
Based on the frame type and association information, the PSM determines the appropriate cipher algorithm to  
be used. It supplies the keys to the hardware engines from an on-chip key table. The WEP interfaces with the  
transmit engine (TXE) to encrypt and compute the MIC on transmit frames and the receive engine (RXE) to  
decrypt and verify the MIC on receive frames. WAPI is also supported.  
TXE  
The transmit engine (TXE) constitutes the transmit data path of the MAC. It coordinates the DMA engines to  
store the transmit frames in the TXFIFO. It interfaces with WEP module to encrypt frames and transfers the  
frames across the MAC-PHY interface at the appropriate time determined by the channel access mechanisms.  
The data received from the DMA engines are stored in transmit FIFOs. The MAC supports multiple logical  
queues to support traffic streams that have different QoS priority requirements. The PSM uses the channel  
access information from the IFS module to schedule a queue from which the next frame is transmitted. Once  
the frame is scheduled, the TXE hardware transmits the frame based on a precise timing trigger received from  
the IFS module.  
The TXE module also contains the hardware that allows the rapid assembly of MPDUs into an A-MPDU for  
transmission. The hardware module aggregates the encrypted MPDUs by adding appropriate headers and pad  
delimiters as needed.  
RXE  
The receive engine (RXE) constitutes the receive data path of the MAC. It interfaces with the DMA engine to  
drain the received frames from the RX FIFO. It transfers bytes across the MAC-PHY interface and interfaces  
with the WEP module to decrypt frames. The decrypted data is stored in the RX FIFO.  
The RXE module contains programmable filters that are programmed by the PSM to accept or filter frames  
based on several criteria such as receiver address, BSSID, and certain frame types.  
The RXE module also contains the hardware required to detect A-MPDUs, parse the headers of the containers,  
and disaggregate them into component MPDUS.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 46  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
MAC Features  
IFS  
The IFS module contains the timers required to determine interframe space timing including RIFS timing. It also  
contains multiple back-off engines required to support prioritized access to the medium as specified by WMM.  
The interframe spacing timers are triggered by the cessation of channel activity on the medium, as indicated by  
the PHY. These timers provide precise timing to the TXE to begin frame transmission. The TXE uses this  
information to send response frames or perform transmit frame-bursting (RIFS or SIFS separated, as within a  
TXOP).  
The back-off engines (for each access category) monitor channel activity, in each slot duration, to determine  
whether to continue or pause the back-off counters. When the back-off counters reach 0, the TXE gets notified  
so that it may commence frame transmission. In the event of multiple back-off counters decrementing to 0 at the  
same time, the hardware resolves the conflict based on policies provided by the PSM.  
The IFS module also incorporates hardware that allows the MAC to enter a low-power state when operating  
under the IEEE power-saving mode. In this mode, the MAC is in a suspended state with its clock turned off. A  
sleep timer, whose count value is initialized by the PSM, runs on a slow clock and determines the duration over  
which the MAC remains in this suspended state. Once the timer expires, the MAC is restored to its functional  
state. The PSM updates the TSF timer based on the sleep duration, ensuring that the TSF is synchronized to  
the network.  
The IFS module also contains the PTA hardware that assists the PSM in Bluetooth coexistence functions.  
TSF  
The timing synchronization function (TSF) module maintains the TSF timer of the MAC. It also maintains the  
target beacon transmission time (TBTT). The TSF timer hardware, under the control of the PSM, is capable of  
adopting timestamps received from beacon and probe response frames in order to maintain synchronization  
with the network.  
The TSF module also generates trigger signals for events that are specified as offsets from the TSF timer, such  
as uplink and downlink transmission times used in PSMP.  
NAV  
The network allocation vector (NAV) timer module is responsible for maintaining the NAV information conveyed  
through the duration field of MAC frames. This ensures that the MAC complies with the protection mechanisms  
specified in the standard.  
The hardware, under the control of the PSM, maintains the NAV timer and updates the timer appropriately based  
on received frames. This timing information is provided to the IFS module, which uses it as a virtual carrier-  
sense indication.  
MAC-PHY Interface  
The MAC-PHY interface consists of a data path interface to exchange RX/TX data from/to the PHY. In addition,  
there is a programming interface, which can be controlled either by the host or the PSM to configure and control  
the PHY.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 47  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
PHY Description  
PHY Description  
The BCM4343W WLAN digital PHY is designed to comply with IEEE 802.11b/g/n single stream to provide  
wireless LAN connectivity supporting data rates from 1 Mbps to 96 Mbps for low-power, high-performance  
handheld applications.  
The PHY has been designed to meet specification requirements in the presence of interference, radio  
nonlinearity, and impairments. It incorporates efficient implementations of the filters, FFT, and Viterbi decoder  
algorithms. Efficient algorithms have been designed to achieve maximum throughput and reliability, including  
algorithms for carrier sense/rejection, frequency/phase/timing acquisition and tracking, and channel estimation  
and tracking. The PHY receiver also contains a robust IEEE 802.11b demodulator. The PHY carrier sense has  
been tuned to provide high throughput for IEEE 802.11g/IEEE 802.11b hybrid networks with Bluetooth  
coexistence.  
PHY Features  
Supports the IEEE 802.11b/g/n single-stream standards.  
Explicit IEEE 802.11n transmit beamforming.  
Supports optional Greenfield mode in TX and RX.  
Tx and Rx LDPC for improved range and power efficiency.  
Supports IEEE 802.11h/d for worldwide operation.  
Algorithms achieving low power, enhanced sensitivity, range, and reliability.  
Algorithms to maximize throughput performance in the presence of Bluetooth signals.  
Automatic gain control scheme for blocking and nonblocking application scenarios for cellular applications.  
Closed-loop transmit power control.  
Designed to meet FCC and other regulatory requirements.  
Support for 2.4 GHz Broadcom TurboQAM data rates and 20 MHz channel bandwidth.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 48  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
PHY Description  
Figure 21: WLAN PHY Block Diagram  
CCK/DSSS  
Demodulate  
Filters  
and  
Radio  
Comp  
Frequency  
and Timing  
Synch  
Descramble  
and  
Deframe  
OFDM  
Demodulate  
Viterbi  
Decoder  
Carrier Sense,  
AGC, and Rx  
FSM  
Buffers  
Radio  
Control  
Block  
MAC  
Interface  
FFT/IFFT  
AFE  
and  
Radio  
Modulation  
and Coding  
Tx FSM  
Frame and  
Scramble  
Filters and  
Radio Comp  
Modulate/  
Spread  
PA Comp  
COEX  
The PHY is capable of fully calibrating the RF front-end to extract the highest performance. On power-up, the  
PHY performs a full calibration suite to correct for IQ mismatch and local oscillator leakage. The PHY also  
performs periodic calibration to compensate for any temperature related drift, thus maintaining high-  
performance over time. A closed-loop transmit control algorithm maintains the output power at its required level  
and can control TX power on a per-packet basis.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 49  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLAN Radio Subsystem  
Section 6: WLAN Radio Subsystem  
The BCM4343W includes an integrated WLAN RF transceiver that has been optimized for use in 2.4 GHz  
Wireless LAN systems. It is designed to provide low power, low cost, and robust communications for  
applications operating in the globally available 2.4 GHz unlicensed ISM band. The transmit and receive sections  
include all on-chip filtering, mixing, and gain control functions. Improvements to the radio design include shared  
TX/RX baseband filters and high immunity to supply noise.  
Figure 22 shows the radio functional block diagram.  
Figure 22: Radio Functional Block Diagram  
WL DAC  
WL TXLPF  
WL DAC  
WL PA  
WL PGA  
WL TX GMixer WL TXLPF  
Voltage  
Regulators  
WLAN BB  
WLRF_2G_RF  
4 ~ 6 nH  
Recommend  
Q = 40  
WL ADC  
WL ADC  
10 pF  
WL RXLPF  
WLRF_2G_eLG  
SLNA  
WL GLNA12  
WL RXLPF  
WL RX GMixer  
WL ATX  
WL ARX  
WL GTX  
WL GRX  
Gm  
BT LNA GM  
CLB  
WL LOGEN  
WL PLL  
BT PLL  
Shared XO  
BT RX  
BT TX  
BT LOGEN  
LPO/Ext LPO/RCAL  
BT ADC  
BT ADC  
BT RXLPF  
BT LNA Load  
BT PA  
BT RX Mixer  
BT RXLPF  
BT BB  
BT FM  
BT DAC  
BT DAC  
BT TX Mixer  
BT TXLPF  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 50  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Receive Path  
Receive Path  
The BCM4343W has a wide dynamic range, direct conversion receiver. It employs high-order on-chip channel  
filtering to ensure reliable operation in the noisy 2.4 GHz ISM band.  
Transmit Path  
Baseband data is modulated and upconverted to the 2.4 GHz ISM band. A linear on-chip power amplifier is  
included, which is capable of delivering high output powers while meeting IEEE 802.11b/g/n specifications  
without the need for an external PA. This PA is supplied by an internal LDO that is directly supplied by VBAT,  
thereby eliminating the need for a separate PALDO. Closed-loop output power control is integrated.  
Calibration  
The BCM4343W features dynamic on-chip calibration, eliminating process variation across components. This  
enables the BCM4343W to be used in high-volume applications because calibration routines are not required  
during manufacturing testing. These calibration routines are performed periodically during normal radio  
operation. Automatic calibration examples include baseband filter calibration for optimum transmit and receive  
performance and LOFT calibration for leakage reduction. In addition, I/Q calibration, R calibration, and VCO  
calibration are performed on-chip.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 51  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth + FM Subsystem Overview  
Section 7: Bluetooth + FM Subsystem  
Overview  
The Broadcom BCM4343W is a Bluetooth 4.1-compliant, baseband processor and 2.4 GHz transceiver with an  
integrated FM/RDS/RBDS receiver. It features the highest level of integration and eliminates all critical external  
components, thus minimizing the footprint, power consumption, and system cost of a Bluetooth plus FM radio  
solution.  
The BCM4343W is the optimal solution for any Bluetooth voice and/or data application that also requires an FM  
radio receiver. The Bluetooth subsystem presents a standard Host Controller Interface (HCI) via a high speed  
2
UART and PCM interface for audio. The FM subsystem supports the HCI control interface as well as I S, PCM,  
and stereo analog interfaces. The BCM4343W incorporates all Bluetooth 4.1 features including secure simple  
pairing, sniff subrating, and encryption pause and resume.  
The BCM4343W Bluetooth radio transceiver provides enhanced radio performance to meet the most stringent  
mobile phone temperature applications and the tightest integration into mobile handsets and portable devices.  
It is fully compatible with any of the standard TCXO frequencies and provides full radio compatibility to operate  
simultaneously with GPS, WLAN, NFC, and cellular radios.  
The Bluetooth transmitter also features a Class 1 power amplifier with Class 2 capability.  
Features  
Major Bluetooth features of the BCM4343W include:  
Supports key features of upcoming Bluetooth standards  
Fully supports Bluetooth Core Specification version 4.1 plus enhanced data rate (EDR) features:  
– Adaptive Frequency Hopping (AFH)  
– Quality of Service (QoS)  
– Extended Synchronous Connections (eSCO)—voice connections  
– Fast connect (interlaced page and inquiry scans)  
– Secure Simple Pairing (SSP)  
– Sniff Subrating (SSR)  
– Encryption Pause Resume (EPR)  
– Extended Inquiry Response (EIR)  
– Link Supervision Timeout (LST)  
UART baud rates up to 4 Mbps  
Supports all Bluetooth 4.1 packet types  
Supports maximum Bluetooth data rates over HCI UART  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 52  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Features  
Multipoint operation with up to seven active slaves  
– Maximum of seven simultaneous active ACL links  
– Maximum of three simultaneous active SCO and eSCO connections with scatternet support  
Trigger Beacon fast connect (TBFC)  
Narrowband and wideband packet loss concealment  
Scatternet operation with up to four active piconets with background scan and support for scatter mode  
High-speed HCI UART transport support with low-power out-of-band BT_DEV_WAKE and  
BT_HOST_WAKE signaling (see “Host Controller Power Management” on page 58)  
Channel-quality driven data rate and packet type selection  
Standard Bluetooth test modes  
Extended radio and production test mode features  
Full support for power savings modes  
– Bluetooth clock request  
– Bluetooth standard sniff  
– Deep-sleep modes and software regulator shutdown  
TCXO input and auto-detection of all standard handset clock frequencies. Also supports a low-power  
crystal, which can be used during power save mode for better timing accuracy.  
Major FM Radio features include:  
65 MHz to 108 MHz FM bands supported (US, Europe, and Japan)  
FM subsystem control using the Bluetooth HCI interface  
FM subsystem operates from reference clock inputs.  
2
Improved audio interface capabilities with full-featured bidirectional PCM, I S, and stereo analog output.  
2
I S can be master or slave.  
FM Receiver-Specific Features Include:  
Excellent FM radio performance with 1 µV sensitivity for 26 dB (S+N)/N  
Signal-dependent stereo/mono blending  
Signal dependent soft mute  
Auto search and tuning modes  
Audio silence detection  
RSSI and IF frequency status indicators  
RDS and RBDS demodulator and decoder with filter and buffering functions  
Automatic frequency jump  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 53  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth Radio  
Bluetooth Radio  
The BCM4343W has an integrated radio transceiver that has been optimized for use in 2.4 GHz Bluetooth  
wireless systems. It has been designed to provide low-power, low-cost, robust communications for applications  
operating in the globally available 2.4 GHz unlicensed ISM band. It is fully compliant with the Bluetooth Radio  
Specification and EDR specification and meets or exceeds the requirements to provide the highest  
communication link quality of service.  
Transmit  
The BCM4343W features a fully integrated zero-IF transmitter. The baseband transmit data is GFSK-modulated  
in the modem block and upconverted to the 2.4 GHz ISM band in the transmitter path. The transmitter path has  
signal filters, an I/Q upconverter, an output power amplifier, and RF filters. The transmitter path also incorporates  
/4–DQPSK for 2 Mbps and 8–DPSK for 3 Mbps to support EDR. The transmitter section is compatible with the  
Bluetooth Low Energy specification. The transmitter PA bias can also be adjusted to provide Bluetooth Class 1  
or Class 2 operation.  
Digital Modulator  
The digital modulator performs the data modulation and filtering required for the GFSK, /4–DQPSK, and 8–  
DPSK signal. The fully digital modulator minimizes any frequency drift or anomalies in the modulation  
characteristics of the transmitted signal and is much more stable than direct VCO modulation schemes.  
Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency  
tracking and bit-synchronization algorithm.  
Power Amplifier  
The fully integrated PA supports Class 1 or Class 2 output using a highly linearized, temperature-compensated  
design. This provides greater flexibility in front-end matching and filtering. Due to the linear nature of the PA  
combined with some integrated filtering, external filtering is required to meet the Bluetooth and regulatory  
harmonic and spurious requirements. For integrated mobile handset applications in which Bluetooth is  
integrated next to the cellular radio, external filtering can be applied to achieve near-thermal noise levels for  
spurious and radiated noise emissions. The transmitter features a sophisticated on-chip transmit signal strength  
indicator (TSSI) block to keep the absolute output power variation within a tight range across process, voltage,  
and temperature.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 54  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth Radio  
Receiver  
The receiver path uses a low-IF scheme to downconvert the received signal for demodulation in the digital  
demodulator and bit synchronizer. The receiver path provides a high degree of linearity, an extended dynamic  
range, and high-order on-chip channel filtering to ensure reliable operation in the noisy 2.4 GHz ISM band. The  
front-end topology with built-in out-of-band attenuation enables the BCM4343W to be used in most applications  
with minimal off-chip filtering. For integrated handset operation, in which the Bluetooth function is integrated  
close to the cellular transmitter, external filtering is required to eliminate the desensitization of the receiver by  
the cellular transmit signal.  
Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency  
tracking and bit synchronization algorithm.  
Receiver Signal Strength Indicator  
The radio portion of the BCM4343W provides a Receiver Signal Strength Indicator (RSSI) signal to the  
baseband so that the controller can take part in a Bluetooth power-controlled link by providing a metric of its own  
receiver signal strength to determine whether the transmitter should increase or decrease its output power.  
Local Oscillator Generation  
Local Oscillator (LO) generation provides fast frequency hopping (1600 hops/second) across the 79 maximum  
available channels. The LO generation subblock employs an architecture for high immunity to LO pulling during  
PA operation. The BCM4343W uses an internal RF and IF loop filter.  
Calibration  
The BCM4343W radio transceiver features an automated calibration scheme that is self contained in the radio.  
No user interaction is required during normal operation or during manufacturing to optimize performance.  
Calibration optimizes the performance of all the major blocks within the radio to within 2% of optimal conditions,  
including filter gain and phase characteristics, matching between key components, and key gain blocks. This  
takes into account process variation and temperature variation. Calibration occurs transparently during normal  
operation during the settling time of the hops and calibrates for temperature variations as the device cools and  
heats during normal operation in its environment.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 55  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth Baseband Core  
Section 8: Bluetooth Baseband Core  
The Bluetooth Baseband Core (BBC) implements all of the time-critical functions required for high-performance  
Bluetooth operation. The BBC manages the buffering, segmentation, and routing of data for all connections. It  
also buffers data that passes through it, handles data flow control, schedules SCO/ACL TX/RX transactions,  
monitors Bluetooth slot usage, optimally segments and packages data into baseband packets, manages  
connection status indicators, and composes and decodes HCI packets. In addition to these functions, it  
independently handles HCI event types and HCI command types.  
The following transmit and receive functions are also implemented in the BBC hardware to increase the  
reliability and security of data before sending and receiving it over the air:  
Symbol timing recovery, data deframing, forward error correction (FEC), header error control (HEC), cyclic  
redundancy check (CRC), data decryption, and data dewhitening in the receiver.  
Data framing, FEC generation, HEC generation, CRC generation, key generation, data encryption, and  
data whitening in the transmitter.  
Bluetooth 4.1 Features  
The BBC supports all Bluetooth 4.1 features, with the following benefits:  
Dual-mode classic Bluetooth and classic Low Energy (BT and BLE) operation.  
Low energy physical layer  
Low energy link layer  
Enhancements to HCI for low energy  
Low energy direct test mode  
128 AES-CCM secure connection for both BT and BLE  
Note: The BCM4343W is compatible with the Bluetooth Low Energy operating mode, which provides  
a dramatic reduction in the power consumption of the Bluetooth radio and baseband. The primary  
application for this mode is to provide support for low data rate devices, such as sensors and remote  
controls.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 56  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Link Control Layer  
Link Control Layer  
The link control layer is part of the Bluetooth link control functions that are implemented in dedicated logic in the  
link control unit (LCU). This layer contains the command controller that takes commands from the software, and  
other controllers that are activated or configured by the command controller, to perform the link control tasks.  
Each task performs a different state in the Bluetooth link controller.  
Major states:  
– Standby  
– Connection  
Substates:  
– Page  
– Page Scan  
– Inquiry  
– Inquiry Scan  
– Sniff  
– BLE Adv  
– BLE Scan/Initiation  
Test Mode Support  
The BCM4343W fully supports Bluetooth Test mode as described in Part I:1 of the Specification of the Bluetooth  
System Version 3.0. This includes the transmitter tests, normal and delayed loopback tests, and reduced  
hopping sequence.  
In addition to the standard Bluetooth Test Mode, the BCM4343W also supports enhanced testing features to  
simplify RF debugging and qualification as well as type-approval testing. These features include:  
Fixed frequency carrier-wave (unmodulated) transmission  
– Simplifies some type-approval measurements (Japan)  
– Aids in transmitter performance analysis  
Fixed frequency constant receiver mode  
– Receiver output directed to an I/O pin  
– Allows for direct BER measurements using standard RF test equipment  
– Facilitates spurious emissions testing for receive mode  
Fixed frequency constant transmission  
– Eight-bit fixed pattern or PRBS-9  
– Enables modulated signal measurements with standard RF test equipment  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 57  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth Power Management Unit  
Bluetooth Power Management Unit  
The Bluetooth Power Management Unit (PMU) provides power management features that can be invoked by  
either software through power management registers or packet handling in the baseband core. The power  
management functions provided by the BCM4343W are:  
RF Power Management  
Host Controller Power Management  
BBC Power Management  
FM Power Management  
RF Power Management  
The BBC generates power-down control signals for the transmit path, receive path, PLL, and power amplifier to  
the 2.4 GHz transceiver. The transceiver then processes the power-down functions accordingly.  
Host Controller Power Management  
When running in UART mode, the BCM4343W can be configured so that dedicated signals are used for power  
management handshaking between the BCM4343W and the host. The basic power saving functions supported  
by those handshaking signals include the standard Bluetooth defined power savings modes and standby modes  
of operation.  
Table 7 describes the power-control handshake signals used with the UART interface.  
Table 7: Power Control Pin Description  
Signal  
Type Description  
BT_DEV_WAKE  
I
Bluetooth device wake-up signal: Signal from the host to the BCM4343W indicating  
that the host requires attention.  
Asserted: The Bluetooth device must wake up or remain awake.  
Deasserted: The Bluetooth device may sleep when sleep criteria are met.  
The polarity of this signal is software configurable and can be asserted high or low.  
BT_HOST_WAKE  
CLK_REQ  
O
O
Host wake-up signal. Signal from the BCM4343W to the host indicating that the  
BCM4343W requires attention.  
Asserted: Host device must wake up or remain awake.  
Deasserted: Host device may sleep when sleep criteria are met.  
The polarity of this signal is software configurable and can be asserted high or low.  
The BCM4343W asserts CLK_REQ when Bluetooth or WLAN directs the host to  
turn on the reference clock. The CLK_REQ polarity is active-high. Add an external  
100 kpull-down resistor to ensure the signal is deasserted when the BCM4343W  
powers up or resets when VDDIO is present.  
Note: Pad function Control Register is set to 0 for these pins.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 58  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth Power Management Unit  
Figure 23: Startup Signaling Sequence  
LPO  
Host IOs unconfigured  
Host IOs configured  
VDDIO  
T1  
HostResetX  
BT_GPIO_0  
(BT_DEV_WAKE)  
T2  
BTH IOs unconfiguredBTH IOs configured  
BT_REG_ON  
BT_GPIO_1  
(BT_HOST_WAKE)  
T3  
Host side drives  
this line low  
BT_UART_CTS_N  
BT_UART_RTS_N  
BTH device drives this  
line low indicating  
transport is ready  
T4  
CLK_REQ_OUT  
Notes :  
T5  
Driven  
Pulled  
T1 is the time for host to settle it’s IOs after a reset.  
T2 is the time for host to drive BT_REG_ON high after the Host IOs are configured.  
T3 is the time for BTH (Bluetooth) device to settle its IOs after a reset and reference clock settling time has  
elapsed.  
T4 is the time for BTH device to drive BT_UART_RTS_N low after the host drives BT_UART_CTS_N low. This  
assumes the BTH device has already completed initialization.  
T5 is the time for BTH device to drive CLK_REQ_OUT high after BT_REG_ON goes high. Note this pin is used for  
designs that use an external reference clock source from the Host. This pin is irrelevant for Crystal reference  
clock based designs where the BTH device generates it’s own reference clock from an external crystal connected  
to it’s oscillator circuit.  
