BCM4354KKWBGT [CYPRESS]

Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/ Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver;
BCM4354KKWBGT
型号: BCM4354KKWBGT
厂家: CYPRESS    CYPRESS
描述:

Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/ Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver

文件: 总192页 (文件大小:4575K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The following document contains information on Cypress products. Although the document is marked with the name  
Broadcom”, the company that originally developed the specification, Cypress will continue to offer these products to  
new and existing customers.  
CONTINUITY OF SPECIFICATIONS  
There is no change to this document as a result of offering the device as a Cypress product. Any changes that have  
been made are the result of normal document improvements and are noted in the document history page, where  
supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.  
CONTINUITY OF ORDERING PART NUMBERS  
Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part  
Numbers listed in this document.  
FOR MORE INFORMATION  
Please visit our website at www.cypress.com or contact your local sales office for additional information about  
Cypress products and services.  
OUR CUSTOMERS  
Cypress is for true innovators in companies both large and small.  
Our customers are smart, aggressive, out-of-the-box thinkers who design and develop game-changing products that  
revolutionize their industries or create new industries with products and solutions that nobody ever thought of before.  
ABOUT CYPRESS  
Founded in 1982, Cypress is the leader in advanced embedded system solutions for the world’s most innovative  
automotive, industrial, home automation and appliances, consumer electronics and medical products. Cypress’s  
programmable systems-on-chip, general-purpose microcontrollers, analog ICs, wireless and USB-based connectivity  
solutions and reliable, high-performance memories help engineers design differentiated products and get them to  
market first.  
Cypress is committed to providing customers with the best support and engineering resources on the planet enabling  
innovators and out-of-the-box thinkers to disrupt markets and create new product categories in record time. To learn  
more, go to www.cypress.com.  
Cypress Semiconductor Corporation  
Document Number: 002-14809 Rev. *I  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised July 1, 2016  
DataSheet  
BCM4354  
Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/  
Baseband/Radio with Integrated Bluetooth 4.1  
and FM Receiver  
GENERAL DESCRIPTION  
The Broadcom® BCM4354 is a complete dual–band  
The BCM4354 uses advanced design techniques and  
process technology to reduce active and idle power,  
and includes an embedded power management unit  
that simplifies the system power topology.  
(2.4 GHz and 5 GHz) 5G Wi–Fi 2 × 2 MIMO® MAC/  
PHY/Radio System–on–a–Chip. This Wi–Fi single–  
chip device provides a high level of integration with  
dual–stream IEEE 802.11ac MAC/baseband/radio,  
Bluetooth 4.1, and FM radio receiver. In IEEE  
802.11ac mode, the WLAN operation supports rates  
of MCS0–MCS9 (up to 256 QAM) in 20 MHz, 40 MHz,  
and 80 MHz channels for data rates up to 867 Mbps.  
In addition, all the rates specified in IEEE 802.11a/b/  
g/n are supported. Included on–chip are 2.4 GHz and  
5 GHz transmit power amplifiers and receive low  
noise amplifiers.  
In addition, the BCM4354 implements highly  
sophisticated enhanced collaborative coexistence  
hardware mechanisms and algorithms that ensure  
that WLAN and Bluetooth collaboration is optimized  
for maximum performance. Coexistence support for  
external radios (such as LTE cellular and GPS) is  
provided via an external interface. As a result,  
enhanced overall quality for simultaneous voice,  
video, and data transmission on a handheld system is  
achieved.  
For the WLAN section, several alternative host  
interface options are included: an SDIO v3.0 interface  
that can operate in 4b or 1b modes, a high-speed  
inter-chip (HSIC) interface, and a PCIe v3.0 compliant  
interface running at Gen1 speeds. For the Bluetooth  
section, host interface options of a high-speed 4-wire  
UART and USB 2.0 full-speed (12 Mbps) are  
provided.  
Figure 1: Functional Block Diagram  
VIO  
VBAT  
WL_REG_ON  
WLAN  
Host I/F  
PCIe  
SDIO  
HSIC  
T/R Switch  
T/R Switch  
T/R Switch  
5G WLAN  
2G WLAN  
5G WLAN  
Ant1  
Ant0  
Diplexer  
Diplexer  
External  
Coexistence I/F  
COEX  
CLK_REQ  
BT_REG_ON  
UART  
BCM4354  
USB 2.0  
2G WLAN Tx  
2.G WL/BT Rx  
Bluetooth Host I/F  
FM Rx Host I/F  
I2S  
3PST Switch  
PCM  
BT_DEV_WAKE  
BT_HOST_WAKE  
BT Tx  
FM Rx  
FM Audio Out  
I2S  
FM I/F  
4354-DS109-R  
5300 California Avenue • Irvine, CA 92617 • Phone: 949-926-5000 • Fax: 949-926-5203  
October 15, 2014  
BCM4354 Data Sheet  
Revision History  
FEATURES  
IEEE 802.11X Key Features  
PCIe mode complies with PCI Express base  
specification revision 3.0 for ×1 lane and power  
management running at Gen1 speeds.  
IEEE 802.11ac Draft compliant.  
Dual–stream spatial multiplexing up to  
867 Mbps data rate.  
Integrated ARMCR4™ processor with tightly coupled  
memory for complete WLAN subsystem functionality,  
minimizing the need to wake up the applications  
processor for standard WLAN functions. This allows for  
further minimization of power consumption, while  
maintaining the ability to field upgrade with future  
features. On–chip memory includes 768 KB SRAM and  
640 KB ROM.  
Supports 20, 40, and 80 MHz channels with  
optional SGI (256 QAM modulation).  
Full IEEE 802.11a/b/g/n legacy compatibility  
with enhanced performance.  
TX and RX low–density parity check (LDPC)  
support for improved range and power  
efficiency.  
OneDriver™ software architecture for easy migration  
from existing embedded WLAN and Bluetooth devices  
as well as future devices.  
Supports IEEE 802.11ac/n beamforming.  
On–chip power amplifiers and low–noise  
amplifiers for both bands.  
Bluetooth and FM Key Features  
Supports various RF front–end architectures  
including:  
Complies with Bluetooth Core Specification Version 4.1  
with provisions for supporting future specifications.  
– Two antennas with one each dedicated to  
Bluetooth and WLAN.  
Bluetooth Class 1 or Class 2 transmitter operation.  
Supports extended synchronous connections (eSCO),  
for enhanced voice quality by allowing for retransmission  
of dropped packets.  
– Two antennas with WLAN diversity and a  
shared Bluetooth antenna.  
Shared Bluetooth and WLAN receive signal  
path eliminates the need for an external  
power splitter while maintaining excellent  
sensitivity for both Bluetooth and WLAN.  
Adaptive frequency hopping (AFH) for reducing radio  
frequency interference.  
Interface support, host controller interface (HCI) using a  
USB or high–speed UART interface and PCM for audio  
data.  
Internal fractional nPLL allows support for a  
wide range of reference clock frequencies  
USB 2.0 full–speed (12 Mbps) supported for Bluetooth.  
The FM unit supports HCI for communication.  
Supports IEEE 802.15.2 external  
coexistence interface to optimize bandwidth  
utilization with other co–located wireless.  
technologies such as LTE or GPS.  
Low power consumption improves battery life of  
handheld devices.  
FM receiver: 65 MHz to 108 MHz FM bands; supports  
the European radio data systems (RDS) and the North  
American radio broadcast data system (RBDS)  
standards.  
Supports standard SDIO v3.0 (up to SDR104  
mode at 208 MHz, 4–bit and 1-bit) host  
interfaces.  
Backward compatible with SDIO v2.0 host  
interfaces.  
Supports multiple simultaneous Advanced Audio  
Distribution Profiles (A2DP) for stereo sound.  
Alternative host interface supports HSIC v1.0  
Automatic frequency detection for standard crystal and  
TCXO values.  
Supports serial flash interfaces.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 2  
BROADCOM CONFIDENTIAL  
FEATURES  
General Features  
Security:  
Supports battery range from 3.0V to 5.25V  
supplies with internal switching regulator.  
– WPA™ and WPA2™ (Personal) support for powerful  
encryption and authentication  
Programmable dynamic power management  
– AES and TKIP in hardware for faster data encryption  
and IEEE 802.11i compatibility  
– Reference WLAN subsystem provides Cisco®  
Compatible Extensions (CCX, CCX 2.0, CCX 3.0,  
CCX 4.0, CCX 5.0)  
484 bytes of user-accessible OTP for storing  
board parameters  
GPIOs: 11 in WLBGA, 16 in WLCSP  
Package options:  
– Reference WLAN subsystem provides Wi-Fi  
Protected Setup (WPS)  
– 192-ball WLBGA (4.87 mm × 7.67 mm,  
0.4 mm pitch  
Worldwide regulatory support: Global products  
supported with worldwide homologated design.  
– 395-bump WLCSP (4.87 mm × 7.67 mm,  
0.2 mm pitch)  
Broadcom Corporation  
5300 California Avenue  
Irvine, CA 92617  
© 2014 by Broadcom Corporation  
All rights reserved  
Printed in the U.S.A.  
Broadcom®, the pulse logo, Connecting everything®, the Connecting everything logo, OneDriver™, and  
SmartAudio® are among the trademarks of Broadcom Corporation and/or its affiliates in the United States,  
certain other countries and/or the EU. Any other trademarks or trade names mentioned are the property of their  
respective owners.  
This data sheet (including, without limitation, the Broadcom component(s) identified herein) is not designed,  
intended, or certified for use in any military, nuclear, medical, mass transportation, aviation, navigations,  
pollution control, hazardous substances management, or other high-risk application. BROADCOM PROVIDES  
THIS DATA SHEET “AS-IS,” WITHOUT WARRANTY OF ANY KIND. BROADCOM DISCLAIMS ALL  
WARRANTIES, EXPRESSED AND IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-  
BCM4354 Data Sheet  
Revision History  
Revision History  
Revision  
Date  
Change Description  
4354-DS109-R  
10/15/14  
Updated:  
“I/O States” on page 122.  
Figure 52: “WLBGA Keep-Out Areas for PCB Layout (Top View, Balls  
Facing Down),” on page 187.  
4354-DS108-R  
4354-DS107-R  
08/08/14  
06/30/14  
Updated:  
Changed document type from “Preliminary Data Sheet” to “Data  
Sheet”.  
Updated:  
“BCM4354 PMU Features” on page 22  
Figure 3: “Typical Power Topology for the BCM4354,” on page 23  
Table 18: “Pin List by Pin Number (192-Pin WLBGA Package),” on  
page 85  
Table 19: “Pin List by Pin Name (192-Pin WLBGA Package),” on page  
88  
Table 20: “395-Bump WLCSP Coordinates,” on page 91  
Table 21: “WLCSP Signal Descriptions,” on page 102  
Table 60: “PCI Express Interface Parameters,” on page 175  
Added:  
“Electrostatic Discharge Specifications” on page 124  
4354-DS106-R  
4354-DS105-R  
05/20/14  
04/02/14  
Updated:  
Section 24: “Ordering Information,” on page 189.  
Updated:  
Table 4: “External 32.768 kHz Sleep Clock Specifications,” on page  
28  
Figure 34: “WLBGA Ball Map, 4.87 × 7.67 Array, 192-Ball, A7–V12  
(Bottom View — Balls Facing Up),” on page 84  
Table 49: “Bluetooth BLE and FM Current Consumption,” on page  
164  
“Receiver Path” on page 80  
Figure 32: “Radio Functional Block Diagram (core 0),” on page 81  
Table 38: “WLAN 2.4 GHz Receiver Performance Specifications,” on  
page 139  
Table 39: “WLAN 2.4 GHz Transmitter Performance Specifications,”  
on page 145  
Table 40: “WLAN 5 GHz Receiver Performance Specifications,” on  
page 147  
Table 41: “WLAN 5 GHz Transmitter Performance Specifications,” on  
page 154  
General Spurious Emissions Specifications (deleted)  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 4  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Revision History  
Revision  
Date  
Change Description  
4354-DS104-R  
03/24/14  
Updated:  
Table 4: “External 32.768 kHz Sleep Clock Specifications,” on page  
28  
Figure 33: “WLBGA Ball Map, 4.87 × 7.67 Array, 192-Balls, A7–V12  
(Bottom View — Balls Facing Up),” on page 83  
Table 20: “395-Bump WLCSP Coordinates,” on page 90 (Modified  
Bump 230, see note at end of the Table 20.)  
Table 32: “Bluetooth Receiver RF Specifications,” on page 129  
(footnotes modified)  
Table 50: “Bluetooth BLE and FM Current Consumption,” on page  
167  
4354-DS103-R  
4354-DS102-R  
12/20/13  
12/12/13  
Updated:  
Table 33: “Environmental Ratings,” on page 141: Ambient  
temperature range for functional operation is now –30°C to +85°C.  
Updated:  
The BCM4354 now supports PCI Express base specification v3.0  
running at Gen1 speeds.  
“WLAN 2.4 GHz Receiver Performance Specifications” on page 158:  
Note update.  
“WLAN 2.4 GHz Transmitter Performance Specifications” on page  
170: Note update.  
“WLAN 5 GHz Receiver Performance Specifications” on page 174:  
Note update.  
“WLAN 5 GHz Transmitter Performance Specifications” on page 187:  
Note update.  
“Package Thermal Characteristics” on page 219: Note update.  
Section 24: “Ordering Information,” on page 227.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 5  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Revision History  
Revision  
Date  
Change Description  
4354-DS101-R  
11/06/13  
Updated:  
Section 2: “Power Supplies and Power Management,” on page 27.  
“WLAN Power Management” on page 29.  
“Crystal Interface and Clock Generation” on page 32.  
Table 4: “Crystal Oscillator and External Clock — Requirements and  
Performance,” on page 33: Frequency conditions.  
Figure 7: “Startup Signaling Sequence,” on page 43.  
“Receiver Path” on page 88.  
“Transmit Path” on page 88.  
Section 13: “Pinout and Signal Descriptions,” on page 89.  
Table 29: “GPIO Alternative Signal Functions,” on page 135.  
Table 34: “Recommended Operating Conditions and DC  
Characteristics,” on page 142: DC supply voltage for digital I/O  
(minimum value).  
Table 42: “WLAN 2.4 GHz Receiver Performance Specifications,” on  
page 163: SISO/MIMO RX sensitivity.  
Table 46: “WLAN 5 GHz Receiver Performance Specifications,” on  
page 180: SISO/MIMO RX sensitivity.  
Table 51: “LDO3P3 Specifications,” on page 192.  
Table 57: “Typical WLAN Power Consumption,” on page 199.  
Table 58: “Bluetooth BLE and FM Current Consumption,” on page  
201.  
Section 22: “Package Information,” on page 219.  
Section 23: “Mechanical Information,” on page 221.  
Section 24: “Ordering Information,” on page 226.  
Added:  
Figure 4: “Typical Power Topology for the BCM435X,” on page 28.  
“External 32.768 kHz Low-Power Oscillator” on page 35.  
Table 30: “GPIO Status Vs. Test Modes,” on page 136.  
Table 52: “LDO3P3_B Specifications,” on page 193.  
4354-DS100-R  
07/31/13  
Initial release  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 6  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Table of Contents  
Table of Contents  
About This Document ................................................................................................................................ 16  
Purpose and Audience.......................................................................................................................... 16  
Acronyms and Abbreviations................................................................................................................. 16  
References............................................................................................................................................ 16  
Technical Support ...................................................................................................................................... 16  
Section 1: Overview .......................................................................................................... 17  
Overview...................................................................................................................................................... 17  
Features....................................................................................................................................................... 19  
Standards Compliance...............................................................................................................................20  
Section 2: Power Supplies and Power Management ..................................................... 22  
Power Supply Topology............................................................................................................................. 22  
BCM4354 PMU Features ............................................................................................................................ 22  
WLAN Power Management........................................................................................................................ 24  
PMU Sequencing ........................................................................................................................................ 25  
Power-Off Shutdown.................................................................................................................................. 26  
Power-Up/Power-Down/Reset Circuits..................................................................................................... 26  
Section 3: Frequency References.................................................................................... 27  
Crystal Interface and Clock Generation ................................................................................................... 27  
External Frequency Reference.................................................................................................................. 28  
External 32.768 kHz Low-Power Oscillator .............................................................................................. 30  
Section 4: Bluetooth + FM Subsystem Overview ........................................................... 31  
Features....................................................................................................................................................... 31  
Bluetooth Radio.......................................................................................................................................... 33  
Transmit ................................................................................................................................................ 33  
Digital Modulator ................................................................................................................................... 33  
Digital Demodulator and Bit Synchronizer............................................................................................. 33  
Power Amplifier..................................................................................................................................... 33  
Receiver................................................................................................................................................ 34  
Digital Demodulator and Bit Synchronizer............................................................................................. 34  
Receiver Signal Strength Indicator........................................................................................................ 34  
Local Oscillator Generation................................................................................................................... 34  
Calibration ............................................................................................................................................. 34  
Section 5: Bluetooth Baseband Core .............................................................................. 35  
Bluetooth 4.1 Features...............................................................................................................................35  
Bluetooth Low Energy ...............................................................................................................................35  
Link Control Layer...................................................................................................................................... 36  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 7  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Table of Contents  
Test Mode Support..................................................................................................................................... 36  
Bluetooth Power Management Unit.......................................................................................................... 37  
RF Power Management ........................................................................................................................ 37  
Host Controller Power Management ..................................................................................................... 37  
BBC Power Management...................................................................................................................... 39  
FM Power Management........................................................................................................................ 39  
Wideband Speech................................................................................................................................. 39  
Packet Loss Concealment..................................................................................................................... 40  
Audio Rate-Matching Algorithms........................................................................................................... 40  
Codec Encoding.................................................................................................................................... 41  
Multiple Simultaneous A2DP Audio Stream.......................................................................................... 41  
FM Over Bluetooth ................................................................................................................................ 41  
Burst Buffer Operation........................................................................................................................... 41  
Adaptive Frequency Hopping.................................................................................................................... 41  
Advanced Bluetooth/WLAN Coexistence................................................................................................. 42  
Fast Connection (Interlaced Page and Inquiry Scans) ........................................................................... 42  
Section 6: Microprocessor and Memory Unit for Bluetooth.......................................... 43  
RAM, ROM, and Patch Memory................................................................................................................. 43  
Reset............................................................................................................................................................ 43  
Section 7: Bluetooth Peripheral Transport Unit ............................................................. 44  
SPI Interface................................................................................................................................................ 44  
SPI/UART Transport Detection.................................................................................................................. 44  
PCM Interface.............................................................................................................................................. 45  
Slot Mapping ......................................................................................................................................... 45  
Frame Synchronization ......................................................................................................................... 45  
Data Formatting..................................................................................................................................... 45  
Wideband Speech Support ................................................................................................................... 46  
Multiplexed Bluetooth and FM Over PCM............................................................................................. 46  
Burst PCM Mode................................................................................................................................... 47  
PCM Interface Timing............................................................................................................................ 47  
Short Frame Sync, Master Mode ................................................................................................... 47  
Short Frame Sync, Slave Mode ..................................................................................................... 48  
Long Frame Sync, Master Mode.................................................................................................... 49  
Long Frame Sync, Slave Mode...................................................................................................... 50  
Short Frame Sync, Burst Mode...................................................................................................... 51  
Long Frame Sync, Burst Mode ...................................................................................................... 52  
USB Interface.............................................................................................................................................. 53  
Features................................................................................................................................................ 53  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 8  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Table of Contents  
Operation............................................................................................................................................... 53  
USB Hub and UHE Support .................................................................................................................. 54  
USB Full-Speed Timing......................................................................................................................... 55  
UART Interface............................................................................................................................................ 56  
I2S Interface................................................................................................................................................. 58  
I2S Timing.............................................................................................................................................. 59  
Section 8: FM Receiver Subsystem................................................................................. 61  
FM Radio ..................................................................................................................................................... 61  
Digital FM Audio Interfaces ....................................................................................................................... 61  
FM Over Bluetooth ..................................................................................................................................... 61  
eSCO............................................................................................................................................................ 61  
Wide Band Speech Link............................................................................................................................. 62  
A2DP............................................................................................................................................................ 62  
Autotune and Search Algorithms ............................................................................................................. 62  
Audio Features ........................................................................................................................................... 63  
RDS/RBDS................................................................................................................................................... 65  
Section 9: WLAN Global Functions ................................................................................. 66  
WLAN CPU and Memory Subsystem........................................................................................................ 66  
One-Time Programmable Memory............................................................................................................ 66  
GPIO Interface............................................................................................................................................. 66  
External Coexistence Interface ................................................................................................................. 67  
UART Interface............................................................................................................................................ 68  
JTAG Interface............................................................................................................................................ 68  
SPROM Interface ........................................................................................................................................ 68  
SFLASH Interface ....................................................................................................................................... 68  
Section 10: WLAN Host Interfaces................................................................................... 69  
SDIO v3.0..................................................................................................................................................... 69  
SDIO Pins.............................................................................................................................................. 69  
HSIC Interface ............................................................................................................................................ 70  
PCI Express Interface................................................................................................................................. 71  
Transaction Layer Interface................................................................................................................... 72  
Data Link Layer..................................................................................................................................... 72  
Physical Layer....................................................................................................................................... 73  
Logical Subblock................................................................................................................................... 73  
Scrambler/Descrambler......................................................................................................................... 73  
8B/10B Encoder/Decoder...................................................................................................................... 73  
Elastic FIFO........................................................................................................................................... 73  
Electrical Subblock................................................................................................................................ 74  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 9  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Table of Contents  
Configuration Space.............................................................................................................................. 74  
Section 11: Wireless LAN MAC and PHY ........................................................................ 75  
IEEE 802.11ac Draft MAC........................................................................................................................... 75  
PSM ............................................................................................................................................... 76  
WEP............................................................................................................................................... 77  
TXE................................................................................................................................................ 77  
RXE................................................................................................................................................ 77  
IFS.................................................................................................................................................. 77  
TSF ................................................................................................................................................ 78  
NAV................................................................................................................................................ 78  
MAC-PHY Interface........................................................................................................................ 78  
IEEE 802.11ac Draft PHY............................................................................................................................ 79  
Section 12: WLAN Radio Subsystem ............................................................................. 81  
Receiver Path.............................................................................................................................................. 81  
Transmit Path.............................................................................................................................................. 81  
Calibration................................................................................................................................................... 83  
Section 13: Pinout and Signal Descriptions ................................................................... 84  
Ball Maps..................................................................................................................................................... 84  
Pin Lists....................................................................................................................................................... 86  
Signal Descriptions.................................................................................................................................. 103  
WLAN/BT GPIO Signals and Strapping Options ................................................................................... 119  
GPIO Alternative Signal Functions......................................................................................................... 120  
I/O States................................................................................................................................................... 122  
Section 14: DC Characteristics ...................................................................................... 125  
Absolute Maximum Ratings .................................................................................................................... 125  
Environmental Ratings ............................................................................................................................ 126  
Electrostatic Discharge Specifications .................................................................................................. 126  
Recommended Operating Conditions and DC Characteristics ........................................................... 127  
Section 15: Bluetooth RF Specifications ...................................................................... 129  
Section 16: FM Receiver Specifications........................................................................ 135  
Section 17: WLAN RF Specifications ............................................................................ 140  
Introduction............................................................................................................................................... 140  
2.4 GHz Band General RF Specifications............................................................................................... 140  
WLAN 2.4 GHz Receiver Performance Specifications .......................................................................... 141  
WLAN 2.4 GHz Transmitter Performance Specifications ..................................................................... 147  
WLAN 5 GHz Receiver Performance Specifications ............................................................................. 149  
WLAN 5 GHz Transmitter Performance Specifications ........................................................................ 156  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 10  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Table of Contents  
Section 18: Internal Regulator Electrical Specifications ............................................. 158  
Core Buck Switching Regulator.............................................................................................................. 158  
3.3V LDO (LDO3P3) .................................................................................................................................. 159  
3.3V LDO (LDO3P3_B).............................................................................................................................. 160  
2.5V LDO (BTLDO2P5) ............................................................................................................................. 161  
CLDO ......................................................................................................................................................... 162  
LNLDO ....................................................................................................................................................... 163  
Section 19: System Power Consumption...................................................................... 164  
WLAN Current Consumption................................................................................................................... 164  
Bluetooth and FM Current Consumption............................................................................................... 166  
Section 20: Interface Timing and AC Characteristics.................................................. 167  
SDIO Timing.............................................................................................................................................. 167  
SDIO Default Mode Timing ................................................................................................................. 167  
SDIO High-Speed Mode Timing.......................................................................................................... 169  
SDIO Bus Timing Specifications in SDR Modes ................................................................................. 170  
Clock Timing ................................................................................................................................ 170  
Device Input Timing ..................................................................................................................... 171  
Device Output Timing................................................................................................................... 172  
SDIO Bus Timing Specifications in DDR50 Mode............................................................................... 174  
Data Timing, DDR50 Mode.......................................................................................................... 175  
HSIC Interface Specifications.................................................................................................................. 176  
PCI Express Interface Parameters.......................................................................................................... 177  
JTAG Timing ............................................................................................................................................. 179  
Section 21: Power-Up Sequence and Timing ............................................................... 180  
Sequencing of Reset and Regulator Control Signals ........................................................................... 180  
Description of Control Signals............................................................................................................. 180  
Control Signal Timing Diagrams.......................................................................................................... 181  
Section 22: Package Information................................................................................... 184  
Package Thermal Characteristics........................................................................................................... 184  
Junction Temperature Estimation and PSIJT Versus ThetaJC.............................................................. 185  
Environmental Characteristics................................................................................................................ 185  
Section 23: Mechanical Information .............................................................................. 186  
Section 24: Ordering Information .................................................................................. 190  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 11  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
List of Figures  
List of Figures  
Figure 1: Functional Block Diagram................................................................................................................... 1  
Figure 2: BCM4354 Block Diagram ................................................................................................................. 18  
Figure 3: Typical Power Topology for the BCM4354 ....................................................................................... 23  
Figure 4: Recommended Oscillator Configuration ........................................................................................... 27  
Figure 5: Recommended Circuit to Use with an External Reference Clock..................................................... 28  
Figure 6: Startup Signaling Sequence ............................................................................................................. 38  
Figure 7: CVSD Decoder Output Waveform Without PLC............................................................................... 40  
Figure 8: CVSD Decoder Output Waveform After Applying PLC..................................................................... 40  
Figure 9: Functional Multiplex Data Diagram................................................................................................... 46  
Figure 10: PCM Timing Diagram (Short Frame Sync, Master Mode).............................................................. 47  
Figure 11: PCM Timing Diagram (Short Frame Sync, Slave Mode)................................................................ 48  
Figure 12: PCM Timing Diagram (Long Frame Sync, Master Mode)............................................................... 49  
Figure 13: PCM Timing Diagram (Long Frame Sync, Slave Mode)................................................................. 50  
Figure 14: PCM Burst Mode Timing (Receive Only, Short Frame Sync)......................................................... 51  
Figure 15: PCM Burst Mode Timing (Receive Only, Long Frame Sync) ......................................................... 52  
Figure 16: USB Compounded Device Configuration ....................................................................................... 53  
Figure 17: USB Full-Speed Timing .................................................................................................................. 55  
Figure 18: UART Timing .................................................................................................................................. 57  
Figure 19: I2S Transmitter Timing.................................................................................................................... 60  
Figure 20: I2S Receiver Timing........................................................................................................................ 60  
Figure 21: Example Blend/Switch Usage......................................................................................................... 63  
Figure 22: Example Blend/Switch Separation.................................................................................................. 64  
Figure 23: Example Soft Mute Characteristic .................................................................................................. 64  
Figure 24: Broadcom GCI Mode LTE Coexistence Interface........................................................................... 67  
Figure 25: Legacy 3-Wire LTE Coexistence Interface ..................................................................................... 67  
Figure 26: Signal Connections to SDIO Host (SD 4-Bit Mode)........................................................................ 70  
Figure 27: Signal Connections to SDIO Host (SD 1-Bit Mode)........................................................................ 70  
Figure 28: HSIC Device Block Diagram........................................................................................................... 71  
Figure 29: PCI Express Layer Model............................................................................................................... 72  
Figure 30: WLAN MAC Architecture ................................................................................................................ 75  
Figure 31: WLAN PHY Block Diagram............................................................................................................. 80  
Figure 32: Radio Functional Block Diagram (core 0)....................................................................................... 82  
Figure 33: WLBGA Ball Map, 4.87 mm × 7.67 mm Array, 192-Ball, A1–V6 (Bottom View—Balls Facing Up)84  
Figure 34: WLBGA Ball Map, 4.87 × 7.67 Array, 192-Ball, A7 – V12 (Bottom View—Balls Facing Up) ......... 85  
Figure 35: RF Port Location for Bluetooth Testing......................................................................................... 129  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 12  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
List of Figures  
Figure 36: Port Locations (Applies to 2.4 GHz and 5 GHz) ........................................................................... 140  
Figure 37: SDIO Bus Timing (Default Mode) ................................................................................................. 167  
Figure 38: SDIO Bus Timing (High-Speed Mode).......................................................................................... 169  
Figure 39: SDIO Clock Timing (SDR Modes) ................................................................................................ 170  
Figure 40: SDIO Bus Input Timing (SDR Modes) .......................................................................................... 171  
Figure 41: SDIO Bus Output Timing (SDR Modes up to 100 MHz)............................................................... 172  
Figure 42: SDIO Bus Output Timing (SDR Modes 100 MHz to 208 MHz)..................................................... 172  
Figure 43: tOP Consideration for Variable Data Window (SDR 104 Mode) ................................................. 173  
Figure 44: SDIO Clock Timing (DDR50 Mode).............................................................................................. 174  
Figure 45: SDIO Data Timing (DDR50 Mode) ............................................................................................... 175  
Figure 46: WLAN = ON, Bluetooth = ON ....................................................................................................... 181  
Figure 47: WLAN = OFF, Bluetooth = OFF.................................................................................................... 181  
Figure 48: WLAN = ON, Bluetooth = OFF ..................................................................................................... 182  
Figure 49: WLAN = OFF, Bluetooth = ON ..................................................................................................... 182  
Figure 50: WLAN Boot-Up Sequence............................................................................................................ 183  
Figure 51: 192-Ball WLBGA Package Mechanical Information ..................................................................... 186  
Figure 52: WLBGA Keep-Out Areas for PCB Layout (Top View, Balls Facing Down) .................................. 187  
Figure 53: 395-Bump WLCSP Package ........................................................................................................ 188  
Figure 54: WLCSP Keep-Out Areas for PCB Layout (Top View, Balls Facing Down)................................... 189  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 13  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
List of Tables  
List of Tables  
Table 1: Device Options and Features ............................................................................................................ 17  
Table 2: Power-Up/Power-Down/Reset Control Signals.................................................................................. 26  
Table 3: Crystal Oscillator and External Clock—Requirements and Performance ......................................... 28  
Table 4: External 32.768 kHz Sleep Clock Specifications ............................................................................... 30  
Table 5: Power Control Pin Description........................................................................................................... 37  
Table 6: SPI to UART Signal Mapping............................................................................................................. 44  
Table 7: PCM Interface Timing Specifications (Short Frame Sync, Master Mode).......................................... 47  
Table 8: PCM Interface Timing Specifications (Short Frame Sync, Slave Mode)............................................ 48  
Table 9: PCM Interface Timing Specifications (Long Frame Sync, Master Mode) .......................................... 49  
Table 10: PCM Interface Timing Specifications (Long Frame Sync, Slave Mode) .......................................... 50  
Table 11: PCM Burst Mode (Receive Only, Short Frame Sync)...................................................................... 51  
Table 12: PCM Burst Mode (Receive Only, Long Frame Sync) ...................................................................... 52  
Table 13: USB Full-Speed Timing Specifications ............................................................................................ 55  
Table 14: Example of Common Baud Rates.................................................................................................... 56  
Table 15: UART Timing Specifications ............................................................................................................ 57  
Table 16: Timing for I2S Transmitters and Receivers...................................................................................... 59  
Table 17: SDIO Pin Descriptions ..................................................................................................................... 69  
Table 18: Pin List by Pin Number (192-Pin WLBGA Package)........................................................................ 86  
Table 19: Pin List by Pin Name (192-Pin WLBGA Package)........................................................................... 89  
Table 20: 395-Bump WLCSP Coordinates ...................................................................................................... 92  
Table 21: WLCSP Signal Descriptions .......................................................................................................... 103  
Table 22: WLBGA Signal Descriptions .......................................................................................................... 111  
Table 23: WLAN GPIO Functions and Strapping Options ............................................................................. 119  
Table 24: BT GPIO Functions and Strapping Options................................................................................... 119  
Table 25: GPIO_[10, 9, 8] Host Interface Selection....................................................................................... 119  
Table 26: GPIO Alternative Signal Functions ................................................................................................ 120  
Table 27: GPIO Status Vs. Test Modes......................................................................................................... 121  
Table 28: I/O States....................................................................................................................................... 122  
Table 29: Absolute Maximum Ratings ........................................................................................................... 125  
Table 30: Environmental Ratings................................................................................................................... 126  
Table 31: Electrostatic Discharge Specifications........................................................................................... 126  
Table 32: Recommended Operating Conditions and DC Characteristics...................................................... 127  
Table 33: Bluetooth Receiver RF Specifications............................................................................................ 129  
Table 34: Bluetooth Transmitter RF Specifications........................................................................................ 132  
Table 35: Local Oscillator Performance......................................................................................................... 134  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 14  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
List of Tables  
Table 36: BLE RF Specifications ................................................................................................................... 134  
Table 37: FM Receiver Specifications ........................................................................................................... 135  
Table 38: 2.4 GHz Band General RF Specifications...................................................................................... 140  
Table 39: WLAN 2.4 GHz Receiver Performance Specifications .................................................................. 141  
Table 40: WLAN 2.4 GHz Transmitter Performance Specifications .............................................................. 147  
Table 41: WLAN 5 GHz Receiver Performance Specifications ..................................................................... 149  
Table 42: WLAN 5 GHz Transmitter Performance Specifications ................................................................. 156  
Table 43: Core Buck Switching Regulator (CBUCK) Specifications.............................................................. 158  
Table 44: LDO3P3 Specifications.................................................................................................................. 159  
Table 45: LDO3P3_B Specifications.............................................................................................................. 160  
Table 46: BTLDO2P5 Specifications ............................................................................................................. 161  
Table 47: CLDO Specifications...................................................................................................................... 162  
Table 48: LNLDO Specifications.................................................................................................................... 163  
Table 49: Typical WLAN Power Consumption............................................................................................... 164  
Table 50: Bluetooth BLE and FM Current Consumption................................................................................ 166  
Table 51: SDIO Bus Timing Parameters (Default Mode)............................................................................... 168  
Table 52: SDIO Bus Timing Parameters (High-Speed Mode) ....................................................................... 169  
Table 53: SDIO Bus Clock Timing Parameters (SDR Modes)....................................................................... 170  
Table 54: SDIO Bus Input Timing Parameters (SDR Modes)........................................................................ 171  
Table 55: SDIO Bus Output Timing Parameters (SDR Modes up to 100 MHz)............................................. 172  
Table 56: SDIO Bus Output Timing Parameters (SDR Modes 100 MHz to 208 MHz) .................................. 173  
Table 57: SDIO Bus Clock Timing Parameters (DDR50 Mode) .................................................................... 174  
Table 58: SDIO Bus Timing Parameters (DDR50 Mode) .............................................................................. 175  
Table 59: HSIC Interface Parameters............................................................................................................ 176  
Table 60: PCI Express Interface Parameters ................................................................................................ 177  
Table 61: JTAG Timing Characteristics ......................................................................................................... 179  
Table 62: WLCSP Package Thermal Characteristics .................................................................................... 184  
Table 63: WLBGA Package Thermal Characteristics.................................................................................... 184  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 15  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
About This Document  
About This Document  
Purpose and Audience  
This data sheet provides details on the functional, operational, and electrical characteristics for the Broadcom®  
BCM4354. It is intended for hardware design, application, and OEM engineers.  
Acronyms and Abbreviations  
In most cases, acronyms and abbreviations are defined on first use.  
For a comprehensive list of acronyms and other terms used in Broadcom documents, go to:  
http://www.broadcom.com/press/glossary.php.  
References  
The references in this section may be used in conjunction with this document.  
Note: Broadcom provides customer access to technical documentation and software through its  
Customer Support Portal (CSP) and Downloads & Support site (see Technical Support).  
For Broadcom documents, replace the “xx” in the document number with the largest number available in the  
repository to ensure that you have the most current version of the document.  
Document (or Item) Name  
Number  
Source  
[1] Bluetooth MWS Coexistence 2–wire Transport Interface –  
www.bluetooth.com  
Specification  
Technical Support  
Broadcom provides customer access to a wide range of information, including technical documentation,  
schematic diagrams, product bill of materials, PCB layout information, and software updates through its  
customer support portal (https://support.broadcom.com). For a CSP account, contact your Sales or Engineering  
support representative.  
In addition, Broadcom provides other product support through its Downloads & Support site  
(http://www.broadcom.com/support/).  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 16  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Overview  
Section 1: Overview  
Overview  
The Broadcom® BCM4354 single-chip device provides the highest level of integration for a mobile or handheld  
wireless system, with integrated IEEE 802.11 a/b/g/n/ac MAC/baseband/radio, Bluetooth 4.1 + EDR (enhanced  
data rate), and FM receiver. It provides a small form-factor solution with minimal external components to drive  
down cost for mass volumes and allows for handheld device flexibility in size, form, and function.  
Comprehensive power management circuitry and software ensure the system can meet the needs of highly  
mobile devices that require minimal power consumption and reliable operation.  
Figure 2 on page 18 shows the interconnect of all the major physical blocks in the BCM4354 and their  
associated external interfaces, which are described in greater detail in the following sections.  
Table 1: Device Options and Features  
Feature  
WLBGA  
WLCSP  
Package ball count  
PCIe  
192 pins  
395 bumps  
Yes  
Yes  
USB2.0 (Bluetooth)  
HSIC  
Yes  
Yes  
Yes  
Yes  
I2S  
Multiplexed onto six parallel flash pins  
No  
GPIO  
SDIO 3.0  
11  
16  
Yes  
Yes  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 17  
BROADCOM CONFIDENTIAL  
Overview  
BCM4354 Data Sheet  
Figure 2: BCM4354 Block Diagram  
BCM4354  
JTAG  
WLAN  
BT/FM  
*SDIO or *PCIe 2.0  
FMRX  
PCIe  
HSIC  
Debug  
PMU  
Controller  
SW REG  
LDO  
FM RX  
FM RF  
FM Digital  
Power Supply  
XTAL  
Cortex M3  
SDIO  
LPO  
AHB  
XTAL OSC  
POR  
RAM  
ROM  
AHB2 APB  
Bridge  
APB  
Patch  
OTP  
OTP  
WD Timer  
SW Timer  
GPIO Ctrl  
Inter Ctrl  
DMA  
ARM  
GPIO  
UART  
JTAG  
GPIO  
UART  
JTAG  
Bus Arb  
PTU  
UART  
SLIMBus  
AHB  
RAM  
ROM  
Debug UART  
MEIF  
BT RF  
BT PHY  
5 GHz IPA  
CLB  
I2S/PCM1  
I2S/PCM2  
BPF  
LNA  
2.4 GHz IPA  
Diplexer  
BT Digital IO  
BPF  
GPIO  
LNA  
5 GHz IPA  
SMPS Control  
BTFM Control Clock  
Sleep  
Clock  
PMU  
Controller  
GNSS LNA ANT  
Control  
BPF  
PMU  
Timer Management  
LNA  
Diplexer  
BPF  
2.4 GHz IPA  
Wake/Sleep  
Control  
BT-WLAN ECI  
XO  
LPO  
POR  
Coex  
Buffer  
Shared LNA  
BT RX  
BT TX  
VBAT VREG  
EXT LNA RF Switch Control  
XTAL  
POR  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 18  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Features  
Features  
The BCM4354 supports the following features:  
IEEE 802.11a/b/g/n/ac dual-band 2x2 MIMO radio with virtual-simultaneous dual-band operation  
Bluetooth v4.1 + EDR with integrated Class 1 PA  
Concurrent Bluetooth, FM (RX) RDS/RBDS, and WLAN operation  
On-chip WLAN driver execution capable of supporting IEEE 802.11 functionality  
Single- and dual-antenna support  
– Single antenna with shared LNA  
– Simultaneous BT/WLAN receive with single antenna  
WLAN host interface options:  
– SDIO v3.0 (1-bit/4-bit)—up to 208 MHz clock rate in SDR104 mode  
– HSIC (USB device interface for short distance on-board applications)  
– PCIe 2.0  
BT host digital interface (can be used concurrently with above interfaces):  
– UART (up to 4 Mbps)  
BT supports full-speed USB 2.0-compliant interface  
ECIenhanced coexistence support, ability to coordinate BT SCO transmissions around WLAN receives  
I2S/PCM for FM/BT audio, HCI for FM block control  
HCI high-speed UART (H4, H4+, H5) transport support  
Wideband speech support (16 bits linear data, MSB first, left justified at 4K samples/s for transparent air  
coding, both through I2S and PCM interface)  
Bluetooth SmartAudio® technology improves voice and music quality to headsets  
Bluetooth low power inquiry and page scan  
Bluetooth Low Energy (BLE) support  
Bluetooth Packet Loss Concealment (PLC)  
Bluetooth Wide Band Speech (WBS)  
FM advanced internal antenna support  
FM auto search/tuning functions  
FM multiple audio routing options: I2S, PCM, eSCO, and A2DP  
FM mono-stereo blend and switch, and soft mute support  
FM audio pause detect support  
Audio rate-matching algorithms  
Multiple simultaneous A2DP audio stream  
FM over Bluetooth operation and on-chip stereo headset emulation (SBC)  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 19  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Standards Compliance  
Standards Compliance  
The BCM4354 supports the following standards:  
Bluetooth 2.1 + EDR  
Bluetooth 3.0 + HS  
Bluetooth 4.1 (Bluetooth Low Energy)  
65 MHz to 108 MHz FM bands (US, Europe, and Japan)  
IEEE802.11ac mandatory and optional requirements for 20 MHz, 40 MHz, and 80 MHz channels  
IEEE 802.11n—Handheld Device Class (Section 11)  
IEEE 802.11a  
IEEE 802.11b  
IEEE 802.11g  
IEEE 802.11d  
IEEE 802.11h  
IEEE 802.11i  
Security:  
– WEP  
– WPA™ Personal  
– WPA2™ Personal  
– WMM  
– WMM-PS (U-APSD)  
– WMM-SA  
– AES (Hardware Accelerator)  
– TKIP (HW Accelerator)  
– CKIP (SW Support)  
Proprietary Protocols:  
– CCXv2  
– CCXv3  
– CCXv4  
– CCXv5  
IEEE 802.15.2 Coexistence Compliance—on silicon solution compliant with IEEE 3 wire requirements  
The BCM4354 will support the following future drafts/standards:  
IEEE 802.11r—Fast Roaming (between APs)  
IEEE 802.11wSecure Management Frames  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 20  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Standards Compliance  
IEEE 802.11 Extensions:  
– IEEE 802.11e QoS Enhancements (In accordance with the WMM® specification, QoS is already  
supported.)  
– IEEE 802.11h 5 GHz Extensions  
– IEEE 802.11i MAC Enhancements  
– IEEE 802.11k Radio Resource Measurement  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 21  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Power Supplies and Power Management  
Section 2: Power Supplies and Power  
Management  
Power Supply Topology  
One Buck regulator, multiple LDO regulators, and a power management unit (PMU) are integrated into the  
BCM4354. All regulators are programmable via the PMU. These blocks simplify power supply design for  
Bluetooth, WLAN, and FM functions in embedded designs.  
A single VBAT (3.0V to 5.25V DC max.) and VIO supply (1.8V to 3.3V) can be used, with all additional voltages  
being provided by the regulators in the BCM4354.  
Two control signals, BT_REG_ON and WL_REG_ON, are used to power-up the regulators and take the  
respective section out of reset. The CBUCK CLDO and LNLDO power up when any of the reset signals are  
deasserted. All regulators are powered down only when both BT_REG_ON and WL_REG_ON are deasserted.  
The CLDO and LNLDO may be turned off/on based on the dynamic demands of the digital baseband.  
The BCM4354 allows for an extremely low power-consumption mode by completely shutting down the CBUCK,  
CLDO, and LNLDO regulators. When in this state, LPLDO1 (which is a low-power linear regulator supplied by  
the system VIO supply) provides the BCM4354 with all the voltages it requires, further reducing leakage  
currents.  