Timing diagram assumes VBAT is present.  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 59  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth Power Management Unit  
BBC Power Management  
The following are low-power operations for the BBC:  
Physical layer packet-handling turns the RF on and off dynamically within transmit/receive packets.  
Bluetooth-specified low-power connection modes: sniff and hold. While in these modes, the BCM4343W  
runs on the low-power oscillator and wakes up after a predefined time period.  
A low-power shutdown feature allows the device to be turned off while the host and any other devices in the  
system remain operational. When the BCM4343W is not needed in the system, the RF and core supplies  
are shut down while the I/O remains powered. This allows the BCM4343W to effectively be off while  
keeping the I/O pins powered, so they do not draw extra current from any other I/O-connected devices.  
During the low-power shut-down state, provided VDDIO remains applied to the BCM4343W, all outputs are  
tristated, and most input signals are disabled. Input voltages must remain within the limits defined for normal  
operation. This is done to prevent current paths or create loading on digital signals in the system and enables  
the BCM4343W to be fully integrated in an embedded device to take full advantage of the lowest power-  
saving modes.  
Two BCM4343W input signals are designed to be high-impedance inputs that do not load the driving signal  
even if the chip does not have VDDIO power supplied to it: the frequency reference input (WRF_TCXO_IN)  
and the 32.768 kHz input (LPO). When the BCM4343W is powered on from this state, it is the same as a  
normal power-up, and the device does not contain any information about its state from the time before it was  
powered down.  
FM Power Management  
The BCM4343W FM subsystem can operate independently of, or in tandem with, the Bluetooth RF and BBC  
subsystems. The FM subsystem power management scheme operates in conjunction with the Bluetooth RF and  
BBC subsystems. The FM block does not have a low power state, it is either on or off.  
Wideband Speech  
The BCM4343W provides support for wideband speech (WBS) technology. The BCM4343W can perform  
subband-codec (SBC), as well as mSBC, encoding and decoding of linear 16 bits at 16 kHz (256 kbps rate)  
transferred over the PCM bus.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 60  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth Power Management Unit  
Packet Loss Concealment  
Packet Loss Concealment (PLC) improves the apparent audio quality for systems with marginal link  
performance. Bluetooth messages are sent in packets. When a packet is lost, it creates a gap in the received  
audio bit-stream. Packet loss can be mitigated in several ways:  
Fill in zeros.  
Ramp down the output audio signal toward zero (this is the method used in current Bluetooth headsets).  
Repeat the last frame (or packet) of the received bit-stream and decode it as usual (frame repeat).  
These techniques cause distortion and popping in the audio stream. The BCM4343W uses a proprietary  
waveform extension algorithm to provide dramatic improvement in the audio quality. Figure 24 and Figure 25  
show audio waveforms with and without Packet Loss Concealment. Broadcom PLC/BEC algorithms also  
support wideband speech.  
Figure 24: CVSD Decoder Output Waveform Without PLC  
Packet losses causes ramp-down  
Figure 25: CVSD Decoder Output Waveform After Applying PLC  
Codec Encoding  
The BCM4343W can support SBC and mSBC encoding and decoding for wideband speech.  
Multiple Simultaneous A2DP Audio Streams  
The BCM4343W has the ability to take a single audio stream and output it to multiple Bluetooth devices  
simultaneously. This allows a user to share his or her music (or any audio stream) with a friend.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 61  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Adaptive Frequency Hopping  
FM Over Bluetooth  
FM Over Bluetooth enables the BCM4343W to stream data from FM over Bluetooth without requiring the host  
to be awake. This can significantly extend battery life for usage cases where someone is listening to FM radio  
on a Bluetooth headset.  
Adaptive Frequency Hopping  
The BCM4343W gathers link quality statistics on a channel by channel basis to facilitate channel assessment  
and channel map selection. The link quality is determined using both RF and baseband signal processing to  
provide a more accurate frequency-hop map.  
Advanced Bluetooth/WLAN Coexistence  
The BCM4343W includes advanced coexistence technologies that are only possible with a Bluetooth/WLAN  
integrated die solution. These coexistence technologies are targeted at small form-factor platforms, such as cell  
phones and media players, including applications such as VoWLAN + SCO and Video-over-WLAN + High  
Fidelity BT Stereo.  
Support is provided for platforms that share a single antenna between Bluetooth and WLAN. Dual-antenna  
applications are also supported. The BCM4343W radio architecture allows for lossless simultaneous Bluetooth  
and WLAN reception for shared antenna applications. This is possible only via an integrated solution (shared  
LNA and joint AGC algorithm). It has superior performance versus implementations that need to arbitrate  
between Bluetooth and WLAN reception.  
The BCM4343W integrated solution enables MAC-layer signaling (firmware) and a greater degree of sharing  
via an enhanced coexistence interface. Information is exchanged between the Bluetooth and WLAN cores  
without host processor involvement.  
The BCM4343W also supports Transmit Power Control (TPC) on the STA together with standard Bluetooth TPC  
to limit mutual interference and receiver desensitization. Preemption mechanisms are utilized to prevent AP  
transmissions from colliding with Bluetooth frames. Improved channel classification techniques have been  
implemented in Bluetooth for faster and more accurate detection and elimination of interferers (including non-  
WLAN 2.4 GHz interference).  
The Bluetooth AFH classification is also enhanced by the WLAN core’s channel information.  
Fast Connection (Interlaced Page and Inquiry Scans)  
The BCM4343W supports page scan and inquiry scan modes that significantly reduce the average inquiry  
response and connection times. These scanning modes are compatible with the Bluetooth version 2.1 page and  
inquiry procedures.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 62  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Microprocessor and Memory Unit for Bluetooth  
Section 9: Microprocessor and Memory  
Unit for Bluetooth  
The Bluetooth microprocessor core is based on the ARM Cortex-M3 32-bit RISC processor with embedded ICE-  
RT debug and JTAG interface units. It runs software from the link control (LC) layer up to the host controller  
interface (HCI).  
The ARM core is paired with a memory unit that contains 576 KB of ROM for program storage and boot ROM,  
and 160 KB of RAM for data scratch-pad and patch RAM code. The internal ROM allows for flexibility during  
power-on reset (POR) to enable the same device to be used in various configurations. At power-up, the lower-  
layer protocol stack is executed from the internal ROM memory.  
External patches may be applied to the ROM-based firmware to provide flexibility for bug fixes or feature  
additions. These patches may be downloaded from the host to the BCM4343W through the UART transports.  
RAM, ROM, and Patch Memory  
The BCM4343W Bluetooth core has 160 KB of internal RAM which is mapped between general purpose  
scratch-pad memory and patch memory, and 576 KB of ROM used for the lower-layer protocol stack, test mode  
software, and boot ROM. The patch memory is used for bug fixes and feature additions to ROM memory code.  
Reset  
The BCM4343W has an integrated power-on reset circuit that resets all circuits to a known power-on state. The  
BT POR circuit is out of reset after BT_REG_ON goes high. If BT_REG_ON is low, then the POR circuit is held  
in reset.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 63  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth Peripheral Transport Unit  
Section 10: Bluetooth Peripheral Transport  
Unit  
PCM Interface  
2
The BCM4343W supports two independent PCM interfaces that share pins with the I S interfaces. The PCM  
interface on the BCM4343W can connect to linear PCM codec devices in master or slave mode. In master  
mode, the BCM4343W generates the PCM_CLK and PCM_SYNC signals, and in slave mode, these signals are  
provided by another master on the PCM interface and are inputs to the BCM4343W. The configuration of the  
PCM interface may be adjusted by the host through the use of vendor-specific HCI commands.  
Slot Mapping  
The BCM4343W supports up to three simultaneous full-duplex SCO or eSCO channels through the PCM  
interface. These three channels are time-multiplexed onto the single PCM interface by using a time-slotting  
scheme where the 8 kHz or 16 kHz audio sample interval is divided into as many as 16 slots. The number of  
slots is dependent on the selected interface rate of 128 kHz, 512 kHz, or 1024 kHz. The corresponding number  
of slots for these interface rates is 1, 2, 4, 8, and 16, respectively. Transmit and receive PCM data from an SCO  
channel is always mapped to the same slot. The PCM data output driver tristates its output on unused slots to  
allow other devices to share the same PCM interface signals. The data output driver tristates its output after the  
falling edge of the PCM clock during the last bit of the slot.  
Frame Synchronization  
The BCM4343W supports both short- and long-frame synchronization in both master and slave modes. In short-  
frame synchronization mode, the frame synchronization signal is an active-high pulse at the audio frame rate  
that is a single-bit period in width and is synchronized to the rising edge of the bit clock. The PCM slave looks  
for a high on the falling edge of the bit clock and expects the first bit of the first slot to start at the next rising edge  
of the clock. In long-frame synchronization mode, the frame synchronization signal is again an active-high pulse  
at the audio frame rate; however, the duration is three bit periods and the pulse starts coincident with the first  
bit of the first slot.  
Data Formatting  
The BCM4343W may be configured to generate and accept several different data formats. For conventional  
narrowband speech mode, the BCM4343W uses 13 of the 16 bits in each PCM frame. The location and order  
of these 13 bits can be configured to support various data formats on the PCM interface. The remaining three  
bits are ignored on the input and may be filled with 0’s, 1’s, a sign bit, or a programmed value on the output. The  
default format is 13-bit 2’s complement data, left justified, and clocked MSB first.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 64  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
PCM Interface  
Wideband Speech Support  
When the host encodes Wideband Speech (WBS) packets in transparent mode, the encoded packets are  
transferred over the PCM bus for an eSCO voice connection. In this mode, the PCM bus is typically configured  
in master mode for a 4 kHz sync rate with 16-bit samples, resulting in a 64 kbps bit rate. The BCM4343W also  
supports slave transparent mode using a proprietary rate-matching scheme. In SBC-code mode, linear 16-bit  
data at 16 kHz (256 kbps rate) is transferred over the PCM bus.  
Multiplexed Bluetooth and FM over PCM  
In this mode of operation, the BCM4343W multiplexes both FM and Bluetooth audio PCM channels over the  
same interface, reducing the number of required I/Os. This mode of operation is initiated through an HCI  
command from the host. The data stream format contains three channels: a Bluetooth channel followed by two  
FM channels (audio left and right). In this mode of operation, the bus data rate only supports 48 kHz operation  
per channel with 16 bits sent for each channel. This is done to allow the low data rate Bluetooth data to coexist  
2
in the same interface as the higher speed I S data. To accomplish this, the Bluetooth data is repeated six times  
for 8 kHz data and three times for 16 kHz data. An initial sync pulse on the PCM_SYNC line is used to indicate  
the beginning of the frame.  
To support multiple Bluetooth audio streams within the Bluetooth channel, both 16 kHz and 8 kHz streams can  
be multiplexed. This mode of operation is only supported when the Bluetooth host is the master. Figure 26  
shows the operation of the multiplexed transport with three simultaneous SCO connections. To accommodate  
additional SCO channels, the transport clock speed is increased. To change between modes of operation, the  
transport must be halted and restarted in the new configuration.  
Figure 26: Functional Multiplex Data Diagram  
1 Frame  
BT SCO 1 RX  
BT SCO 1 TX  
BT SCO 2 RX  
BT SCO 2 TX  
BT SCO 3 RX  
FM right  
FM right  
FM left  
FM left  
PCM_OUT  
BT SCO 3 TX  
PCM_IN  
PCM_SYNC  
PCM_CLK  
CLK  
16 bits per SCO frame  
16 bits per frame  
16 bits per frame  
Each SCO channel duplicates the data 6 times.  
Each WBS frame duplicates the data 3 times per frame.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 65  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
PCM Interface  
PCM Interface Timing  
Short Frame Sync, Master Mode  
Figure 27: PCM Timing Diagram (Short Frame Sync, Master Mode)  
1
2
3
PCM_BCLK  
4
PCM_SYNC  
PCM_OUT  
8
High Impedance  
7
5
6
PCM_IN  
Table 8: PCM Interface Timing Specifications (Short Frame Sync, Master Mode)  
Ref No. Characteristics  
Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
8
PCM bit clock frequency  
12  
MHz  
ns  
PCM bit clock low  
PCM bit clock high  
PCM_SYNC delay  
PCM_OUT delay  
PCM_IN setup  
41  
41  
0
ns  
25  
25  
ns  
0
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 66  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
PCM Interface  
Short Frame Sync, Slave Mode  
Figure 28: PCM Timing Diagram (Short Frame Sync, Slave Mode)  
1
2
3
PCM_BCLK  
4
5
PCM_SYNC  
PCM_OUT  
9
High Impedance  
8
6
7
PCM_IN  
Table 9: PCM Interface Timing Specifications (Short Frame Sync, Slave Mode)  
Ref No. Characteristics Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
8
9
PCM bit clock frequency  
12  
MHz  
ns  
PCM bit clock low  
PCM bit clock high  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_OUT delay  
PCM_IN setup  
41  
41  
8
ns  
ns  
8
ns  
0
25  
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 67  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
PCM Interface  
Long Frame Sync, Master Mode  
Figure 29: PCM Timing Diagram (Long Frame Sync, Master Mode)  
1
2
3
PCM_BCLK  
4
PCM_SYNC  
PCM_OUT  
8
High Impedance  
7
Bit 0  
Bit 0  
Bit 1  
Bit 1  
5
6
PCM_IN  
Table 10: PCM Interface Timing Specifications (Long Frame Sync, Master Mode)  
Ref No. Characteristics Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
8
PCM bit clock frequency  
12  
MHz  
ns  
PCM bit clock low  
PCM bit clock high  
PCM_SYNC delay  
PCM_OUT delay  
PCM_IN setup  
41  
41  
0
ns  
25  
25  
ns  
0
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 68  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
PCM Interface  
Long Frame Sync, Slave Mode  
Figure 30: PCM Timing Diagram (Long Frame Sync, Slave Mode)  
1
2
3
PCM_BCLK  
4
5
PCM_SYNC  
PCM_OUT  
9
Bit 0  
Bit 0  
HIGH IMPEDANCE  
8
Bit 1  
6
7
Bit 1  
PCM_IN  
Table 11: PCM Interface Timing Specifications (Long Frame Sync, Slave Mode)  
Ref No. Characteristics Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
8
9
PCM bit clock frequency  
12  
MHz  
ns  
PCM bit clock low  
PCM bit clock high  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_OUT delay  
PCM_IN setup  
41  
41  
8
ns  
ns  
8
ns  
0
25  
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 69  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
UART Interface  
UART Interface  
The BCM4343W shares a single UART for Bluetooth and FM. The UART is a standard 4-wire interface (RX, TX,  
RTS, and CTS) with adjustable baud rates from 9600 bps to 4.0 Mbps. The interface features an automatic baud  
rate detection capability that returns a baud rate selection. Alternatively, the baud rate may be selected through  
a vendor-specific UART HCI command.  
The UART has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support EDR. Access to the FIFOs  
is conducted through the Advanced High Performance Bus (AHB) interface through either DMA or the CPU. The  
UART supports the Bluetooth 4.1 UART HCI specification: H4 and H5. The default baud rate is 115.2 Kbaud.  
The UART supports the 3-wire H5 UART transport as described in the Bluetooth specification (Three-wire UART  
Transport Layer). Compared to H4, the H5 UART transport reduces the number of signal lines required by  
eliminating the CTS and RTS signals.  
The BCM4343W UART can perform XON/XOFF flow control and includes hardware support for the Serial Line  
Input Protocol (SLIP). It can also perform a wake-on activity function. For example, activity on the RX or CTS  
inputs can wake the chip from a sleep state.  
Normally, the UART baud rate is set by a configuration record downloaded after device reset or by automatic  
baud rate detection, and the host does not need to adjust the baud rate. Support for changing the baud rate  
during normal HCI UART operation is included through a vendor-specific command that allows the host to adjust  
the contents of the baud rate registers. The BCM4343W UARTs operate correctly with the host UART as long  
as the combined baud rate error of the two devices is within ±2% (see Table 12).  
Table 12: Example of Common Baud Rates  
Desired Rate  
Actual Rate  
Error (%)  
4000000  
3692000  
3000000  
2000000  
1500000  
1444444  
921600  
460800  
230400  
115200  
57600  
4000000  
3692308  
3000000  
2000000  
1500000  
1454544  
923077  
461538  
230796  
115385  
57692  
0.00  
0.01  
0.00  
0.00  
0.00  
0.70  
0.16  
0.16  
0.17  
0.16  
0.16  
0.00  
0.16  
0.00  
0.16  
0.00  
38400  
38400  
28800  
28846  
19200  
19200  
14400  
14423  
9600  
9600  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 70  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
UART Interface  
UART timing is defined in Figure 31 and Table 13.  
Figure 31: UART Timing  
UART_CTS_N  
UART_TXD  
1
2
Midpoint of STOP bit  
Midpoint of STOP bit  
UART_RXD  
3
UART_RTS_N  
Table 13: UART Timing Specifications  
Minimum Typical  
Ref No. Characteristics  
Maximum Unit  
1
2
3
Delay time, UART_CTS_N low to UART_TXD  
valid  
1.5  
0.5  
0.5  
Bit periods  
Setup time, UART_CTS_N high before midpoint  
of stop bit  
Bit periods  
Bit periods  
Delay time, midpoint of stop bit to UART_RTS_N –  
high  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 71  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
I2S Interface  
2
I S Interface  
2
The BCM4343W supports an independent I S digital audio port for high-fidelity FM audio or Bluetooth audio.  
2
2
The I S interface supports both master and slave modes. The I S signals are:  
2
2
I S Clock: I S SCK  
2
2
I S Word Select: I S WS  
2
2
I S Data Out: I S SDO  
2
2
I S Data In: I S SDI  
2
2
2
I S SCK and I S WS become outputs in master mode and inputs in slave mode, while I S SDO is always an  
output. The channel word length is 16 bits and the data is justified so that the MSB of the left-channel data is  
2
2
aligned with the MSB of the I S bus, per the I S specification. The MSB of each data word is transmitted one  
bit-clock cycle after the I S WS transition, synchronous with the falling edge of the bit clock. Left-channel data  
is transmitted when I S WS is low, and right-channel data is transmitted when I S WS is high. Data bits sent by  
the BCM4343W are synchronized with the falling edge of I2S_SCK and should be sampled by the receiver on  
the rising edge of I2S_SSCK.  
2
2
2
The clock rate in master mode is either of the following:  
48 kHz x 32 bits per frame = 1.536 MHz  
48 kHz x 50 bits per frame = 2.400 MHz  
The master clock is generated from the input reference clock using an N/M clock divider.  
In slave mode, clock rates up to 3.072 MHz are supported.  
2
I S Timing  
Note: Timing values specified in Table 14 are relative to high and low threshold levels.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 72  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
I2S Interface  
2
Table 14: Timing for I S Transmitters and Receivers  
Transmitter  
Lower LImit Upper Limit  
Receiver  
Lower Limit Upper Limit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Notes  
Clock period T  
T
T
1
tr  
r
Master mode: Clock generated by transmitter or receiver.  
High t  
0.35T  
0.35T  
0.35T  
0.35T  
2
2
HC  
LC  
tr  
tr  
tr  
Low t  
tr  
Slave mode: Clock accepted by transmitter or receiver.  
High t  
0.35T  
0.35T  
0.35T  
0.35T  
3
3
4
HC  
LC  
tr  
tr  
tr  
tr  
Low t  
Rise time t  
0.15T  
RC  
tr  
Transmitter  
Delay t  
0
0.8T  
5
4
dtr  
Hold time t  
htr  
Receiver  
Setup time t  
0.2T  
6
6
sr  
r
Hold time t  
0
hr  
Note:  
The system clock period T must be greater than T and T because both the transmitter and  
receiver have to be able to handle the data transfer rate.  
tr  
r
At all data rates in master mode, the transmitter or receiver generates a clock signal with a fixed  
mark/space ratio. For this reason, t and t are specified with respect to T.  
HC  
LC  
In slave mode, the transmitter and receiver need a clock signal with minimum high and low periods  
so that they can detect the signal. As long as the minimum periods are greater than 0.35T , any  
r
clock that meets the requirements can be used.  
Because the delay (t ) and the maximum transmitter speed (defined by T ) are related, a fast  
dtr tr  
transmitter driven by a slow clock edge can result in t not exceeding t , which means t  
htr  
dtr  
RC  
becomes zero or negative. Therefore, the transmitter has to guarantee that t is greater than or  
htr  
equal to zero, as long as the clock rise-time, t , does not exceed t  
, where t  
is not less  
RC  
RCmax  
RCmax  
than 0.15T .  
tr  
To allow data to be clocked out on a falling edge, the delay is specified with respect to the rising  
edge of the clock signal and T, always giving the receiver sufficient setup time.  
The data setup and hold time must not be less than the specified receiver setup and hold time.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 73  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
I2S Interface  
Note: The time periods specified in Figure 32 and Figure 33 are defined by the transmitter speed. The  
receiver specifications must match transmitter performance.  
2
Figure 32: I S Transmitter Timing  
T
tRC*  
tLC > 0.35T  
tHC > 0.35T  
VH = 2.0V  
VL = 0.8V  
SCK  
thtr > 0  
tdtr < 0.8T  
SD and WS  
T = Clock period  
Ttr = Minimum allowed clock period for transmitter  
T = Ttr  
* tRC is only relevant for transmitters in slave mode.  
2
Figure 33: I S Receiver Timing  
T
tLC > 0.35T  
tHC > 0.35  
VH = 2.0V  
VL = 0.8V  
SCK  
tsr > 0.2T  
thr > 0  
SD and WS  
T = Clock period  
Tr = Minimum allowed clock period for transmitter  
T > Tr  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 74  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
FM Receiver Subsystem  
Section 11: FM Receiver Subsystem  
FM Radio  
The BCM4343W includes a completely integrated FM radio receiver with RDS/RBDS covering all FM bands  
from 65 MHz to 108 MHz. The receiver is controlled through commands on the HCI. FM received audio is  
2
available as a stereo analog output or in digital form through I S or PCM. The FM radio operates from the  
external clock reference.  
Digital FM Audio Interfaces  
2
The FM audio can be transmitted via the shared PCM and I S pins, and the sampling rate is programmable.  
2
The BCM4343W supports a three-wire PCM or I S audio interface in either a master or slave configuration. The  
master or slave configuration is selected using vendor specific commands over the HCI interface. In addition,  
multiple sampling rates are supported, derived from either the FM or Bluetooth clocks. In master mode, the clock  
rate is either of the following:  
48 kHz x 32 bits per frame = 1.536 MHz  
48 kHz x 50 bits per frame = 2.400 MHz  
In slave mode, clock rates up to 3.072 MHz are supported.  
Analog FM Audio Interfaces  
The demodulated FM audio signal is available as line-level analog stereo output, generated by twin internal high  
SNR audio DACs.  
FM Over Bluetooth  
The BCM4343W can output received FM audio onto Bluetooth using one of following three links: eSCO, WBS,  
or A2DP. For all link types, after a link has been established, the host processor can enter sleep mode while the  
BCM4343W streams FM audio to the remote Bluetooth device, thus minimizing system current consumption.  
eSCO  
In this use case, the stereo FM audio is downsampled to 8 kHz and a mono or stereo stream is sent through the  
Bluetooth eSCO link to a remote Bluetooth device, typically a headset. Two Bluetooth voice connections must  
be used to transport stereo.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 75  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Wideband Speech Link  
Wideband Speech Link  
In this case, the stereo FM audio is downsampled to 16 kHz and a mono or stereo stream is sent through the  
Bluetooth wideband speech link to a remote Bluetooth device, typically a headset. Two Bluetooth voice  
connections must be used to transport stereo.  
A2DP  
In this case, the stereo FM audio is encoded by the on-chip SBC encoder and transported as an A2DP link to a  
remote Bluetooth device. Sampling rates of 48 kHz, 44.1 kHz, and 32 kHz joint stereo are supported. An A2DP  
lite stack is implemented in the BCM4343W to support this use case, which eliminates the need to route the  
SBC-encoded audio back to the host to create the A2DP packets.  
Autotune and Search Algorithms  
The BCM4343W supports a number of FM search and tune functions, allowing the host to implement many  
convenient user functions by accessing the Broadcom FM stack.  
Tune to Play—Allows the FM receiver to be programmed to a specific frequency.  
Search for SNR > Threshold—Checks the power level of the available channel and the estimated SNR of  
the channel to help achieve precise control of the expected sound quality for the selected FM channel.  
Specifically, the host can adjust its SNR requirements to retrieve a signal with a specific sound quality, or  
adjust this to return the weakest channels.  
Alternate Frequency Jump—Allows the FM receiver to automatically jump to an alternate FM channel that  
carries the same information, but has a better SNR. For example, when traveling, a user may pass through  
a region where a number of channels carry the same station. When the user passes from one area to the  
next, the FM receiver can automatically switch to another channel with a stronger signal to spare the user  
from having to manually change the channel to continue listening to the same station.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 76  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Audio Features  
Audio Features  
A number of features are implemented in the BCM4343W to provide the best possible audio experience for the  
user.  
Mono/Stereo Blend or Switch—The BCM4343W provides automatic control of the stereo or mono settings  
based on the FM signal carrier-to-noise ratio (C/N). This feature is used to maintain the best possible audio  
SNR based on the FM channel condition. Two modes of operation are supported:  
– Blend: In this mode, fine control of stereo separation is used to achieve optimal audio quality over a  
wide range of input C/N. The amount of separation is fully programmable. In Figure 34, the separation is  
programmed to maintain a minimum 50 dB SNR across the blend range.  
– Switch: In this mode, the audio switches from full stereo to full mono at a predetermined level to  
maintain optimal audio quality. The stereo-to-mono switch point and the mono-to-stereo switch points  
are fully programmable to provide the desired amount of audio SNR. In Figure 35, the switch point is  
programmed to switch to mono to maintain a 40 dB SNR.  
Figure 34: Blending and Switching Usage  
Input C/N (dB)  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 77  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Audio Features  
Figure 35: Blending and Switching Separation  
Input C/N (dB)  
Soft Mute—Improves the user experience by dynamically muting the output audio proportionate to the FM  
signal C/N. This prevents a blast of static to the user. The mute characteristic is fully programmable to  
accommodate fine tuning of the output signal level. An example mute characteristic is shown in Figure 36.  
Figure 36: Soft Muting Characteristic  
Input C/N (dB)  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 78  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
RDS/RBDS  
High Cut—A programmable high-cut filter is provided to reduce the amount of high-frequency noise  
caused by static in the output audio signal. Like the soft mute circuit, it is fully programmable to provide any  
amount of high cut based on the FM signal C/N.  
Audio Pause Detect—The FM receiver monitors the magnitude of the audio signal and notifies the host  
through an interrupt when the magnitude of the signal has fallen below the threshold set for a  
programmable period. This feature can be used to provide alternate frequency jumps during periods of  
silence to minimize disturbances to the listener. Filtering techniques are used within the audio pause  
detection block to provide more robust presence-to-silence detection and silence-to-presence detection.  
Automatic Antenna Tuning—The BCM4343W has an on-chip automatic antenna tuning network. When  
used with a single off-chip inductor, the on-chip circuitry automatically chooses an optimal on-chip matching  
component to obtain the highest signal strength for the desired frequency. The high-Q nature of this  
matching network simultaneously provides out-of-band blocking protection as well as a reduction of  
radiated spurious emissions from the FM antenna. It is designed to accommodate a wide range of external  
wire antennas.  
RDS/RBDS  
The BCM4343W integrates a RDS/RBDS modem, the decoder includes programmable filtering and buffering  
functions. The RDS/RBDS data can be read out through the HCI interface.  
In addition, the RDS/RBDS receive functionality supports the following:  
Block decoding, error correction, and synchronization  
A flywheel synchronization feature, allowing the host to set parameters for acquisition, maintenance, and  
loss of sync. (It is possible to set up the BCM4343W such that synchronization is achieved when a  
minimum of two good blocks (error free) are decoded in sequence. The number of good blocks required for  
sync is programmable.)  
Storage capability up to 126 blocks of RDS data  
Full or partial block-B match detection with host interruption  
Audio pause detection with programmable parameters  
Program Identification (PI) code detection with host interruption  
Automatic frequency jumping  
Block-E filtering  
Soft muting  
Signal dependent mono/stereo blending  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 79  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
CPU and Global Functions  
Section 12: CPU and Global Functions  
WLAN CPU and Memory Subsystem  
The BCM4343W includes an integrated ARM Cortex-M3 processor with internal RAM and ROM. The ARM  
Cortex-M3 processor is a low-power processor that features low gate count, low interrupt latency, and low-cost  
debugging. It is intended for deeply embedded applications that require fast interrupt response features. The  
processor implements the ARM architecture v7-M with support for the Thumb-2 instruction set. ARM Cortex-M3  
provides a 30% performance gain over ARM7TDMI.  
At 0.19 µW/MHz, the Cortex-M3 is the most power efficient general purpose microprocessor available,  
outperforming 8- and 16-bit devices on MIPS/µW. It supports integrated sleep modes.  
ARM Cortex-M3 uses multiple technologies to reduce cost through improved memory utilization, reduced pin  
overhead, and reduced silicon area. ARM Cortex-M3 supports independent buses for code and data access  
(ICode/DCode and system buses). ARM Cortex-M3 supports extensive debug features including real-time  
tracing of program execution.  
On-chip memory for the CPU includes 512 KB SRAM and 640 KB ROM.  
One-Time Programmable Memory  
Various hardware configuration parameters may be stored in an internal 4096-bit One-Time Programmable  
(OTP) memory, which is read by system software after a device reset. In addition, customer-specific parameters,  
including the system vendor ID and the MAC address, can be stored, depending on the specific board design.  
The initial state of all bits in an unprogrammed OTP device is 0. After any bit is programmed to a 1, it cannot be  
reprogrammed to 0. The entire OTP array can be programmed in a single write cycle using a utility provided with  
the Broadcom WLAN manufacturing test tools. Alternatively, multiple write cycles can be used to selectively  
program specific bytes, but only bits which are still in the 0 state can be altered during each programming cycle.  
Prior to OTP memory programming, all values should be verified using the appropriate editable nvram.txt file,  
which is provided with the reference board design package. Documentation on the OTP development process  
is available on the Broadcom customer support portal (http://www.broadcom.com/support).  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 80  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
GPIO Interface  
GPIO Interface  
Five general purpose I/O (GPIO) pins are available on the BCM4343W that can be used to connect to various  
external devices.  
GPIOs are tristated by default. Subsequently, they can be programmed to be either input or output pins via the  
GPIO control register. They can also be programmed to have internal pull-up or pull-down resistors.  
GPIO_0 is normally used as a WL_HOST_WAKE signal.  
The BCM4343W supports 2-wire, 3-wire, and 4-wire coexistence configurations using GPIO_1 through GPIO_4.  
The signal functions of GPIO_1 through GPIO_4 are programmable to support the three coexistence  
configurations.  
External Coexistence Interface  
The BCM4343W supports 2-wire, 3-wire, and 4-wire coexistence interfaces to enable signaling between the  
device and an external colocated wireless device in order to manage wireless medium sharing for optimal  
performance. The external colocated device can be any of the following ICs: GPS, WiMAX, LTE, or UWB. An  
LTE IC is used in this section for illustration.  
2-Wire Coexistence  
Figure 37 shows a 2-wire LTE coexistence example. The following definitions apply to the GPIOs in the figure:  
GPIO_1: WLAN_SECI_TX output to an LTE IC.  
GPIO_2: WLAN_SECI_RX input from an LTE IC.  
Figure 37: 2-Wire Coexistence Interface to an LTE IC  
GPIO_1  
GPIO_2  
WLAN_SECI_TX  
WLAN_SECI_RX  
UART_IN  
WLAN  
BT/FM  
UART_OUT  
Coexistence  
Interface  
LTE/IC  
BCM4343W  
Notes:  
OR’ing to generate ISM_RX_PRIORITY for ERCX_TXCONF or BT_RX_PRIORITY is achieved by  
setting the GPIO mask registers appropriately.  
WLAN_SECI_OUT and WLAN_SECI_IN are multiplexed on the GPIOs.  
See Figure 31 on page 71 and Table 13: “UART Timing Specifications,” on page 71 for UART timing.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 81  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
External Coexistence Interface  
3-Wire and 4-Wire Coexistence Interfaces  
Figure 38 and Figure 39 show 3-wire and 4-wire LTE coexistence examples, respectively. The following  
definitions apply to the GPIOs in the figures:  
For the 3-wire coexistence interface:  
GPIO_2: WLAN priority output to an LTE IC.  
GPIO_3: LTE_RX input from an LTE IC.  
GPIO_4: LTE_TX input from an LTE IC.  
For the 4-wire coexistence interface:  
GPIO_1: WLAN priority output to an LTE IC.  
GPIO_2: LTE frame sync input from an LTE IC. This GPIO applies only to the 4-wire coexistence interface.  
GPIO_3: LTE_RX input from an LTE IC.  
GPIO_4: LTE_TX input from an LTE IC.  
Figure 38: 3-Wire Coexistence Interface to an LTE IC  
GPIO_2  
WLAN  
BT/FM  
WLAN Priority  
LTE_RX  
GPIO_3  
GPIO_4  
Coexistence  
Interface  
LTE_TX  
BCM4343W  
LTE/IC  
Note: OR’ing to generate WCN_PRIORITY for ERCX_TXCONF or BT_RX_PRIORITY is achieved by  
setting the GPIO mask registers appropriately.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 82  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
JTAG Interface  
Figure 39: 4-Wire Coexistence Interface to an LTE IC  
GPIO_1  
WLAN Priority  
WLAN  
BT/FM  
GPIO_2  
LTE_Frame_Sync  
Coexistence  
Interface  
GPIO_3  
LTE_RX  
LTE_TX  
GPIO_4  
BCM4343W  
LTE/IC  
Note: OR’ing to generate WCN_PRIORITY for ERCX_TXCONF or BT_RX_PRIORITY is achieved by  
setting the GPIO mask registers appropriately.  
JTAG Interface  
The BCM4343W supports the IEEE 1149.1 JTAG boundary scan standard over SDIO for performing device  
package and PCB assembly testing during manufacturing. In addition, the JTAG interface allows Broadcom to  
assist customers by using proprietary debug and characterization test tools during board bring-up. Therefore, it  
is highly recommended to provide access to the JTAG pins by means of test points or a header on all PCB  
designs.  
UART Interface  
One UART interface can be enabled by software as an alternate function on the JTAG pins. UART_RX is  
available on the JTAG_TDI pin, and UART_TX is available on the JTAG_TDO pin.  
The UART is primarily for debugging during development. By adding an external RS-232 transceiver, this UART  
enables the BCM4343W to operate as RS-232 data termination equipment (DTE) for exchanging and managing  
data with other serial devices. It is compatible with the industry standard 16550 UART, and it provides a FIFO  
size of 64 × 8 in each direction.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 83  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLAN Software Architecture  
Section 13: WLAN Software Architecture  
Host Software Architecture  
The host driver (DHD) provides a transparent connection between the host operating system and the  
BCM4343W media (for example, WLAN) by presenting a network driver interface to the host operating system  
and communicating with the BCM4343W over an interface-specific bus (SPI, SDIO, and so on) to:  
Forward transmit and receive frames between the host network stack and the BCM4343W device.  
Pass control requests from the host to the BCM4343W device, returning the BCM4343W device  
responses.  
The driver communicates with the BCM4343W over the bus using a control channel and a data channel to pass  
control messages and data messages. The actual message format is based on the BDC protocol.  
Device Software Architecture  
The wireless device, protocol, and bus drivers are run on the embedded ARM processor using a Broadcom-  
defined operating system called HNDRTE, which transfers data over a propriety Broadcom format over the  
SDIO/SPI interface between the host and device (BDC/LMAC). The data portion of the format consists of  
IEEE 802.11 frames wrapped in a Broadcom encapsulation. The host architecture provides all missing  
functionality between a network device and the Broadcom device interface. The host can also be customized to  
provide functionality between the Broadcom device interface and a full network device interface.  
This transfer requires a message-oriented (framed) interconnect between the host and device. The SDIO bus  
is an addressed bus—each host-initiated bus operation contains an explicit device target address—and does  
not natively support a higher-level data frame concept. Broadcom has implemented a hardware/software  
message encapsulation scheme that ignores the bus operation code address and prefixes each frame with a 4-  
byte length tag for framing. The device presents a packet-level interface over which data, control, and  
asynchronous event (from the device) packets are supported.  
The data and control packets received from the bus are initially processed by the bus driver and then passed  
on to the protocol driver. If the packets are data packets, they are transferred to the wireless device driver (and  
out through its medium), and a data packet received from the device medium follows the same path in the  
reverse direction. If the packets are control packets, the protocol header is decoded by the protocol driver. If the  
packets are wireless IOCTL packets, the IOCTL API of the wireless driver is called to configure the wireless  
device. The microcode running in the D11 core processes all time-critical tasks.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 84  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Wireless Configuration Utility  
Remote Downloader  
When the BCM4343W powers up, the DHD initializes and downloads the firmware to run in the device.  
Figure 40: WLAN Software Architecture  
DHD Host Driver  
SPI/SDIO  
BDC/LMAC Protocol  
Wireless Device Driver  
D11 Core  
Wireless Configuration Utility  
The device driver that supports the Broadcom IEEE 802.11 family of wireless solutions provides an input/output  
control (IOCTL) interface for making advanced configuration settings. The IOCTL interface makes it possible to  
make settings that are normally not possible when using just the native operating system-specific IEEE 802.11  
configuration mechanisms. The utility uses IOCTLs to query or set a number of different driver/chip operating  
properties.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 85  
BROADCOM CONFIDENTIAL  
Pinout and Signal Descriptions  
BCM4343W Data Sheet  
Section 14: Pinout and Signal Descriptions  
Ball Map  
Figure 41 shows the 74-ball WLBGA ball map. Figure 42 on page 87 shows the 153-bump WLCSP.  
Figure 41: 74-Ball WLBGA Ball Map (Bottom View)  
A
B
C
D
E
F
G
H
J
K
L
M
BT_UART_R BT_DEV_W BT_HOST_  
BT_VCO_V  
DD  
WLRF_2G_ WLRF_2G_  
WLRF_PA_  
FM_RF_IN  
BT_IF_VDD BT_PAVDD  
1
2
3
4
5
6
7
1
XD  
AKE  
WAKE  
eLG  
RF  
VDD  
WLRF_VDD  
BT_UART_T BT_UART_C  
FM_RF_VD BTFM_PLL_ BTFM_PLL_  
WLRF_LNA WLRF_GEN WLRF_PA_  
FM_OUT1 FM_OUT2  
BT_IF_VSS  
_
2
3
4
5
6
7
XD  
TS_N  
D
VDD  
VSS  
_GND  
ERAL_GND  
GND  
1P35  
WLRF_XTA  
L_  
VDD1P2  
BT_I2S_  
WS  
BT_UART_R  
VDDC  
FM_RF_VS  
S
BT_VCO_V WLRF_GPI  
WLRF_VCO  
_GND  
BT_I2S_DO  
TS_N  
SS  
O
BT_I2S_CL BT_PCM_O  
WLRF_AFE  
_GND  
WLRF_XTA WLRF_XTA  
BT_PCM_IN  
VSSC  
BT_GPIO_3  
VDDC  
GPIO_3  
GPIO_4  
K
UT  
L_GND  
L_XOP  
BT_PCM_C BT_PCM_S SYS_VDDI  
LK YNC  
WLRF_XTA  
L_XON  
WPT_1P8 WPT_3P3  
LPO_IN BT_GPIO_4 BT_GPIO_5  
VSSC  
GPIO_2  
O
VOUT_CLD VOUT_LNL BT_REG_O WCC_VDDI WL_REG_O  
SDIO_DATA  
_0  
SR_VLX PMU_AVSS  
GPIO_1  
GPIO_0  
SDIO_CMD CLK_REQ  
O
DO  
N
O
N
SR_VDDBA LDO_VDD1  
LDO_VDDB  
AT5V  
SDIO_DATA SDIO_DATA  
SDIO_DATA  
SDIO_CLK  
_2  
SR_PVSS  
VOUT_3P3  
T5V  
P5  
_1  
_3  
A
B
C
D
E
F
G
H
J
K
L
M
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 86  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Ball Map  
Figure 42: 153-Bump WLCSP (Top View)  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 87  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLBGA Ball List in Ball Number Order with X-Y Coordinates  
WLBGA Ball List in Ball Number Order with X-Y Coordinates  
Table 15 provides ball numbers and names in ball number order. The table includes the X and Y coordinates for  
a top view with a (0,0) center.  
Table 15: BCM4343W WLBGA Ball List — Ordered By Ball Number  
Ball Number  
A1  
Ball Name  
X Coordinate  
–1200.006  
–799.992  
–399.996  
0
Y Coordinate  
2199.996  
2199.996  
2199.996  
2199.996  
2199.996  
2199.978  
2199.978  
1800  
BT_UART_RXD  
BT_UART_TXD  
BT_I2S_WS or BT_PCM_SYNC  
BT_I2S_CLK or BT_PCM_CLK  
BT_PCM_CLK or BT_I2S_CLK  
SR_VLX  
A2  
A3  
A4  
A5  
399.996  
799.992  
1199.988  
–1200.006  
–799.992  
–399.996  
0
A6  
A7  
SR_PVSS  
B1  
BT_DEV_WAKE  
BT_UART_CTS_N  
BT_I2S_DO or BT_PCM_OUT  
BT_PCM_OUT or BT_I2S_DO  
BT_PCM_SYNC or BT_I2S_WS  
PMU_AVSS  
B2  
1800  
B3  
1800  
B4  
1800  
B5  
399.996  
799.992  
1199.988  
–1200.006  
–799.992  
–399.996  
0
1800  
B6  
1799.982  
1799.982  
1399.995  
1399.986  
1399.995  
1399.995  
1399.986  
1399.986  
1399.986  
999.99  
B7  
SR_VBAT5V  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
D2  
D3  
D4  
D5  
D6  
E1  
BT_HOST_WAKE  
FM_OUT1  
BT_UART_RTS_N  
BT_PCM_IN or BT_I2S_DI  
SYS_VDDIO  
399.996  
799.992  
1199.988  
–799.992  
–399.996  
0
VOUT_CLDO  
LDO_VDD15V  
FM_OUT2  
VDDC  
999.999  
999.999  
999.99  
VSSC  
WPT_1P8  
399.996  
799.992  
–1199.988  
–799.992  
–399.996  
399.996  
799.992  
1199.988  
–1199.988  
VOUT_LNLDO  
999.99  
FM_RF_IN  
599.994  
599.994  
599.994  
599.994  
599.994  
599.994  
199.998  
E2  
FM_RF_VDD  
E3  
FM_RF_VSS  
E5  
WPT_3P3  
E6  
BT_REG_ON  
E7  
VOUT_3P3  
F1  
BT_VCO_VDD  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 88  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLBGA Ball List in Ball Number Order with X-Y Coordinates  
Table 15: BCM4343W WLBGA Ball List — Ordered By Ball Number (Cont.)  
Ball Number  
F2  
Ball Name  
X Coordinate  
–799.992  
0
Y Coordinate  
199.998  
BTFM_PLL_VDD  
BT_GPIO_3  
F4  
199.998  
F5  
LPO_IN  
399.996  
800.001  
1199.988  
–1199.988  
–799.992  
0
199.998  
F6  
WCC_VDDIO  
LDO_VBAT5V  
BT_IF_VDD  
199.998  
F7  
199.998  
G1  
G2  
G4  
G5  
G6  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
J1  
–199.998  
–199.998  
–199.998  
–199.998  
–199.998  
–599.994  
–599.994  
–599.994  
–599.994  
–599.994  
–599.994  
–599.994  
–999.99  
BTFM_PLL_VSS  
VDDC  
BT_GPIO_4  
399.996  
800.001  
–1199.988  
–799.992  
–399.996  
0
WL_REG_ON  
BT_PAVDD  
BT_IF_VSS  
BT_VCO_VSS  
WLRF_AFE_GND  
BT_GPIO_5  
399.996  
800.001  
1200.006  
–1199.988  
–799.992  
–399.996  
399.996  
800.001  
1200.006  
–1199.988  
–799.992  
0
GPIO_1  
SDIO_DATA_1  
WLRF_2G_eLG  
WLRF_LNA_GND  
WLRF_GPIO  
VSSC  
J2  
–999.99  
J3  
–999.99  
J5  
–999.999  
–999.999  
–999.999  
–1399.986  
–1399.986  
–1399.995  
–1399.995  
–1399.995  
–1799.982  
–1799.982  
–1799.982  
–1799.991  
–1799.991  
–1799.991  
–2199.978  
–2199.978  
–2199.978  
J6  
GPIO_0  
J7  
SDIO_DATA_3  
WLRF_2G_RF  
WLRF_GENERAL_GND  
GPIO_3  
K1  
K2  
K4  
K5  
K6  
L2  
GPIO_4  
399.996  
800.001  
–799.992  
–399.996  
0
SDIO_DATA_0  
WLRF_PA_GND  
WLRF_VCO_GND  
WLRF_XTAL_GND  
GPIO_2  
L3  
L4  
L5  
399.996  
800.001  
1200.006  
–1199.988  
–799.992  
–399.996  
L6  
SDIO_CMD  
L7  
SDIO_DATA_2  
WLRF_PA_VDD  
WLRF_VDD_1P35  
WLRF_XTAL_VDD1P2  
M1  
M2  
M3  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 89  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLBGA Ball List in Ball Number Order with X-Y Coordinates  
Table 15: BCM4343W WLBGA Ball List — Ordered By Ball Number (Cont.)  