BCM4354 PMU Features  
VBAT to 1.35Vout (600 mA maximum) Core-Buck (CBUCK) switching regulator  
VBAT to 3.3Vout (600 mA maximum) LDO3P3  
VBAT to 3.3Vout (150 mA maximum) LDO3P3_B  
VBAT to 2.5V out (70 mA maximum) BTLDO2P5  
1.35V to 1.2Vout (150 mA maximum) LNLDO  
1.35V to 1.2Vout (300 mA maximum) CLDO with bypass mode for deep-sleep  
Additional internal LDOs (not externally accessible)  
Figure 3 on page 23 illustrates the typical power topology for the BCM4354. The shaded areas are internal to  
the BCM4354.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 22  
BROADCOM CONFIDENTIAL  
BCM4354 PMU Features  
BCM4354 Data Sheet  
Figure 3: Typical Power Topology for the BCM4354  
1.2V  
Internal LNLDO  
WL RF – AFE  
1.2V  
Internal LNLDO  
WL RF – TX (2.4 GHz, 5 GHz)  
1.2V  
WL RF – LOGEN (2.4 GHz, 5 GHz)  
WL RF – RX/LNA (2.4 GHz, 5 GHz)  
Internal VCOLDO  
1.2V  
Internal LNLDO  
1.2V  
XTAL LDO  
WL RF – XTAL  
WL RF – RFPLL PFD/MMD  
1.2V  
LNLDO  
Max 150 mA  
BT RF/FM  
HSIC/DFE/DFLL  
WL_REG_ON  
BT_REG_ON  
PCIE PLL/RXTX  
Core Buck  
Regulator  
CBUCK  
WLAN BBPLL/DFLL  
WLAN/BT/CLB/Top, always on  
VBAT  
1.35V  
Max 600 mA  
WL OTP  
WL PHY  
CLDO  
Max 300 mA  
(Bypass in deep  
sleep)  
1.1V  
LPLDO1  
3 mA  
1.2V– 1.1V  
VDDIO  
WL DIGITAL  
BT DIGITAL  
WL/BT SRAMs  
BTLDO2P5  
Max 70 mA  
2.5V  
3.3V  
3.3V  
BT CLASS 1 PA  
WL RF-PA (2.4G, 5G)  
WL PAD (2.4 GHz, 5 GHz)  
VDDIO_RF  
LDO3P3  
Max 600 mA  
WL OTP 3.3V  
LDO3P3_B  
Max 150 mA  
WL RF – VCO  
WL RF – CP  
Internal LNLDO  
Internal LNLDO  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 23  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN Power Management  
WLAN Power Management  
The BCM4354 has been designed with the stringent power consumption requirements of mobile devices in  
mind. All areas of the chip design are optimized to minimize power consumption. Silicon processes and cell  
libraries were chosen to reduce leakage current and supply voltages. Additionally, the BCM4354 integrated  
RAM is a high Vt memory with dynamic clock control. The dominant supply current consumed by the RAM is  
leakage current only. Additionally, the BCM4354 includes an advanced WLAN power management unit (PMU)  
sequencer. The PMU sequencer provides significant power savings by putting the BCM4354 into various power  
management states appropriate to the current environment and activities that are being performed. The power  
management unit enables and disables internal regulators, switches, and other blocks based on a computation  
of the required resources and a table that describes the relationship between resources and the time needed to  
enable and disable them. Power up sequences are fully programmable. Configurable, free-running counters  
(running at 32.768 kHz LPO clock) in the PMU sequencer are used to turn on/turn off individual regulators and  
power switches. Clock speeds are dynamically changed (or gated altogether) for the current mode. Slower clock  
speeds are used wherever possible.  
The BCM4354 WLAN power states are described as follows:  
Active mode— All WLAN blocks in the BCM4354 are powered up and fully functional with active carrier  
sensing and frame transmission and receiving. All required regulators are enabled and put in the most  
efficient mode based on the load current. Clock speeds are dynamically adjusted by the PMU sequencer.  
Deep-sleep mode—Most of the chip including both analog and digital domains and most of the regulators  
are powered off. All main clocks (PLL, crystal oscillator, or TCXO) are shut down to reduce active power to  
the minimum. The 32.768 kHz LPO clock is available only for the PMU sequencer. This condition is  
necessary to allow the PMU sequencer to wake up the chip and transition to Active mode. Logic states in  
the digital core are saved and preserved into a retention memory in the always-ON domain before the  
digital core is powered off. Upon a wake-up event triggered by the PMU timers, an external interrupt or a  
host resume through the HSIC or SDIO bus, logic states in the digital core are restored to their pre-deep-  
sleep settings to avoid lengthy HW reinitialization. In Deep-sleep mode, the primary source of power  
consumption is leakage current.  
Power-down mode—The BCM4354 is effectively powered off by shutting down all internal regulators. The  
chip is brought out of this mode by external logic re-enabling the internal regulators.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 24  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PMU Sequencing  
PMU Sequencing  
The PMU sequencer is responsible for minimizing system power consumption. It enables and disables various  
system resources based on a computation of the required resources and a table that describes the relationship  
between resources and the time needed to enable and disable them.  
Resource requests may come from several sources: clock requests from cores, the minimum resources defined  
in the ResourceMin register, and the resources requested by any active resource request timers. The PMU  
sequencer maps clock requests into a set of resources required to produce the requested clocks.  
Each resource is in one of four states: enabled, disabled, transition_on, and transition_off and has a timer that  
contains 0 when the resource is enabled or disabled and a non-zero value in the transition states. The timer is  
loaded with the time_on or time_off value of the resource when the PMU determines that the resource must be  
enabled or disabled. That timer decrements on each 32.768 kHz PMU clock. When it reaches 0, the state  
changes from transition_off to disabled or transition_on to enabled. If the time_on value is 0, the resource can  
go immediately from disabled to enabled. Similarly, a time_off value of 0 indicates that the resource can go  
immediately from enabled to disabled. The terms enable sequence and disable sequence refer to either the  
immediate transition or the timer load-decrement sequence.  
During each clock cycle, the PMU sequencer performs the following actions:  
Computes the required resource set based on requests and the resource dependency table.  
Decrements all timers whose values are non zero. If a timer reaches 0, the PMU clears the  
ResourcePending bit for the resource and inverts the ResourceState bit.  
Compares the request with the current resource status and determines which resources must be enabled  
or disabled.  
Initiates a disable sequence for each resource that is enabled, no longer being requested, and has no  
powered up dependents.  
Initiates an enable sequence for each resource that is disabled, is being requested, and has all of its  
dependencies enabled.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 25  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Power-Off Shutdown  
Power-Off Shutdown  
The BCM4354 provides a low-power shutdown feature that allows the device to be turned off while the host, and  
any other devices in the system, remain operational. When the BCM4354 is not needed in the system,  
VDDIO_RF and VDDC are shut down while VDDIO remains powered. This allows the BCM4354 to be effectively  
off while keeping the I/O pins powered so that they do not draw extra current from any other devices connected  
to the I/O.  
During a low-power shut-down state, provided VDDIO remains applied to the BCM4354, all outputs are tristated,  
and most inputs signals are disabled. Input voltages must remain within the limits defined for normal operation.  
This is done to prevent current paths or create loading on any digital signals in the system, and enables the  
BCM4354 to be fully integrated in an embedded device and take full advantage of the lowest power-savings  
modes.  
When the BCM4354 is powered on from this state, it is the same as a normal power-up and the device does not  
retain any information about its state from before it was powered down.  
Power-Up/Power-Down/Reset Circuits  
The BCM4354 has two signals (see Table 2) that enable or disable the Bluetooth and WLAN circuits and the  
internal regulator blocks, allowing the host to control power consumption. For timing diagrams of these signals  
and the required power-up sequences, see Section 21: “Power-Up Sequence and Timing,” on page 180.  
Table 2: Power-Up/Power-Down/Reset Control Signals  
Signal  
Description  
WL_REG_ON This signal is used by the PMU (with BT_REG_ON) to power up the WLAN section. It is also  
OR-gated with the BT_REG_ON input to control the internal BCM4354 regulators. When this  
pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin is  
low, the WLAN section is in reset. If BT_REG_ON and WL_REG_ON are both low, the  
regulators are disabled. This pin has an internal 200 kpull-down resistor that is enabled by  
default. It can be disabled through programming.  
BT_REG_ON This signal is used by the PMU (with WL_REG_ON) to decide whether or not to power down  
the internal BCM4354 regulators. If BT_REG_ON and WL_REG_ON are low, the regulators  
will be disabled. This pin has an internal 200 kpull-down resistor that is enabled by default.  
It can be disabled through programming.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 26  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Frequency References  
Section 3: Frequency References  
An external crystal is used for generating all radio frequencies and normal operation clocking. As an alternative,  
an external frequency reference may be used. In addition, a low-power oscillator (LPO) is provided for lower  
power mode timing.  
Crystal Interface and Clock Generation  
The BCM4354 can use an external crystal to provide a frequency reference. The recommended configuration  
for the crystal oscillator including all external components is shown in Figure 4. Consult the reference  
schematics for the latest configuration.  
Figure 4: Recommended Oscillator Configuration  
C*  
WRF_XTAL_I N  
37.4 MHz  
C*  
X ohms*  
WRF_XTAL_OUT  
* Values determined by crystal  
drive level. See reference  
schematics for details.  
A fractional-N synthesizer in the BCM4354 generates the radio frequencies, clocks, and data/packet timing,  
enabling it to operate using a wide selection of frequency references.  
For SDIO, HSIC, and PCIe WLAN host applications, the recommended default frequency reference is a 37.4  
MHz crystal. For PCIe applications, see Table 3 on page 28 for details on alternatives for the external frequency  
reference. The signal characteristics for the crystal oscillator interface are also listed in Table 3.  
Note: Although the fractional-N synthesizer can support alternative reference frequencies,  
frequencies other than the default require support to be added in the driver, plus additional extensive  
system testing. Contact Broadcom for further details.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 27  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
External Frequency Reference  
External Frequency Reference  
For operation in SDIO and HSIC modes only, an alternative to a crystal (an external precision frequency  
reference) can be used. The recommended default frequency is 52 MHz ±10 ppm, and it must meet the phase  
noise requirements listed in Table 3.  
If used, the external clock should be connected to the WRF_XTAL_IN pin through an external 1000 pF coupling  
capacitor, as shown in Figure 5. The internal clock buffer connected to this pin will be turned OFF when the  
BCM4354 goes into sleep mode. When the clock buffer turns ON and OFF there will be a small impedance  
variation. Power must be supplied to the WRF_XTAL_VDD1P5 pin.  
Figure 5: Recommended Circuit to Use with an External Reference Clock  
1000 pF  
Reference  
WRF_XTAL_IN  
Clock  
NC  
WRF_XTAL_OUT  
Table 3: Crystal Oscillator and External Clock—Requirements and Performance  
External Frequency  
Crystala  
Referenceb,c  
Parameter  
Conditions/Notes  
Min. Typ. Max. Min. Typ. Max. Units  
Frequency  
2.4G and 5G bands: IEEE  
802.11ac operation, SDIO3.0,  
HSIC and PCIe WLAN  
interfaces  
35  
37.4  
52  
MHz  
2.4G and 5G bands, IEEE  
802.11ac operation, PCIe  
interface alternative frequency  
40  
MHz  
MHz  
5G band: IEEE 802.11n  
operation only  
19  
52  
35  
52  
Ranges between 19 MHz and 52 MHzd,e  
2.4G band: IEEE 802.11n  
operation, and both bands  
legacy 802.11a/b/g operation  
only  
Frequency tolerance Without trimming  
over the lifetime of the  
–20  
20  
–20  
20  
ppm  
equipment, including  
temperaturef  
Crystal load  
capacitance  
12  
pF  
ESR  
60  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 28  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
External Frequency Reference  
Table 3: Crystal Oscillator and External Clock—Requirements and Performance (Cont.)  
External Frequency  
Referenceb,c  
Crystala  
Parameter  
Conditions/Notes  
Min. Typ. Max. Min. Typ. Max. Units  
Drive level  
External crystal must be able to 200  
tolerate this drive level.  
µW  
Input impedance  
(WRF_XTAL_IN)  
Resistive  
30  
100  
kΩ  
pF  
V
Capacitive  
7.5  
7.5  
0.2  
WRF_XTAL_IN  
Input low level  
DC-coupled digital signal  
0
WRF_XTAL_IN  
Input high level  
DC-coupled digital signal  
AC-coupled analog signal  
1.0  
1.26  
V
WRF_XTAL_IN  
input voltage  
400  
1200 mVp-p  
(see Figure 5)  
Duty cycle  
37.4 MHz clock  
40  
50  
60  
%
Phase Noiseg  
37.4 MHz clock at 10 kHz offset –  
37.4 MHz clock at 100 kHz offset –  
–129 dBc/Hz  
–136 dBc/Hz  
(IEEE 802.11b/g)  
Phase Noiseg  
37.4 MHz clock at 10 kHz offset –  
37.4 MHz clock at 100 kHz offset –  
–137 dBc/Hz  
–144 dBc/Hz  
(IEEE 802.11a)  
Phase Noiseg  
37.4 MHz clock at 10 kHz offset –  
37.4 MHz clock at 100 kHz offset –  
–134 dBc/Hz  
–141 dBc/Hz  
(IEEE 802.11n,  
2.4 GHz)  
Phase Noiseg,h  
37.4 MHz clock at 10 kHz offset –  
37.4 MHz clock at 100 kHz offset –  
–142 dBc/Hz  
–149 dBc/Hz  
(IEEE 802.11n,  
5 GHz)  
Phase Noiseg  
37.4 MHz clock at 10 kHz offset –  
37.4 MHz clock at 100 kHz offset –  
–150 dBc/Hz  
–157 dBc/Hz  
(IEEE 802.11ac,  
5 GHz)  
a. (Crystal) Use WRF_XTAL_IN and WRF_XTAL_OUT.  
b. See “External Frequency Reference” on page 28 for alternate connection methods.  
c. For a clock reference other than 37.4 MHz, 20 × log10(f/ 37.4) dB should be added to the limits, where f = the  
reference clock frequency in MHz.  
d. BT_TM6 should be tied low for a 52 MHz clock reference. For other frequencies, BT_TM6 should be tied high.  
Note that 52 MHz is not an auto–detected frequency using the LPO clock.  
e. The frequency step size is approximately 80 Hz resolution.  
f. It is the responsibility of the equipment designer to select oscillator components that comply with these  
specifications.  
g. Assumes that external clock has a flat phase noise response above 100 kHz.  
h. If the reference clock frequency is <35 MHz the phase noise requirements must be tightened by an additional  
2 dB.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 29  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
External 32.768 kHz Low-Power Oscillator  
External 32.768 kHz Low-Power Oscillator  
The BCM4354 uses a secondary low-frequency clock for Low-Power mode timing. Either the internal low-  
precision LPO or an external 32.768 kHz precision oscillator is required. The internal LPO frequency range is  
approximately 33 kHz (± 30%) over process, voltage, and temperature, which is adequate for some  
applications. However, one trade-off caused by this wide LPO tolerance is a small current consumption increase  
during power save mode that is incurred by the need to wake up earlier to avoid missing beacons.  
Whenever possible, the preferred approach is to use a precision external 32.768 kHz clock which meets the  
requirements listed in Table 4.  
Table 4: External 32.768 kHz Sleep Clock Specifications  
Parameter  
LPO Clock  
Unit  
Nominal input frequency  
Frequency accuracy  
Duty cycle  
32.768  
kHz  
ppm  
%
±200  
30–70  
Input signal amplitude  
Signal type  
200-3300  
mV, p-p  
Square-wave or sine-wave  
Input impedancea  
> 100k  
< 5  
pF  
Clock jitter (during initial start-up)  
< 10,000  
ppm  
a. When power is applied or switched off.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 30  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth + FM Subsystem Overview  
Section 4: Bluetooth + FM Subsystem  
Overview  
The Broadcom BCM4354 is a Bluetooth 4.1 + EDR-compliant, baseband processor/2.4 GHz transceiver with  
an integrated FM/RDS/RBDS receiver. It features the highest level of integration and eliminates all critical  
external components, thus minimizing the footprint, power consumption, and system cost of a Bluetooth plus  
FM radio solution.  
The BCM4354 is the optimal solution for any Bluetooth voice and/or data application that also requires an FM  
radio receiver. The Bluetooth subsystem presents a standard Host Controller Interface (HCI) via a high-speed  
UART and PCM for audio. The FM subsystem supports the HCI control interface, analog output, as well as I2S  
and PCM interfaces. The BCM4354 incorporates all Bluetooth 4.1 features including Secure Simple Pairing,  
Sniff Subrating, and Encryption Pause and Resume.  
The BCM4354 Bluetooth radio transceiver provides enhanced radio performance to meet the most stringent  
mobile phone temperature applications and the tightest integration into mobile handsets and portable devices.  
It is fully compatible with any of the standard TCXO frequencies and provides full radio compatibility to operate  
simultaneously with GPS, WLAN, and cellular radios.  
The Bluetooth transmitter also features a Class 1 power amplifier with Class 2 capability.  
Features  
Major Bluetooth features of the BCM4354 include:  
Supports key features of upcoming Bluetooth standards  
Fully supports Bluetooth Core Specification version 4.1 + (Enhanced Data Rate) EDR features:  
– Adaptive Frequency Hopping (AFH)  
– Quality of Service (QoS)  
– Extended Synchronous Connections (eSCO)Voice Connections  
– Fast Connect (interlaced page and inquiry scans)  
– Secure Simple Pairing (SSP)  
– Sniff Subrating (SSR)  
– Encryption Pause Resume (EPR)  
– Extended Inquiry Response (EIR)  
– Link Supervision Timeout (LST)  
UART baud rates up to 4 Mbps  
Supports all Bluetooth 4.1 packet types  
Supports maximum Bluetooth data rates over HCI UART  
BT supports full-speed USB 2.0-compliant interface  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 31  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Features  
Multipoint operation with up to seven active slaves  
– Maximum of seven simultaneous active ACL links  
– Maximum of three simultaneous active SCO and eSCO connections with scatternet support  
Trigger Broadcom fast connect (TBFC)  
Narrowband and wideband packet loss concealment  
Scatternet operation with up to four active piconets with background scan and support for scatter mode  
High-speed HCI UART transport support with low-power out-of-band BT_DEV_WAKE and  
BT_HOST_WAKE signaling (see “Host Controller Power Management” on page 37)  
Channel quality driven data rate and packet type selection  
Standard Bluetooth test modes  
Extended radio and production test mode features  
Full support for power savings modes  
– Bluetooth clock request  
– Bluetooth standard sniff  
– Deep-sleep modes and software regulator shutdown  
TCXO input and auto-detection of all standard handset clock frequencies. Also supports a low-power  
crystal, which can be used during power save mode for better timing accuracy.  
Major FM Radio features include:  
65 MHz to 108 MHz FM bands supported (US, Europe, and Japan)  
FM subsystem control using the Bluetooth HCI interface  
FM subsystem operates from reference clock inputs.  
Improved audio interface capabilities with full-featured bidirectional PCM and I2S  
I2S can be master or slave.  
FM Receiver-Specific Features Include:  
Excellent FM radio performance with 1 µV sensitivity for 26 dB (S+N)/N  
Signal-dependent stereo/mono blending  
Signal dependent soft mute  
Auto search and tuning modes  
Audio silence detection  
RSSI, IF frequency, status indicators  
RDS and RBDS demodulator and decoder with filter and buffering functions  
Automatic frequency jump  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 32  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth Radio  
Bluetooth Radio  
The BCM4354 has an integrated radio transceiver that has been optimized for use in 2.4 GHz Bluetooth wireless  
systems. It has been designed to provide low-power, low-cost, robust communications for applications operating  
in the globally available 2.4 GHz unlicensed ISM band. It is fully compliant with the Bluetooth Radio Specification  
and EDR specification and meets or exceeds the requirements to provide the highest communication link quality  
of service.  
Transmit  
The BCM4354 features a fully integrated zero-IF transmitter. The baseband transmit data is GFSK-modulated  
in the modem block and upconverted to the 2.4 GHz ISM band in the transmitter path. The transmitter path  
consists of signal filtering, I/Q upconversion, output power amplifier, and RF filtering. The transmitter path also  
incorporates /4–DQPSK for 2 Mbps and 8–DPSK for 3 Mbps to support EDR. The transmitter section is  
compatible to the Bluetooth Low Energy specification. The transmitter PA bias can also be adjusted to provide  
Bluetooth class 1 or class 2 operation.  
Digital Modulator  
The digital modulator performs the data modulation and filtering required for the GFSK, /4–DQPSK, and  
8–DPSK signal. The fully digital modulator minimizes any frequency drift or anomalies in the modulation  
characteristics of the transmitted signal and is much more stable than direct VCO modulation schemes.  
Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency  
tracking and bit-synchronization algorithm.  
Power Amplifier  
The fully integrated PA supports Class 1 or Class 2 output using a highly linearized, temperature-compensated  
design. This provides greater flexibility in front-end matching and filtering. Due to the linear nature of the PA  
combined with some integrated filtering, external filtering is required to meet the Bluetooth and regulatory  
harmonic and spurious requirements. For integrated mobile handset applications in which Bluetooth is  
integrated next to the cellular radio, external filtering can be applied to achieve near thermal noise levels for  
spurious and radiated noise emissions. The transmitter features a sophisticated on-chip transmit signal strength  
indicator (TSSI) block to keep the absolute output power variation within a tight range across process, voltage,  
and temperature.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 33  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth Radio  
Receiver  
The receiver path uses a low-IF scheme to downconvert the received signal for demodulation in the digital  
demodulator and bit synchronizer. The receiver path provides a high degree of linearity, an extended dynamic  
range, and high-order on-chip channel filtering to ensure reliable operation in the noisy 2.4 GHz ISM band. The  
front-end topology with built-in out-of-band attenuation enables the BCM4354 to be used in most applications  
with minimal off-chip filtering. For integrated handset operation, in which the Bluetooth function is integrated  
close to the cellular transmitter, external filtering is required to eliminate the desensitization of the receiver by  
the cellular transmit signal.  
Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency  
tracking and bit synchronization algorithm.  
Receiver Signal Strength Indicator  
The radio portion of the BCM4354 provides a Receiver Signal Strength Indicator (RSSI) signal to the baseband,  
so that the controller can take part in a Bluetooth power-controlled link by providing a metric of its own receiver  
signal strength to determine whether the transmitter should increase or decrease its output power.  
Local Oscillator Generation  
Local Oscillator (LO) generation provides fast frequency hopping (1600 hops/second) across the 79 maximum  
available channels. The LO generation subblock employs an architecture for high immunity to LO pulling during  
PA operation. The BCM4354 uses an internal RF and IF loop filter.  
Calibration  
The BCM4354 radio transceiver features an automated calibration scheme that is fully self contained in the  
radio. No user interaction is required during normal operation or during manufacturing to provide the optimal  
performance. Calibration optimizes the performance of all the major blocks within the radio to within 2% of  
optimal conditions, including gain and phase characteristics of filters, matching between key components, and  
key gain blocks. This takes into account process variation and temperature variation. Calibration occurs  
transparently during normal operation during the settling time of the hops and calibrates for temperature  
variations as the device cools and heats during normal operation in its environment.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 34  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth Baseband Core  
Section 5: Bluetooth Baseband Core  
The Bluetooth Baseband Core (BBC) implements all of the time critical functions required for high-performance  
Bluetooth operation. The BBC manages the buffering, segmentation, and routing of data for all connections. It  
also buffers data that passes through it, handles data flow control, schedules SCO/ACL TX/RX transactions,  
monitors Bluetooth slot usage, optimally segments and packages data into baseband packets, manages  
connection status indicators, and composes and decodes HCI packets. In addition to these functions, it  
independently handles HCI event types, and HCI command types.  
The following transmit and receive functions are also implemented in the BBC hardware to increase reliability  
and security of the TX/RX data before sending over the air:  
Symbol timing recovery, data deframing, forward error correction (FEC), header error control (HEC), cyclic  
redundancy check (CRC), data decryption, and data dewhitening in the receiver.  
Data framing, FEC generation, HEC generation, CRC generation, key generation, data encryption, and  
data whitening in the transmitter.  
Bluetooth 4.1 Features  
The BBC supports all Bluetooth 4.1 features, with the following benefits:  
Dual-mode bluetooth Low Energy (BT and BLE operation)  
Extended Inquiry Response (EIR): Shortens the time to retrieve the device name, specific profile, and  
operating mode.  
Encryption Pause Resume (EPR): Enables the use of Bluetooth technology in a much more secure  
environment.  
Sniff Subrating (SSR): Optimizes power consumption for low duty cycle asymmetric data flow, which  
subsequently extends battery life.  
Secure Simple Pairing (SSP): Reduces the number of steps for connecting two devices, with minimal or no  
user interaction required.  