Ball Number  
Ball Name  
X Coordinate  
0
Y Coordinate  
–2199.978  
–2199.978  
–2199.996  
–2199.996  
M4  
M5  
M6  
M7  
WLRF_XTAL_XOP  
WLRF_XTAL_XON  
CLK_REQ  
399.996  
800.001  
1200.006  
SDIO_CLK  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 90  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLCSP Bump List in Bump Order with X-Y Coordinates  
WLCSP Bump List in Bump Order with X-Y Coordinates  
Table 16: BCM4343W WLCSP Bump List — Ordered By Bump Number  
Bump View  
(0,0 Center of Die)  
Top View  
(0,0 Center of Die)  
Bump  
Number Bump Name  
X Coordinate Y Coordinate X Coordinate Y Coordinate  
1
2
3
BT_UART_RXD  
1228.248  
944.082  
238.266  
2133.594  
2195.919  
2275.020  
–1228.248  
–944.082  
–238.266  
2133.594  
2195.919  
2275.020  
BT_VDDC_ISO_2  
BT_PCM_CLK or  
BT_I2S_CLK  
4
BT_TM1  
–327.438  
662.544  
379.692  
1086.822  
521.118  
–44.586  
–327.438  
1228.248  
945.396  
662.544  
379.692  
–186.012  
2275.020  
2133.594  
2133.594  
1992.168  
1992.168  
1992.168  
1992.168  
1850.742  
1850.742  
1850.742  
1850.742  
1850.742  
327.438  
2275.020  
2133.594  
2133.594  
1992.168  
1992.168  
1992.168  
1992.168  
1850.742  
1850.742  
1850.742  
1850.742  
1850.742  
5
BT_GPIO_3  
–662.544  
–379.692  
–1086.822  
–521.118  
44.586  
6
BT_DEV_WAKE  
BT_UART_RTS_N  
BT_GPIO_4  
7
8
9
BT_VDDC_ISO_1  
BT_GPIO_5  
10  
11  
12  
13  
14  
15  
327.438  
BT_HOST_WAKE  
BT_UART_TXD  
BT_GPIO_2  
–1228.248  
–945.396  
–662.544  
–379.692  
186.012  
BT_VDDC  
BT_I2S_CLK or  
BT_PCM_CLK  
16  
17  
BT_VDDC  
516.501  
1717.578  
1709.316  
–516.501  
1717.578  
1709.316  
BT_PCM_SYNC or  
BT_I2S_WS  
1086.822  
–1086.822  
18  
19  
BT_I2S_WS or  
BT_PCM_SYNC  
238.266  
1709.316  
1709.316  
–238.266  
327.438  
1709.316  
1709.316  
BT_PCM_OUT or  
BT_I2S_DO  
–327.438  
20  
21  
22  
23  
24  
BT_PCM_IN or BT_I2S_DI  
VSSC  
662.544  
96.840  
1567.890  
1567.890  
1567.890  
1426.464  
1426.464  
–662.544  
–96.840  
186.012  
–238.266  
327.438  
1567.890  
1567.890  
1567.890  
1426.464  
1426.464  
BT_UART_CTS_N  
BT_I2S_DI or BT_PCM_IN  
–186.012  
238.266  
–327.438  
BT_I2S_DO or  
BT_PCM_OUT  
25  
26  
27  
28  
29  
30  
VSSC  
96.840  
1285.038  
1189.863  
860.760  
719.334  
561.303  
436.482  
–96.840  
–518.391  
–238.266  
44.586  
1285.038  
1189.863  
860.760  
719.334  
561.303  
436.482  
BT_VDDC  
VSSC  
518.391  
238.266  
–44.586  
110.286  
–327.438  
BT_VDDC  
VSSC  
–110.286  
327.438  
VSSC  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 91  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLCSP Bump List in Bump Order with X-Y Coordinates  
Table 16: BCM4343W WLCSP Bump List — Ordered By Bump Number (Cont.)  
Bump View  
(0,0 Center of Die)  
Top View  
(0,0 Center of Die)  
Bump  
Number Bump Name  
X Coordinate Y Coordinate X Coordinate Y Coordinate  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
BT_VDDC  
521.118  
238.266  
–44.586  
229.986  
1185.471  
–875.142  
1243.031  
1043.033  
820.485  
1243.031  
1043.033  
1252.220  
820.485  
1120.383  
1274.787  
1172.988  
972.990  
772.304  
1276.551  
686.628  
886.626  
1185.471  
1185.462  
781.893  
781.893  
429.885  
1185.471  
786.393  
429.885  
583.250  
1262.642  
1082.642  
1206.990  
628.713  
986.531  
451.188  
799.992  
436.473  
–521.118  
–238.266  
44.586  
436.473  
VSSC  
153.630  
153.630  
VSSC  
153.630  
153.630  
BT_VDDC  
–185.976  
–455.270  
–836.352  
1443.096  
1443.096  
1275.098  
1243.098  
1243.098  
1043.100  
960.593  
–229.986  
–1185.471  
875.142  
–185.976  
–455.270  
–836.352  
1443.096  
1443.096  
1275.098  
1243.098  
1243.098  
1043.100  
960.593  
BT_PAVSS  
VSSC  
FM_DAC_VOUT1  
FM_DAC_AVSS  
FM_PLLAVSS  
FM_DAC_VOUT2  
FM_DAC_AVDD  
FM_VCOVSS  
FM_PLLDVDD1P2  
FM_VCOVDD1P2  
FM_RFVDD1P2  
FM_RFVSS  
–1243.031  
–1043.033  
–820.485  
–1243.031  
–1043.033  
–1252.220  
–820.485  
–1120.383  
–1274.787  
–1172.988  
–972.990  
–772.304  
–1276.551  
–686.628  
–886.626  
–1185.471  
–1185.462  
–781.893  
–781.893  
–429.885  
–1185.471  
–786.393  
–429.885  
–583.250  
–1262.642  
–1082.642  
–1206.990  
–628.713  
–986.531  
–451.188  
–799.992  
892.373  
892.373  
764.213  
764.213  
563.990  
563.990  
FM_IFVSS  
563.990  
563.990  
FM_IFDVDD1P2  
FM_RFINMAIN  
BT_DVSS  
563.990  
563.990  
383.225  
383.225  
160.911  
160.911  
BT_IFVDD1P2  
BT_AGPIO  
148.775  
148.775  
–55.274  
–55.274  
BT_PAVDD2P5  
BT_LNAVDD1P2  
BT_LNAVSS  
–255.272  
–263.768  
–463.766  
–499.995  
–655.268  
–663.764  
–699.993  
–999.990  
–1006.290  
–1006.290  
–1458.198  
–1590.210  
–1649.615  
–1682.370  
–1729.224  
–255.272  
–263.768  
–463.766  
–499.995  
–655.268  
–663.764  
–699.993  
–999.990  
–1006.290  
–1006.290  
–1458.198  
–1590.210  
–1649.615  
–1682.370  
–1729.224  
BT_PLLVSS  
BT_VCOVDD1P2  
BT_VCOVSS  
BT_PLLVDD1P2  
WRF_AFE_GND  
WRF_RFIN_ELG_2G  
WRF_RX2G_GND  
WRF_RFIO_2G  
WRF_GENERAL_GND  
WRF_PA_GND3P3  
WRF_VCO_GND  
WRF_GPAIO_OUT  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 92  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLCSP Bump List in Bump Order with X-Y Coordinates  
Table 16: BCM4343W WLCSP Bump List — Ordered By Bump Number (Cont.)  
Bump View  
(0,0 Center of Die)  
Top View  
(0,0 Center of Die)  
Bump  
Number Bump Name  
X Coordinate Y Coordinate X Coordinate Y Coordinate  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
WRF_PMU_VDD1P35  
612.878  
–1800.135  
–1829.615  
–2016.945  
–2016.945  
–2086.677  
–2106.621  
–2298.978  
–2298.978  
2133.594  
2133.594  
1850.742  
1002.186  
436.482  
–612.878  
–986.531  
–1249.686  
–1069.686  
–274.613  
–75.519  
–311.126  
–131.126  
–96.840  
186.012  
–96.813  
44.586  
–1800.135  
–1829.615  
–2016.945  
–2016.945  
–2086.677  
–2106.621  
–2298.978  
–2298.978  
2133.594  
2133.594  
1850.742  
1002.186  
436.482  
WRF_PA_GND3P3  
WRF_PA_VDD3P3  
WRF_PA_VDD3P3  
WRF_XTAL_GND1P2  
WRF_XTAL_VDD1P2  
WRF_XTAL_XOP  
WRF_XTAL_XON  
LPO_IN  
986.531  
1249.686  
1069.686  
274.613  
75.519  
311.126  
131.126  
96.840  
WCC_VDDIO  
VSSC  
–186.012  
96.813  
WCC_VDDIO  
GPIO_12  
–44.586  
–1299.420  
–1157.994  
–1016.568  
–1299.420  
–1157.994  
–186.012  
–468.864  
–1299.420  
–610.290  
–1157.994  
–44.586  
1299.420  
1157.994  
1016.568  
1299.420  
1157.994  
186.012  
468.864  
1299.420  
610.290  
1157.994  
44.586  
GPIO_11  
295.056  
295.056  
GPIO_9  
153.630  
153.630  
GPIO_10  
153.630  
153.630  
GPIO_8  
12.204  
12.204  
VSSC  
–129.222  
–129.222  
–129.222  
–270.648  
–270.648  
–412.074  
–412.074  
–553.500  
–553.500  
–553.500  
–694.926  
–694.926  
–694.926  
–836.352  
–977.778  
–977.778  
–1119.204  
–1120.266  
–1260.630  
–1260.630  
–129.222  
–129.222  
–129.222  
–270.648  
–270.648  
–412.074  
–412.074  
–553.500  
–553.500  
–553.500  
–694.926  
–694.926  
–694.926  
–836.352  
–977.778  
–977.778  
–1119.204  
–1120.266  
–1260.630  
–1260.630  
VDDC  
GPIO_7  
VSSC  
GPIO_6  
VSSC  
GPIO_4  
–1299.420  
96.840  
1299.420  
–96.840  
186.012  
1157.994  
44.586  
VSSC  
VDDC  
–186.012  
–1157.994  
–44.586  
GPIO_5  
VDDC  
WL_VDDP_ISO  
GPIO_2  
–733.716  
–1299.420  
–1157.994  
–1016.568  
–1299.420  
–1157.994  
–720.954  
–1016.568  
–1299.420  
733.716  
1299.420  
1157.994  
1016.568  
1299.420  
1157.994  
720.954  
1016.568  
1299.420  
GPIO_3  
WCC_VDDIO  
GPIO_0  
GPIO_1  
VSSC  
WCC_VDDIO  
SDIO_CMD  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 93  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLCSP Bump List in Bump Order with X-Y Coordinates  
Table 16: BCM4343W WLCSP Bump List — Ordered By Bump Number (Cont.)  
Bump View  
(0,0 Center of Die)  
Top View  
(0,0 Center of Die)  
Bump  
Number Bump Name  
X Coordinate Y Coordinate X Coordinate Y Coordinate  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
GPIO_14  
–137.700  
–841.113  
–1016.568  
–1299.420  
109.152  
–1268.568  
–1402.056  
–1543.482  
–1543.482  
–1551.420  
–1551.420  
–1682.775  
–1684.908  
–1692.846  
–1826.334  
–1826.334  
–1834.272  
–1834.272  
–1967.760  
–2056.131  
–2109.186  
–2109.186  
–2250.612  
2274.984  
2274.984  
2133.563  
2133.563  
2133.563  
1992.141  
1992.141  
1992.141  
1850.720  
1850.720  
1709.298  
1567.877  
1567.877  
1426.455  
1285.034  
1285.034  
1285.034  
1143.612  
1143.612  
137.700  
841.113  
1016.568  
1299.420  
–109.152  
173.700  
843.237  
1157.994  
32.274  
–1268.568  
–1402.056  
–1543.482  
–1543.482  
–1551.420  
–1551.420  
–1682.775  
–1684.908  
–1692.846  
–1826.334  
–1826.334  
–1834.272  
–1834.272  
–1967.760  
–2056.131  
–2109.186  
–2109.186  
–2250.612  
2274.984  
2274.984  
2133.563  
2133.563  
2133.563  
1992.141  
1992.141  
1992.141  
1850.720  
1850.720  
1709.298  
1567.877  
1567.877  
1426.455  
1285.034  
1285.034  
1285.034  
1143.612  
1143.612  
VSSC  
VDDC  
SDIO_CLK  
GPIO_15  
PACKAGEOPTION_0  
VSSC  
–173.700  
–843.237  
–1157.994  
–32.274  
SDIO_DATA_0  
PACKAGEOPTION_1  
VDDC  
–1016.568  
–1299.420  
109.152  
1016.568  
1299.420  
–109.152  
173.700  
1157.994  
232.227  
1016.568  
1299.420  
1157.994  
739.130  
1021.973  
597.708  
880.551  
1163.394  
739.130  
1021.973  
1304.816  
597.708  
880.551  
1021.973  
880.551  
1163.394  
739.130  
597.708  
880.551  
1163.394  
739.130  
1304.816  
SDIO_DATA_1  
PACKAGEOPTION_2  
JTAG_SEL  
–173.700  
–1157.994  
–232.227  
–1016.568  
–1299.420  
–1157.994  
–739.130  
–1021.973  
–597.708  
–880.551  
–1163.394  
–739.130  
–1021.973  
–1304.816  
–597.708  
–880.551  
–1021.973  
–880.551  
–1163.394  
–739.130  
–597.708  
–880.551  
–1163.394  
–739.130  
–1304.816  
SDIO_DATA_2  
GPIO_13  
WCC_VDDIO  
VSSC  
SDIO_DATA_3  
SR_PVSS  
SR_PVSS  
VSSC  
SR_VLX  
SR_VLX  
SR_VLX  
SR_VDDBAT5V  
SR_VDDBAT5V  
PMU_AVSS  
SR_VDDBAT5V  
LDO_VDD1P5  
VOUT_CLDO  
LDO_VDD1P5  
VOUT_CLDO  
WCC_VDDIO  
VOUT_LNLDO  
VOUT_3P3  
SYS_VDDIO  
LDO_VDDBAT5V  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 94  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLCSP Bump List in Bump Order with X-Y Coordinates  
Table 16: BCM4343W WLCSP Bump List — Ordered By Bump Number (Cont.)  
Bump View  
(0,0 Center of Die)  
Top View  
(0,0 Center of Die)  
Bump  
Number Bump Name  
X Coordinate Y Coordinate X Coordinate Y Coordinate  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
VSSC  
–597.708  
–880.551  
–1163.394  
–739.130  
–1021.973  
–1304.816  
–597.708  
–880.551  
–875.142  
–116.586  
29.286  
1002.191  
1002.191  
1002.191  
860.769  
860.769  
860.769  
719.348  
719.348  
12.204  
597.708  
880.551  
1163.394  
739.130  
1021.973  
1304.816  
597.708  
880.551  
875.142  
116.586  
–29.286  
–238.266  
1002.191  
1002.191  
1002.191  
860.769  
860.769  
860.769  
719.348  
719.348  
12.204  
VOUT_3P3_SENSE  
VOUT_3P3  
WPT_1P8  
WPT_3P3  
LDO_VDDBAT5V  
WL_REG_ON  
BT_REG_ON  
WL_VDDM_ISO  
PLL_VSSC  
–985.716  
–1130.076  
1992.168  
-985.716  
–1130.076  
1992.168  
PLL_VDDC  
CLK_REQ  
238.266  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 95  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLBGA Ball List Ordered By Ball Name  
WLBGA Ball List Ordered By Ball Name  
Table 17 provides the ball numbers and names in ball name order.  
Table 17: BCM4343W WLBGA Ball List — Ordered By Ball Name  
Ball Name  
Ball Number  
Ball Name  
Ball Number  
LPO_IN  
F5  
B6  
M7  
L6  
K6  
H7  
L7  
J7  
BT_DEV_WAKE  
BT_GPIO_3  
B1  
F4  
G5  
H5  
C1  
A4  
B3  
A3  
G1  
H2  
H1  
A5  
C4  
B4  
B5  
E6  
B2  
C3  
A1  
A2  
F1  
H3  
F2  
G2  
M6  
C2  
D2  
E1  
E2  
E3  
J6  
PMU_AVSS  
SDIO_CLK  
SDIO_CMD  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
SR_PVSS  
BT_GPIO_4  
BT_GPIO_5  
BT_HOST_WAKE  
BT_I2S_CLK or BT_PCM_CLK  
BT_I2S_DO or BT_PCM_OUT  
BT_I2S_WS or BT_PCM_SYNC  
BT_IF_VDD  
A7  
B7  
A6  
C5  
D3  
G4  
E7  
C6  
D6  
D4  
J5  
SR_VDDBAT5V  
SR_VLX  
BT_IF_VSS  
BT_PAVDD  
SYS_VDDIO  
VDDC  
BT_PCM_CLK or BT_I2S_CLK  
BT_PCM_IN or BT_I2S_DI  
BT_PCM_OUT or BT_I2S_DO  
BT_PCM_SYNC or BT_I2S_WS  
BT_REG_ON  
VDDC  
VOUT_3P3  
VOUT_CLDO  
VOUT_LNLDO  
VSSC  
BT_UART_CTS_N  
BT_UART_RTS_N  
BT_UART_RXD  
BT_UART_TXD  
BT_VCO_VDD  
VSSC  
WCC_VDDIO  
WL_REG_ON  
WLRF_2G_eLG  
WLRF_2G_RF  
F6  
G6  
J1  
BT_VCO_VSS  
K1  
BTFM_PLL_VDD  
BTFM_PLL_VSS  
CLK_REQ  
WLRF_AFE_GND  
WLRF_GENERAL_GND  
WLRF_GPIO  
H4  
K2  
J3  
FM_OUT1  
WLRF_LNA_GND  
WLRF_PA_GND  
WLRF_PA_VDD  
WLRF_VCO_GND  
WLRF_VDD_1P35  
WLRF_XTAL_GND  
WLRF_XTAL_VDD1P2  
WLRF_XTAL_XON  
WLRF_XTAL_XOP  
WPT_1P8  
J2  
FM_OUT2  
L2  
FM_RF_IN  
M1  
L3  
FM_RF_VDD  
FM_RF_VSS  
M2  
L4  
GPIO_0  
GPIO_1  
H6  
L5  
M3  
M5  
M4  
D5  
E5  
GPIO_2  
GPIO_3  
K4  
K5  
C7  
F7  
GPIO_4  
LDO_VDD1P5  
WPT_3P3  
LDO_VDDBAT5V  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 96  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLCSP Bump List Ordered By Name  
WLCSP Bump List Ordered By Name  
Table 18 provides the bump numbers and names in bump name order.  
Table 18: BCM4343W WLCSP Bump List — Ordered By Bump Name  
Bump Name  
Bump Number(s)  
Bump Name  
Bump Number(s)  
CLK_REQ  
153  
41  
BT_AGPIO  
52  
6
FM_DAC_AVDD  
FM_DAC_AVSS  
FM_DAC_VOUT1  
FM_DAC_VOUT2  
FM_IFDVDD1P2  
FM_IFVSS  
FM_PLLAVSS  
FM_PLLDVDD1P2  
FM_RFINMAIN  
FM_RFVDD1P2  
FM_RFVSS  
FM_VCOVDD1P2  
FM_VCOVSS  
GPIO_0  
BT_DEV_WAKE  
BT_DVSS  
38  
50  
13  
5
37  
BT_GPIO_2  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
BT_HOST_WAKE  
40  
48  
8
47  
10  
11  
39  
43  
BT_I2S_CLK or BT_PCM_CLK 15  
BT_I2S_DI or BT_PCM_IN 23  
49  
45  
BT_I2S_DO or BT_PCM_OUT 24  
BT_I2S_WS or BT_PCM_SYNC 18  
46  
44  
BT_IFVDD1P2  
BT_LNAVDD1P2  
BT_LNAVSS  
51  
54  
55  
53  
35  
42  
100  
101  
97  
GPIO_1  
BT_PAVDD2P5  
BT_PAVSS  
GPIO_2  
GPIO_3  
98  
BT_PCM_CLK or BT_I2S_CLK 3  
GPIO_4  
91  
BT_PCM_IN or BT_I2S_DI  
20  
GPIO_5  
94  
BT_PCM_OUT or BT_I2S_DO 19  
BT_PCM_SYNC or BT_I2S_WS 17  
GPIO_6  
89  
GPIO_7  
87  
BT_PLLVDD1P2  
BT_PLLVSS  
59  
56  
149  
4
GPIO_8  
84  
GPIO_9  
82  
BT_REG_ON  
BT_TM1  
GPIO_10  
83  
GPIO_11  
81  
BT_UART_CTS_N  
BT_UART_RTS_N  
BT_UART_RXD  
BT_UART_TXD  
BT_VCOVDD1P2  
BT_VCOVSS  
BT_VDDC  
22  
7
GPIO_12  
80  
GPIO_13  
119  
105  
109  
117  
133, 135  
141, 147  
76  
1
GPIO_14  
12  
57  
58  
GPIO_15  
JTAG_SEL  
LDO_VDD1P5  
LDO_VDDBAT5V  
LPO_IN  
14, 16, 26, 28, 31,  
34  
BT_VDDC_ISO_1  
BT_VDDC_ISO_2  
9
2
PACKAGEOPTION_0  
110  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 97  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLCSP Bump List Ordered By Name  
Bump Name  
Bump Number(s)  
Bump Name  
Bump Number(s)  
PACKAGEOPTION_1  
PACKAGEOPTION_2  
PLL_VDDC  
113  
WRF_XTAL_GND1P2  
WRF_XTAL_VDD1P2  
WRF_XTAL_XON  
72  
73  
75  
74  
116  
152  
PLL_VSSC  
151  
WRF_XTAL_XOP  
PMU_AVSS  
131  
SDIO_CLK  
108  
SDIO_CMD  
104  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
SR_PVSS  
112  
115  
118  
122  
123, 124  
129, 130, 132  
126, 127, 128  
140  
SR_VDDBAT5V  
SR_VLX  
SYS_VDDIO  
VDDC  
86, 93, 95, 107,  
114  
VOUT_3P3  
139, 144  
143  
VOUT_3P3_SENSE  
VOUT_CLDO  
VOUT_LNLDO  
VSSC  
134, 136  
138  
21, 25, 27, 29, 30,  
32, 33, 36, 78, 85,  
88, 90, 92, 102,  
106, 111, 121, 125,  
142  
WCC_VDDIO  
77, 79, 99, 103,  
120, 137  
WL_REG_ON  
148  
WL_VDDM_ISO  
WL_VDDP_ISO  
WPT_1P8  
150  
96  
145  
WPT_3P3  
146  
WRF_AFE_GND  
WRF_GENERAL_GND  
WRF_GPAIO_OUT  
WRF_PA_GND3P3  
WRF_PMU_VDD1P35  
WRF_RFIN_ELG_2G  
WRF_RFIO_2G  
WRF_RX2G_GND  
WRF_VCO_GND  
60  
64  
67  
65, 69, 70, 71  
68  
61  
63  
62  
66  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 98  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Signal Descriptions  
Signal Descriptions  
Table 19 provides the WLBGA package signal descriptions.  
Table 19: WLBGA Signal Descriptions  
WLBGA Ball Type Description  
Signal Name  
RF Signal Interface  
WLRF_2G_RF  
K1  
O
2.4 GHz BT and WLAN RF output port  
SDIO Bus Interface  
SDIO_CLK  
M7  
L6  
K6  
H7  
L7  
I
SDIO clock input  
SDIO command line  
SDIO data line 0  
SDIO data line 1.  
SDIO_CMD  
I/O  
I/O  
I/O  
I/O  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO data line 2. Also used as a strapping  
option (see Table 23 on page 110).  
SDIO_DATA_3  
J7  
I/O  
SDIO data line 3  
Note: Per Section 6 of the SDIO specification, 10 to 100 kpull-ups are required on the four DATA lines and  
the CMD line. This requirement must be met during all operating states by using external pull-up resistors or  
properly programming internal SDIO host pull-ups.  