Link Supervision Time Out (LSTO): Additional commands added to HCI and Link Management Protocol  
(LMP) for improved link time-out supervision.  
QoS enhancements: Changes to data traffic control, which results in better link performance. Audio, human  
interface device (HID), bulk traffic, SCO, and enhanced SCO (eSCO) are improved with the erroneous data  
(ED) and packet boundary flag (PBF) enhancements.  
Bluetooth Low Energy  
The BCM4354 supports the Bluetooth Low Energy operating mode.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
BROADCOM CONFIDENTIAL  
Page 35  
BCM4354 Data Sheet  
Link Control Layer  
Link Control Layer  
The link control layer is part of the Bluetooth link control functions that are implemented in dedicated logic in the  
link control unit (LCU). This layer consists of the command controller that takes commands from the software,  
and other controllers that are activated or configured by the command controller, to perform the link control  
tasks. Each task performs a different state in the Bluetooth Link Controller.  
Major states:  
– Standby  
– Connection  
Substates:  
– Page  
– Page Scan  
– Inquiry  
– Inquiry Scan  
– Sniff  
Test Mode Support  
The BCM4354 fully supports Bluetooth Test mode as described in Part I:1 of the Specification of the Bluetooth  
System Version 3.0. This includes the transmitter tests, normal and delayed loopback tests, and reduced  
hopping sequence.  
In addition to the standard Bluetooth Test Mode, the BCM4354 also supports enhanced testing features to  
simplify RF debugging and qualification and type-approval testing. These features include:  
Fixed frequency carrier wave (unmodulated) transmission  
– Simplifies some type-approval measurements (Japan)  
– Aids in transmitter performance analysis  
Fixed frequency constant receiver mode  
– Receiver output directed to I/O pin  
– Allows for direct BER measurements using standard RF test equipment  
– Facilitates spurious emissions testing for receive mode  
Fixed frequency constant transmission  
– Eight-bit fixed pattern or PRBS-9  
– Enables modulated signal measurements with standard RF test equipment  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 36  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth Power Management Unit  
Bluetooth Power Management Unit  
The Bluetooth Power Management Unit (PMU) provides power management features that can be invoked by  
either software through power management registers or packet handling in the baseband core. The power  
management functions provided by the BCM4354 are:  
RF Power Management  
Host Controller Power Management  
BBC Power Management  
FM Power Management  
RF Power Management  
The BBC generates power-down control signals for the transmit path, receive path, PLL, and power amplifier to  
the 2.4 GHz transceiver. The transceiver then processes the power-down functions accordingly.  
Host Controller Power Management  
When running in UART mode, the BCM4354 may be configured so that dedicated signals are used for power  
management hand-shaking between the BCM4354 and the host. The basic power saving functions supported  
by those hand-shaking signals include the standard Bluetooth defined power savings modes and standby  
modes of operation. Table 5 describes the power-control hand-shake signals used with the UART interface.  
Table 5: Power Control Pin Description  
Signal  
Mapped to Pin  
Type Description  
BT_DEV_WAKE  
BT_GPIO_0  
I
Bluetooth device wake-up: Signal from the host to the  
BCM4354 indicating that the host requires attention.  
Asserted: The Bluetooth device must wake-up or remain  
awake.  
Deasserted: The Bluetooth device may sleep when sleep  
criteria are met.  
The polarity of this signal is software configurable and can be  
asserted high or low.  
BT_HOST_WAKE BT_GPIO_1  
O
Host wake up. Signal from the BCM4354 to the host  
indicating that the BCM4354 requires attention.  
Asserted: host device must wake-up or remain awake.  
Deasserted: host device may sleep when sleep criteria  
are met.  
The polarity of this signal is software configurable and can be  
asserted high or low.  
CLK_REQ  
BT_CLK_REQ_OUT O  
WL_CLK_REQ_OUT  
The BCM4354 asserts CLK_REQ when Bluetooth or WLAN  
wants the host to turn on the reference clock. The CLK_REQ  
polarity is active-high. Add an external 100 kpull-down  
resistor to ensure the signal is deasserted when the  
BCM4354 powers up or resets when VDDIO is present.  
Note: Pad function Control Register is set to 0 for these pins. See “DC Characteristics” on page 125 for more  
details.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 37  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth Power Management Unit  
The timing for the startup sequence is defined in Figure 6.  
Figure 6: Startup Signaling Sequence  
LPO  
VDDIO  
Host I/Os  
unconfigured  
Host I/Os  
configured  
HostResetX  
T1  
BT_GPIO_0  
(BT_DEV_WAKE  
)
BTH I/Os  
unconfigured  
T2  
BT_REG_ON  
BTH I/Os  
configured  
BT_GPIO_1  
(BT_HOST_WAKE)  
T3  
Host side drives  
this line low  
BT_UART_CTS_N  
BTH device drives this line low  
indicating transport is ready  
T4  
BT_UART_RTS_N  
CLK_REQ_OUT  
T5  
Driven  
Pulled  
Notes:  
T1 is the time for Host to settle it’s IOs after a reset.  
T2 is the time for Host to drive BT_REG_ON high after the Host IOs are configured.  
T3 is the time for BTH (Bluetooth) device to settle its IOs after a reset and reference clock settling time has elapsed.  
T4 is the time for BTH device to drive BT_UART_RTS_N low after the Host drives BT_UART_CTS_N low. This assumes the BTH device has already  
completed initialization.  
T5 is the time for BTH device to drive CLK_REQ_OUT high after BT_REG_ON goes high. Note this pin is used for designs that use an external reference  
clock source from the Host. This pin is irrelevant for Crystal reference clock based designs where the BTH device generates it’s own reference clock from  
an external crystal connected to it’s oscillator circuit.  
Timing diagram assumes VBAT is present.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 38  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth Power Management Unit  
BBC Power Management  
The following are low-power operations for the BBC:  
Physical layer packet-handling turns the RF on and off dynamically within transmit/receive packets.  
Bluetooth-specified low-power connection modes: sniff, hold, and park. While in these modes, the  
BCM4354 runs on the low-power oscillator and wakes up after a predefined time period.  
A low-power shutdown feature allows the device to be turned off while the host and any other devices in the  
system remain operational. When the BCM4354 is not needed in the system, the RF and core supplies are  
shut down while the I/O remains powered. This allows the BCM4354 to effectively be off while keeping the  
I/O pins powered so they do not draw extra current from any other devices connected to the I/O.  
During the low-power shut-down state, provided VDDIO remains applied to the BCM4354, all outputs are  
tristated, and most input signals are disabled. Input voltages must remain within the limits defined for normal  
operation. This is done to prevent current paths or create loading on any digital signals in the system and  
enables the BCM4354 to be fully integrated in an embedded device to take full advantage of the lowest  
power-saving modes.  
Two BCM4354 input signals are designed to be high-impedance inputs that do not load the driving signal  
even if the chip does not have VDDIO power supplied to it: the frequency reference input (WRF_TCXO_IN)  
and the 32.768 kHz input (LPO). When the BCM4354 is powered on from this state, it is the same as a  
normal power-up, and the device does not contain any information about its state from the time before it was  
powered down.  
FM Power Management  
The BCM4354 FM subsystem can operate independently of, or in tandem with, the Bluetooth RF and BBC  
subsystems. The FM subsystem power management scheme operates in conjunction with the Bluetooth RF and  
BBC subsystems. The FM block does not have a low power state, it is either on or off.  
Wideband Speech  
The BCM4354 provides support for wideband speech (WBS) using on-chip SmartAudio technology. The  
BCM4354 can perform subband-codec (SBC), as well as mSBC, encoding and decoding of linear 16 bits at  
16 kHz (256 Kbps rate) transferred over the PCM bus.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 39  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth Power Management Unit  
Packet Loss Concealment  
Packet Loss Concealment (PLC) improves apparent audio quality for systems with marginal link performance.  
Bluetooth messages are sent in packets. When a packet is lost, it creates a gap in the received audio bit-stream.  
Packet loss can be mitigated in several ways:  
Fill in zeros.  
Ramp down the output audio signal toward zero (this is the method used in current Bluetooth headsets).  
Repeat the last frame (or packet) of the received bit-stream and decode it as usual (frame repeat).  
These techniques cause distortion and popping in the audio stream. The BCM4354 uses a proprietary waveform  
extension algorithm to provide dramatic improvement in the audio quality. Figure 7 and Figure 8 show audio  
waveforms with and without Packet Loss Concealment. Broadcom PLC/BEC algorithms also support wide band  
speech.  
Figure 7: CVSD Decoder Output Waveform Without PLC  
Packet Loss Causes Ramp-down  
Figure 8: CVSD Decoder Output Waveform After Applying PLC  
Audio Rate-Matching Algorithms  
The BCM4354 has an enhanced rate-matching algorithm that uses interpolation algorithms to reduce audio  
stream jitter that may be present when the rate of audio data coming from the host is not the same as the  
Bluetooth or FM audio data rates.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 40  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Adaptive Frequency Hopping  
Codec Encoding  
The BCM4354 can support SBC and mSBC encoding and decoding for wideband speech.  
Multiple Simultaneous A2DP Audio Stream  
The BCM4354 has the ability to take a single audio stream and output it to multiple Bluetooth devices  
simultaneously. This allows a user to share his or her music (or any audio stream) with a friend.  
FM Over Bluetooth  
FM Over Bluetooth enables the BCM4354 to stream data from FM over Bluetooth without requiring the host to  
be awake. This can significantly extend battery life for usage cases where someone is listening to FM radio on  
a Bluetooth headset.  
Burst Buffer Operation  
The BCM4354 has a data buffer that can buffer data being sent over the HCI and audio transports, then send  
the data at an increased rate. This mode of operation allows the host to sleep for the maximum amount of time,  
dramatically reducing system current consumption.  
Adaptive Frequency Hopping  
The BCM4354 gathers link quality statistics on a channel by channel basis to facilitate channel assessment and  
channel map selection. The link quality is determined using both RF and baseband signal processing to provide  
a more accurate frequency-hop map.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 41  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Advanced Bluetooth/WLAN Coexistence  
Advanced Bluetooth/WLAN Coexistence  
The BCM4354 includes advanced coexistence technologies that are only possible with a Bluetooth/WLAN  
integrated die solution. These coexistence technologies are targeted at small form-factor platforms, such as cell  
phones and media players, including applications such as VoWLAN + SCO and Video-over-WLAN + High  
Fidelity BT Stereo.  
Support is provided for platforms that share a single antenna between Bluetooth and WLAN. Dual-antenna  
applications are also supported. The BCM4354 radio architecture allows for lossless simultaneous Bluetooth  
and WLAN reception for shared antenna applications. This is possible only via an integrated solution (shared  
LNA and joint AGC algorithm). It has superior performance versus implementations that need to arbitrate  
between Bluetooth and WLAN reception.  
The BCM4354 integrated solution enables MAC-layer signaling (firmware) and a greater degree of sharing via  
an enhanced coexistence interface. Information is exchanged between the Bluetooth and WLAN cores without  
host processor involvement.  
The BCM4354 also supports Transmit Power Control on the STA together with standard Bluetooth TPC to limit  
mutual interference and receiver desensitization. Preemption mechanisms are utilized to prevent AP  
transmissions from colliding with Bluetooth frames. Improved channel classification techniques have been  
implemented in Bluetooth for faster and more accurate detection and elimination of interferers (including non-  
WLAN 2.4 GHz interference).  
The Bluetooth AFH classification is also enhanced by the WLAN core’s channel information.  
Fast Connection (Interlaced Page and Inquiry Scans)  
The BCM4354 supports page scan and inquiry scan modes that significantly reduce the average inquiry  
response and connection times. These scanning modes are compatible with the Bluetooth version 2.1 page and  
inquiry procedures.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 42  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Microprocessor and Memory Unit for Bluetooth  
Section 6: Microprocessor and Memory  
Unit for Bluetooth  
The Bluetooth microprocessor core is based on the ARM® Cortex-M3™ 32-bit RISC processor with embedded  
ICE-RT debug and JTAG interface units. It runs software from the link control (LC) layer, up to the host controller  
interface (HCI).  
The ARM core is paired with a memory unit that contains 668 KB of ROM memory for program storage and boot  
ROM, 200 KB of RAM for data scratchpad and patch RAM code. The internal ROM allows for flexibility during  
power-on reset to enable the same device to be used in various configurations. At power-up, the lower-layer  
protocol stack is executed from the internal ROM memory.  
External patches may be applied to the ROM-based firmware to provide flexibility for bug fixes or features  
additions. These patches may be downloaded from the host to the BCM4354 through the UART transports. The  
mechanism for downloading via UART is identical to the proven interface of the BCM4330 device.  
RAM, ROM, and Patch Memory  
The BCM4354 Bluetooth core has 200 KB of internal RAM which is mapped between general purpose scratch  
pad memory and patch memory and 668 KB of ROM used for the lower-layer protocol stack, test mode software,  
and boot ROM. The patch memory capability enables the addition of code changes for purposes of feature  
additions and bug fixes to the ROM memory.  
Reset  
The BCM4354 has an integrated power-on reset circuit that resets all circuits to a known power-on state. The  
BT power-on reset (POR) circuit is out of reset after BT_REG_ON goes High. If BT_REG_ON is low, then the  
POR circuit is held in reset.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 43  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth Peripheral Transport Unit  
Section 7: Bluetooth Peripheral Transport  
Unit  
SPI Interface  
The BCM4354 supports a slave SPI HCI transport with an input clock range of up to 16 MHz. Higher clock rates  
can be possible. The physical interface between the SPI master and the BCM4354 consists of the four SPI  
signals (SPI_CSB, SPI_CLK, SPI_SI, and SPI_SO) and one interrupt signal (SPI_INT). The SPI signals are  
muxed onto the UART signals, see Table 6. The BCM4354 can be configured to accept active-low or active-high  
polarity on the SPI_CSB chip select signal. It can also be configured to drive an active-low or active-high  
SPI_INT interrupt signal. Bit ordering on the SPI_SI and SPI_SO data lines can be configured as either little-  
endian or big-endian. Additionally, proprietary sleep mode and half-duplex handshaking is implemented  
between the SPI master and the BCM4354. The SPI_INT is required to negotiate the start of a transaction. The  
SPI interface does not require flow control in the middle of a payload. The FIFO is large enough to handle the  
largest packet size. Only the SPI master can stop the flow of bytes on the data lines, since it controls SPI_CSB  
and SPI_CLK. Flow control should be implemented in the higher layer protocols.  
Table 6: SPI to UART Signal Mapping  
SPI Signals  
UART Signals  
SPI_CLK  
SPI_CSB  
SPI_MISO  
SPI_MOSI  
SPI_INT  
UART_CTS_N  
UART_RTS_N  
UART_TXD  
UART_RXD  
BT_DEV_WAKE  
SPI/UART Transport Detection  
The BT_HOST_WAKE (BT_GPIO1) pin is also used for BT transport detection. The transport detection occurs  
during the power-up sequence. It selects either UART or SPI transport operation based on the following pin  
state:  
If the BT_HOST_WAKE (BT_GPIO1) pin is pulled low by an external pull-down during power-up, it selects  
the SPI transport interface.  
If the BT_HOST_WAKE (BT_GPIO1) pin is not pulled low externally during power-up, then the default  
internal pull-up is detected as a high and it selects the UART transport interface.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 44  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PCM Interface  
PCM Interface  
The BCM4354 supports two independent PCM interfaces that share the pins with the I2S interfaces. The PCM  
Interface on the BCM4354 can connect to linear PCM Codec devices in master or slave mode. In master mode,  
the BCM4354 generates the PCM_CLK and PCM_SYNC signals, and in slave mode, these signals are provided  
by another master on the PCM interface and are inputs to the BCM4354.  
The configuration of the PCM interface may be adjusted by the host through the use of vendor-specific HCI  
commands.  
Slot Mapping  
The BCM4354 supports up to three simultaneous full-duplex SCO or eSCO channels through the PCM  
interface. These three channels are time-multiplexed onto the single PCM interface by using a time-slotting  
scheme where the 8 kHz or 16 kHz audio sample interval is divided into as many as 16 slots. The number of  
slots is dependent on the selected interface rate of 128 kHz, 512 kHz, or 1024 kHz. The corresponding number  
of slots for these interface rate is 1, 2, 4, 8, and 16, respectively. Transmit and receive PCM data from an SCO  
channel is always mapped to the same slot. The PCM data output driver tristates its output on unused slots to  
allow other devices to share the same PCM interface signals. The data output driver tristates its output after the  
falling edge of the PCM clock during the last bit of the slot.  
Frame Synchronization  
The BCM4354 supports both short- and long-frame synchronization in both master and slave modes. In short-  
frame synchronization mode, the frame synchronization signal is an active-high pulse at the audio frame rate  
that is a single-bit period in width and is synchronized to the rising edge of the bit clock. The PCM slave looks  
for a high on the falling edge of the bit clock and expects the first bit of the first slot to start at the next rising edge  
of the clock. In long-frame synchronization mode, the frame synchronization signal is again an active-high pulse  
at the audio frame rate; however, the duration is three bit periods and the pulse starts coincident with the first  
bit of the first slot.  
Data Formatting  
The BCM4354 may be configured to generate and accept several different data formats. For conventional  
narrowband speech mode, the BCM4354 uses 13 of the 16 bits in each PCM frame. The location and order of  
these 13 bits can be configured to support various data formats on the PCM interface. The remaining three bits  
are ignored on the input and may be filled with 0s, 1s, a sign bit, or a programmed value on the output. The  
default format is 13-bit 2’s complement data, left justified, and clocked MSB first.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 45  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PCM Interface  
Wideband Speech Support  
When the host encodes Wideband Speech (WBS) packets in transparent mode, the encoded packets are  
transferred over the PCM bus for an eSCO voice connection. In this mode, the PCM bus is typically configured  
in master mode for a 4 kHz sync rate with 16-bit samples, resulting in a 64 Kbps bit rate. The BCM4354 also  
supports slave transparent mode using a proprietary rate-matching scheme. In SBC-code mode, linear 16-bit  
data at 16 kHz (256 Kbps rate) is transferred over the PCM bus.  
Multiplexed Bluetooth and FM Over PCM  
In this mode of operation, the BCM4354 multiplexes both FM and Bluetooth audio PCM channels over the same  
interface, reducing the number of required I/Os. This mode of operation is initiated through an HCI command  
from the host. The format of the data stream consists of three channels: a Bluetooth channel followed by two  
FM channels (audio left and right). In this mode of operation, the bus data rate only supports 48 kHz operation  
per channel with 16 bits sent for each channel. This is done to allow the low data rate Bluetooth data to coexist  
in the same interface as the higher speed I2S data. To accomplish this, the Bluetooth data is repeated six times  
for 8 kHz data and three times for 16 kHz data. An initial sync pulse on the PCM_SYNC line is used to indicate  
the beginning of the frame.  
To support multiple Bluetooth audio streams within the Bluetooth channel, both 16 kHz and 8 kHz streams can  
be multiplexed. This mode of operation is only supported when the Bluetooth host is the master. Figure 9 shows  
the operation of the multiplexed transport with three simultaneous SCO connections. To accommodate  
additional SCO channels, the transport clock speed is increased. To change between modes of operation, the  
transport must be halted and restarted in the new configuration.  
Figure 9: Functional Multiplex Data Diagram  
1 Frame  
BT SCO 1 Rx  
BT SCO 1 Tx  
BT SCO 2 Rx  
BT SCO 2 Tx  
BT SCO 3 Rx  
FM Right  
FM Right  
FM Left  
FM Left  
PCM_OUT  
PCM_IN  
BT SCO 3 Tx  
PCM_SYNC  
PCM_CLK  
CLK  
16 bits per SCO frame  
16 bits per frame  
16 bits per frame  
Each SCO channel duplicates the data 6 times. Each WBS  
frame duplicates the data three times per frame  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 46  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PCM Interface  
Burst PCM Mode  
In this mode of operation, the PCM bus runs at a significantly higher rate of operation to allow the host to duty  
cycle its operation and save current. In this mode of operation, the PCM bus can operate at a rate of up to  
24 MHz. This mode of operation is initiated with an HCI command from the host.  
PCM Interface Timing  
Short Frame Sync, Master Mode  
Figure 10: PCM Timing Diagram (Short Frame Sync, Master Mode)  
1
2
3
PCM_BCLK  
4
PCM _SYNC  
PCM _OUT  
8
HIGH IMPEDANCE  
5
7
6
PCM_IN  
Table 7: PCM Interface Timing Specifications (Short Frame Sync, Master Mode)  
Ref No. Characteristics Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
8
PCM bit clock frequency  
12  
MHz  
ns  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC delay  
PCM_OUT delay  
PCM_IN setup  
41  
41  
0
ns  
25  
25  
ns  
0
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 47  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PCM Interface  
Short Frame Sync, Slave Mode  
Figure 11: PCM Timing Diagram (Short Frame Sync, Slave Mode)  
1
2
3
PCM_BCLK  
4
5
PCM_SYNC  
PCM_OUT  
9
HIGH IMPEDANCE  
8
6
7
PCM_IN  
Table 8: PCM Interface Timing Specifications (Short Frame Sync, Slave Mode)  
Ref No. Characteristics Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
8
9
PCM bit clock frequency  
12  
MHz  
ns  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_OUT delay  
PCM_IN setup  
41  
41  
8
ns  
ns  
8
ns  
0
25  
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 48  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PCM Interface  
Long Frame Sync, Master Mode  
Figure 12: PCM Timing Diagram (Long Frame Sync, Master Mode)  
1
2
3
PCM_BCLK  
4
PCM_SYNC  
PCM_OUT  
8
HIGH IMPEDANCE  
7
Bit 0  
Bit 1  
Bit 1  
5
6
Bit 0  
PCM_IN  
Table 9: PCM Interface Timing Specifications (Long Frame Sync, Master Mode)  
Ref No. Characteristics Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
8
PCM bit clock frequency  
12  
MHz  
ns  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC delay  
PCM_OUT delay  
PCM_IN setup  
41  
41  
0
ns  
25  
25  
ns  
0
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 49  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PCM Interface  
Long Frame Sync, Slave Mode  
Figure 13: PCM Timing Diagram (Long Frame Sync, Slave Mode)  
1
2
3
PCM_BCLK  
4
5
PCM _SYNC  
PCM_OUT  
9
Bit 0  
Bit 0  
HIGH IMPEDANCE  
Bit 1  
6
7
8
PCM_IN  
Bit 1  
Table 10: PCM Interface Timing Specifications (Long Frame Sync, Slave Mode)  
Ref No. Characteristics Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
8
9
PCM bit clock frequency  
12  
MHz  
ns  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_OUT delay  
PCM_IN setup  
41  
41  
8
ns  
ns  
8
ns  
0
25  
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 50  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PCM Interface  
Short Frame Sync, Burst Mode  
Figure 14: PCM Burst Mode Timing (Receive Only, Short Frame Sync)  
1
2
3
PCM_BCLK  
PCM_SYNC  
4
5
6
7
PCM_IN  
Table 11: PCM Burst Mode (Receive Only, Short Frame Sync)  
Ref No. Characteristics  
Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
PCM bit clock frequency  
24  
MHz  
ns  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_IN setup  
20.8  
20.8  
8
ns  
ns  
8
ns  
8
ns  
PCM_IN hold  
8
ns  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 51  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PCM Interface  
Long Frame Sync, Burst Mode  
Figure 15: PCM Burst Mode Timing (Receive Only, Long Frame Sync)  
1
3
2
PCM_BCLK  
PCM_SYNC  
4
5
6
7
PCM_IN  
Bit 0  
Bit 1  
Table 12: PCM Burst Mode (Receive Only, Long Frame Sync)  
Ref No. Characteristics Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
PCM bit clock frequency  
24  
MHz  
ns  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_IN setup  
20.8  
20.8  
8
ns  
ns  
8
ns  
8
ns  
PCM_IN hold  
8
ns  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 52  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
USB Interface  
USB Interface  
Features  
The following USB interface features are supported:  
USB Protocol, Revision 2.0, full-speed (12 Mbps) compliant including the hub  
Optional hub compound device with up to three device cores internal to device  
Bus or self-power, dynamic configuration for the hub  
Global and selective suspend and resume with remote wake-up  
Bluetooth HCI  
HID, DFU, UHE (proprietary method to emulate an HID device at system bootup)  
Integrated detach resistor  
Operation  
The BCM4354 can be configured to boot up as either a single USB peripheral or a USB hub with several USB  
peripherals attached. As a single peripheral, the host detects a single USB Bluetooth device. In hub mode, the  
host detects a hub with one to three of the ports already connected to USB devices (see Figure 16).  
Figure 16: USB Compounded Device Configuration  
Host  
USB Compounded Device  
Hub Controller  
USB Device 1  
HID Keyboard  
USB Device 2  
HID Mouse  
USB Device 3  
Bluetooth  
Depending on the desired hub mode configuration, the BCM4354 can boot up showing the three ports  
connected to logical USB devices internal to the BCM4354: a generic Bluetooth device, a mouse, and a  
keyboard. In this mode, the mouse and keyboard are emulated devices, since they connect to real HID devices  
via a Bluetooth link. The Bluetooth link to these HID devices is hidden from the USB host. To the host, the mouse  
and/or keyboard appear to be directly connected to the USB port. This Broadcom proprietary architecture is  
called USB HID Emulation (UHE).  
The USB device, configuration, and string descriptors are fully programmable, allowing manufacturers to  
customize the descriptors, including vendor and product IDs, the BCM4354 uses to identify itself on the USB  
port. To make custom USB descriptor information available at boot time, stored it in external NVRAM.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 53  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
USB Interface  
Despite the mode of operation (single peripheral or hub), the Bluetooth device is configured to include the  
following interfaces:  
Interface 0  
Interface 1  
Interface 2  
Contains a Control endpoint (Endpoint 0x00) for HCI commands, a Bulk In Endpoint (Endpoint  
0x82) for receiving ACL data, a Bulk Out Endpoint (Endpoint 0x02) for transmitting ACL data,  
and an Interrupt Endpoint (Endpoint 0x81) for HCI events.  
Contains Isochronous In and Out endpoints (Endpoints 0x83 and 0x03) for SCO traffic. Several  
alternate Interface 1 settings are available for reserving the proper bandwidth of isochronous  
data (depending on the application).  
Contains Bulk In and Bulk Out endpoints (Endpoints 0x84 and 0x04) used for proprietary testing  
and debugging purposes. These endpoints can be ignored during normal operation.  
USB Hub and UHE Support  
The BCM4354 supports the USB hub and device model (USB, Revision 2.0, full-speed compliant). Optional  
mouse and keyboard devices utilize Broadcom’s proprietary USB HID Emulation (UHE) architecture, which  
allows these devices appear as standalone HID devices even though connected through a Bluetooth link.  
The presence of UHE devices requires the hub to be enabled. The BCM4354 cannot appear as a single  
keyboard or a single mouse device without the hub. Once either mouse or keyboard UHE device is enabled, the  
hub must also be enabled.  
When the hub is enabled, the BCM4354 handles all standard USB functions for the following devices:  
HID keyboard  
HID mouse  
Bluetooth  
All hub and device descriptors are firmware-programmable. This USB compound device configuration (see  
Figure 16 on page 53) supports up to three downstream ports. This configuration can also be programmed to a  
single USB device core. The device automatically detects activity on the USB interface when connected.  
Therefore, no special configuration is needed to select HCI as the transport.  
The hub’s downstream port definition is as follows:  
Port 1 USB lite device core (for HID applications)  
Port 2 USB lite device core (for HID applications)  
Port 3 USB full device core (for Bluetooth applications)  
When operating in hub mode, all three internal devices do not have to be enabled. Each internal USB device  
can be optionally enabled. The configuration record in NVRAM determines which devices are present.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 54  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
USB Interface  
USB Full-Speed Timing  
Table 13 shows timing specifications for the VDD_USB = 3.3V, VSS = 0V, and TA = 0°C to 85°C operating  
temperature range.  
Table 13: USB Full-Speed Timing Specifications  
Reference Characteristics  
Minimum  
Maximum  
Unit  
1
2
3
4
Transition rise time  
Transition fall time  
4
20  
ns  
4
20  
ns  
Rise/fall timing matching  
Full-speed data rate  
90  
111  
%
12 – 0.25%  
12 + 0.25%  
Mb/s  
Figure 17: USB Full-Speed Timing  
2
1
D+  
D-  
90%  
90%  
VCRS  
10%  
10%  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 55  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
UART Interface  
UART Interface  
The BCM4354 shares a single UART for Bluetooth and FM. The UART is a standard 4-wire interface (RX, TX,  
RTS, and CTS) with adjustable baud rates from 9600 bps to 4.1 Mbps. The interface features an automatic baud  
rate detection capability that returns a baud rate selection. Alternatively, the baud rate may be selected through  
a vendor-specific UART HCI command.  
UART has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support EDR. Access to the FIFOs is  
conducted through the AHB interface through either DMA or the CPU. The UART supports the Bluetooth 4.1  
UART HCI specification: H4, a custom Extended H4, and H5. The default baud rate is 115.2 Kbaud.  
The UART supports the 3-wire H5 UART transport, as described in the Bluetooth specification (“Three-wire  
UART Transport Layer”). Compared to H4, the H5 UART transport reduces the number of signal lines required  
by eliminating the CTS and RTS signals.  
The BCM4354 UART can perform XON/XOFF flow control and includes hardware support for the Serial Line  
Input Protocol (SLIP). It can also perform wake-on activity. For example, activity on the RX or CTS inputs can  
wake the chip from a sleep state.  
Normally, the UART baud rate is set by a configuration record downloaded after device reset, or by automatic  
baud rate detection, and the host does not need to adjust the baud rate. Support for changing the baud rate  
during normal HCI UART operation is included through a vendor-specific command that allows the host to adjust  
the contents of the baud rate registers. The BCM4354 UARTs operate correctly with the host UART as long as  
the combined baud rate error of the two devices is within ±2%.  
Table 14: Example of Common Baud Rates  
Desired Rate  
Actual Rate  
Error (%)  
4000000  
3692000  
3000000  
2000000  
1500000  
1444444  
921600  
460800  
230400  
115200  
57600  
4000000  
3692308  
3000000  
2000000  
1500000  
1454544  
923077  
461538  
230796  
115385  
57692  
0.00  
0.01  
0.00  
0.00  
0.00  
0.70  
0.16  
0.16  
0.17  
0.16  
0.16  
0.00  
0.16  
0.00  
0.16  
0.00  
38400  
38400  
28800  
28846  
19200  
19200  
14400  
14423  
9600  
9600  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 56  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
UART Interface  
Figure 18: UART Timing  
UART_CTS_N  
UART_TXD  
1
2
Midpoint of STOP bit  
Midpoint of STOP bit  
UART_RXD  
3
UART_RTS_N  
Table 15: UART Timing Specifications  
Ref No. Characteristics  
Minimum Typical  
Maximum Unit  
1
2
3
Delay time, UART_CTS_N low to UART_TXD  
valid  
1.5  
0.5  
0.5  
Bit periods  
Setup time, UART_CTS_N high before midpoint of –  
stop bit  
Bit periods  
Bit periods  
Delay time, midpoint of stop bit to UART_RTS_N –  
high  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 57  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
I2S Interface  
I2S Interface  
The BCM4354 supports two independent I2S digital audio ports: one for Bluetooth audio, and one for high-  
fidelity FM audio. The I2S interface for FM audio supports both master and slave modes. The I2S signals are:  
I2S clock: BT_I2S_CLK  
I2S Word Select: BT_I2S_WS  
I2S Data Out: BT_I2S_DO  
I2S Data In: BT_I2S_DI  
BT_I2S_CLK and BT_I2S_WS become outputs in master mode and inputs in slave mode, whereas BT_I2S_DO  
always stays as an output. The channel word length is 16 bits, and the data is justified so that the MSB of the  
left-channel data is aligned with the MSB of the I2S bus, in accord with the I2S specification. The MSB of each  
data word is transmitted one bit clock cycle after the BT_I2S_WS transition, synchronous with the falling edge  
of the bit clock. Left-channel data is transmitted when IBT_I2S_WS is low, and right-channel data is transmitted  
when BT_I2S_WS is high. Data bits sent by the BCM4354 are synchronized with the falling edge of  
BT_I2S_CLK and should be sampled by the receiver on the rising edge of BT_I2S_CLK.  
The clock rate in master mode is either of the following:  
48 kHz x 32 bits per frame = 1.536 MHz  
48 kHz x 50 bits per frame = 2.400 MHz  
The master clock is generated from the input reference clock using a N/M clock divider.  
In the slave mode, any clock rate is supported to a maximum of 3.072 MHz.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 58  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
I2S Interface  
2
I S Timing  
Note: Timing values specified in Table 16 are relative to high and low threshold levels.  
Table 16: Timing for I2S Transmitters and Receivers  
Transmitter  
Lower LImit Upper Limit  
Receiver  
Lower Limit Upper Limit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Notes  
a
Clock Period T  
Ttr  
Tr  
Master Mode: Clock generated by transmitter or receiver  
b
b
HIGH tHC  
LOWtLC  
0.35Ttr  
0.35Ttr  
0.35Ttr  
0.35Ttr  
Slave Mode: Clock accepted by transmitter or receiver  
c
c
d
HIGH tHC  
0.35Ttr  
0.35Ttr  
0.35Ttr  
0.35Ttr  
LOW tLC  
Rise time tRC  
0.15Ttr  
Transmitter  
Delay tdtr  
e
d
0
0.8T  
Hold time thtr  
Receiver  
f
f
Setup time tsr  
Hold time thr  
0.2Tr  
0
a. The system clock period T must be greater than Ttr and Tr because both the transmitter and receiver have to be  
able to handle the data transfer rate.  
b. At all data rates in master mode, the transmitter or receiver generates a clock signal with a fixed mark/space  
ratio. For this reason, tHC and tLC are specified with respect to T.  
c. In slave mode, the transmitter and receiver need a clock signal with minimum HIGH and LOW periods so that  
they can detect the signal. So long as the minimum periods are greater than 0.35Tr, any clock that meets the  
requirements can be used.  
d. Because the delay (tdtr) and the maximum transmitter speed (defined by Ttr) are related, a fast transmitter driven  
by a slow clock edge can result in tdtr not exceeding tRC which means thtr becomes zero or negative. Therefore,  
the transmitter has to guarantee that thtr is greater than or equal to zero, so long as the clock rise-time tRC is not  
more than tRCmax, where tRCmax is not less than 0.15Ttr.  
e. To allow data to be clocked out on a falling edge, the delay is specified with respect to the rising edge of the  
clock signal and T, always giving the receiver sufficient setup time.  
f. The data setup and hold time must not be less than the specified receiver setup and hold time.  
Note: The time periods specified in Figure 19 and Figure 20 are defined by the transmitter speed. The  
receiver specifications must match transmitter performance.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 59  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
I2S Interface  
Figure 19: I2S Transmitter Timing  
T
tRC  
*
tLC > 0.35T  
tHC > 0.35T  
VH = 2.0V  
VL = 0.8V  
SCK  
thtr > 0  
totr < 0.8T  
SD and WS  
T = Clock period  
T
tr = Minimum allowed clock period for transmitter  
T = Ttr  
* tRC is only relevant for transmitters in slave mode.  
Figure 20: I2S Receiver Timing  
T
tLC > 0.35T  
tHC > 0.35  
VH = 2.0V  
VL = 0.8V  
SCK  
tsr > 0.2T  
thr > 0  
SD and WS  
T = Clock period  
Tr = Minimum allowed clock period for transmitter  
T > Tr  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 60  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
FM Receiver Subsystem  
Section 8: FM Receiver Subsystem  
FM Radio  
The BCM4354 includes a completely integrated FM radio receiver with RDS/RBDS covering all FM bands from  
65 MHz to 108 MHz. The receiver is controlled through commands on the HCI. FM received audio is available  
as stereo or in digital form through I2S or PCM. The FM radio operates from the external clock reference.  
Digital FM Audio Interfaces  
The FM audio can be transmitted via the shared PCM and I2S pins, and the sampling rate is programmable.  
The BCM4354 supports a three-wire PCM or I2S audio interface in either master or slave configuration. The  
master or slave configuration is selected using vendor specific commands over the HCI interface. In addition,  
multiple sampling rates are supported, derived from either the FM or Bluetooth clocks. In master mode, the clock  
rate is either of the following:  
48 kHz × 32 bits per frame = 1.536 MHz  
48 kHz × 50 bits per frame = 2.400 MHz  
In slave mode, any clock rate is supported up to a maximum of 3.072 MHz.  
FM Over Bluetooth  
The BCM4354 can output received FM audio onto Bluetooth using one of following three links: eSCO, WBS,  
and A2DP. In all of the above modes, once the link has been set up, the host processor can enter sleep mode  
while the BCM4354 continues to stream FM audio to the remote Bluetooth device, allowing the system current  
consumption to be minimized.  
eSCO  
In this use case, the stereo FM audio is downsampled to 8 kHz and a mono or stereo stream is then sent through  
the Bluetooth eSCO link to a remote Bluetooth device, typically a headset. Two Bluetooth voice connections  
must be used to transport stereo.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 61  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Wide Band Speech Link  
Wide Band Speech Link  
In this case, the stereo FM audio is downsampled to 16 kHz and a mono or stereo stream is then sent through  
the Bluetooth wideband speech link to a remote Bluetooth device, typically a headset. Two Bluetooth voice  
connections must be used to transport stereo.  
A2DP  
In this case, the stereo FM audio is encoded by the on-chip SBC encoder and transported as an A2DP link to a  
remote Bluetooth device. Sampling rates of 48 kHz, 44.1 kHz, and 32 kHz joint stereo are supported. An A2DP  
“lite” stack is implemented in the BCM4354 to support this use case, which eliminates the need to route the SBC-  
encoded audio back to the host to create the A2DP packets.  
Autotune and Search Algorithms  
The BCM4354 supports a number of FM search and tune functions that allows the host to implement many  
convenient user functions, which are accessed through the Broadcom FM stack.  
Tune to Play: Allows the FM receiver to be programmed to a specific frequency.  
Search for SNR > Threshold: Checks the power level of the available channel and the estimated SNR of  
the channel to help achieve precise control of the expected sound quality for the selected FM channel.  
Specifically, the host can adjust its SNR requirements to retrieve a signal with a specific sound quality, or  
adjust this to return the weakest channels.  
Alternate Frequency Jump: Allows the FM receiver to automatically jump to an alternate FM channel that  
carries the same information, but has a better SNR. For example, when traveling, a user may pass through  
a region where a number of channels carry the same station. When the user passes from one area to the  
next, the FM receiver can automatically switch to another channel with a stronger signal to spare the user  
from having to manually change the channel to continue listening to the same station.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 62  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Audio Features  
Audio Features  
A number of features are implemented in the BCM4354 to provide the best possible audio experience for the  
user.  
Mono/Stereo Blend or Switch: The BCM4354 provides automatic control of the stereo or mono settings  
based on the FM signal carrier-to-noise ratio (C/N). This feature is used to maintain the best possible audio  
SNR based on the FM channel condition. Two modes of operation are supported:  
– Blend: In this mode, fine control of stereo separation is used to achieve optimal audio quality over a  
wide range of input C/N. The amount of separation is fully programmable. In Figure 21, the separation is  
programmed to maintain a minimum 50 dB SNR across the blend range.  
– Extended blend: In this mode, stereo separation is maximized across a wide range of input CNR.  
Broadcom static suppression typically gives a static-free user experience to within 3 dB of ultimate  
sensitivity.  
Figure 21: Example Blend/Switch Usage  
– Switch: In this mode, the audio switches from full stereo to full mono at a predetermined level to  
maintain optimal audio quality. The stereo-to-mono switch point and the mono-to-stereo switch points  
are fully programmable to provide the desired amount of audio SNR. In Figure 22, the switch point is  
programmed to switch to mono to maintain a 40 dB SNR.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 63  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Audio Features  
Figure 22: Example Blend/Switch Separation  
Soft Mute: Improves the user experience by dynamically muting the output audio proportionate to the FM  
signal C/N. This prevents the user from being assaulted with a blast of static. The mute characteristic is  
fully programmable to accommodate fine tuning of the output signal level. An example mute characteristic  
is shown in Figure 23.  
Figure 23: Example Soft Mute Characteristic  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 64  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
RDS/RBDS  
High Cut: A programmable high-cut filter is provided to reduce the amount of high-frequency noise caused  
by static in the output audio signal. Like the soft mute circuit, it is fully programmable to allow for any  
amount of high cut based on the FM signal C/N.  
Audio Pause Detect: The FM receiver monitors the magnitude of the audio signal and notifies the host  
through an interrupt when the magnitude of the signal has fallen below the threshold set for a  
programmable period. This feature can be used to provide alternate frequency jumps during periods of  
silence to minimize disturbances to the listener. Filtering techniques are used within the audio pause  
detection block to provide more robust presence-to-silence detection and silence-to-presence detection.  
Automatic Antenna Tuning: The BCM4354 has an on-chip automatic antenna tuning network. When used  
with a single off-chip inductor, the on-chip circuitry automatically chooses an optimal on-chip matching  
component to obtain the highest signal strength for the desired frequency. The high-Q nature of this  
matching network simultaneously provides out-of-band blocking protection as well as a reduction of  
radiated spurious emissions from the FM antenna. It is designed to accommodate a wide range of external  
wire antennas.  
RDS/RBDS  
The BCM4354 integrates a RDS/RBDS modem and codec, the decoder includes programmable filtering and  
buffering functions, and the encoder includes the option to encode messages to PS or RT frame format with  
programmable scrolling in PS mode. The RDS/RBDS data can be read out in receive mode or delivered in  
transmit mode through either the HCI interface.  
In addition, the RDS/RBDS functionality supports the following:  
Receive  
Block decoding, error correction and synchronization  
Flywheel synchronization feature, allowing the host to set parameters for acquisition, maintenance, and  
loss of sync. (It is possible to set up the BCM4354 such that synch is achieved when a minimum of two  
good blocks (error free) are decoded in sequence. The number of good blocks required for sync is  
programmable.)  
Storage capability up to 126 blocks of RDS data  
Full or partial block B match detect and interrupt to host  
Audio pause detection with programmable parameters  
Program Identification (PI) code detection and interrupt to host  
Automatic frequency jump  
Block E filtering  
Soft mute  
Signal dependent mono/stereo blend  
Programmable pre-emphasis  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 65  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN Global Functions  
Section 9: WLAN Global Functions  
WLAN CPU and Memory Subsystem  
The BCM4354 WLAN section includes an integrated ARM Cortex-R4™ 32-bit processor with internal RAM and  
ROM. The ARM Cortex-R4 is a low-power processor that features low gate count, low interrupt latency, and low-  
cost debug capabilities. It is intended for deeply embedded applications that require fast interrupt response  
features. Delivering a performance gain of more than 30% over the ARM7TDMI® processor, the ARM Cortex-  
R4 processor implements the ARM v7-R architecture with support for the Thumb®-2 instruction set.  
At 0.19 µW/MHz, the Cortex-R4 is the most power efficient general-purpose microprocessor available,  
outperforming 8- and 16-bit devices on MIPS/µW.  
Using multiple technologies to reduce cost, the ARM Cortex-R4 offers improved memory utilization, reduced pin  
overhead, and reduced silicon area. It supports independent buses for Code and Data access (ICode/DCode  
and System buses), integrated sleep modes, and extensive debug features including real time trace of program  
execution.  
On-chip memory for the CPU includes 768 KB SRAM and 640 KB ROM.  
One-Time Programmable Memory  
Various hardware configuration parameters may be stored in an internal One-Time Programmable (OTP)  
memory, which is read by the system software after device reset. In addition, customer-specific parameters,  
including the system vendor ID and the MAC address can be stored, depending on the specific board design.  
Up to 484 bytes of user-accessible OTP are available.  
The initial state of all bits in an unprogrammed OTP device is 0. After any bit is programmed to a 1, it cannot be  
reprogrammed to 0. The entire OTP array can be programmed in a single write cycle using a utility provided with  
the Broadcom WLAN manufacturing test tools. Alternatively, multiple write cycles can be used to selectively  
program specific bytes, but only bits which are still in the 0 state can be altered during each programming cycle.  
Prior to OTP programming, all values should be verified using the appropriate editable nvram.txt file, which is  
provided with the reference board design package.  
GPIO Interface  
The BCM4354 has 11 general-purpose I/O (GPIO) pins in the WLAN section that can be used to connect to  
various external devices.  
Upon power-up and reset, these pins become tristated. Subsequently, they can be programmed to be either  
input or output pins via the GPIO control register. In addition, the GPIO pins can be assigned to various other  
functions, see Table 26: “GPIO Alternative Signal Functions,” on page 120.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 66  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
External Coexistence Interface  
External Coexistence Interface  
An external handshake interface is available to enable signaling between the device and an external co-located  
wireless device, such as GPS, or LTE, to manage wireless medium sharing for optimal performance.  
Figure 24 and Figure 25 on page 67 show the LTE coexistence interface (including UART) for each BCM4354  
package type. See Table 26: “GPIO Alternative Signal Functions,” on page 120 for further details on multiplexed  
signals, such as the GPIO pins.  
See Table 15: “UART Timing Specifications,” on page 57 for the UART baud rate.  
Figure 24: Broadcom GCI Mode LTE Coexistence Interface  
SECI_OUT  
UART_IN  
WLAN  
SECI_IN  
UART_OUT  
GCI  
BTFM  
BCM4354  
LTE/IC  
Notes:  
OR’ing to generate ISM_RX_PRIORITY for ERCX_TXCONF or BT_RX_PRIORITY is achieved by  
setting the GPIO mask registers appropriately.  
SECI_OUT and SECI_IN are multiplexed on the GPIOs.  