WLAN GPIO Interface  
WLRF_GPIO  
J3  
I/O  
Test pin. Not connected in normal operation.  
Clocks  
WLRF_XTAL_XON  
WLRF_XTAL_XOP  
CLK_REQ  
M5  
M4  
M6  
O
I
XTAL oscillator output  
XTAL oscillator input  
O
External system clock request—Used when  
the system clock is not provided by a  
dedicated crystal (for example, when a  
shared TCXO is used). Asserted to indicate to  
the host that the clock is required. Shared by  
BT, and WLAN.  
LPO_IN  
F5  
I
External sleep clock input (32.768 kHz). If an  
external 32.768 kHz clock cannot be  
provided, pull this pin low. However, BLE will  
be always on and cannot go to deep sleep.  
FM Receiver  
FM_OUT1  
FM_OUT2  
FM_RF_IN  
FM_RF_VDD  
C2  
D2  
E1  
E2  
O
O
I
FM analog output 1  
FM analog output 2  
FM radio antenna port  
FM power supply  
I
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 99  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Signal Descriptions  
Table 19: WLBGA Signal Descriptions (Cont.)  
WLBGA Ball Type Description  
Signal Name  
Bluetooth PCM  
2
BT_PCM_CLK or BT_I2S_CLK  
A5  
I/O  
PCM or I S clock; can be master (output) or  
slave (input)  
2
BT_PCM_IN or BT_I2S_DI  
C4  
B4  
B5  
I
PCM or I S data input sensing  
2
BT_PCM_OUT or BT_I2S_DO  
BT_PCM_SYNC or BT_I2S_WS  
O
I/O  
PCM or I S data output  
PCM SYNC or I2S_WS; can be master  
(output) or slave (input)  
Bluetooth GPIO  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
F4  
G5  
H5  
I/O  
I/O  
I/O  
WPT_INTb to wireless charging PMU.  
BSC_SDA to/from wireless charging PMU.  
BSC_SCL from wireless charging PMU.  
Bluetooth UART and Wake  
BT_UART_CTS_N  
B2  
C3  
A1  
A2  
I
UART clear-to-send. Active-low clear-to-send  
signal for the HCI UART interface.  
BT_UART_RTS_N  
BT_UART_RXD  
BT_UART_TXD  
O
I
UART request-to-send. Active-low request-  
to-send signal for the HCI UART interface.  
UART serial input. Serial data input for the  
HCI UART interface.  
O
UART serial output. Serial data output for the  
HCI UART interface.  
BT_DEV_WAKE  
BT_HOST_WAKE  
B1  
C1  
I/O  
I/O  
DEV_WAKE or general-purpose I/O signal.  
HOST_WAKE or general-purpose I/O signal.  
Note: By default, the Bluetooth BT WAKE signals provide GPIO/WAKE functionality, and the UART pins  
provide UART functionality. Through software configuration, the PCM interface can also be routed over the  
BT_WAKE/UART signals as follows:  
PCM_CLK on the UART_RTS_N pin  
PCM_OUT on the UART_CTS_N pin  
PCM_SYNC on the BT_HOST_WAKE pin  
PCM_IN on the BT_DEV_WAKE pin  
In this case, the BT HCI transport included sleep signaling will operate using UART_RXD and UART_TXD; that  
is, using a 3-Wire UART Transport.  
2
Bluetooth/FM I S  
2
BT_I2S_CLK or BT_PCM_CLK  
A4  
I/O  
I S or PCM clock; can be master (output) or  
slave (input)  
2
BT_I2S_DO or BT_PCM_OUT  
BT_I2S_WS or BT_PCM_SYNC  
B3  
A3  
I/O  
I/O  
I S or PCM data output  
2
I S WS or PCM sync; can be master (output)  
or slave (input)  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 100  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Signal Descriptions  
Table 19: WLBGA Signal Descriptions (Cont.)  
WLBGA Ball Type Description  
Signal Name  
Miscellaneous  
WL_REG_ON  
G6  
I
Used by PMU to power up or power down the  
internal regulators used by the WLAN section.  
Also, when deasserted, this pin holds the  
WLAN section in reset. This pin has an  
internal 200 kpull-down resistor that is  
enabled by default. It can be disabled through  
programming.  
BT_REG_ON  
E6  
I
Used by PMU to power up or power down the  
internal regulators used by the Bluetooth/FM  
section. Also, when deasserted, this pin holds  
the Bluetooth/FM section in reset. This pin  
has an internal 200 kpull-down resistor that  
is enabled by default. It can be disabled  
through programming.  
WPT_3P3  
WPT_1P8  
GPIO_0  
E5  
D5  
J6  
N/A  
N/A  
I/O  
Not used. Do not connect to this pin.  
Not used. Do not connect to this pin.  
Programmable GPIO pins. This pin becomes  
an output pin when it is used as  
WLAN_HOST_WAKE/out-of-band signal.  
GPIO_1  
H6  
L5  
K4  
K5  
J1  
I/O  
I/O  
I/O  
I/O  
I
Programmable GPIO pins  
Programmable GPIO pins  
Programmable GPIO pins  
Programmable GPIO pins  
GPIO_2  
GPIO_3  
GPIO_4  
WLRF_2G_eLG  
Connect to an external inductor. See the  
reference schematic for details.  
Integrated Voltage Regulators  
SR_VDDBAT5V  
SR_VLX  
B7  
A6  
I
SR VBAT input power supply  
O
CBUCK switching regulator output. See  
Table 39 on page 135 for details of the  
inductor and capacitor required on this output.  
LDO_VDDBAT5V  
LDO_VDD1P5  
VOUT_LNLDO  
VOUT_CLDO  
F7  
C7  
D6  
C6  
I
LDO VBAT  
I
LNLDO input  
O
O
Output of low-noise LNLDO  
Output of core LDO  
Bluetooth Power Supplies  
BT_PAVDD  
H1  
G1  
F2  
F1  
I
I
I
I
Bluetooth PA power supply  
Bluetooth IF block power supply  
Bluetooth RF PLL power supply  
Bluetooth RF power supply  
BT_IF_VDD  
BTFM_PLL_VDD  
BT_VCO_VDD  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 101  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Signal Descriptions  
Table 19: WLBGA Signal Descriptions (Cont.)  
WLBGA Ball Type Description  
Signal Name  
Power Supplies  
WLRF_XTAL_VDD1P2  
WLRF_PA_VDD  
WCC_VDDIO  
SYS_VDDIO  
M3  
I
XTAL oscillator supply  
Power amplifier supply  
M1  
I
F6  
I
VDDIO input supply. Connect to VDDIO.  
VDDIO input supply. Connect to VDDIO.  
LNLDO input supply  
C5  
I
WLRF_VDD_1P35  
VDDC  
M2  
I
D3, G4  
E7  
I
Core supply for WLAN and BT.  
VOUT_3P3  
O
3.3V output supply. See the reference  
schematic for details.  
Ground  
BT_IF_VSS  
H2  
G2  
H3  
E3  
B6  
A7  
D4, J5  
H4  
J2  
I
I
I
I
I
I
I
I
I
I
I
I
I
1.2V Bluetooth IF block ground  
Bluetooth/FM RF PLL ground  
1.2V Bluetooth RF ground  
FM RF ground  
BTFM_PLL_VSS  
BT_VCO_VSS  
FM_RF_VSS  
PMU_AVSS  
Quiet ground  
SR_PVSS  
Switcher-power ground  
Core ground for WLAN and BT  
AFE ground  
VSSC  
WLRF_AFE_GND  
WLRF_LNA_GND  
WLRF_GENERAL_GND  
WLRF_PA_GND  
WLRF_VCO_GND  
WLRF_XTAL_GND  
2.4 GHz internal LNA ground  
Miscellaneous RF ground  
2.4 GHz PA ground  
K2  
L2  
L3  
VCO/LO generator ground  
XTAL ground  
L4  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 102  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Signal Descriptions  
Table 20 provides the WLCSP package signal descriptions.  
Table 20: WLCSP Signal Descriptions  
WLCSP Bump Type Description or Instruction  
Signal Name  
RF Signal Interface  
WRF_RFIN_ELG_2G  
61  
63  
I
Connect to an external inductor. See the  
reference schematic for details.  
WRF_RFIO_2G  
I/O  
2.4 GHz BT and WLAN RF input/output port  
SDIO Bus Interface  
SDIO_CLK  
108  
104  
112  
115  
118  
I
SDIO clock input  
SDIO command line  
SDIO data line 0  
SDIO data line 1.  
SDIO_CMD  
I/O  
I/O  
I/O  
I/O  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO data line 2. Also used as a strapping  
option (see Table 23 on page 110).  
SDIO_DATA_3  
122  
I/O  
SDIO data line 3  
Note: Per Section 6 of the SDIO specification, 10 to 100 kpull-ups are required on the four DATA lines and  
the CMD line. This requirement must be met during all operating states by using external pull-up resistors or  
properly programming internal SDIO host pull-ups.  
WLAN GPIO Interface  
WRF_GPAIO_OUT  
67  
O
Test pin. Not connected in normal operation.  
Clocks  
WRF_XTAL_XON  
WRF_XTAL_XOP  
CLK_REQ  
75  
O
I
XTAL oscillator output  
XTAL oscillator input  
74  
153  
O
External system clock request—Used when the  
system clock is not provided by a dedicated  
crystal (for example, when a shared TCXO is  
used). Asserted to indicate to the host that the  
clock is required. Shared by BT, and WLAN.  
LPO_IN  
76  
I
External sleep clock input (32.768 kHz). If an  
external 32.768 kHz clock cannot be provided,  
pull this pin low. However, BLE will be always on  
and cannot go to deep sleep.  
FM  
FM_DAC_VOUT1  
FM_DAC_VOUT2  
FM_RFINMAIN  
37  
40  
49  
O
O
I
FM DAC output 1  
FM DAC output 2  
FM RF input  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 103  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Signal Descriptions  
Table 20: WLCSP Signal Descriptions (Cont.)  
WLCSP Bump Type Description or Instruction  
Signal Name  
Bluetooth PCM  
2
BT_PCM_CLK or BT_I2S_CLK  
3
I/O  
PCM or I S clock; can be master (output) or  
slave (input)  
2
BT_PCM_IN or BT_I2S_DI  
20  
19  
I
PCM or I S data input sensing  
2
BT_PCM_OUT or BT_I2S_DO  
O
I/O  
PCM or I S data output  
BT_PCMM_SYNC or BT_I2S_WS 17  
PCM SYNC or I2S WS; can be master (output)  
or slave (input)  
Bluetooth GPIO  
BT_AGPIO  
BT_GPIO_2  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
BT_TM1  
52  
13  
5
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Bluetooth analog GPIO  
Bluetooth general purpose I/O  
WPT_INTb to wireless charging PMU.  
BSC_SDA to/from wireless charging PMU.  
BSC_SCL from wireless charging PMU  
ARM JTAG mode  
8
10  
4
Bluetooth UART and Wake  
BT_UART_CTS_N  
22  
7
I
UART clear-to-send. Active-low clear-to-send  
signal for the HCI UART interface.  
BT_UART_RTS_N  
BT_UART_RXD  
BT_UART_TXD  
BT_DEV_WAKE  
BT_HOST_WAKE  
O
I
UART request-to-send. Active-low request-to-  
send signal for the HCI UART interface.  
1
UART serial input. Serial data input for the HCI  
UART interface.  
12  
6
O
I/O  
I/O  
UART serial output. Serial data output for the  
HCI UART interface.  
DEV_WAKE or general-purpose  
I/O signal  
11  
HOST_WAKE or general-purpose I/O signal  
Note: By default, the Bluetooth BT WAKE signals provide GPIO/WAKE functionality, and the UART pins  
provide UART functionality. Through software configuration, the PCM interface can also be routed over the  
BT_WAKE/UART signals as follows:  
PCM_CLK on the UART_RTS_N pin  
PCM_OUT on the UART_CTS_N pin  
PCM_SYNC on the BT_HOST_WAKE pin  
PCM_IN on the BT_DEV_WAKE pin  
In this case, the BT HCI transport included sleep signaling will operate using UART_RXD and UART_TXD; that  
is, using a 3-Wire UART Transport.  
2
Bluetooth/FM I S  
2
BT_I2S_CLK or BT_PCM_CLK  
BT_I2S_DI or BT_PCM_IN  
15  
23  
I/O  
I
I S or PCM clock; can be master (output) or  
slave (input)  
2
I S or PCM data input  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 104  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Signal Descriptions  
Table 20: WLCSP Signal Descriptions (Cont.)  
Signal Name  
WLCSP Bump Type Description or Instruction  
2
BT_I2S_DO or BT_PCM_OUT  
BT_I2S_WS or BT_PCM_SYNC  
24  
18  
O
I S or PCM data output  
2
I/O  
I S WS or PCM SYNC; can be master (output)  
or slave (input)  
Miscellaneous  
WL_REG_ON  
148  
149  
I
I
Used by PMU to power up or power down the  
internal regulators used by the WLAN section.  
Also, when deasserted, this pin holds the WLAN  
section in reset. This pin has an internal 200 k  
pull-down resistor that is enabled by default. It  
can be disabled through programming.  
BT_REG_ON  
Used by PMU to power up or power down the  
internal regulators used by the Bluetooth/FM  
section. Also, when deasserted, this pin holds  
the Bluetooth/FM section in reset. This pin has  
an internal 200 kpull-down resistor that is  
enabled by default. It can be disabled through  
programming.  
WPT_3P3  
WPT_1P8  
GPIO_0  
146  
145  
100  
N/A  
N/A  
I/O  
Not used. Do not connect to this pin.  
Not used. Do not connect to this pin.  
Programmable GPIO pin. This pin becomes an  
output pin when it is used as  
WLAN_HOST_WAKE/out-of-band signal.  
GPIO_1  
101  
97  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
VDDIO  
GPIO_2  
GPIO_3  
98  
GPIO_4  
91  
GPIO_5  
94  
GPIO_6  
89  
GPIO_7  
87  
GPIO_8  
84  
GPIO_9  
82  
GPIO_10  
83  
GPIO_11  
81  
GPIO_12  
80  
GPIO_13  
119  
105  
109  
110  
113  
116  
117  
GPIO_14  
GPIO_15  
PACKAGEOPTION_0  
PACKAGEOPTION_1  
PACKAGEOPTION_2  
JTAG_SEL  
I
Ground  
I
Ground  
I
JTAG select. Connect to ground.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 105  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Signal Descriptions  
Table 20: WLCSP Signal Descriptions (Cont.)  
WLCSP Bump Type Description or Instruction  
Signal Name  
Integrated Voltage Regulators  
SR_VDDBAT5V  
SR_VLX  
129, 130, 132  
126, 127, 128  
I
SR VBAT input power supply  
O
CBUCK switching regulator output. See  
Table 39 on page 135 for details of the inductor  
and capacitor required on this output.  
LDO_VDDBAT5V  
LDO_VDD1P5  
VOUT_LNLDO  
VOUT_CLDO  
141, 147  
133, 135  
138  
I
LDO VBAT  
I
LNLDO input  
O
O
Output of low-noise LDO (LNLDO)  
Output of core LDO  
134, 136  
Bluetooth Power Supplies  
BT_IFVDD1P2  
BT_LNAVDD1P2  
BT_PAVDD2P5  
BT_PLLVDD1P2  
BT_VCOVDD1P2  
BT_VDDC  
51  
54  
53  
59  
57  
PWR Bluetooth IF-block power supply  
PWR Bluetooth RF LNA power supply  
PWR Bluetooth RF PA power supply  
PWR Bluetooth RF PLL power supply  
PWR Bluetooth RF power supply  
14, 16, 26, 28, PWR Bluetooth core power supply  
31, 34  
BT_VDDC_ISO_1  
BT_VDDC_ISO_2  
9
2
PWR Bluetooth core power supply  
PWR Bluetooth core power supply  
Power Supplies  
FM_DAC_AVDD  
FM_IFDVDD1P2  
FM_PLLDVDD1P2  
FM_RFVDD1P2  
FM_VCOVDD1P2  
PLL_VDDC  
41  
PWR FM DAC power supply  
PWR FM IF power supply  
PWR FM PLL power supply  
PWR FM RF power supply  
PWR FM VCO power supply  
PWR Core PLL power supply  
48  
43  
45  
44  
152  
140  
SYS_VDDIO  
I
VDDIO input supply. Connect to VDDIO.  
Core supply for WLAN and BT  
VDDC  
86, 93, 95, 107, I  
114  
VOUT_3P3  
139, 144  
O
3.3V output supply. See the reference schematic  
for details.  
VOUT_3P3_SENSE  
WCC_VDDIO  
143  
O
Voltage sense pin for LDO 3.3V output  
VDDIO input supply. Connect to VDDIO.  
77, 79, 99, 103, I  
120, 137  
WL_VDDM_ISO  
150  
96  
Test pin. Not connected in normal operation.  
Test pin. Not connected in normal operation.  
XTAL oscillator supply  
WL_VDDP_ISO  
I
WRF_XTAL_VDD1P2  
WRF_PA_VDD3P3  
WRF_PMU_VDD1P35  
73  
70, 71  
68  
I
Power amplifier supply  
I
LNLDO input supply  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 106  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Signal Descriptions  
Table 20: WLCSP Signal Descriptions (Cont.)  
WLCSP Bump Type Description or Instruction  
Signal Name  
Ground  
BT_DVSS  
50  
GND Bluetooth digital ground  
GND Bluetooth LNA ground  
GND Bluetooth PA ground  
GND Bluetooth PLL ground  
GND Bluetooth VCO ground  
GND FM DAC analog ground  
GND FM IF-block ground  
GND FM PLL analog ground  
GND FM RF ground  
BT_LNAVSS  
BT_PAVSS  
BT_PLLVSS  
BT_VCOVSS  
FM_DAC_AVSS  
FM_IFVSS  
FM_PLLAVSS  
FM_RFVSS  
FM_VCOVSS  
PLL_VSSC  
PMU_AVSS  
SR_PVSS  
55  
35  
56  
58  
38  
47  
39  
46  
42  
GND FM VCO ground  
151  
131  
123, 124  
GND PLL core ground  
I
I
Quiet ground  
Switcher-power ground  
Core ground for WLAN and BT  
VSSC  
21, 25, 27, 29, I  
30, 32, 33, 36,  
78, 85, 88, 90,  
92, 102, 106,  
111, 121, 125,  
142  
WRF_AFE_GND  
60  
I
I
I
I
I
I
AFE ground  
WRF_RX2G_GND  
WRF_GENERAL_GND  
WRF_PA_GND3P3  
WRF_VCO_GND  
62  
2.4 GHz internal LNA ground  
Miscellaneous RF ground  
2.4 GHz PA ground  
VCO/LO generator ground  
XTAL ground  
64  
65, 69  
66  
WRF_XTAL_GND1P2  
72  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 107  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLAN GPIO Signals and Strapping Options  
WLAN GPIO Signals and Strapping Options  
The pins listed in Table 21 are sampled at power-on reset (POR) to determine the various operating modes.  
Sampling occurs a few milliseconds after an internal POR or deassertion of the external POR. After the POR,  
each pin assumes the GPIO or alternative function specified in the signal descriptions table. Each strapping  
option pin has an internal pull-up (PU) or pull-down (PD) resistor that determines the default mode. To change  
the mode, connect an external PU resistor to VDDIO or a PD resistor to ground using a 10 kresistor or less.  
Note: Refer to the reference board schematics for more information.  
Table 21: GPIO Functions and Strapping Options  
Pin Name  
WLBGA Pin # Default Function  
Description  
SDIO_DATA_2 L7  
1
WLAN host interface This pin selects the WLAN host interface  
select  
mode. The default is SDIO. For gSPI, pull  
this pin low.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 108  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Chip Debug Options  
Chip Debug Options  
The chip can be accessed for debugging via the JTAG interface, multiplexed on the SDIO_DATA_0 through  
SDIO_DATA_3 (and SDIO_CLK) I/O or the Bluetooth PCM I/O depending on the bootstrap state of GPIO_1 and  
GPIO_2.  
Table 22 shows the debug options of the device.  
Table 22: Chip Debug Options  
SDIO I/O Pad  
Function  
BT PCM I/O Pad  
Function  
JTAG_SEL  
GPIO_2  
GPIO_1  
Function  
0
0
0
0
0
0
1
1
0
1
0
1
Normal mode  
SDIO  
JTAG  
BT PCM  
BT PCM  
JTAG  
JTAG over SDIO  
JTAG over BT PCM SDIO  
SWD over GPIO_1/ SDIO  
GPIO_2  
BT PCM  
I/O States  
The following notations are used in Table 23 on page 110:  
I: Input signal  
O: Output signal  
I/O: Input/Output signal  
PU = Pulled up  
PD = Pulled down  
NoPull = Neither pulled up nor pulled down  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 109  
BROADCOM CONFIDENTIAL  
I/O States  
BCM4343W Data Sheet  
a
Table 23: I/O States  
Out-of-Reset;  
Out-of-Reset;  
(WL_REG_ON = 1 (WL_REG_ON = 0  
BT_REG_ON = 0) BT_REG_ON = 1)  
Power-Downc  
Low Power State/Sleep WL_REG_ON = 0  
(WL_REG_ON = 1;  
BT_REG_ON =  
Do Not Care)  
Name  
I/O Keeperb Active Mode  
(All Power Present)  
Input; PD (pull-down can Input; PD (pull-down can Input; PD (of 200K)  
be disabled) be disabled)  
Input; PD (pull down can Input; PD (pull down can Input; PD (of 200K)  
be disabled) be disabled)  
BT_REG_ON = 0  
VDDIOs Present  
VDDIOs Present  
Power Rail  
WL_REG_ON  
I
N
N
Y
Input; PD (200k)  
Input; PD (200k)  
BT_REG_ON  
CLK_REQ  
I
Input; PD (200k)  
Input; PD (200k)  
Input; PD (200k)  
I/O  
Open drain or push-pull Open drain or push-pull PD  
(programmable). Active (programmable). Active  
Open drain,  
active high.  
Open drain,  
active high.  
Open drain,  
active high.  
WCC_VDDIO  
high.  
high  
BT_HOST_  
WAKE  
I/O  
Y
Y
I/O; PU, PD, NoPull  
(programmable)  
I/O; PU, PD, NoPull  
(programmable)  
High-Z, NoPull  
High-Z, NoPull  
Input, PD  
Input, PD  
Output, Drive low  
Input, PD  
WCC_VDDIO  
WCC_VDDIO  
BT_DEV_WAKE I/O  
I/O; PU, PD, NoPull  
(programmable)  
Input; PU, PD, NoPull  
(programmable)  
BT_UART_CTS  
BT_UART_RTS  
BT_UART_RXD  
BT_UART_TXD  
I
Y
Y
Y
Y
N
Input; NoPull  
Output; NoPull  
Input; PU  
Input; NoPull  
Output; NoPull  
Input; NoPull  
Output; NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
Input; PU  
Input; PU  
Input; PU  
Input; PU  
Input, NoPull  
Output, NoPull  
Input, NoPull  
Output, NoPull  
Input; PU  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
O
I
O
Output; NoPull  
SDIO_DATA_0 I/O  
SDIO_DATA_1 I/O  
SDIO_DATA_2 I/O  
SDIO_DATA_3 I/O  
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> PU  
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> PU  
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> PU  
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> PU  
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> PU  
SDIO MODE ->  
NoPull  
N
N
N
N
N
SDIO MODE ->  
NoPull  
Input; PU  
Input; PU  
Input; PU  
Input; PU  
Input  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
SDIO MODE ->  
NoPull  
SDIO MODE ->  
NoPull  
SDIO_CMD  
SDIO_CLK  
I/O  
I
SDIO MODE ->  
NoPull  
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE ->  
NoPull  
Input; NoPulld  
Input; NoPulld  
Input; NoPulld  
Input; NoPulld  
Input; NoPulle  
Input; NoPulle  
Input; NoPulld  
Input; NoPulld  
Input; NoPulld  
Input; NoPulld  
Input; NoPulle  
Input; NoPulle  
BT_PCM_CLK  
BT_PCM_IN  
I/O  
I/O  
Y
Y
Y
Y
Y
Y
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
Input, PD  
BT_PCM_OUT I/O  
BT_PCM_SYNC I/O  
Input, PD  
Input, PD  
BT_I2S_WS  
BT_I2S_CLK  
I/O  
I/O  
Input, PD  
Output, Drive low  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 110  
BROADCOM CONFIDENTIAL  
I/O States  
BCM4343W Data Sheet  
a
Table 23: I/O States (Cont.)  
Out-of-Reset;  
Out-of-Reset;  
(WL_REG_ON = 1 (WL_REG_ON = 0  
BT_REG_ON = 0) BT_REG_ON = 1)  
Power-Downc  
Low Power State/Sleep WL_REG_ON = 0  
(WL_REG_ON = 1;  
BT_REG_ON =  
Do Not Care)  
Name  
I/O Keeperb Active Mode  
(All Power Present)  
BT_REG_ON = 0  
VDDIOs Present  
VDDIOs Present  
Power Rail  
Input; NoPulle  
Input; NoPulle  
PD  
BT_I2S_DO  
I/O  
Y
High-Z, NoPull  
Input, PD  
Input, PD  
WCC_VDDIO  
JTAG_SEL  
GPIO_0  
I
Y
Y
PD  
High-Z, NoPull  
High-Z, NoPullf  
Input, PD  
PD  
Input, PD  
WCC_VDDIO  
WCC_VDDIO  
I/O  
TBD  
Active mode  
Input, SDIO OOB Int, Active mode  
NoPull  
Input, NoPull  
High-Z, NoPullf  
High-Z, NoPullf  
GPIO_1  
GPIO_2  
I/O  
I/O  
Y
Y
TBD  
TBD  
Active mode  
Active mode  
Input, PD  
Active mode  
Active mode  
Input, Strap, PD  
WCC_VDDIO  
Input, GCI GPIO[7],  
NoPull  
Input, Strap, NoPull WCC_VDDIO  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Y
Y
N
Y
Y
Y
Y
Y
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Active mode  
Active mode  
Active mode  
Active mode  
Active mode  
Active mode  
Active mode  
Active mode  
Input, GCI GPIO[0],  
PU  
Active mode  
Active mode  
Active mode  
Active mode  
Input, PU  
Input, PU  
Input, PU  
Input, NoPull  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
Input, GCI GPIO[1],  
PU  
Input, GCI GPIO[2],  
PU  
Input, GCI GPIO[3],  
NoPull  
Output, WLAN UART Active mode  
RTS#, NoPull  
Output, NoPull, Low WCC_VDDIO  
Input, WLAN UART  
CTS#, NoPull  
Active mode  
Input, NoPull  
Input, NoPull  
WCC_VDDIO  
WCC_VDDIO  
Input, WLAN UART  
RX, NoPull  
Active mode  
Output, WLAN UART Active mode  
TX, NoPull  
Output, NoPull, Low WCC_VDDIO  
High-Z, NoPullf  
High-Z, NoPullf  
GPIO_11  
GPIO_12  
I/O  
I/O  
Y
Y
TBD  
TBD  
Active mode  
Active mode  
Input, Low, NoPull  
Active mode  
Active mode  
Input, NoPull  
Input, NoPull  
WCC_VDDIO  
WCC_VDDIO  
Input, GCI GPIO[6],  
NoPull  
High-Z, NoPullf  
GPIO_13  
I/O  
Y
TBD  
Active mode  
Input, GCI GPIO[7],  
NoPull  
Active mode  
Input, NoPull  
WCC_VDDIO  
High-Z, NoPullf  
High-Z, NoPullf  
GPIO_14  
GPIO_15  
I/O  
I/O  
Y
Y
TBD  
TBD  
Active mode  
Active mode  
Input, PD  
Input, PD  
Active mode  
Active mode  
Input, PD  
Input, PD  
WCC_VDDIO  
WCC_VDDIO  
a. PU = pulled up, PD = pulled down.  
b. N = pad has no keeper. Y = pad has a keeper. Keeper is always active except in the power-down state. If there is no keeper, and it is an input and there is  
NoPull, then the pad should be driven to prevent leakage due to floating pad, for example, SDIO_CLK.  
c. In the Power-down state (xx_REG_ON = 0): High-Z; NoPull => The pad is disabled because power is not supplied.  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 111  
BROADCOM CONFIDENTIAL  
I/O States  
BCM4343W Data Sheet  
d. Depending on whether the PCM interface is enabled and the configuration is master or slave mode, it can be either an output or input.  
e. Depending on whether the I2S interface is enabled and the configuration is master or slave mode, it can be either an output or input.  
f. The GPIO pull states for the active and low-power states are hardware defaults. They can all be subsequently programmed as a pull-up or pull-down.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 112  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
DC Characteristics  
Section 15: DC Characteristics  
Note: Values in this data sheet are design goals and are subject to change based on the results of  
device characterization.  
Absolute Maximum Ratings  
Caution! The absolute maximum ratings in Table 24 indicate levels where permanent damage to the  
device can occur, even if these limits are exceeded for only a brief duration. Functional operation is not  
guaranteed under these conditions. Excluding VBAT, operation at the absolute maximum conditions for  
extended periods can adversely affect long-term reliability of the device.  
Table 24: Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
a
DC supply for VBAT and PA driver supply  
VBAT  
V
–0.5 to +6.0  
–0.5 to 3.9  
–0.5 to 3.9  
DC supply voltage for digital I/O  
DC supply voltage for RF switch I/Os  
DC input supply voltage for CLDO and LNLDO  
DC supply voltage for RF analog  
DC supply voltage for core  
VDDIO  
VDDIO_RF  
V
V
V
V
V
V
–0.5 to 1.575  
–0.5 to 1.32  
–0.5 to 1.32  
–0.5  
VDDRF  
VDDC  
b
V
undershoot  
Maximum undershoot voltage for I/O  
b
V
VDDIO + 0.5  
125  
V
overshoot  
j
Maximum overshoot voltage for I/O  
Maximum junction temperature  
T
°C  
a. Continuous operation at 6.0V is supported.  
b. Duration not to exceed 25% of the duty cycle.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 113  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Environmental Ratings  
Environmental Ratings  
The environmental ratings are shown in Table 25.  
Table 25: Environmental Ratings  
Characteristic  
Value  
Units  
Conditions/Comments  
a
Ambient temperature (T )  
C  
Operation  
A
–30 to +70°C  
Storage temperature  
Relative humidity  
–40 to +125°C  
Less than 60  
Less than 85  
C  
%
%
Storage  
Operation  
a. Functionality is guaranteed, but specifications require derating at extreme temperatures (see the specification  
tables for details).  
Electrostatic Discharge Specifications  
Extreme caution must be exercised to prevent electrostatic discharge (ESD) damage. Proper use of wrist and  
heel grounding straps to discharge static electricity is required when handling these devices. Always store  
unused material in its antistatic packaging.  
Table 26: ESD Specifications  
Pin Type  
Symbol  
Condition  
ESD Rating  
Unit  
ESD, Handling Reference: ESD_HAND_HBM  
NQY00083, Section 3.4,  
Group D9, Table B  
Human Body Model Contact  
Discharge per JEDEC EID/  
JESD22-A114  
1000  
V
Machine Model (MM)  
CDM  
ESD_HAND_MM  
ESD_HAND_CDM  
Machine Model Contact  
30  
V
V
Charged Device Model Contact 300  
Discharge per JEDEC EIA/  
JESD22-C101  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 114  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Recommended Operating Conditions and DC Characteristics  
Recommended Operating Conditions and DC Characteristics  
Functional operation is not guaranteed outside the limits shown in Table 27, and operation outside these limits  
for extended periods can adversely affect long-term reliability of the device.  
Table 27: Recommended Operating Conditions and DC Characteristics  
Value  
Element  
Symbol  
Minimum  
Typical  
Maximum Unit  
a
b
DC supply voltage for VBAT  
VBAT  
V
3.0  
4.8  
DC supply voltage for core  
DC supply voltage for RF blocks in chip  
DC supply voltage for digital I/O  
VDD  
VDDRF  
VDDIO,  
1.14  
1.14  
1.71  
1.2  
1.2  
1.26  
1.26  
3.63  
V
V
V
VDDIO_SD  
DC supply voltage for RF switch I/Os  
External TSSI input  
Internal POR threshold  
VDDIO_RF 3.13  
TSSI 0.15  
Vth_POR 0.4  
3.3  
3.46  
0.95  
0.7  
V
V
V
SDIO Interface I/O Pins  
For VDDIO_SD = 1.8V:  
Input high voltage  
VIH  
VIL  
VOH  
VOL  
1.27  
1.40  
0.58  
V
V
V
V
Input low voltage  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
For VDDIO_SD = 3.3V:  
Input high voltage  
0.45  
VIH  
VIL  
0.625 × VDDIO –  
V
V
Input low voltage  
0.25 ×  
VDDIO  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
VOH  
VOL  
0.75 × VDDIO –  
V
V
0.125 ×  
VDDIO  
Other Digital I/O Pins  
For VDDIO = 1.8V:  
Input high voltage  
Input low voltage  
VIH  
VIL  
0.65 × VDDIO –  
V
V
0.35 ×  
VDDIO  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
For VDDIO = 3.3V:  
VOH  
VOL  
VDDIO – 0.45  
0.45  
V
V
Input high voltage  
Input low voltage  
Output high voltage @ 2 mA  
Output low Voltage @ 2 mA  
VIH  
VIL  
VOH  
VOL  
2.00  
VDDIO – 0.4  
0.80  
V
V
V
V
0.40  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 115  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Recommended Operating Conditions and DC Characteristics  
Table 27: Recommended Operating Conditions and DC Characteristics (Cont.)  
Value  
Element  
Symbol  
Minimum  
Typical  
Maximum Unit  
c
RF Switch Control Output Pins  
For VDDIO_RF = 3.3V:  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
Input capacitance  
VOH  
VOL  
VDDIO – 0.4  
0.40  
5
V
V
pF  
C
IN  
a. The BCM4343W is functional across this range of voltages. However, optimal RF performance specified in the  
data sheet is guaranteed only for 3.2V < VBAT < 4.8V.  
b. The maximum continuous voltage is 4.8V. Voltages up to 6.0V for up to 10 seconds, cumulative duration over  
the lifetime of the device are allowed. Voltages as high as 5.0V for up to 250 seconds, cumulative duration over  
the lifetime of the device are allowed.  
c. Programmable 2 mA to 16 mA drive strength. Default is 10 mA.  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 116  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLAN RF Specifications  
Section 16: WLAN RF Specifications  
The BCM4343W includes an integrated direct conversion radio that supports the 2.4 GHz band. This section  
describes the RF characteristics of the 2.4 GHz radio.  
Note: Values in this data sheet are design goals and may change based on device characterization results.  
Unless otherwise stated, the specifications in this section apply when the operating conditions are within the  
limits specified in Table 25: “Environmental Ratings,” on page 114 and Table 27: “Recommended Operating  
Conditions and DC Characteristics,” on page 115. Functional operation outside these limits is not guaranteed.  
Typical values apply for the following conditions:  
VBAT = 3.6V.  
Ambient temperature +25°C.  
Figure 43: RF Port Location  
Chip  
Port  
C2  
TX  
Filter  
Antenna  
Port  
10 pF  
C1  
BCM4343W  
L1  
RX  
4.7 nH  
10 pF  
Note: All specifications apply at the chip port unless otherwise specified.  
2.4 GHz Band General RF Specifications  
Table 28: 2.4 GHz Band General RF Specifications  
Item  
Condition  
Minimum  
Typical  
Maximum Unit  
5
2
TX/RX switch time  
RX/TX switch time  
Including TX ramp down  
Including TX ramp up  
µs  
µs  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 117  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLAN 2.4 GHz Receiver Performance Specifications  
WLAN 2.4 GHz Receiver Performance Specifications  
Note: Unless otherwise specified, the specifications in Table 29 are measured at the chip port (for the  
location of the chip port, see Figure 43 on page 117).  
Table 29: WLAN 2.4 GHz Receiver Performance Specifications  
Parameter  
Condition/Notes  
Minimum Typical  
Maximum Unit  
Frequency range  
2400  
2500  
MHz  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
RX sensitivity (8% PER for 1 Mbps DSSS  
–97.5  
–93.5  
–91.5  
–88.5  
–91.5  
–90.5  
–87.5  
–85.5  
–82.5  
–80.5  
–76.5  
–75.5  
–99.5  
–95.5  
–93.5  
–90.5  
–93.5  
–92.5  
–89.5  
–87.5  
–84.5  
–82.5  
–78.5  
–77.5  
a
1024 octet PSDU)  
2 Mbps DSSS  
5.5 Mbps DSSS  
11 Mbps DSSS  
RX sensitivity (10% PER for 6 Mbps OFDM  
1000 octet PSDU) at WLAN  
9 Mbps OFDM  
a
RF port  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
RX sensitivity  
20 MHz channel spacing for all MCS rates (Mixed mode)  
(10% PER for 4096 octet  
PSDU). Defined for default  
parameters: Mixed mode,  
800 ns GI.  
256-QAM, R = 5/6  
256-QAM, R = 3/4  
MCS7  
–67.5  
–69.5  
–71.5  
–73.5  
–74.5  
–79.5  
–82.5  
–84.5  
–86.5  
–90.5  
–69.5  
–71.5  
–73.5  
–75.5  
–76.5  
–81.5  
–84.5  
–86.5  
–88.5  
–92.5  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
MCS6  
MCS5  
MCS4  
MCS3  
MCS2  
MCS1  
MCS0  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 118  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLAN 2.4 GHz Receiver Performance Specifications  
Table 29: WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Condition/Notes Minimum Typical Maximum Unit  
Parameter  
Blocking level for 3 dB RX 704–716 MHz  
LTE  
–13  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
sensitivity degradation  
777–787 MHz  
LTE  
–13  
b
(without external filtering).  
776–794 MHz  
CDMA2000  
LTE  
–13.5  
–12.5  
–13.5  
–11.5  
–11.5  
–12.5  
–11.5  
–8  
815–830 MHz  
816–824 MHz  
816–849 MHz  
824–849 MHz  
824–849 MHz  
824–849 MHz  
824–849 MHz  
830–845 MHz  
832–862 MHz  
880–915 MHz  
880–915 MHz  
880–915 MHz  
CDMA2000  
LTE  
WCDMA  
CDMA2000  
LTE  
GSM850  
LTE  
–11.5  
–11.5  
–10  
LTE  
WCDMA  
LTE  
–12  
E-GSM  
–9  
1710–1755 MHz WCDMA  
1710–1755 MHz LTE  
–13  
–14.5  
–14.5  
–13  
1710–1755 MHz CDMA2000  
1710–1785 MHz WCDMA  
1710–1785 MHz LTE  
–14.5  
–12.5  
–11.5  
–16  
1710–1785 MHz GSM1800  
1850–1910 MHz GSM1900  
1850–1910 MHz CDMA2000  
1850–1910 MHz WCDMA  
1850–1910 MHz LTE  
–13.5  
–16  
1850–1915 MHz LTE  
–17  
1920–1980 MHz WCDMA  
1920–1980 MHz CDMA2000  
1920–1980 MHz LTE  
–17.5  
–19.5  
–19.5  
–44  
2300–2400 MHz LTE  
2500–2570 MHz LTE  
–43  
2570–2620 MHz LTE  
–34  
5G  
WLAN  
>–4  
Maximum receive level  
@ 2.4 GHz  
@ 1, 2 Mbps (8% PER, 1024 octets) –6  
@ 5.5, 11 Mbps (8% PER, 1024  
octets)  
–12  
–15.5  
@ 6–54 Mbps (10% PER, 1000  
octets)  
dBm  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 119  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLAN 2.4 GHz Receiver Performance Specifications  
Table 29: WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Condition/Notes Minimum Typical Maximum Unit  
Parameter  
Adjacent channel rejection- 11 Mbps DSSS  
DSSS.  
–70 dBm  
35  
dB  
(Difference between  
interfering and desired  
signal [25 MHz apart] at 8%  
PER for 1024 octet PSDU  
with desired signal level as  
specified in Condition/  
Notes.)  
Adjacent channel rejection- 6 Mbps OFDM  
–79 dBm  
–78 dBm  
16  
15  
13  
11  
8
3
5
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
OFDM.  
9 Mbps OFDM  
(Difference between  
12 Mbps OFDM –76 dBm  
18 Mbps OFDM –74 dBm  
24 Mbps OFDM –71 dBm  
36 Mbps OFDM –67 dBm  
48 Mbps OFDM –63 dBm  
54 Mbps OFDM –62 dBm  
65 Mbps OFDM –61 dBm  
Range –98 dBm to –75 dBm  
Range above –75 dBm  
interfering and desired  
signal (25 MHz apart) at  
c
10% PER for 1000 octet  
PSDU with desired signal  
level as specified in  
Condition/Notes.)  
4
0
–1  
–2  
–3  
–5  
d
RCPI accuracy  
Return loss  
Zo = 50across the dynamic range. 10  
a. Optimal RF performance, as specified in this data sheet, is guaranteed only for temperatures between –10°C  
and 55°C.  
b. The cellular standard listed for each band indicates the type of modulation used to generate the interfering signal  
in that band for the purpose of this test. It is not intended to indicate any specific usage of each band in any  
specific country.  
c. For 65 Mbps, the size is 4096.  
d. The minimum and maximum values shown have a 95% confidence level.  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 120  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLAN 2.4 GHz Transmitter Performance Specifications  
WLAN 2.4 GHz Transmitter Performance Specifications  
Note: Unless otherwise specified, the specifications in Table 29 are measured at the chip port (for the  
location of the chip port, see Figure 43 on page 117).  
Table 30: WLAN 2.4 GHz Transmitter Performance Specifications  
Parameter  
Condition/Notes  
Minimum Typical Maximum Unit  
Frequency range  
MHz  
Transmitted power in  
cellular and WLAN 5G  
bands (at 21 dBm, 90%  
776–794 MHz  
869–960 MHz  
CDMA2000  
–167.5 –  
–163.5 –  
–154.5 –  
–152.5 –  
–149.5 –  
–145.5 –  
–143.5 –  
–140.5 –  
–138.5 –  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
CDMAOne, GSM850  
1450–1495 MHz DAB  
a
duty cycle, 1 Mbps CCK).  
1570–1580 MHz GPS  
1592–1610 MHz GLONASS  
1710–1800 MHz DSC-1800-Uplink  
1805–1880 MHz GSM1800  
1850–1910 MHz GSM1900  
1910–1930 MHz TDSCDMA, LTE  
1930–1990 MHz GSM1900,  
CDMAOne, WCDMA  
–139  
2010–2075 MHz TDSCDMA  
2110–2170 MHz WCDMA  
–127.5 –  
–124.5 –  
–104.5 –  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
2305–2370 MHz LTE Band 40  
2370–2400 MHz LTE Band 40  
2496–2530 MHz LTE Band 41  
2530–2560 MHz LTE Band 41  
2570–2690 MHz LTE Band 41  
5000–5900 MHz WLAN 5G  
–81.5  
–94.5  
–120.5 –  
–121.5 –  
–109.5 –  
Harmonic level (at 21 dBm 4.8–5.0 GHz  
with 90% duty cycle, 1  
2nd harmonic  
3rd harmonic  
4th harmonic  
–26.5  
–23.5  
–32.5  
dBm/  
MHz  
Mbps CCK)  
7.2–7.5 GHz  
dBm/  
MHz  
9.6–10 GHz  
dBm/  
MHz  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 121  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
WLAN 2.4 GHz Transmitter Performance Specifications  
Table 30: WLAN 2.4 GHz Transmitter Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum Typical Maximum Unit  
TX power at the chip port –  
for the highest power level  
EVM Does Not Exceed  
IEEE 802.11b  
–9 dB  
21  
dBm  
setting at 25°C,  
(DSSS/CCK)  
OFDM, BPSK  
OFDM, QPSK  
VBA = 3.6V, and spectral  
mask and EVM  
–8 dB  
20.5  
20.5  
20.5  
18  
dBm  
dBm  
dBm  
dBm  
b, c  
–13 dB  
compliance  
OFDM, 16-QAM –19 dB  
OFDM, 64-QAM –25 dB  
(R = 3/4)  
OFDM, 64-QAM –27 dB  
(R = 5/6)  
17.5  
15  
9
dBm  
dBm  
dB  
OFDM, 256-QAM –32 dB  
(R = 5/6)  
TX power control  
dynamic range  
Closed loop TX power  
Across full temperature and voltage  
±1.5  
dB  
variation at highest power range. Applies across 5 to 21 dBm output  
level setting  
power range.  
Carrier suppression  
Gain control step  
Return loss  
15  
dBc  
dB  
0.25  
6
Zo = 50  
4
dB  
Load pull variation for  
output power, EVM, and  
Adjacent Channel Power  
Ratio (ACPR)  
VSWR = 2:1.  
EVM degradation  
3.5  
±2  
15  
dB  
Output power variation –  
dB  
ACPR-compliant  
power level  
dBm  
VSWR = 3:1.  
EVM degradation  
4
dB  
Output power variation –  
±3  
15  
dB  
ACPR-compliant  
power level  
dBm  
a. The cellular standards listed indicate only typical usages of that band in some countries. Other standards may  
also be used within those bands.  
b. TX power for channel 1 and channel 11 is specified separately by nonvolatile memory parameters to ensure  
band-edge compliance.  
c. Optimal RF performance, as specified in this data sheet, is guaranteed only for temperatures between –10°C  
and 55°C.  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 122  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
General Spurious Emissions Specifications  
General Spurious Emissions Specifications  
Table 31: General Spurious Emissions Specifications  
Parameter  
Condition/Notes  
Minimum  
Typical Maximum Unit  
Frequency range  
2400  
2500  
MHz  
General Spurious Emissions  
TX emissions  
30 MHz < f < 1 GHz  
1 GHz < f < 12.75 GHz RBW = 1 MHz  
1.8 GHz < f < 1.9 GHz RBW = 1 MHz  
5.15 GHz < f < 5.3 GHz RBW = 1 MHz  
30 MHz < f < 1 GHz RBW = 100 kHz  
1 GHz < f < 12.75 GHz RBW = 1 MHz  
1.8 GHz < f < 1.9 GHz RBW = 1 MHz  
5.15 GHz < f < 5.3 GHz RBW = 1 MHz  
RBW = 100 kHz  
–99  
–44  
–68  
–88  
–99  
–54  
–88  
–88  
–96  
–41  
–65  
–85  
–96  
–51  
–85  
–85  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
RX/standby  
emissions  
Note: The specifications in this table apply at the chip port.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 123  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth RF Specifications  
Section 17: Bluetooth RF Specifications  
Note: Values in this data sheet are design goals and are subject to change based on the results of  
device characterization.  