Figure 25: Legacy 3-Wire LTE Coexistence Interface  
GCI_GPIO_2  
WCN_PRIORITY  
WLAN  
GCI_GPIO_1  
GCI  
MWS_RX, LTE_PRIORITY  
LTE_FRAME_SYNC  
GCI_GPIO_0  
BT/FM  
BCM4354  
LTE/IC  
Note: OR’ing to generate WCN_PRIORITY FOR ERCX_TXCONF or BT_RX_PRIORITY is achieved by  
setting the GPIO mask registers appropriately.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 67  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
UART Interface  
UART Interface  
One 2-wire UART interface can be enabled by software as an alternate function on GPIO pins. Refer to  
Table 26: “GPIO Alternative Signal Functions,” on page 120. Provided primarily for debugging during  
development, this UART enables the BCM4354 to operate as RS-232 data termination equipment (DTE) for  
exchanging and managing data with other serial devices. It is compatible with the industry standard 16550  
UART, and provides a FIFO size of 64 × 8 in each direction.  
JTAG Interface  
The BCM4354 supports the IEEE 1149.1 JTAG boundary scan standard for performing device package and  
PCB assembly testing during manufacturing. In addition, the JTAG interface allows Broadcom to assist  
customers by using proprietary debug and characterization test tools during board bring-up. Therefore, it is  
highly recommended to provide access to the JTAG pins by means of test points or a header on all PCB designs.  
Refer to Table 26: “GPIO Alternative Signal Functions,” on page 120 for JTAG pin assignments.  
SPROM Interface  
Various hardware configuration parameters may be stored in an external SPROM instead of the OTP. The  
SPROM is read by system software after device reset. In addition, depending on the board design, customer-  
specific parameters may be stored in SPROM.  
The four SPROM control signals —SPROM_CS, SPROM_CLK, SPROM_MI, and SPROM_MO are  
multiplexed on the SDIO interface (see Table 26: “GPIO Alternative Signal Functions,” on page 120 for  
additional details). By default, the SPROM interface supports 2 kbit serial SPROMs, and it can also support  
4 kbit and 16 kbit serial SPROMs by using the appropriate strapping option.  
SFLASH Interface  
For use only when the HSIC interface mode is selected, an interface to external SFLASH is available.  
The four SFLASH control signals —SFLASH_CS#, SFLASH_CLK, SFLASH_MI, and SFLASH_MO are  
multiplexed on the SDIO interface (see Table 26: “GPIO Alternative Signal Functions,” on page 120 for  
additional details).  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 68  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN Host Interfaces  
Section 10: WLAN Host Interfaces  
SDIO v3.0  
All three package options of the BCM4354 WLAN section provide support for SDIO version 3.0, including the  
new UHS-I modes:  
DS: Default speed (DS) up to 25 MHz, including 1- and 4-bit modes (3.3V signaling).  
HS: High-speed up to 50 MHz (3.3V signaling).  
SDR12: SDR up to 25 MHz (1.8V signaling).  
SDR25: SDR up to 50 MHz (1.8V signaling).  
SDR50: SDR up to 100 MHz (1.8V signaling).  
SDR104: SDR up to 208 MHz (1.8V signaling)  
DDR50: DDR up to 50 MHz (1.8V signaling).  
Note: The BCM4354 is backward compatible with SDIO v2.0 host interfaces.  
The SDIO interface also has the ability to map the interrupt signal on to a GPIO pin for applications requiring an  
interrupt different from the one provided by the SDIO interface. The ability to force control of the gated clocks  
from within the device is also provided. SDIO mode is enabled by strapping options. Refer to Table 23 on  
page 119 WLAN GPIO Functions and Strapping Options.  
The following three functions are supported:  
Function 0 Standard SDIO function (max. BlockSize/ByteCount = 32B)  
Function 1 Backplane Function to access the internal system-on-chip (SoC) address space  
(max. BlockSize/ByteCount = 64B)  
Function 2 WLAN Function for efficient WLAN packet transfer through DMA  
(max. BlockSize/ByteCount = 512B)  
SDIO Pins  
Table 17: SDIO Pin Descriptions  
SD 4-Bit Mode  
SD 1-Bit Mode  
DATA0  
DATA1  
DATA2  
DATA3  
CLK  
Data line 0  
DATA Data line  
Data line 1 or Interrupt IRQ  
Data line 2 or Read Wait RW  
Interrupt  
Read Wait  
Not used  
Clock  
Data line 3  
Clock  
N/C  
CLK  
CMD  
Command line  
CMD Command line  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 69  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
HSIC Interface  
Figure 26: Signal Connections to SDIO Host (SD 4-Bit Mode)  
CLK  
BCM4354  
CMD  
SD Host  
DAT[3:0]  
Figure 27: Signal Connections to SDIO Host (SD 1-Bit Mode)  
CLK  
CMD  
BCM4354  
DATA  
IRQ  
SD Host  
RW  
Note: Per Section 6 of the SDIO specification, pull-ups in the 10 kto 100 krange are required on  
the four DATA lines and the CMD line. This requirement must be met during all operating states either  
through the use of external pull-up resistors or through proper programming of the SDIO host’s internal  
pull-ups.  
HSIC Interface  
As an alternative to SDIO, an HSIC host interface can be enabled using the strapping option pins  
strap_host_ifc_[3:1]. HSIC is a simplified derivative of the USB2.0 interface designed to replace a standard USB  
PHY and cable for short distances (up to 10 cm) on board point-to-point connections. Using two signals, a  
bidirectional data strobe (STROBE) and a bidirectional DDR data signal (DATA), it provides high-speed serial  
480 Mbps data transfers that are 100% host driver compatible with traditional USB 2.0 cable-connected  
topologies.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 70  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PCI Express Interface  
Figure 28 shows the blocks in the HSIC device core.  
Key features of HSIC include:  
High-speed 480 Mbps data rate  
Source-synchronous serial interface using 1.2V LVCMOS signal levels  
No power consumed except when a data transfer is in progress  
Maximum trace length of 10 cm.  
No Plug-n-Play support, no hot attach/removal  
Figure 28: HSIC Device Block Diagram  
32-Bit On-Chip Communication System  
DMA Engines  
RX FIFO  
TX FIFOs  
Endpoint Management Unit  
USB 2.0 Protocol Engine  
HSIC PHY  
Strobe  
Data  
PCI Express Interface  
The PCI Express (PCIe™) core on the BCM4354 is a high-performance serial I/O interconnect that is protocol  
compliant and electrically compatible with the PCI Express Base Specification v3.0 running at Gen1 speeds.  
This core contains all the necessary blocks, including logical and electrical functional subblocks to perform PCIe  
functionality and maintain high-speed links, using existing PCI system configuration software implementations  
without modification.  
Organization of the PCIe core is in logical layers: Transaction Layer, Data Link Layer, and Physical Layer, as  
shown in Figure 29. A configuration or link management block is provided for enumerating the PCIe  
configuration space and supporting generation and reception of System Management Messages by  
communicating with PCIe layers.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 71  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PCI Express Interface  
Each layer is partitioned into dedicated transmit and receive units that allow point-to-point communication  
between the host and BCM4354 device. The transmit side processes outbound packets whereas the receive  
side processes inbound packets. Packets are formed and generated in the Transaction and Data Link Layer for  
transmission onto the high-speed links and onto the receiving device. A header is added at the beginning to  
indicate the packet type and any other optional fields.  
Figure 29: PCI Express Layer Model  
HW/SW Interface  
HW/SW Interface  
Transaction  
Layer  
Transaction  
Layer  
Data Link  
Layer  
Data Link  
Layer  
Physical Layer  
Physical Layer  
Logical Subblock  
Logical Subblock  
Electrical Subblock  
Electrical Subblock  
TX  
RX  
TX  
RX  
Transaction Layer Interface  
The PCIe core employs a packet-based protocol to transfer data between the host and BCM4354 device,  
delivering new levels of performance and features. The upper layer of the PCIe is the Transaction Layer. The  
Transaction layer is primarily responsible for assembly and disassembly of Transaction Layer Packets (TLPs).  
TLP structure contains header, data payload, and End-to-End CRC (ECRC) fields, which are used to  
communicate transactions, such as read and write requests and other events.  
A pipelined full split-transaction protocol is implemented in this layer to maximize efficient communication  
between devices with credit-based flow control of TLP, which eliminates wasted link bandwidth due to retries.  
Data Link Layer  
The data link layer serves as an intermediate stage between the transaction layer and the physical layer. Its  
primary responsibility is to provide reliable, efficient mechanism for the exchange of TLPs between two directly  
connected components on the link. Services provided by the data link layer include data exchange, initialization,  
error detection and correction, and retry services.  
Data Link Layer Packets (DLLPs) are generated and consumed by the data link layer. DLLPs are the  
mechanism used to transfer link management information between data link layers of the two directly connected  
components on the link, including TLP acknowledgement, power management, and flow control.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 72  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PCI Express Interface  
Physical Layer  
The physical layer of the PCIe provides a handshake mechanism between the data link layer and the high-speed  
signaling used for Link data interchange. This layer is divided into the logical and electrical functional subblocks.  
Both subblocks have dedicated transmit and receive units that allow for point-to-point communication between  
the host and BCM4354 device. The transmit section prepares outgoing information passed from the data link  
layer for transmission, and the receiver section identifies and prepares received information before passing it to  
the data link layer. This process involves link initialization, configuration, scrambler, and data conversion into a  
specific format.  
Logical Subblock  
The logical sub block primary functions are to prepare outgoing data from the data link layer for transmission  
and identify received data before passing it to the data link layer.  
Scrambler/Descrambler  
This PCIe PHY component generates pseudo-random sequence for scrambling of data bytes and the idle  
sequence. On the transmit side, scrambling is applied to characters prior to the 8b/10b encoding. On the receive  
side, descrambling is applied to characters after 8b/10b decoding. Scrambling may be disabled in polling and  
recovery for testing and debugging purposes.  
8B/10B Encoder/Decoder  
The PCIe core on the BCM4354 uses an 8b/10b encoder/decoder scheme to provide DC balancing,  
synchronizing clock and data recovery, and error detection. The transmission code is specified in the ANSI  
X3.230-1994, clause 11 and in IEEE 802.3z, 36.2.4.  
Using this scheme, 8-bit data characters are treated as 3 bits and 5 bits mapped onto a 4-bit code group and a  
6-bit code group, respectively. The control bit in conjunction with the data character is used to identify when to  
encode one of the twelve Special Symbols included in the 8b/10b transmission code. These code groups are  
concatenated to form a 10-bit symbol, which is then transmitted serially. Special Symbols are used for link  
management, frame TLPs, and DLLPs, allowing these packets to be quickly identified and easily distinguished.  
Elastic FIFO  
An elastic FIFO is implemented in the receiver side to compensate for the differences between the transmit clock  
domain and the receive clock domain, with worse case clock frequency specified at 600 ppm tolerance. As a  
result, the transmit and receive clocks can shift one clock every 1666 clocks. In addition, the FIFO adaptively  
adjusts the elastic level based on the relative frequency difference of the write and read clock. This technique  
reduces the elastic FIFO size and the average receiver latency by half.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 73  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PCI Express Interface  
Electrical Subblock  
The high-speed signals utilize the Common Mode Logic (CML) signaling interface with on-chip termination and  
de-emphasis for best-in-class signal integrity. A de-emphasis technique is employed to reduce the effects of  
Intersymbol Interference (ISI) due to the interconnect by optimizing voltage and timing margins for worst case  
channel loss. This results in a maximally open “eye” at the detection point, thereby allowing the receiver to  
receive data with acceptable Bit-Error Rate (BER).  
To further minimize ISI, multiple bits of the same polarity that are output in succession are de-emphasized.  
Subsequent same bits are reduced by a factor of 3.5 dB in power. This amount is specified by PCIe to allow for  
maximum interoperability while minimizing the complexity of controlling the de-emphasis values. The high-  
speed interface requires AC coupling on the transmit side to eliminate the DC common mode voltage from the  
receiver. The range of AC capacitance allowed is 75 nF to 200 nF.  
Configuration Space  
The PCIe function in the BCM4354 implements the configuration space as defined in the PCI Express Base  
Specification v3.0.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 74  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Wireless LAN MAC and PHY  
Section 11: Wireless LAN MAC and PHY  
IEEE 802.11ac Draft MAC  
The BCM4354 WLAN MAC is designed to support high-throughput operation with low-power consumption. It  
does so without compromising the Bluetooth coexistence policies, thereby enabling optimal performance over  
both networks. In addition, several power saving modes have been implemented that allow the MAC to consume  
very little power while maintaining network-wide timing synchronization. The architecture diagram of the MAC  
is shown in Figure 30.  
The following sections provide an overview of the important modules in the MAC.  
Figure 30: WLAN MAC Architecture  
Embedded CPU Interface  
Host Registers, DMA Engines  
TX-FIFO  
32 KB  
RX-FIFO  
10 KB  
PSM  
PMQ  
PSM  
UCODE  
Memory  
IFS  
Backoff, BTCX  
WEP  
TKIP, AES, WAPI  
TSF  
SHM  
BUS  
IHR  
NAV  
BUS  
Shared Memory  
6 KB  
RXE  
RX A-MPDU  
TXE  
TX A-MPDU  
EXT- IHR  
MAC-PHY Interface  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 75  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
IEEE 802.11ac Draft MAC  
The BCM4354 WLAN media access controller (MAC) supports features specified in the IEEE 802.11 base  
standard, and amended by IEEE 802.11n. The key MAC features include:  
Enhanced MAC for supporting IEEE 802.11ac Draft features  
Transmission and reception of aggregated MPDUs (A-MPDU) for high throughput (HT)  
Support for power management schemes, including WMM power-save, power-save multi-poll (PSMP) and  
multiphase PSMP operation  
Support for immediate ACK and Block-ACK policies  
Interframe space timing support, including RIFS  
Support for RTS/CTS and CTS-to-self frame sequences for protecting frame exchanges  
Back-off counters in hardware for supporting multiple priorities as specified in the WMM specification  
Timing synchronization function (TSF), network allocation vector (NAV) maintenance, and target beacon  
transmission time (TBTT) generation in hardware  
Hardware offload for AES-CCMP, legacy WPA TKIP, legacy WEP ciphers, WAPI, and support for key  
management  
Support for coexistence with Bluetooth and other external radios  
Programmable independent basic service set (IBSS) or infrastructure basic service set functionality  
Statistics counters for MIB support  
PSM  
The programmable state machine (PSM) is a micro-coded engine, which provides most of the low-level control  
to the hardware, to implement the IEEE 802.11 specification. It is a microcontroller that is highly optimized for  
flow control operations, which are predominant in implementations of communication protocols. The instruction  
set and fundamental operations are simple and general, which allows algorithms to be optimized until very late  
in the design process. It also allows for changes to the algorithms to track evolving IEEE 802.11 specifications.  
The PSM fetches instructions from the microcode memory. It uses the shared memory to obtain operands for  
instructions, as a data store, and to exchange data between both the host and the MAC data pipeline (via the  
SHM bus). The PSM also uses a scratchpad memory (similar to a register bank) to store frequently accessed  
and temporary variables.  
The PSM exercises fine-grained control over the hardware engines, by programming internal hardware registers  
(IHR). These IHRs are co-located with the hardware functions they control, and are accessed by the PSM via  
the IHR bus.  
The PSM fetches instructions from the microcode memory using an address determined by the program  
counter, instruction literal, or a program stack. For ALU operations the operands are obtained from shared  
memory, scratchpad, IHRs, or instruction literals, and the results are written into the shared memory, scratchpad,  
or IHRs.  
There are two basic branch instructions: conditional branches and ALU based branches. To better support the  
many decision points in the IEEE 802.11 algorithms, branches can depend on either a readily available signals  
from the hardware modules (branch condition signals are available to the PSM without polling the IHRs), or on  
the results of ALU operations.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 76  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
IEEE 802.11ac Draft MAC  
WEP  
The wired equivalent privacy (WEP) engine encapsulates all the hardware accelerators to perform the  
encryption and decryption, and MIC computation and verification. The accelerators implement the following  
cipher algorithms: legacy WEP, WPA TKIP, WPA2 AES-CCMP.  
The PSM determines, based on the frame type and association information, the appropriate cipher algorithm to  
be used. It supplies the keys to the hardware engines from an on-chip key table. The WEP interfaces with the  
TXE to encrypt and compute the MIC on transmit frames, and the RXE to decrypt and verify the MIC on receive  
frames.  
TXE  
The transmit engine (TXE) constitutes the transmit data path of the MAC. It coordinates the DMA engines to  
store the transmit frames in the TXFIFO. It interfaces with WEP module to encrypt frames, and transfers the  
frames across the MAC-PHY interface at the appropriate time determined by the channel access mechanisms.  
The data received from the DMA engines are stored in transmit FIFOs. The MAC supports multiple logical  
queues to support traffic streams that have different QoS priority requirements. The PSM uses the channel  
access information from the IFS module to schedule a queue from which the next frame is transmitted. Once  
the frame is scheduled, the TXE hardware transmits the frame based on a precise timing trigger received from  
the IFS module.  
The TXE module also contains the hardware that allows the rapid assembly of MPDUs into an A-MPDU for  
transmission. The hardware module aggregates the encrypted MPDUs by adding appropriate headers and pad  
delimiters as needed.  
RXE  
The receive engine (RXE) constitutes the receive data path of the MAC. It interfaces with the DMA engine to  
drain the received frames from the RXFIFO. It transfers bytes across the MAC-PHY interface and interfaces with  
the WEP module to decrypt frames. The decrypted data is stored in the RXFIFO.  
The RXE module contains programmable filters that are programmed by the PSM to accept or filter frames  
based on several criteria such as receiver address, BSSID, and certain frame types.  
The RXE module also contains the hardware required to detect A-MPDUs, parse the headers of the containers,  
and disaggregate them into component MPDUS.  
IFS  
The IFS module contains the timers required to determine interframe space timing including RIFS timing. It also  
contains multiple backoff engines required to support prioritized access to the medium as specified by WMM.  
The interframe spacing timers are triggered by the cessation of channel activity on the medium, as indicated by  
the PHY. These timers provide precise timing to the TXE to begin frame transmission. The TXE uses this  
information to send response frames or perform transmit frame-bursting (RIFS or SIFS separated, as within a  
TXOP).  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 77  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
IEEE 802.11ac Draft MAC  
The backoff engines (for each access category) monitor channel activity, in each slot duration, to determine  
whether to continue or pause the backoff counters. When the backoff counters reach 0, the TXE gets notified,  
so that it may commence frame transmission. In the event of multiple backoff counters decrementing to 0 at the  
same time, the hardware resolves the conflict based on policies provided by the PSM.  
The IFS module also incorporates hardware that allows the MAC to enter a low-power state when operating  
under the IEEE power save mode. In this mode, the MAC is in a suspended state with its clock turned off. A  
sleep timer, whose count value is initialized by the PSM, runs on a slow clock and determines the duration over  
which the MAC remains in this suspended state. Once the timer expires the MAC is restored to its functional  
state. The PSM updates the TSF timer based on the sleep duration ensuring that the TSF is synchronized to  
the network.  
The IFS module also contains the PTA hardware that assists the PSM in Bluetooth coexistence functions.  
TSF  
The timing synchronization function (TSF) module maintains the TSF timer of the MAC. It also maintains the  
target beacon transmission time (TBTT). The TSF timer hardware, under the control of the PSM, is capable of  
adopting timestamps received from beacon and probe response frames in order to maintain synchronization  
with the network.  
The TSF module also generates trigger signals for events that are specified as offsets from the TSF timer, such  
as uplink and downlink transmission times used in PSMP.  
NAV  
The network allocation vector (NAV) timer module is responsible for maintaining the NAV information conveyed  
through the duration field of MAC frames. This ensures that the MAC complies with the protection mechanisms  
specified in the standard.  
The hardware, under the control of the PSM, maintains the NAV timer and updates the timer appropriately based  
on received frames. This timing information is provided to the IFS module, which uses it as a virtual carrier-  
sense indication.  
MAC-PHY Interface  
The MAC-PHY interface consists of a data path interface to exchange RX/TX data from/to the PHY. In addition,  
there is an programming interface, which can be controlled either by the host or the PSM to configure and control  
the PHY.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 78  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
IEEE 802.11ac Draft PHY  
IEEE 802.11ac Draft PHY  
The BCM4354 WLAN Digital PHY (see Figure 31 on page 80) is designed to comply with IEEE 802.11ac Draft  
and IEEE 802.11a/b/g/n dual-stream specifications to provide wireless LAN connectivity supporting data rates  
from 1 Mbps to 866.7 Mbps for low-power, high-performance handheld applications.  
The PHY has been designed to work in the presence of interference, radio nonlinearity, and various other  
impairments. It incorporates optimized implementations of the filters, FFT and Viterbi decoder algorithms.  
Efficient algorithms have been designed to achieve maximum throughput and reliability, including algorithms for  
carrier sense/rejection, frequency/phase/timing acquisition and tracking, channel estimation and tracking. The  
PHY receiver also contains a robust IEEE 802.11b demodulator. The PHY carrier sense has been tuned to  
provide high throughput for IEEE 802.11g/11b hybrid networks with Bluetooth coexistence. It has also been  
designed for sharing an antenna between WL and BT to support simultaneous RX-RX.  
The key PHY features include:  
Programmable data rates from MCS0–15 in 20 MHz, 40 MHz, and 80 MHz channels, as specified in  
IEEE 802.11ac Draft  
Supports Optional Short GI and Green Field modes in TX and RX  
TX and RX LDPC for improved range and power efficiency  
Beamforming support  
All scrambling, encoding, forward error correction, and modulation in the transmit direction and inverse  
operations in the receive direction.  
Supports IEEE 802.11h/k for worldwide operation  
Advanced algorithms for low power, enhanced sensitivity, range, and reliability  
Algorithms to improve performance in presence of Bluetooth  
Closed loop transmit power control  
Digital RF chip calibration algorithms to handle CMOS RF chip non-idealities  
On-the-fly channel frequency and transmit power selection  
Supports per packet RX antenna diversity  
Available per-packet channel quality and signal strength measurements  
Designed to meet FCC and other worldwide regulatory requirements  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 79  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
IEEE 802.11ac Draft PHY  
Figure 31: WLAN PHY Block Diagram  
CCK/DSSS  
Demodulate  
Filters and  
Radio Comp  
Frequency and  
Timing Synch  
Descramble  
and Deframe  
OFDM  
Demodulate  
Viterbi Decoder  
Carrier Sense,  
AGC, and Rx FSM  
Radio Control  
Block  
Buffers  
MAC  
Interface  
FFT/IFFT  
AFE  
and  
Radio  
Tx FSM  
Modulation  
and Coding  
Common Logic  
Block  
Frame and  
Scramble  
Filters and Radio  
Comp  
Modulate/  
Spread  
PA Comp  
COEX  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 80  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN Radio Subsystem  
Section 12: WLAN Radio Subsystem  
The BCM4354 includes an integrated dual-band WLAN RF transceiver that has been optimized for use in  
2.4 GHz and 5 GHz Wireless LAN systems. It has been designed to provide low-power, low-cost, and robust  
communications for applications operating in the globally available 2.4 GHz unlicensed ISM or 5 GHz U-NII  
bands. The transmit and receive sections include all on-chip filtering, mixing, and gain control functions.  
Sixteen RF control signals are available (eight per core) to drive external RF switches and support optional  
external power amplifiers and low-noise amplifiers for each band. See the reference board schematics for  
further details.  
A block diagram of the radio subsystem (core 0) is shown in Figure 32 on page 82. Core 1, is identical to Core 0  
without the Bluetooth blocks. The integrated on-chip baluns (not shown) convert the fully differential transmit  
and receive paths to single-ended signal pins.  
Receiver Path  
The BCM4354 has a wide dynamic range, direct conversion receiver that employs high order on-chip channel  
filtering to ensure reliable operation in the noisy 2.4 GHz ISM band or the entire 5 GHz U-NII band. An on-chip  
low noise amplifier (LNA) in the 2.4 GHz path in core 0 is shared between the Bluetooth and WLAN receivers,  
whereas the 5 GHz receive path and the core 1 2.4 GHz receive path have dedicated on-chip LNAs. Control  
signals are available that can support the use of external LNAs for each band, which can increase the receive  
sensitivity by several dB.  
Transmit Path  
Baseband data is modulated and upconverted to the 2.4 GHz ISM or 5 GHz U-NII bands, respectively. Linear  
on-chip power amplifiers are included, which are capable of delivering high output power while meeting IEEE  
802.11ac and IEEE 802.11a/b/g/n specifications, and without the need for external PAs. When using the internal  
PAs, closed-loop output power control is completely integrated.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 81  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Transmit Path  
Figure 32: Radio Functional Block Diagram (core 0)  
WL DAC  
WL PA  
WL PAD  
WL PGA  
WL TXLPF  
WL TX G-Mixer  
WL DAC  
WL A-PA  
WL A-PAD  
WL A-PGA  
WL TXLPF  
WL TX A-Mixer  
WL RX A-Mixer  
Voltage  
Regulators  
WLAN BB  
WL ADC  
WL A-LNA11  
WL A-LNA12  
WL RXLPF  
MUX  
WL ADC  
SLNA  
WL G-LNA12  
WL RXLPF  
WL RX G-Mixer  
WL ATX  
WL ARX  
WL GTX  
WL GRX  
CLB  
WL LOGEN  
WL PLL  
Gm  
BT LNA GM  
Shared XO  
BT RX  
BT TX  
BT LOGEN  
BT PLL  
LPO/Ext LPO/RCAL  
BT ADC  
BT RXLPF  
BT RXLPF  
BT ADC  
BT LNA Load  
BT PA  
BT RX Mixer  
BT BB  
BT FM  
BT DAC  
BT DAC  
BT TX Mixer  
BT TXLPF  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 82  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Calibration  
Calibration  
The BCM4354 features dynamic and automatic on-chip calibration to continually compensate for temperature  
and process variations across components. These calibration routines are performed periodically in the course  
of normal radio operation. Examples of some of the automatic calibration algorithms are baseband filter  
calibration for optimum transmit and receive performance, and LOFT calibration for carrier leakage reduction.  
In addition, I/Q Calibration, R Calibration, and VCO Calibration are performed on-chip. No per-board calibration  
is required in manufacturing test, which helps to minimize the test time and cost in large volume production.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 83  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pinout and Signal Descriptions  
Section 13: Pinout and Signal Descriptions  
Ball Maps  
Figure 33 and Figure 34 on page 85 show the WLBGA ball map.  
Figure 33: WLBGA Ball Map, 4.87 mm × 7.67 mm Array, 192-Ball, A1–V6 (Bottom ViewBalls Facing Up)  
6
5
4
3
2
1
HSIC_DATA  
PCIE_REFCLKN  
PCIE_REFCLKP  
PCIE_TDN  
PCIE_TDP  
A
B
C
D
E
PCIE_PLL  
_AVDD1P2  
PCIE_RXTX  
_AVDD1P2  
HSIC_AGND12PLL  
HSIC_DVDD12  
VSSC  
PCIE_PLL_AVSS  
PCIE_PME_L  
PCIE_RXTX_AVSS  
PCIE_PERST_L  
VDDC  
PCIE_RDN  
PCIE_RDP  
PCIE_TESTP  
VSSC  
PCIE_TESTN  
PCIE_CLKREQ_L  
BT_USB_DN  
GPIO_9  
BT_VDDC  
FM_AUDIOVDD1P2  
FM_AOUT1  
FM_AOUT2  
LPO_IN  
BT_USB_DP  
CLK_REQ  
FM_PLLVDD1P2  
FM_PLLVSS  
F
FM_AUDIOVSS  
FM_VCOVSS  
BT_I2S_DO  
BT_I2S_DI  
VSSC  
FM_LNAVCOVDD1P2  
FM_RFIN  
G
H
J
BT_UART_RXD  
BT_UART_TXD  
BT_UART_RTS_L  
BT_UART_CTS_L  
BT_VDDC  
BT_PCM_OUT  
BT_PCM_IN  
BT_GPIO_4  
BT_DEV_WAKE  
VSSC  
BT_VDDC  
FM_LNAVSS  
BT_VCOVSS  
BT_PLLVDD1P2  
BT_PAVSS  
BT_I2S_CLK  
BT_PCM_SYNC  
BT_I2S_WS  
BT_HOST_WAKE  
BT_IFVDD1P2  
BT_PLLVSS  
BT_VCOVDD1P2  
BT_LNAVDD1P2  
BT_RF  
K
L
BT_PCM_CLK  
BT_IFVSS  
BT_PAVDD2P5  
M
N
P
R
T
WRF_RX2G  
_GND1P2_CORE0  
WRF_LNA_2G  
_GND1P2_CORE0  
WRF_RFIN  
_2G_CORE0  
RF_SW_CTRL_4  
RF_SW_CTRL_6  
WRF_AFE  
_GND1P2_CORE0  
WRF_TX  
_GND1P2_CORE0  
WRF_PA2G_VBAT  
_GND3P3_CORE0  
WRF_RFOUT  
_2G_CORE0  
WRF_LOGEN  
_GND1P2  
WRF_LOGENG  
_GND1P2  
WRF_GPIO  
_OUT_CORE0  
WRF_PADRV_VBAT  
_VDD3P3_CORE0  
WRF_PA2G_VBAT  
_GND3P3_CORE0  
WRF_PA2G_VBAT  
_VDD3P3_CORE0  
WRF_MMD  
_GND1P2  
WRF_MMD  
_VDD1P2  
WRF_PFD  
_VDD1P2  
WRF_PADRV_VBAT  
_GND3P3_CORE0  
WRF_PA5G_VBAT  
_GND3P3_CORE0  
WRF_PA5G_VBAT  
_VDD3P3_CORE0  
WRF_BUCK  
_VDD1P5  
CORE0  
WRF_VCO  
_GND1P2  
WRF_PFD  
_GND1P2  
WRF_TSSI_A  
_CORE0  
WRF_PA5G_VBAT  
_GND3P3_CORE0  
WRF_RFOUT  
_5G_CORE0  
U
V
WRF_SYNTH  
_VBAT_VDD3P3  
WRF_CP  
_GND1P2  
WRF_BUCK  
_GND1P5_CORE0  
WRF_RX5G  
_GND1P2_CORE0  
WRF_LNA_5G  
_GND1P2_CORE0  
WRF_RFIN  
_5G_CORE0  
6
5
4
3
2
1
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 84  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Ball Maps  
Figure 34: WLBGA Ball Map, 4.87 × 7.67 Array, 192-Ball, A7 – V12 (Bottom View—Balls Facing Up)  
12  
11  
10  
9
8
7
SR  
_PVSS  
SR  
_VLX  
A
B
C
D
E
WL_REG_ON  
SDIO_CMD  
SDIO_CLK  
HSIC_STROBE  
SR  
SR  
PMU_AVSS  
VSSC  
SDIO_DATA_0  
SDIO_DATA_1  
JTAG_SEL  
SDIO_DATA_2  
SDIO_DATA_3  
VDDC  
HSIC_AVDD12PLL  
RREFHSIC  
_VDDBATP5V  
_VDDBATA5V  
LDO  
_VDD1P5  
VOUT  
_CLDO  
VOUT  
_BTLDO2P5  
VOUT  
_LNLDO  
BT_REG_ON  
VDDIO  
LDO  
_VDDBAT5V  
VOUT  
_LDO3P3_B  
VDDC  
VDDIO_SD  
GPIO_6  
VSSC  
GPIO_7  
VOUT  
_3P3  
F
GPIO_2  
GPIO_0  
GPIO_1  
VDDC  
GPIO_5  
GPIO_8  
G
H
J
VSSC  
GPIO_10  
VDDC  
GPIO_3  
AVSS_BBPLL  
AVDD_BBPLL  
VDDIO_RF  
GPIO_4  
RF_SW  
_CTRL_9  
RF_SW_CTRL_12  
VDDC  
RF_SW  
_CTRL_8  
RF_SW  
_CTRL_13  
K
L
BT_VDDIO  
VSSC  
VSSC  
VDDC  
RF_SW_CTRL_11  
RF_SW_CTRL_2  
RF_SW_CTRL_15  
RF_SW_CTRL_7  
RF_SW_CTRL_1  
RF_SW  
_CTRL_10  
RF_SW  
_CTRL_14  
M
N
P
R
T
VDDC  
WRF_XTAL  
_OUT  
WRF_XTAL  
_GND1P2  
WRF_XTAL  
_VDD1P2  
RF_SW_CTRL_3  
RF_SW_CTRL_5  
RF_SW_CTRL_0  
WRF_XTAL  
_IN  
WRF_XTAL  
_VDD1P5  
WRF_BUCK  
_GND1P5_CORE1  
WRF_BUCK  
_VDD1P5_CORE1  
WRF_GPIO_OUT  
_CORE1  
WRF_AFE  
_GND1P2_CORE1  
WRF_RX5G  
_GND1P2_CORE1  
WRF_TSSI  
_A_CORE1  
WRF_PADRV_VBAT  
_GND3P3_CORE1  
WRF_PADRV_VBAT  
_VDD3P3_CORE1  
WRF_TX  
_GND1P2_CORE1  
WRF_RX2G  
_GND1P2_CORE1  
WRF_LNA  
_5G_GND1P2_CORE1  
WRF_PA5G_VBAT  
_GND3P3_CORE1  
WRF_PA5G_VBAT  
_GND3P3_CORE1  
WRF_PA2G_VBAT  
_GND3P3_CORE1  
WRF_PA2G_VBAT  
_GND3P3_CORE1  
WRF_LNA_2G  
_GND1P2_CORE1  
U
V
WRF_RFIN  
_5G_CORE1  
WRF_RFOUT  
_5G_CORE1  
WRF_PA5G_VBAT  
_VDD3P3_CORE1  
WRF_PA2G_VBAT  
_VDD3P3_CORE1  
WRF_RFOUT  
_2G_CORE1  
WRF_RFIN  
_2G_CORE1  
12  
11  
10  
9
8
7
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 85  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
Pin Lists  
Table 18: Pin List by Pin Number (192-Pin WLBGA Package)  
WLBGA  
WLBGA  
Ball#  
Ball#  
Pin Name  
Pin Name  
D11  
D12  
D3  
D4  
D5  
D6  
D7  
D9  
E1  
VOUT_LNLDO  
VOUT_BTLDO2P5  
VSSC/VSS  
A10  
A11  
A12  
A2  
WL_REG_ON  
SR_VLX  
SR_PVSS  
VDD/VDDC  
PCIE_CLKREQ_L  
VSSC/VSS  
PCIE_TDP0  
A3  
PCIE_TDN0  
A4  
PCIE_REFCLKP  
PCIE_REFCLKN  
HSIC_DATA  
RREFHSIC  
JTAG_SEL  
A5  
A6  
FM_AOUT1  
VDDIO  
A7  
HSIC_STROBE  
SDIO_CLK  
E10  
E11  
E12  
E2  
A8  
VOUT_LDO3P3_B  
LDO_VDDBAT5V  
FM_AUDIOVDD1P2  
BT_VDD/VDDC  
BT_USB_DN  
GPIO_9  
A9  
SDIO_CMD  
B1  
PCIE_RDN0  
B10  
B11  
B12  
B2  
PMU_AVSS  
E4  
SR_VDDBATA5V  
SR_VDDBATP5V  
PCIE_RXTX_AVDD1P2  
PCIE_PLL_AVDD1P2  
PCIE_RXTX_AVSS  
PCIE_PLL_AVSS  
HSIC_AGND12PLL  
VDD/VDDC  
E5  
E6  
E7  
GPIO_7  
B3  
E8  
VDDIO_SD  
VDD/VDDC  
FM_AOUT2  
GPIO_1  
B4  
E9  
B5  
F1  
B6  
F10  
F11  
F12  
F2  
B7  
GPIO_2  
B8  
SDIO_DATA_2  
SDIO_DATA_0  
PCIE_RDP0  
VOUT_3P3  
FM_AUDIOVSS  
FM_PLLVDD1P2  
CLK_REQ  
B9  
C1  
C10  
C11  
C12  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
D10  
F3  
VSSC/VSS  
F4  
VOUT_CLDO  
LDO_VDD1P5  
PCIE_TESTN  
PCIE_TESTP  
PCIE_PERST_L  
PCIE_PME_L  
HSIC_DVDD12  
HSIC_AVDD12PLL  
SDIO_DATA_3  
SDIO_DATA_1  
BT_REG_ON  
F5  
BT_USB_DP  
LPO_IN  
F6  
F7  
GPIO_8  
F8  
GPIO_6  
F9  
GPIO_5  
G1  
G10  
G11  
G12  
G2  
FM_LNAVCOVDD1P2  
VDD/VDDC  
GPIO_0  
VSSC/VSS  
FM_VCOVSS  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 86  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
WLBGA  
Ball#  
WLBGA  
Ball#  
Pin Name  
Pin Name  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H11  
H12  
H2  
H3  
H4  
H5  
H7  
H9  
J1  
FM_PLLVSS  
VSSC/VSS  
L4  
BT_DEV_WAKE  
L5  
BT_UART_CTS_L  
BT_I2S_WS  
BT_I2S_DI  
L6  
BT_I2S_DO  
L7  
VSSC/VSS  
AVSS_BBPLL  
VSSC/VSS  
L8  
RF_SW_CTRL_15  
RF_SW_CTRL_11  
BT_PAVDD2P5  
L9  
GPIO_3  
M1  
M10  
M12  
M3  
M4  
M5  
M6  
M7  
M8  
N1  
N10  
N11  
N12  
N2  
N3  
N5  
N7  
N8  
P1  
FM_RFIN  
RF_SW_CTRL_14  
RF_SW_CTRL_10  
BT_IFVSS  
VDDIO_RF  
GPIO_10  
FM_LNAVSS  
BT_VDD/VDDC  
BT_PCM_OUT  
BT_UART_RXD  
AVDD_BBPLL  
GPIO_4  
VSSC/VSS  
BT_VDD/VDDC  
BT_PCM_CLK  
VDD/VDDC  
RF_SW_CTRL_7  
WRF_RFIN_2G_CORE0  
WRF_XTAL_VDD1P2  
WRF_XTAL_GND1P2  
WRF_XTAL_OUT  
WRF_LNA_2G_GND1P2_CORE0  
WRF_RX2G_GND1P2_CORE0  
RF_SW_CTRL_4  
RF_SW_CTRL_3  
RF_SW_CTRL_1  
WRF_RFOUT_2G_CORE0  
WRF_XTAL_VDD1P5  
WRF_XTAL_IN  
BT_VCOVDD1P2  
RF_SW_CTRL_9  
VDD/VDDC  
J11  
J12  
J2  
BT_VCOVSS  
BT_HOST_WAKE  
BT_PCM_IN  
BT_UART_TXD  
BT_I2S_CLK  
VDD/VDDC  
J3  
J4  
J5  
J6  
J8  
J9  
RF_SW_CTRL_12  
BT_LNAVDD1P2  
RF_SW_CTRL_13  
RF_SW_CTRL_8  
BT_PLLVDD1P2  
BT_IFVDD1P2  
BT_GPIO_4  
P11  
P12  
P2  
K1  
K10  
K12  
K2  
K3  
K4  
K5  
K6  
K7  
L1  
WRF_PA2G_VBAT_GND3P3_CORE0  
WRF_TX_GND1P2_CORE0  
WRF_AFE_GND1P2_CORE0  
RF_SW_CTRL_6  
P3  
P4  
P5  
P7  
RF_SW_CTRL_5  
BT_UART_RTS_L  
BT_PCM_SYNC  
BT_VDDIO  
P9  
RF_SW_CTRL_2  
R1  
R11  
R12  
R2  
R3  
R4  
R5  
WRF_PA2G_VBAT_VDD3P3_CORE0  
WRF_BUCK_VDD1P5_CORE1  
WRF_BUCK_GND1P5_CORE1  
WRF_PA2G_VBAT_GND3P3_CORE0  
WRF_PADRV_VBAT_VDD3P3_CORE0  
WRF_GPIO_OUT_CORE0  
WRF_LOGENG_GND1P2  
BT_RF  
L10  
L11  
L2  
VDD/VDDC  
VSSC/VSS  
BT_PAVSS  
L3  
BT_PLLVSS  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 87  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
WLBGA  
Ball#  
Pin Name  
R6  
R7  
R8  
R9  
T1  
WRF_LOGEN_GND1P2  
RF_SW_CTRL_0  
WRF_AFE_GND1P2_CORE1  
WRF_GPIO_OUT_CORE1  
WRF_PA5G_VBAT_VDD3P3_CORE0  
WRF_PADRV_VBAT_GND3P3_CORE1  
WRF_TSSI_A_CORE1  
T10  
T11  
T12  
T2  
WRF_RX5G_GND1P2_CORE1  
WRF_PA5G_VBAT_GND3P3_CORE0  
WRF_PADRV_VBAT_GND3P3_CORE0  
WRF_PFD_VDD1P2  
T3  
T4  
T5  
WRF_MMD_VDD1P2  
T6  
WRF_MMD_GND1P2  
T7  
WRF_RX2G_GND1P2_CORE1  
WRF_TX_GND1P2_CORE1  
WRF_PADRV_VBAT_VDD3P3_CORE1  
WRF_RFOUT_5G_CORE0  
T8  
T9  
U1  
U10  
U11  
U12  
U2  
U3  
U4  
U5  
U6  
U7  
U8  
U9  
V1  
V10  
V11  
V12  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
WRF_PA5G_VBAT_GND3P3_CORE1  
WRF_PA5G_VBAT_GND3P3_CORE1  
WRF_LNA_5G_GND1P2_CORE1  
WRF_PA5G_VBAT_GND3P3_CORE0  
WRF_TSSI_A_CORE0  
WRF_BUCK_VDD1P5_CORE0  
WRF_PFD_GND1P2  
WRF_VCO_GND1P2  
WRF_LNA_2G_GND1P2_CORE1  
WRF_PA2G_VBAT_GND3P3_CORE1  
WRF_PA2G_VBAT_GND3P3_CORE1  
WRF_RFIN_5G_CORE0  
WRF_PA5G_VBAT_VDD3P3_CORE1  
WRF_RFOUT_5G_CORE1  
WRF_RFIN_5G_CORE1  
WRF_LNA_5G_GND1P2_CORE0  
WRF_RX5G_GND1P2_CORE0  
WRF_BUCK_GND1P5_CORE0  
WRF_CP_GND1P2  
WRF_SYNTH_VBAT_VDD3P3  
WRF_RFIN_2G_CORE1  
WRF_RFOUT_2G_CORE1  
V9  
WRF_PA2G_VBAT_VDD3P3_CORE1  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 88  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
Table 19: Pin List by Pin Name (192-Pin WLBGA Package)  
WLBGA  
WLBGA  
Ball#  
Pin Name  
Pin Name  
Ball#  
FM_PLLVSS  
FM_RFIN  
G3  
H1  
G2  
G11  
F10  
H12  
F11  
G9  
H9  
F9  
AVDD_BBPLL  
AVSS_BBPLL  
BT_DEV_WAKE  
BT_GPIO_4  
H7  
G7  
L4  
FM_VCOVSS  
GPIO_0  
K4  
J3  
GPIO_1  
BT_HOST_WAKE  
BT_I2S_CLK  
GPIO_10  
J6  
GPIO_2  
BT_I2S_DI  
G5  
G6  
L6  
GPIO_3  
BT_I2S_DO  
GPIO_4  
BT_I2S_WS  
GPIO_5  
BT_IFVDD1P2  
BT_IFVSS  
K3  
M3  
K1  
M1  
L2  
GPIO_6  
F8  
GPIO_7  
E7  
F7  
BT_LNAVDD1P2  
BT_PAVDD2P5  
BT_PAVSS  
GPIO_8  
GPIO_9  
E6  
B6  
C7  
A6  
C6  
A7  
D9  
C12  
E12  
F6  
HSIC_AGND12PLL  
HSIC_AVDD12PLL  
HSIC_DATA  
HSIC_DVDD12  
HSIC_STROBE  
JTAG_SEL  
BT_PCM_CLK  
BT_PCM_IN  
M6  
J4  
BT_PCM_OUT  
BT_PCM_SYNC  
BT_PLLVDD1P2  
BT_PLLVSS  
H4  
K6  
K2  
L3  
LDO_VDD1P5  
LDO_VDDBAT5V  
LPO_IN  
BT_REG_ON  
BT_RF  
D10  
L1  
BT_UART_CTS_L  
BT_UART_RTS_L  
BT_UART_RXD  
BT_UART_TXD  
BT_USB_DN  
BT_USB_DP  
L5  
PCIE_PME_L  
PCIE_CLKREQ_L  
PCIE_PERST_L  
PCIE_PLL_AVDD1P2  
PCIE_PLL_AVSS  
PCIE_RDN0  
PCIE_RDP0  
PCIE_REFCLKN  
PCIE_REFCLKP  
PCIE_RXTX_AVDD1P2  
PCIE_RXTX_AVSS  
PCIE_TDN0  
PCIE_TDP0  
PCIE_TESTN  
PCIE_TESTP  
PMU_AVSS  
C5  
D5  
C4  
B3  
B5  
B1  
C1  
A5  
A4  
B2  
B4  
A3  
A2  
C2  
C3  
B10  
K5  
H5  
J5  
E5  
F5  
J1  
BT_VCOVDD1P2  
BT_VCOVSS  
BT_VDDIO  
J2  
K7  
F4  
E1  
F1  
E2  
F2  
G1  
H2  
F3  
CLK_REQ  
FM_AOUT1  
FM_AOUT2  
FM_AUDIOVDD1P2  
FM_AUDIOVSS  
FM_LNAVCOVDD1P2  
FM_LNAVSS  
FM_PLLVDD1P2  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 89  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
WLBGA  
Ball#  
WLBGA  
Ball#  
Pin Name  
Pin Name  
RF_SW_CTRL_0  
RF_SW_CTRL_1  
RF_SW_CTRL_10  
RF_SW_CTRL_11  
RF_SW_CTRL_12  
RF_SW_CTRL_13  
RF_SW_CTRL_14  
RF_SW_CTRL_15  
RF_SW_CTRL_2  
RF_SW_CTRL_3  
RF_SW_CTRL_4  
RF_SW_CTRL_5  
RF_SW_CTRL_6  
RF_SW_CTRL_7  
RF_SW_CTRL_8  
RF_SW_CTRL_9  
RREFHSIC  
R7  
VDDIO_SD  
E8  
N8  
VOUT_3P3  
F12  
D12  
C11  
E11  
D11  
C10  
D3  
M12  
L9  
VOUT_BTLDO2P5  
VOUT_CLDO  
J9  
VOUT_LDO3P3_B  
K10  
M10  
L8  
VOUT_LNLDO  
VSSC/VSS  
VSSC/VSS  
P9  
VSSC/VSS  
D6  
N7  
VSSC/VSS  
G12  
G4  
G8  
L11  
L7  
N5  
VSSC/VSS  
P7  
VSSC/VSS  
P5  
VSSC/VSS  
M8  
K12  
J11  
D7  
VSSC/VSS  
VSSC/VSS  
M4  
A10  
P4  
WL_REG_ON  
WRF_AFE_GND1P2_CORE0  
WRF_AFE_GND1P2_CORE1  
WRF_BUCK_GND1P5_CORE0  
WRF_BUCK_GND1P5_CORE1  
WRF_BUCK_VDD1P5_CORE0  
WRF_BUCK_VDD1P5_CORE1  
WRF_CP_GND1P2  
SDIO_CLK  
A8  
R8  
SDIO_CMD  
A9  
V4  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
SR_PVSS  
B9  
R12  
U4  
C9  
B8  
R11  
V5  
C8  
A12  
B11  
B12  
A11  
B7  
WRF_GPIO_OUT_CORE0  
WRF_GPIO_OUT_CORE1  
WRF_LNA_2G_GND1P2_CORE0  
WRF_LNA_2G_GND1P2_CORE1  
WRF_LNA_5G_GND1P2_CORE0  
WRF_LNA_5G_GND1P2_CORE1  
WRF_LOGEN_GND1P2  
WRF_LOGENG_GND1P2  
WRF_MMD_GND1P2  
WRF_MMD_VDD1P2  
R4  
SR_VDDBATA5V  
SR_VDDBATP5V  
SR_VLX  
R9  
N2  
U7  
VDD/VDDC  
V2  
VDD/VDDC  
D4  
U12  
R6  
BT_VDD/VDDC  
VDD/VDDC  
E4  
E9  
R5  
VDD/VDDC  
G10  
H3  
T6  
BT_VDD/VDDC  
VDD/VDDC  
T5  
J12  
J8  
WRF_PA2G_VBAT_GND3P3_CORE0  
WRF_PA2G_VBAT_GND3P3_CORE0  
WRF_PA2G_VBAT_GND3P3_CORE1  
WRF_PA2G_VBAT_GND3P3_CORE1  
WRF_PA2G_VBAT_VDD3P3_CORE0  
WRF_PA2G_VBAT_VDD3P3_CORE1  
WRF_PA5G_VBAT_GND3P3_CORE0  
P2  
VDD/VDDC  
R2  
VDD/VDDC  
L10  
M5  
M7  
E10  
H11  
U8  
BT_VDD/VDDC  
VDD/VDDC  
U9  
R1  
VDDIO  
V9  
VDDIO_RF  
T2  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 90  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
WLBGA  
Ball#  
Pin Name  
WRF_PA5G_VBAT_GND3P3_CORE0  
WRF_PA5G_VBAT_GND3P3_CORE1  
WRF_PA5G_VBAT_GND3P3_CORE1  
WRF_PA5G_VBAT_VDD3P3_CORE0  
WRF_PA5G_VBAT_VDD3P3_CORE1  
U2  
U10  
U11  
T1  
V10  
WRF_PADRV_VBAT_GND3P3_CORE0 T3  
WRF_PADRV_VBAT_GND3P3_CORE1 T10  
WRF_PADRV_VBAT_VDD3P3_CORE0  
WRF_PADRV_VBAT_VDD3P3_CORE1  
WRF_PFD_GND1P2  
R3  
T9  
U5  
WRF_PFD_VDD1P2  
T4  
WRF_RFIN_2G_CORE0  
WRF_RFIN_2G_CORE1  
WRF_RFIN_5G_CORE0  
WRF_RFIN_5G_CORE1  
WRF_RFOUT_2G_CORE0  
WRF_RFOUT_2G_CORE1  
WRF_RFOUT_5G_CORE0  
WRF_RFOUT_5G_CORE1  
WRF_RX2G_GND1P2_CORE0  
WRF_RX2G_GND1P2_CORE1  
WRF_RX5G_GND1P2_CORE0  
WRF_RX5G_GND1P2_CORE1  
WRF_SYNTH_VBAT_VDD3P3  
WRF_TSSI_A_CORE0  
N1  
V7  
V1  
V12  
P1  
V8  
U1  
V11  
N3  
T7  
V3  
T12  
V6  
U3  
T11  
P3  
WRF_TSSI_A_CORE1  
WRF_TX_GND1P2_CORE0  
WRF_TX_GND1P2_CORE1  
WRF_VCO_GND1P2  
T8  
U6  
WRF_XTAL_GND1P2  
N11  
P12  
N12  
N10  
P11  
WRF_XTAL_IN  
WRF_XTAL_OUT  
WRF_XTAL_VDD1P2  
WRF_XTAL_VDD1P5  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 91  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
Table 20: 395-Bump WLCSP Coordinates  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No. Net Name  
X
Y
X
Y
1
PCIE_RXTX_AVSS  
2300.51  
1966.81  
1966.81  
1800.31  
2134.01  
2134.01  
2134.01  
2300.51  
2300.51  
1966.81  
1800.31  
508.44  
3659.87  
3659.87  
3434.87  
3547.37  
3547.37  
3322.37  
3068.53  
3209.87  
3434.87  
3209.87  
3322.37  
3481.00  
3062.57  
3281.00  
3062.57  
3062.57  
3681.00  
3681.00  
3481.00  
3281.00  
3481.00  
3281.00  
3681.00  
3281.00  
3481.00  
3681.00  
3062.57  
2860.07  
2860.07  
3595.19  
2792.39  
3394.49  
3394.49  
2993.09  
3193.79  
2792.39  
–2300.51  
–1966.81  
–1966.81  
–1800.31  
–2134.01  
–2134.01  
–2134.01  
–2300.51  
–2300.51  
–1966.81  
–1800.31  
–508.44  
–768.62  
–508.44  
–1177.22  
–972.92  
–553.11  
3659.87  
3659.87  
3434.87  
3547.37  
3547.37  
3322.37  
3068.53  
3209.87  
3434.87  
3209.87  
3322.37  
3481.00  
3062.57  
3281.00  
3062.57  
3062.57  
3681.00  
3681.00  
3481.00  
3281.00  
3481.00  
3281.00  
3681.00  
3281.00  
3481.00  
3681.00  
3062.57  
2860.07  
2860.07  
3595.19  
2792.39  
3394.49  
3394.49  
2993.09  
3193.79  
2792.39  
2
PCIE_PLL_AVSS  
PCIE_REFCLKP  
PCIE_REFCLKN  
PCIE_TDN0  
3
4
5
6
PCIE_TDP0  
7
PCIE_RXTX_AVDD1P2  
PCIE_RDP0  
8
9
PCIE_RDN0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PCIE_PLL_AVSS  
PCIE_PLL_AVDD1P2  
USB3_REFCLKN  
USB3_PVDD1P2  
USB3_REFCLKP  
USB3_RVDD1P2  
USB3_TVDD1P2  
USB3_PGND  
768.62  
508.44  
1177.22  
972.92  
553.11  
USB3_PGND  
753.11  
–753.11  
USB3_PTESTP  
USB3_PTESTN  
USB3_TDP  
773.17  
–773.17  
–773.17  
–974.72  
–974.72  
–982.37  
–1176.88  
–1176.88  
–1186.67  
–526.91  
–1177.22  
–768.62  
–1601.79  
–1601.79  
–1401.09  
–1601.79  
–1601.79  
–1601.79  
–1401.09  
773.17  
974.72  
USB3_TDN  
974.72  
USB3_TGND  
982.37  
USB3_RDP  
1176.88  
1176.88  
1186.67  
526.91  
USB3_RDN  
USB3_RGND  
USB3_PVDD1P2  
USB3_DVDD1P2  
USB3_DVDD1P2  
USB2_AVSS  
1177.22  
768.62  
1601.79  
1601.79  
1401.09  
1601.79  
1601.79  
1601.79  
1401.09  
USB2_MONCDR  
USB2_RREF  
USB2_DP  
USB2_AVDD3P3  
USB2_DM  
USB2_AVDD1P2  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 92  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
Table 20: 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No. Net Name  
X
Y
X
Y
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
USB2_AVSSBG  
1401.09  
1401.09  
1401.09  
2217.95  
2017.95  
1768.91  
1568.92  
2228.18  
1843.60  
2176.03  
1768.91  
1568.92  
2252.39  
2227.01  
1967.62  
2044.00  
2044.00  
2244.00  
2244.00  
1614.95  
1614.95  
1793.21  
1686.40  
2273.40  
2260.02  
2060.02  
2060.02  
2273.40  
2273.40  
–2202.33  
–661.10  
740.99  
3595.19  
2993.09  
3193.79  
–736.50  
–1298.03  
–1298.03  
–1298.03  
–392.72  
–524.82  
–1164.53  
–223.55  
–223.55  
–936.50  
–189.65  
–45.40  
–1401.09  
–1401.09  
–1401.09  
–2217.95  
–2017.95  
–1768.91  
–1568.92  
–2228.18  
–1843.60  
–2176.03  
–1768.91  
–1568.92  
–2252.39  
–2227.01  
–1967.62  
–2044.00  
–2044.00  
–2244.00  
–2244.00  
–1614.95  
–1614.95  
–1793.21  
–1686.40  
–2273.40  
–2260.02  
–2060.02  
–2060.02  
–2273.40  
–2273.40  
2202.33  
661.10  
3595.19  
2993.09  
3193.79  
–736.50  
–1298.03  
–1298.03  
–1298.03  
–392.72  
–524.82  
–1164.53  
–223.55  
–223.55  
–936.50  
–189.65  
–45.40  
USB2_MONPLL  
USB2_DVSS  
BT_PAVSS  
BT_AGPIO  
BT_IFVDD1P2  
BT_IFVSS  
BT_LNAVDD1P2  
BT_LNAVSS  
BT_PAVDD2P5  
BT_PLLVDD1P2  
BT_PLLVSS  
BT_RF  
BT_VCOVDD1P2  
BT_VCOVSS  
FM_AUDIOVDD1P2  
FM_AUDIOAVSS  
FM_AOUT1  
FM_AOUT2  
FM_IFVDD1P2  
FM_IFVSS  
931.81  
931.81  
1143.58  
1143.58  
931.81  
1143.58  
1143.58  
931.81  
371.79  
371.79  
171.80  
171.80  
FM_PLLVSS  
FM_PLLVDD1P2  
FM_RFAUX  
FM_RFIN  
871.61  
871.61  
695.87  
695.87  
68.08  
68.08  
313.69  
313.69  
FM_LNAVDD1P2  
FM_LNAVSS  
FM_VCOVDD1P2  
FM_VCOVSS  
RF_SW_CTRL_0  
VDDC  
354.59  
354.59  
154.59  
154.59  
731.81  
731.81  
531.81  
531.81  
–1494.00  
–1355.99  
2052.00  
–408.01  
–198.00  
–1008.00  
–708.00  
252.00  
–1494.00  
–1355.99  
2052.00  
–408.01  
–198.00  
–1008.00  
–708.00  
252.00  
VSSC  
–740.99  
616.50  
VSSC  
–616.50  
–459.00  
–546.71  
–546.71  
–459.00  
VSSC  
459.00  
VSSC  
546.71  
VSSC  
546.71  
VSSC  
459.00  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 93  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
Table 20: 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side  
Top Side  
No. Net Name  
X
Y
X
Y
74  
VDDC  
–661.10  
740.99  
–21.01  
661.10  
–21.01  
75  
VSSC  
2352.00  
2299.50  
2531.57  
2731.57  
2931.58  
3131.59  
3331.59  
3531.60  
–408.01  
–1008.00  
–708.00  
–1125.00  
–21.01  
–740.99  
405.00  
337.05  
337.05  
337.05  
337.05  
337.05  
337.05  
316.50  
266.51  
266.51  
2072.12  
261.11  
259.00  
159.00  
159.00  
159.00  
159.00  
159.00  
159.00  
459.00  
67.05  
2352.00  
2299.50  
2531.57  
2731.57  
2931.58  
3131.59  
3331.59  
3531.60  
–408.01  
–1008.00  
–708.00  
–1125.00  
–21.01  
76  
VDDIO_SD  
SDIO_DATA_1  
SDIO_CLK  
SDIO_DATA_3  
SDIO_DATA_2  
SDIO_CMD  
SDIO_DATA_0  
VSSC  
–405.00  
–337.05  
–337.05  
–337.05  
–337.05  
–337.05  
–337.05  
–316.50  
–266.51  
–266.51  
–2072.12  
–261.11  
–259.00  
–159.00  
–159.00  
–159.00  
–159.00  
–159.00  
–159.00  
–459.00  
–67.05  
77  
78  
79  
80  
81  
82  
83  
84  
VSSC  
85  
VSSC  
86  
RF_SW_CTRL_4  
VDDC  
87  
88  
VSSC  
1651.99  
252.00  
1651.99  
252.00  
89  
VSSC  
90  
VSSC  
552.00  
552.00  
91  
VSSC  
851.99  
851.99  
92  
VSSC  
1151.99  
1451.99  
2052.00  
552.00  
1151.99  
1451.99  
2052.00  
552.00  
93  
VSSC  
94  
VSSC  
95  
VSSC  
96  
DGNDHSIC  
AGND12PLL  
AVDD12PLL  
RREFHSIC  
STROBE  
DATA  
2286.36  
2486.57  
2686.57  
2886.58  
3086.59  
3286.59  
3486.60  
–1220.99  
–1008.00  
–708.00  
–408.01  
–21.01  
2286.36  
2486.57  
2686.57  
2886.58  
3086.59  
3286.59  
3486.60  
–1220.99  
–1008.00  
–708.00  
–408.01  
–21.01  
97  
–67.05  
67.05  
98  
–67.05  
67.05  
99  
–67.05  
67.05  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
–67.05  
67.05  
–67.05  
67.05  
DVDD12HSIC  
VDDC  
–67.05  
67.05  
–61.11  
61.11  
VSSC  
–61.11  
61.11  
VSSC  
–61.11  
61.11  
VSSC  
–61.11  
61.11  
VDDC  
–61.11  
61.11  
VDDC  
–61.11  
1843.97  
–1220.99  
–1021.00  
61.11  
1843.97  
–1220.99  
–1021.00  
VDDC  
138.89  
–138.89  
–138.89  
VDDC  
138.89  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 94  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
Table 20: 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No. Net Name  
X
Y
X
Y
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
VDDC  
138.89  
–821.00  
–1220.99  
–421.00  
–221.00  
–21.01  
–138.89  
261.11  
–821.00  
–1220.99  
–421.00  
–221.00  
–21.01  
VDDC  
–261.11  
138.89  
138.89  
138.89  
140.99  
140.99  
140.99  
140.99  
140.99  
140.99  
140.99  
140.99  
768.37  
816.40  
599.69  
338.89  
338.89  
338.89  
–459.00  
440.99  
440.99  
468.37  
538.88  
538.88  
538.88  
538.88  
538.88  
538.88  
538.88  
601.19  
620.91  
655.50  
655.50  
1480.37  
740.99  
1480.37  
VDDC  
–138.89  
–138.89  
–138.89  
–140.99  
–140.99  
–140.99  
–140.99  
–140.99  
–140.99  
–140.99  
–140.99  
–768.37  
–816.40  
–599.69  
–338.89  
–338.89  
–338.89  
459.00  
VDDC  
VDDC  
VSSC  
252.00  
252.00  
VSSC  
552.00  
552.00  
VSSC  
851.99  
851.99  
VSSC  
1151.99  
1451.99  
1651.99  
2052.00  
2352.00  
–1186.86  
21.84  
1151.99  
1451.99  
1651.99  
2052.00  
2352.00  
–1186.86  
21.84  
VSSC  
VSSC  
VSSC  
PACKAGEOPTION_4  
BT_VSSC  
BT_VSSC  
BT_VSSC  
VDDC  
–715.49  
443.99  
–715.49  
443.99  
VDDC  
643.99  
643.99  
VDDC  
1843.97  
851.99  
1843.97  
851.99  
VSSC  
PACKAGEOPTION_2  
PACKAGEOPTION_3  
BT_VSSC  
VDDC  
2352.00  
2592.00  
–1186.86  
643.99  
–440.99  
–440.99  
–468.37  
–538.88  
–538.88  
–538.88  
–538.88  
–538.88  
–538.88  
–538.88  
–601.19  
–620.91  
–655.50  
–655.50  
–1480.37  
–740.99  
–1480.37  
2352.00  
2592.00  
–1186.86  
643.99  
VDDC  
843.98  
843.98  
VDDC  
1043.98  
1243.98  
1443.98  
1643.98  
1843.97  
–970.04  
–500.07  
168.14  
1043.98  
1243.98  
1443.98  
1643.98  
1843.97  
–970.04  
–500.07  
168.14  
VDDC  
VDDC  
VDDC  
VDDC  
BT_VDDC_ISO_1  
BT_VDDC_ISO_2  
AVDD_BBPLL  
AVSS_BBPLL  
BT_VDDC  
PACKAGEOPTION_1  
BT_VDDC  
437.48  
437.48  
555.67  
555.67  
2592.00  
780.66  
2592.00  
780.66  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 95  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
Table 20: 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No. Net Name  
X
Y
X
Y
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
BT_VDDIO  
830.29  
–445.06  
–724.53  
–245.06  
–973.39  
2592.00  
420.67  
–830.29  
–445.06  
–724.53  
–245.06  
–973.39  
2592.00  
420.67  
BT_VDDIO  
840.29  
–840.29  
BT_VDDIO  
865.28  
–865.28  
BT_VDDIO  
915.28  
–915.28  
PACKAGEOPTION_0  
BT_GPIO_5  
1040.99  
1048.37  
1048.37  
1048.37  
1444.06  
1444.06  
1143.51  
1143.51  
1348.51  
1644.06  
1644.06  
1343.51  
1343.51  
1548.50  
1844.06  
1844.06  
1543.51  
1543.51  
2044.05  
2044.05  
1743.51  
1743.51  
1858.50  
–2002.32  
2244.05  
2244.05  
1943.51  
1943.51  
2058.50  
–1945.91  
–2040.71  
–1872.11  
–1760.12  
–1040.99  
–1048.37  
–1048.37  
–1048.37  
–1444.06  
–1444.06  
–1143.51  
–1143.51  
–1348.51  
–1644.06  
–1644.06  
–1343.51  
–1343.51  
–1548.50  
–1844.06  
–1844.06  
–1543.51  
–1543.51  
–2044.05  
–2044.05  
–1743.51  
–1743.51  
–1858.50  
2002.32  
BT_GPIO_3  
620.67  
620.67  
BT_GPIO_2  
820.67  
820.67  
BT_I2S_DI  
1426.01  
1643.00  
1940.00  
2237.00  
2444.00  
1426.01  
1643.00  
1940.00  
2237.00  
2444.00  
1346.00  
1643.00  
1940.00  
2237.00  
1346.00  
1643.00  
1940.00  
2237.00  
2534.00  
–1494.00  
1346.00  
1643.00  
1940.00  
2237.00  
2534.00  
–806.00  
516.01  
1426.01  
1643.00  
1940.00  
2237.00  
2444.00  
1426.01  
1643.00  
1940.00  
2237.00  
2444.00  
1346.00  
1643.00  
1940.00  
2237.00  
1346.00  
1643.00  
1940.00  
2237.00  
2534.00  
–1494.00  
1346.00  
1643.00  
1940.00  
2237.00  
2534.00  
–806.00  
516.01  
BT_UART_TXD  
BT_I2S_WS  
LPO_IN  
OTP_VDD33  
BT_CLK_REQ  
BT_UART_RXD  
BT_PCM_SYNC  
BT_USB_DN  
PCIE_PME_L  
BT_TM1  
BT_I2S_CLK  
BT_GPIO_4  
BT_USB_DP  
BT_HOST_WAKE  
BT_I2S_DO  
BT_UART_CTS_N  
BT_PCM_IN  
PCIE_CLKREQ_L  
RF_SW_CTRL_1  
BT_DEV_WAKE  
BT_PCM_OUT  
BT_UART_RTS_N  
BT_PCM_CLK  
PERST_L  
–2244.05  
–2244.05  
–1943.51  
–1943.51  
–2058.50  
1945.91  
RF_SW_CTRL_8  
GPIO_13  
2040.71  
RF_SW_CTRL_5  
RF_SW_CTRL_12  
–1125.00  
–327.01  
1872.11  
–1125.00  
–327.01  
1760.12  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 96  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
Table 20: 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side  
Top Side  
No. Net Name  
X
Y
X
Y
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
GPIO_10  
–1959.30  
–1802.31  
–1745.90  
–1840.71  
–1853.50  
–1672.10  
–1560.11  
–1759.91  
–1602.31  
–1545.89  
–1640.70  
–1593.91  
–1472.09  
–1360.11  
–1559.91  
–459.00  
229.01  
1959.30  
1802.31  
1745.90  
1840.71  
1853.50  
1672.10  
1560.11  
1759.91  
1602.31  
1545.89  
1640.70  
1593.91  
1472.09  
1360.11  
1559.91  
459.00  
229.01  
RF_SW_CTRL_2  
RF_SW_CTRL_9  
GPIO_14  
–1494.00  
–806.00  
516.01  
–1494.00  
–806.00  
516.01  
GPIO_7  
–18.00  
–18.00  
RF_SW_CTRL_6  
RF_SW_CTRL_13  
GPIO_11  
–1125.00  
–327.01  
279.00  
–1125.00  
–327.01  
279.00  
RF_SW_CTRL_3  
RF_SW_CTRL_10  
GPIO_15  
–1494.00  
–806.00  
516.01  
–1494.00  
–806.00  
516.01  
GPIO_8  
22.00  
22.00  
RF_SW_CTRL_7  
RF_SW_CTRL_14  
GPIO_12  
–1125.00  
–327.01  
279.00  
–1125.00  
–327.01  
279.00  
VSSC  
1151.99  
1451.99  
–756.00  
1651.99  
1017.54  
22.00  
1151.99  
1451.99  
–756.00  
1651.99  
1017.54  
22.00  
VSSC  
–459.00  
459.00  
RF_SW_CTRL_11  
VDDC  
–1346.09  
–459.00  
1346.09  
459.00  
VDDC  
–1345.37  
–1393.90  
–1215.90  
–1160.10  
–1261.10  
–1061.11  
–1061.11  
–1061.10  
–1402.10  
–1180.10  
–1151.11  
–1058.99  
–816.10  
1345.37  
1393.90  
1215.90  
1160.10  
1261.10  
1061.11  
1061.11  
1061.10  
1402.10  
1180.10  
1151.11  
1058.99  
816.10  
GPIO_9  
VDDIO  
576.00  
576.00  
RF_SW_CTRL_15  
VDDC  
–327.01  
1843.97  
–1156.00  
–776.00  
–1355.99  
–1494.00  
–587.00  
–956.00  
2052.00  
1843.97  
2052.00  
2877.58  
3077.59  
3277.59  
3477.60  
–327.01  
1843.97  
–1156.00  
–776.00  
–1355.99  
–1494.00  
–587.00  
–956.00  
2052.00  
1843.97  
2052.00  
2877.58  
3077.