Unless otherwise stated, limit values apply for the conditions specified in Table 25: “Environmental Ratings,” on  
page 114 and Table 27: “Recommended Operating Conditions and DC Characteristics,” on page 115. Typical  
values apply for the following conditions:  
VBAT = 3.6V.  
Ambient temperature +25°C.  
Note: All Bluetooth specifications apply at the chip port. For the location of the chip port, see Figure 43:  
“RF Port Location,” on page 117.  
Table 32: Bluetooth Receiver RF Specifications  
Parameter  
Conditions  
Minimum Typical  
Maximum Unit  
Note: The specifications in this table are measured at the chip output port unless otherwise specified.  
General  
Frequency range  
RX sensitivity  
2402  
2480  
MHz  
dBm  
dBm  
GFSK, 0.1% BER, 1 Mbps –  
–94  
–96  
/4–DQPSK, 0.01% BER,  
2 Mbps  
8–DPSK, 0.01% BER,  
3 Mbps  
–90  
dBm  
Input IP3  
–16  
dBm  
dBm  
Maximum input at antenna  
–20  
a
Interference Performance  
C/I co-channel  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
11  
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
0.0  
–30  
–40  
–9  
C/I 3 MHz adjacent channel GFSK, 0.1% BER  
C/I image channel GFSK, 0.1% BER  
C/I 1 MHz adjacent to image GFSK, 0.1% BER  
channel  
–20  
C/I co-channel  
/4–DQPSK, 0.1% BER  
13  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
/4–DQPSK, 0.1% BER  
/4–DQPSK, 0.1% BER  
0.0  
–30  
–40  
C/I 3 MHz adjacent channel /4–DQPSK, 0.1% BER  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 124  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth RF Specifications  
Table 32: Bluetooth Receiver RF Specifications (Cont.)  
Parameter  
Conditions  
Minimum Typical  
Maximum Unit  
C/I image channel  
/4–DQPSK, 0.1% BER  
–7  
dB  
dB  
C/I 1 MHz adjacent to image /4–DQPSK, 0.1% BER  
channel  
–20  
C/I co-channel  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
21  
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
5.0  
–25  
–33  
0.0  
–13  
C/I 3 MHz adjacent channel 8–DPSK, 0.1% BER  
C/I Image channel 8–DPSK, 0.1% BER  
C/I 1 MHz adjacent to image 8–DPSK, 0.1% BER  
channel  
Out-of-Band Blocking Performance (CW)  
30–2000 MHz  
0.1% BER  
0.1% BER  
0.1% BER  
0.1% BER  
–10.0  
–27  
dBm  
dBm  
dBm  
dBm  
2000–2399 MHz  
2498–3000 MHz  
3000 MHz–12.75 GHz  
–27  
–10.0  
Out-of-Band Blocking Performance, Modulated Interferer (LTE)  
GFSK (1 Mbps)  
2310 MHz  
2330 MHz  
2350 MHz  
2370 MHz  
2510 MHz  
2530 MHz  
2550 MHz  
2570 MHz  
LTE band40 TDD 20M BW –  
LTE band40 TDD 20M BW –  
LTE band40 TDD 20M BW –  
LTE band40 TDD 20M BW –  
–20  
–19  
–20  
–24  
–24  
–21  
–21  
–20  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
/4 DPSK (2 Mbps)  
2310 MHz  
2330 MHz  
2350 MHz  
2370 MHz  
2510 MHz  
2530 MHz  
2550 MHz  
2570 MHz  
LTE band40 TDD 20M BW –  
LTE band40 TDD 20M BW –  
LTE band40 TDD 20M BW –  
LTE band40 TDD 20M BW –  
–20  
–19  
–20  
–24  
–24  
–20  
–20  
–20  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
8DPSK (3 Mbps)  
2310 MHz  
2330 MHz  
2350 MHz  
LTE band40 TDD 20M BW –  
LTE band40 TDD 20M BW –  
LTE band40 TDD 20M BW –  
–20  
–19  
–20  
dBm  
dBm  
dBm  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 125  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth RF Specifications  
Table 32: Bluetooth Receiver RF Specifications (Cont.)  
Parameter  
Conditions  
Minimum Typical  
Maximum Unit  
2370 MHz  
2510 MHz  
2530 MHz  
2550 MHz  
2570 MHz  
LTE band40 TDD 20M BW –  
–24  
–24  
–21  
–20  
–20  
dBm  
dBm  
dBm  
dBm  
dBm  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
Out-of-Band Blocking Performance, Modulated Interferer (Non-LTE)  
a
GFSK (1 Mbps)  
698–716 MHz  
776–849 MHz  
824–849 MHz  
824–849 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
–12  
–12  
–12  
dBm  
dBm  
dBm  
dBm  
–12  
880–915 MHz  
880–915 MHz  
E-GSM  
–11  
–11  
dBm  
dBm  
WCDMA  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
GSM1800  
WCDMA  
–16  
–15  
–18  
dBm  
dBm  
dBm  
GSM1900  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
WCDMA  
–17  
–18  
–18  
–18  
–21  
dBm  
dBm  
dBm  
dBm  
dBm  
TD-SCDMA  
WCDMA  
TD–SCDMA  
WCDMA  
a
/4 DPSK (2 Mbps)  
698–716 MHz  
776–794 MHz  
824–849 MHz  
824–849 MHz  
880–915 MHz  
880–915 MHz  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–8  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
–8  
–9  
–9  
–8  
WCDMA  
GSM1800  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
WCDMA  
–8  
–14  
–14  
–15  
–14  
–16  
–15  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 126  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth RF Specifications  
Table 32: Bluetooth Receiver RF Specifications (Cont.)  
Parameter  
Conditions  
Minimum Typical  
Maximum Unit  
2010–2025 MHz  
2500–2570 MHz  
TD-SCDMA  
WCDMA  
–17  
–21  
dBm  
dBm  
a
8DPSK (3 Mbps)  
698–716 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–11  
–11  
–11  
–12  
–11  
–11  
–16  
–15  
–17  
–17  
–17  
–17  
–18  
–21  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
776–794 MHz  
824–849 MHz  
824–849 MHz  
880–915 MHz  
880–915 MHz  
WCDMA  
GSM1800  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
WCDMA  
TD-SCDMA  
WCDMA  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
RX LO Leakage  
2.4 GHz band  
–90.0  
–80.0  
dBm  
Spurious Emissions  
30 MHz–1 GHz  
1–12.75 GHz  
–95  
–62  
–47  
dBm  
–70  
dBm  
869–894 MHz  
925–960 MHz  
1805–1880 MHz  
1930–1990 MHz  
2110–2170 MHz  
–147  
–147  
–147  
–147  
–147  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
a. The Bluetooth reference level for the required signal at the Bluetooth chip port is 3 dB higher than the typical  
sensitivity level.  
Table 33: LTE Specifications for Spurious Emissions  
Parameter  
Conditions  
Typical  
Unit  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
Band 7  
–147  
–147  
–147  
–147  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
Band 40  
Band 38  
XGP Band  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 127  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth RF Specifications  
a
Table 34: Bluetooth Transmitter RF Specifications  
Parameter  
Conditions Minimum Typical Maximum Unit  
General  
Frequency range  
2402  
2480  
MHz  
dBm  
dBm  
dBm  
dB  
Basic rate (GFSK) TX power at Bluetooth  
QPSK TX power at Bluetooth  
2
12.0  
8.0  
8.0  
4
8
8PSK TX power at Bluetooth  
Power control step  
GFSK In-Band Spurious Emissions  
–20 dBc BW  
EDR In-Band Spurious Emissions  
0.93  
1
MHz  
1.0 MHz < |M – N| < 1.5 MHz  
1.5 MHz < |M – N| < 2.5 MHz  
M – N = the frequency range for –  
–38  
–31  
–43  
–26.0  
–20.0  
–40.0  
dBc  
which the spurious emission is  
measured relative to the  
dBm  
dBm  
b
|M – N| 2.5 MHz  
transmit center frequency.  
Out-of-Band Spurious Emissions  
c,d  
30 MHz to 1 GHz  
dBm  
dBm  
–36.0  
d,e,f  
1 GHz to 12.75 GHz  
–30.0  
–47.0  
–47.0  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
dBm  
dBm  
GPS Band Spurious Emissions  
Spurious emissions  
–103  
dBm  
g
Out-of-Band Noise Floor  
65–108 MHz  
FM RX  
–147  
–146  
–146  
–146  
–146  
–144  
–143  
–137  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
776–794 MHz  
869–960 MHz  
925–960 MHz  
1570–1580 MHz  
1805–1880 MHz  
1930–1990 MHz  
2110–2170 MHz  
CDMA2000  
cdmaOne, GSM850  
E-GSM  
GPS  
GSM1800  
GSM1900, cdmaOne, WCDMA –  
WCDMA  
a. Unless otherwise specified, the specifications in this table apply at the chip output port, and output power  
specifications are with the temperature correction algorithm and TSSI enabled.  
b. Typically measured at an offset of ±3 MHz.  
c. The maximum value represents the value required for Bluetooth qualification as defined in the v4.1 specification.  
d. The spurious emissions during Idle mode are the same as specified in Table 34 on page 128.  
e. Specified at the Bluetooth antenna port.  
f. Meets this specification using a front-end band-pass filter.  
g. Transmitted power in cellular and FM bands at the Bluetooth antenna port. See Figure 43 on page 117 for  
location of the port.  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 128  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth RF Specifications  
Table 35: LTE Specifications for Out-of-Band Noise Floor  
Parameter  
Conditions  
Typical  
Unit  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
Band 7  
–130  
–130  
–130  
–130  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
Band 40  
Band 38  
XGP Band  
Table 36: Local Oscillator Performance  
Parameter  
Minimum Typical  
Maximum Unit  
LO Performance  
Lock time  
72  
s  
Initial carrier frequency tolerance  
±25  
±75  
kHz  
Frequency Drift  
DH1 packet  
DH3 packet  
DH5 packet  
Drift rate  
±8  
±8  
±8  
5
±25  
±40  
±40  
20  
kHz  
kHz  
kHz  
kHz/50 µs  
Frequency Deviation  
a
140  
115  
155  
140  
1
175  
kHz  
kHz  
MHz  
00001111 sequence in payload  
b
10101010 sequence in payload  
Channel spacing  
a. This pattern represents an average deviation in payload.  
b. Pattern represents the maximum deviation in payload for 99.9% of all frequency deviations.  
Table 37: BLE RF Specifications  
Parameter  
Conditions  
Minimum Typical  
Maximum Unit  
Frequency range  
2402  
2480  
MHz  
dBm  
a
GFSK, 0.1% BER, 1 Mbps –  
–97  
RX sense  
b
8.5  
dBm  
TX power  
Mod Char: delta f1 average  
225  
255  
275  
kHz  
%
c
99.9  
Mod Char: delta f2 max  
Mod Char: ratio  
0.8  
0.95  
%
a. The Bluetooth tester is set so that Dirty TX is on.  
b. BLE TX power can be increased to compensate for front-end losses such as BPF, diplexer, switch, etc.). The  
output is capped at 12 dBm. The BLE TX power at the antenna port cannot exceed the 10 dBm specification  
limit.  
c. At least 99.9% of all delta F2 max. frequency values recorded over 10 packets must be greater than 185 kHz.  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 129  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
FM Receiver Specifications  
Section 18: FM Receiver Specifications  
Note: Values in this data sheet are design goals and are subject to change based on the results of  
device characterization.  
Unless otherwise stated, limit values apply for the conditions specified inTable 25: “Environmental Ratings,” on  
page 114 and Table 27: “Recommended Operating Conditions and DC Characteristics,” on page 115. Typical  
values apply for the following conditions:  
VBAT = 3.6V.  
Ambient temperature +25°C.  
Table 38: FM Receiver Specifications  
a
Parameter  
Conditions  
Minimum Typical Maximum Units  
RF Parameters  
Operating frequency  
b
Frequencies inclusive  
65  
1
108  
MHz  
c
FM only,  
SNR 26 dB  
dBµV  
EMF  
Sensitivity  
1.1  
–5  
µV EMF  
dBµV  
Receiver adjacent  
Measured for 30 dB SNR at audio output.  
c,d  
channel selectivity  
Signal of interest: 23 dBµV EMF (14.1 µV EMF).  
At ±200 kHz.  
At ±400 kHz.  
51  
62  
53  
dB  
dB  
dB  
Intermediate signal- Vin = 20 dBµV (10 µV EMF).  
plus-noise to noise  
45  
c
ratio (S + N)/N, stereo  
Intermodulation  
performance  
Blocker level increased until desired at  
30 dB SNR.  
55  
dBc  
c,d  
Wanted signal: 33 dBµV EMF (45 µV EMF)  
Modulated interferer: At f  
and + 4 MHz.  
+ 400 kHz  
Wanted  
CW interferer: At f  
+ 8 MHz.  
+ 800 kHz and  
Wanted  
AM suppression,  
mono  
Vin = 23 dBµV EMF (14.1 µV EMF).  
AM at 400 Hz with m = 0.3.  
40  
dB  
c
No A-weighted or any other filtering applied.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 130  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
FM Receiver Specifications  
Table 38: FM Receiver Specifications (Cont.)  
a
Parameter  
RDS  
Conditions  
Minimum Typical Maximum Units  
e,f  
RDS deviation = 1.2 kHz.  
17  
dBµV  
EMF  
RDS sensitivity  
7.1  
11  
µV EMF  
dBµV  
RDS deviation = 2 kHz.  
13  
dBµV  
EMF  
4.4  
7
µV EMF  
dBµV  
f
Wanted Signal: 33 dBµV EMF (45 µV EMF),  
2 kHz RDS deviation.  
RDS selectivity  
Interferer: f = 40 kHz, fmod = 1 kHz.  
±200 kHz  
±300 kHz  
±400 kHz  
49  
52  
52  
dB  
dB  
dB  
RF Input  
RF input impedance  
Antenna tuning cap  
Maximum input  
1.5  
2.5  
kΩ  
30  
113  
pF  
SNR > 26 dB.  
dBµV  
EMF  
c
level  
446  
107  
–55  
mV EMF  
dBµV  
RF conducted  
emissions  
Local oscillator breakthrough measured on –  
the reference port.  
dBm  
869–894 MHz, 925–960 MHz,  
1805–1880 MHz, and 1930–1990 MHz.  
GPS.  
–90  
dBm  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 131  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
FM Receiver Specifications  
Table 38: FM Receiver Specifications (Cont.)  
a
Parameter  
Conditions  
Minimum Typical Maximum Units  
RF blocking levels at GSM850, E-GSM (standard); BW = 0.2 MHz. –  
the FM antenna input 824–849 MHz,  
7
dBm  
dBm  
dBm  
with a 40 dB SNR  
880–915 MHz.  
(assumes a 50input  
and excludes spurs)  
GSM 850, E-GSM (edge); BW = 0.2 MHz.  
824–849 MHz,  
880–915 MHz.  
0
GSM DCS 1800, PCS 1900 (standard,  
edge);  
12  
BW = 0.2 MHz.  
1710–1785 MHz,  
1850–1910 MHz.  
WCDMA: II (I), III (IV,X); BW = 5 MHz.  
1710–1785 MHz (1710–1755 MHz,  
1710–1770 MHz),  
12  
5
dBm  
dBm  
dBm  
dBm  
dBm  
1850–1980 MHz (1920–1980 MHz).  
WCDMA: V (VI), VIII, XII, XIII, XIV;  
BW = 5 MHz.  
824–849 MHz (830–840 MHz),  
880–915 MHz.  
CDMA2000, CDMA One; BW = 1.25 MHz.  
776–794 MHz,  
824–849 MHz,  
0
887–925 MHz.  
CDMA2000, CDMA One; BW= 1.25 MHz.  
1750–1780 MHz,  
1850–1910 MHz,  
12  
11  
1920–1980 MHz.  
Bluetooth; BW = 1 MHz.  
2402–2480 MHz.  
LTE, Band 38, Band 40, XGP Band  
11  
11  
dBm  
dBm  
WLAN-g/b; BW = 20 MHz.  
2400–2483.5 MHz.  
WLAN-a; BW = 20 MHz.  
4915–5825 MHz.  
6
dBm  
Tuning  
Frequency step  
Settling time  
10  
kHz  
µs  
Single frequency switch in any direction  
to a frequency within the 88–108 MHz or  
76–90 MHz bands. Time measured to within  
5 kHz of the final frequency.  
150  
Search time  
Total time for an automatic search to  
sweep from 88–108 MHz or 76–90 MHz  
(or in the reverse direction) assuming no  
channels are found.  
8
sec  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 132  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
FM Receiver Specifications  
Table 38: FM Receiver Specifications (Cont.)  
a
Parameter  
Conditions  
Minimum Typical Maximum Units  
General Audio  
g
–14.5  
–12.5  
0
dBFS  
dBFS  
Audio output level  
Maximum audio  
h
output level  
DAC audio output  
level  
Conditions:  
72  
88  
mV  
RMS  
Vin = 66 dBµV EMF (2 mV EMF),  
f = 22.5 kHz, fmod = 1 kHz,  
f Pilot = 6.75 kHz  
Maximum DAC audio –  
333  
1
mV  
RMS  
h
output level  
Audio DAC output  
–1  
dB  
i
level difference  
Left and right AC mute FM input signal fully muted with DAC  
enabled  
60  
80  
dB  
dB  
Left and right hard  
mute  
FM input signal fully muted with DAC  
disabled  
Soft mute attenuation Muting is performed dynamically, proportional to the desired FM input signal C/N. The  
and start level muting characteristic is fully programmable. See “Audio Features” on page 77.  
Maximum signal plus –  
noise-to-noise ratio  
69  
dB  
i
(S + N)/N, mono  
Maximum signal plus –  
noise-to-noise ratio  
64  
dB  
g
(S + N)/N, stereo  
Total harmonic  
distortion, mono  
Vin = 66 dBµV EMF(2 mV EMF):  
f = 75 kHz, fmod = 400 Hz.  
f = 75 kHz, fmod = 1 kHz.  
f = 75 kHz, fmod = 3 kHz.  
f = 100 kHz, fmod = 1 kHz.  
0.8  
0.8  
0.8  
1.0  
1.5  
%
%
%
%
%
Total harmonic  
distortion, stereo  
Vin = 66 dBµV EMF (2 mV EMF),  
f = 67.5 kHz, fmod = 1 kHz,  
f pilot = 6.75 kHz, L = R  
Audio spurious  
Range from 300 Hz to 15 kHz  
with respect to a 1 kHz tone.  
–60  
dBc  
i
products  
Audio bandwidth,  
upper (–3 dB point)  
Vin = 66 dBµV EMF (2 mV EMF)  
f = 8 kHz, for 50 µs  
15  
kHz  
Hz  
Audio bandwidth,  
lower (–3 dB point)  
20  
0.5  
Audio in-band ripple 100 Hz to 13 kHz,  
Vin = 66 dBµV EMF (2 mV EMF),  
–0.5  
dB  
f = 8 kHz, for 50 µs.  
Deemphasis time  
constant tolerance  
With respect to 50 and 75 µs.  
±5  
%
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 133  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
FM Receiver Specifications  
Table 38: FM Receiver Specifications (Cont.)  
a
Parameter  
Conditions  
Minimum Typical Maximum Units  
RSSI range  
With 1 dB resolution and ±5 dB accuracy  
at room temperature.  
3
83  
dBµV  
EMF  
1.41  
–3  
1.41E+4  
77  
µV EMF  
dBµV  
Stereo Decoder  
Stereo channel  
separation  
Forced Stereo mode  
44  
dB  
Vin = 66 dBµV EMF (2 mV EMF),  
f = 67.5 kHz, fmod = 1 kHz,  
f Pilot = 6.75 kHz,  
R = 0, L = 1  
Mono stereo blend  
and switching  
Dynamically proportional to the desired FM input signal C/N. The blending and  
switching characteristics are fully programmable. See “Audio Features” on page 77.  
Pilot suppression  
Vin = 66 dBµV EMF (2 mV EMF),  
f = 75 kHz, fmod = 1 kHz.  
46  
dB  
Pause Detection  
Audio level at which Relative to 1-kHz tone, f = 22.5 kHz.  
a pause is detected  
4 values in 3 dB steps  
–21  
20  
–12  
40  
dB  
ms  
Audio pause  
duration  
4 values  
a. The following conditions are applied to all relevant tests unless otherwise indicated: Preemphasis and  
deemphasis of 50 µs, R = L for mono, BAF = 300 Hz to 15 kHz, A-weighted filtering applied.  
b. Contact your Broadcom representative for applications operating between 65–76 MHz.  
c. Signal of interest: f = 22.5 kHz, fmod = 1 kHz.  
d. Interferer: f = 22.5 kHz, fmod = 1 kHz.  
e. RDS sensitivity numbers are for 87.5–108 MHz only.  
f. Vin = f = 32 kHz, fmod = 1 kHz, f pilot = 7.5 kHz, and with an interferer for 95% of blocks decoded with no  
errors after correction, over a sample of 5000 blocks.  
g. Vin = 66 dBµV EMF (2 mV EMF), f = 22.5 kHz, fmod = 1 kHz, f pilot = 6.75 kHz.  
h. Vin = 66 dBµV EMF (2 mV EMF), f = 100 kHz, fmod = 1 kHz, f pilot = 6.75 kHz.  
i. Vin = 66 dBµV EMF (2 mV EMF), f = 22.5 kHz, fmod = 1 kHz.  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 134  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Internal Regulator Electrical Specifications  
Section 19: Internal Regulator Electrical  
Specifications  
Note: Values in this data sheet are design goals and are subject to change based on device  
characterization results.  
Functional operation is not guaranteed outside of the specification limits provided in this section.  
Core Buck Switching Regulator  
Table 39: Core Buck Switching Regulator (CBUCK) Specifications  
Specification  
Notes  
Min.  
Typ.  
Max. Units  
a
Input supply voltage (DC)  
DC voltage range inclusive of  
disturbances.  
2.4  
3.6  
V
4.8  
PWM mode switching  
frequency  
CCM, load > 100 mA VBAT = 3.6V.  
4
MHz  
PWM output current  
Output current limit  
Output voltage range  
370  
mA  
mA  
V
1400  
1.35  
Programmable, 30 mV steps.  
Default = 1.35V.  
1.2  
1.5  
PWM output voltage  
DC accuracy  
Includes load and line regulation.  
Forced PWM mode.  
–4  
7
4
%
PWM ripple voltage, static  
Measure with 20 MHz bandwidth limit.  
20  
mVpp  
Static load, max. ripple based on  
VBAT = 3.6V, Vout = 1.35V,  
Fsw = 4 MHz, 2.2 μH inductor L > 1.05 μH,  
Cap + Board total-ESR < 20 m,  
C
> 1.9 μF, ESL<200 pH  
out  
PWM mode peak efficiency  
PFM mode efficiency  
Peak efficiency at 200 mA load, inductor  
DCR = 200 m, VBAT = 3.6V, VOUT =  
1.35V  
85  
%
%
µs  
10 mA load current, inductor  
DCR = 200 m, VBAT = 3.6V, VOUT =  
1.35V  
77  
Start-up time from  
power down  
VDDIO already ON and steady.  
Time from REG_ON rising edge to CLDO  
reaching 1.2V  
400  
500  
External inductor  
0603 size, 2.2 μH ±20%,  
DCR = 0.2± 25%  
2.2  
4.7  
µH  
µF  
b
c
External output capacitor  
Ceramic, X5R, 0402,  
ESR <30 mat 4 MHz, 4.7 μF ±20%, 10V  
2.0  
10  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 135  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Core Buck Switching Regulator  
Table 39: Core Buck Switching Regulator (CBUCK) Specifications (Cont.)  
Specification  
Notes  
Min.  
Typ.  
Max. Units  
b
External input capacitor  
For SR_VDDBATP5V pin,  
ceramic, X5R, 0603,  
4.7  
µF  
0.67  
ESR < 30 mat 4 MHz, ±4.7 μF ±20%,  
10V  
Input supply voltage ramp-up  
time  
0 to 4.3V  
40  
µs  
a. The maximum continuous voltage is 4.8V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over  
the lifetime of the device are allowed. Voltages as high as 5.0V for up to 250 seconds, cumulative duration, over  
the lifetime of the device are allowed.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part  
tolerance, DC-bias, temperature, and aging.  
c. Total capacitance includes those connected at the far end of the active load.  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 136  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
3.3V LDO (LDO3P3)  
3.3V LDO (LDO3P3)  
Table 40: LDO3P3 Specifications  
Notes  
Specification  
Min.  
Typ.  
Max. Units  
a
Input supply voltage, V  
Min. = V + 0.2V = 3.5V dropout voltage  
in  
o
3.1  
3.6  
4.8  
V
requirement must be met under  
maximum load for performance  
specifications.  
Output current  
0.001  
450  
mA  
V
Nominal output voltage, V  
Default = 3.3V.  
3.3  
o
Dropout voltage  
At max. load.  
200  
+5  
mV  
%
Output voltage DC accuracy  
Quiescent current  
Line regulation  
Includes line/load regulation.  
No load  
–5  
66  
85  
µA  
V from (V + 0.2V) to 4.8V, max. load –  
3.5  
mV/V  
in  
o
Load regulation  
PSRR  
load from 1 mA to 450 mA  
V + 0.2V,  
0.3  
mV/mA  
dB  
V
20  
in  
o
V = 3.3V, C = 4.7 µF,  
o
o
Max. load, 100 Hz to 100 kHz  
Chip already powered up.  
LDO turn-on time  
160  
4.7  
250  
µs  
b
External output capacitor, C  
Ceramic, X5R, 0402,  
(ESR: 5 m–240 m), ± 10%, 10V  
5.64  
µF  
o
1.0  
External input capacitor  
For SR_VDDBATA5V pin (shared with –  
band gap) Ceramic, X5R, 0402,  
(ESR: 30m-200 m), ± 10%, 10V.  
Not needed if sharing VBAT capacitor  
4.7 µF with SR_VDDBATP5V.  
4.7  
µF  
a. The maximum continuous voltage is 4.8V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over  
the lifetime of the device are allowed. Voltages as high as 5.0V for up to 250 seconds, cumulative duration, over  
the lifetime of the device are allowed.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part  
tolerance, DC-bias, temperature, and aging.  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 137  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
CLDO  
CLDO  
Table 41: CLDO Specifications  
Notes  
Specification  
Min. Typ. Max. Units  
1.35 1.5  
Input supply voltage, V  
Min. = 1.2 + 0.15V = 1.35V dropout voltage 1.3  
requirement must be met under maximum  
load.  
V
in  
Output current  
0.2  
200 mA  
1.26  
Output voltage, V  
Programmable in 10 mV steps.  
Default = 1.2.V  
0.95 1.2  
V
o
Dropout voltage  
At max. load  
150 mV  
Output voltage DC accuracy  
Quiescent current  
Includes line/load regulation  
No load  
–4  
+4  
%
13  
1.24  
µA  
mA  
200 mA load  
Line regulation  
V from (V + 0.15V) to 1.5V,  
5
mV/V  
in  
o
maximum load  
Load regulation  
Leakage current  
Load from 1 mA to 300 mA  
Power down  
0.02 0.05 mV/mA  
5
1
20  
3
µA  
µA  
dB  
Bypass mode  
PSRR  
@1 kHz, Vin 1.35V, C = 4.7 µF  
20  
o
Start-up time of PMU  
VDDIO up and steady. Time from the  
REG_ON rising edge to the CLDO  
reaching 1.2V.  
700 µs  
LDO turn-on time  
LDO turn-on time when rest of the  
chip is up.  
140 180 µs  
a
External output capacitor, C  
External input capacitor  
Total ESR: 5 m–240 mΩ  
2.2  
1
µF  
µF  
o
1.1  
Only use an external input capacitor  
at the VDD_LDO pin if it is not supplied  
from CBUCK output.  
2.2  
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part  
tolerance, DC-bias, temperature, and aging.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 138  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
LNLDO  
LNLDO  
Table 42: LNLDO Specifications  
Specification  
Notes  
Min. V = V + 0.15V = 1.35V  
Min.  
Typ.  
Max. Units  
Input supply voltage, Vin  
1.3  
1.35  
1.5  
V
IN  
O
(where V = 1.2V) dropout voltage  
O
requirement must be met under maximum  
load.  
Output current  
0.1  
1.1  
150  
mA  
V
Output voltage, V  
Programmable in 25 mV steps.  
Default = 1.2V  
1.2  
1.275  
o
Dropout voltage  
At maximum load  
150  
+4  
12  
mV  
%
Output voltage DC accuracy Includes line/load regulation  
–4  
Quiescent current  
No load  
10  
970  
µA  
µA  
Max. load  
990  
5
Line regulation  
Load regulation  
V from (V + 0.15V) to 1.5V,  
mV/V  
in  
o
200 mA load  
Load from 1 mA to 200 mA:  
0.025 0.045 mV/mA  
V
(V + 0.12V)  
in  
o
Leakage current  
Output noise  
Power-down, junction temp. = 85°C  
@30 kHz, 60–150 mA load C = 2.2 µF  
5
20  
µA  
60  
35  
o
nV/ Hz  
@100 kHz, 60–150 mA load C = 2.2 µF  
o
PSRR  
@1 kHz, V (V + 0.15V), C = 4.7 µF  
20  
dB  
in  
o
o
LDO turn-on time  
LDO turn-on time when rest of chip is up  
140  
2.2  
180  
4.7  
µs  
µF  
a
External output capacitor, C Total ESR (trace/capacitor):  
o
0.5  
5 m–240 mΩ  
External input capacitor  
Only use an external input capacitor at the –  
VDD_LDO pin if it is not supplied from  
CBUCK output.  
1
2.2  
µF  
Total ESR (trace/capacitor): 30 m–200 mΩ  
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance,  
DC-bias, temperature, and aging.  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 139  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
System Power Consumption  
Section 20: System Power Consumption  
Note: The values in this data sheet are design goals and are subject to change based on device  
characterization.Unless otherwise stated, these values apply for the conditions specified in  
Table 27: “Recommended Operating Conditions and DC Characteristics,” on page 115.  
WLAN Current Consumption  
Table 43 shows typical currents consumed by the BCM4343W’s WLAN section. All values shown are with the  
Bluetooth core in Reset mode with Bluetooth and FM off.  
2.4 GHz Mode  
Table 43: 2.4 GHz Mode WLAN Power Consumption  
VBAT = 3.6V, VDDIO = 1.8V, TA 25°C  
Mode  
Rate  
VBAT (mA)  
Vio (µA)  
Sleep Modes  
Leakage (OFF)  
N/A  
N/A  
0.0035  
0.0058  
0.08  
80  
a
Sleep (idle, unassociated)  
b
Rate 1  
Rate 1  
Rate 1  
Rate 1  
Rate 1  
0.0058  
1.05  
80  
74  
86  
74  
86  
Sleep (idle, associated, inter-beacons)  
c
IEEE Power Save PM1 DTIM1 (Avg.)  
IEEE Power Save PM1 DTIM3 (Avg.)  
IEEE Power Save PM2 DTIM1 (Avg.)  
d
c
d
0.35  
1.05  
0.35  
IEEE Power Save PM2 DTIM3 (Avg.)  
Active Modes  
e
N/A  
37  
12  
Rx Listen Mode  
f
Rate 1  
39  
12  
12  
12  
12  
15  
15  
15  
15  
Rx Active (at –50dBm RSSI)  
Rate 11  
40  
Rate 54  
40  
Rate MCS7  
41  
f
Rate 1 @ 20 dBm  
Rate 11 @ 18 dBm  
Rate 54 @ 15 dBm  
320  
290  
260  
Tx  
Rate MCS7 @ 15 dBm 260  
a. Device is initialized in Sleep mode, but not associated.  
b. Device is associated, and then enters Power Save mode (idle between beacons).  
c. Beacon interval = 100 ms; beacon duration = 1 ms @ 1 Mbps (Integrated Sleep + wakeup + beacon).  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 140  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Bluetooth and FM Current Consumption  
d. Beacon interval = 300 ms; beacon duration = 1 ms @ 1 Mbps (Integrated Sleep + wakeup + beacon).  
e. Carrier sense (CCA) when no carrier present.  
f. Tx output power is measured on the chip-out side; duty cycle =100%. Tx Active mode is measured in Packet  
Engine mode (pseudo-random data)  
Bluetooth and FM Current Consumption  
The Bluetooth, BLE, and FM current consumption measurements are shown in Table 44.  
Note:  
The WLAN core is in reset (WLAN_REG_ON = low) for all measurements provided in Table 44.  
For FM measurements, the Bluetooth core is in Sleep mode.  
The BT current consumption numbers are measured based on GFSK TX output power = 10 dBm.  
Table 44: Bluetooth BLE and FM Current Consumption  
VBAT (VBAT = 3.6V)  
Typical  
VDDIO (VDDIO = 1.8V)  
Typical  
Operating Mode  
Units  
Sleep  
6
150  
162  
172  
µA  
Standard 1.28s Inquiry Scan  
500 ms Sniff Master  
DM1/DH1 Master  
DM3/DH3 Master  
DM5/DH5 Master  
3DH5/3DH5 Master  
SCO HV3 Master  
193  
305  
23.3  
28.4  
29.1  
25.1  
11.8  
8.6  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
a
FMRX Analog Audio only  
2
a
8
mA  
mA  
mA  
µA  
FMRX I S Audio  
2
a
8
FMRX I S Audio + RDS  
a
8.6  
187  
FMRX Analog Audio + RDS  
b
164  
BLE Scan  
BLE Adv. – Unconnectable 1.00 sec  
BLE Connected 1 sec  
93  
71  
163  
163  
µA  
µA  
a. In Mono/Stereo blend mode.  
b. No devices present. A 1.28 second interval with a scan window of 11.25 ms.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 141  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Interface Timing and AC Characteristics  
Section 21: Interface Timing and AC  
Characteristics  
Note: Values in this data sheet are design goals and are subject to change based on the results of  
device characterization.  
Unless otherwise stated, the specifications in this section apply when the operating conditions are within the  
limits specified in Table 25 on page 114 and Table 27 on page 115. Functional operation outside of these limits  
is not guaranteed.  
SDIO Default Mode Timing  
SDIO default mode timing is shown by the combination of Figure 44 and Table 45 on page 143.  
Figure 44: SDIO Bus Timing (Default Mode)  
fPP  
tWL  
tWH  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
Input  
Output  
tODLY  
tODLY  
(max)  
(min)  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 142  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
SDIO Default Mode Timing  
a
Table 45: SDIO Bus Timing Parameters (Default Mode)  
Parameter  
Symbol  
Minimum Typical  
Maximum Unit  
b
SDIO CLK (All values are referred to minimum VIH and maximum VIL )  
Frequency—Data Transfer mode  
Frequency—Identification mode  
Clock low time  
fPP  
0
25  
400  
MHz  
kHz  
ns  
fOD  
tWL  
tWH  
tTLH  
tTHL  
0
10  
10  
Clock high time  
ns  
Clock rise time  
10  
10  
ns  
Clock fall time  
ns  
Inputs: CMD, DAT (referenced to CLK)  
Input setup time  
Input hold time  
tISU  
tIH  
5
5
ns  
ns  
Outputs: CMD, DAT (referenced to CLK)  
Output delay time—Data Transfer mode  
Output delay time—Identification mode  
tODLY  
tODLY  
0
0
14  
50  
ns  
ns  
a. Timing is based on CL 40 pF load on command and data.  
b. min(Vih) = 0.7 × VDDIO and max(Vil) = 0.2 × VDDIO.  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 143  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
SDIO High-Speed Mode Timing  
SDIO High-Speed Mode Timing  
SDIO high-speed mode timing is shown by the combination of Figure 45 and Table 46.  
Figure 45: SDIO Bus Timing (High-Speed Mode)  
fPP  
tWL  
tWH  
50% VDD  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
Input  
Output  
tODLY  
tOH  
a
Table 46: SDIO Bus Timing Parameters (High-Speed Mode)  
Parameter  
Symbol  
Minimum Typical  
Maximum Unit  
b
SDIO CLK (all values are referred to minimum VIH and maximum VIL )  
Frequency – Data Transfer Mode  
Frequency – Identification Mode  
Clock low time  
fPP  
0
0
7
7
50  
400  
MHz  
kHz  
ns  
fOD  
tWL  
tWH  
tTLH  
tTHL  
Clock high time  
ns  
Clock rise time  
3
ns  
Clock fall time  
3
ns  
Inputs: CMD, DAT (referenced to CLK)  
Input setup time  
Input hold time  
tISU  
tIH  
6
2
ns  
ns  
Outputs: CMD, DAT (referenced to CLK)  
Output delay time – Data Transfer Mode  
Output hold time  
tODLY  
tOH  
14  
ns  
ns  
pF  
2.5  
Total system capacitance (each line)  
CL  
40  
a. Timing is based on CL 40 pF load on command and data.  
b. min(Vih) = 0.7 × VDDIO and max(Vil) = 0.2 × VDDIO.  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 144  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
gSPI Signal Timing  
gSPI Signal Timing  
The gSPI device always samples data on the rising edge of the clock.  
Figure 46: gSPI Timing  
T1  
T2  
T4  
T5  
T3  
SPI_CLK  
SPI_DIN  
T6  
T7  
T8  
T9  
SPI_DOUT  
(falling edge)  
Table 47: gSPI Timing Parameters  
Parameter  
Symbol  
Minimum  
Maximum  
Units Note  
Clock period  
T1  
20.8  
ns  
F
= 50 MHz  
max  
Clock high/low  
T2/T3  
T4/T5  
T6  
(0.45 × T1) – T4 (0.55 × T1) – T4 ns  
Clock rise/fall time  
Input setup time  
2.5  
ns  
ns  
5.0  
Setup time, SIMO valid to  
SPI_CLK active edge  
Input hold time  
T7  
T8  
T9  
5.0  
5.0  
5.0  
ns  
ns  
ns  
Hold time, SPI_CLK active  
edge to SIMO invalid  
Output setup time  
Output hold time  
Setup time, SOMI valid before  
SPI_CLK rising  
Hold time, SPI_CLK active  
edge to SOMI invalid  
a
7.86  
ns  
ns  
CSX fall to 1st rising edge  
CSX to clock  
c
Last falling edge to CSX high  
Clock to CSX  
a. SPI_CSx remains active for entire duration of gSPI read/write/write_read transaction (that is, overall words for  
multiple word transaction)  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 145  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
JTAG Timing  
JTAG Timing  
Table 48: JTAG Timing Characteristics  
Output  
Output  
Signal Name  
Period  
Maximum  
Minimum  
Setup  
Hold  
TCK  
125 ns  
TDI  
20 ns  
20 ns  
0 ns  
0 ns  
TMS  
TDO  
100 ns  
0 ns  
JTAG_TRST  
250 ns  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 146  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Power-Up Sequence and Timing  
Section 22: Power-Up Sequence and  
Timing  
Sequencing of Reset and Regulator Control Signals  
The BCM4343W has two signals that allow the host to control power consumption by enabling or disabling the  
Bluetooth, WLAN, and internal regulator blocks. These signals are described below. Additionally, diagrams are  
provided to indicate proper sequencing of the signals for various operational states (see Figure 47 on page 148  
through Figure 50 on page 149). The timing values indicated are minimum required values; longer delays are  
also acceptable.  
Note:  
The WL_REG_ON and BT_REG_ON signals are OR’ed in the BCM4343W. The diagrams show  
both signals going high at the same time (as would be the case if both REG signals were controlled  
by a single host GPIO). If two independent host GPIOs are used (one for WL_REG_ON and one  
for BT_REG_ON), then only one of the two signals needs to be high to enable the BCM4343W  
regulators.  
The reset requirements for the Bluetooth core are also applicable for the FM core. In other words,  
if FM is to be used, then the Bluetooth core must be enabled.  
The BCM4343W has an internal power-on reset (POR) circuit. The device will be held in reset for  
a maximum of 110 ms after VDDC and VDDIO have both passed the POR threshold (see  
Table 27: “Recommended Operating Conditions and DC Characteristics,” on page 115). Wait at  
least 150 ms after VDDC and VDDIO are available before initiating SDIO accesses.  
VBAT and VDDIO should not rise faster than 40 µs. VBAT should be up before or at the same time  
as VDDIO. VDDIO should not be present first or be held high before VBAT is high.  
Description of Control Signals  
WL_REG_ON: Used by the PMU to power up the WLAN section. It is also OR-gated with the BT_REG_ON  
input to control the internal BCM4343W regulators. When this pin is high, the regulators are enabled and  
the WLAN section is out of reset. When this pin is low the WLAN section is in reset. If both the  
BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled.  
BT_REG_ON: Used by the PMU (OR-gated with WL_REG_ON) to power up the internal BCM4343W  
regulators. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled. When this  
pin is low and WL_REG_ON is high, the BT section is in reset.  
Note: For both the WL_REG_ON and BT_REG_ON pins, there should be at least a 10 ms time delay  
between consecutive toggles (where both signals have been driven low). This is to allow time for the  
CBUCK regulator to discharge. If this delay is not followed, then there may be a VDDIO in-rush current  
on the order of 36 mA during the next PMU cold start.  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 147  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Sequencing of Reset and Regulator Control Signals  
Control Signal Timing Diagrams  
Figure 47: WLAN = ON, Bluetooth = ON  
32.678 kHz  
Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
Figure 48: WLAN = OFF, Bluetooth = OFF  
32.678 kHz  
Sleep Clock  
VBAT  
VDDIO  
WL_REG_ON  
BT_REG_ON  
Figure 49: WLAN = ON, Bluetooth = OFF  
32.678 kHz  
Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 148  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Sequencing of Reset and Regulator Control Signals  
Figure 50: WLAN = OFF, Bluetooth = ON  
32.678 kHz  
Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 149  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Package Information  
Section 23: Package Information  
Package Thermal Characteristics  
a
Table 49: Package Thermal Characteristics  
Characteristic  
Value in Still Air  
53.11  
JA (°C/W)  
13.14  
6.36  
JB (°C/W)  
JC (°C/W)  
(°C/W)  
(°C/W)  
0.04  
14.21  
125  
JT  
JB  
b
Maximum Junction Temperature T (°C)  
j
Maximum Power Dissipation (W)  
1.2  
a. No heat sink, TA = 70°C. This is an estimate based on a 4-layer PCB that conforms to EIA/JESD51–7  
(101.6 mm x 114.3 mm x 1.6 mm) and P = 1.2W continuous dissipation.  
b. Absolute junction temperature limits maintained through active thermal monitoring and dynamic TX duty cycle  
limiting.  
Junction Temperature Estimation and PSI Versus Theta  
jc  
Package thermal characterization parameter PSI-JT () yields a better estimation of actual junction  
JT  
temperature (T ) versus using the junction-to-case thermal resistance parameter Theta-J (JC). The reason for  
J
C
this is JC assumes that all the power is dissipated through the top surface of the package case. In actual  
applications, some of the power is dissipated through the bottom and sides of the package. takes into  
JT  
account power dissipated through the top, bottom, and sides of the package. The equation for calculating the  
device junction temperature is as follows:  
T = T + P   
J
T
JT  
Where:  
T = junction temperature at steady-state condition, °C  
J
T = package case top center temperature at steady-state condition, °C  
T
P = device power dissipation, Watts  
= package thermal characteristics (no airflow), °C/W  
JT  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 150  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Mechanical Information  
Section 24: Mechanical Information  
Figure 51 shows the mechanical drawing for the BCM4343W WLBGA package.  
Figure 51: 74-Ball WLBGA Mechanical Information  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 151  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Mechanical Information  
Figure 52 shows the mechanical drawing for the BCM4343W WLCSP package. Figure 53 shows the WLCSP  
keep-out areas.  
Figure 52: 153-Bump WLCSP Mechanical Information  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 152  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Mechanical Information  
Note: No top-layer metal is allowed in the keep-out areas.  
Note: A DXF file containing WLBGA keep-outs can be imported into a layout program. Contact your  
Broadcom FAE for more information.  
Figure 53: WLCSP Package Keep-Out Areas—Top View with the Bumps Facing Down  
Broadcom®  
August 24, 2015 • 4343W-DS107-R  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
Page 153  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Mechanical Information  
Figure 54: WLBGA Package Keep-Out Areas—Top View with the Bumps Facing Down  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 154  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Ordering Information  
Section 25: Ordering Information  
Table 50: Part Ordering Information  
Operating  
Ambient  
Temperature  
a
Part Number  
Package  
Description  
BCM4343WKUBG 74-ball WLBGA halogen-free package 2.4 GHz single-band WLAN  
–30°C to +70°C  
IEEE 802.11n + BT 4.1 +  
FMRX + Wireless Charging  
(4.87 mm x 2.87 mm, 0.40 pitch)  
BCM4343WKWBG 153-bump WLCSP  
2.4 GHz single-band WLAN  
IEEE 802.11n + BT 4.1 +  
FMRX + Wireless Charging  
–30°C to +70°C  
a. Add “T” to the end of the part number to specify “Tape and Reel.”  
Broadcom®  
Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio  
August 24, 2015 • 4343W-DS107-R  
Page 155  
BROADCOM CONFIDENTIAL  
BCM4343W Data Sheet  
Broadcom® Corporation reserves the right to make changes without further notice to any products or  
data herein to improve reliability, function, or design.  
Information furnished by Broadcom Corporation is believed to be accurate and reliable. However,  
Broadcom Corporation does not assume any liability arising out of the application or use of this  
information, nor the application or use of any product or circuit described herein, neither does it  
convey any license under its patent rights nor the rights of others.  
®
Broadcom Corporation  
Phone: 949-926-5000  
Fax: 949-926-5203  
5300 California Avenue  
E-mail: info@broadcom.com  
Web: www.broadcom.com  
Irvine, CA 92617  
© 2015 by BROADCOM CORPORATION. All rights reserved.  
4343W-DS107-R  
August 24, 2015  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY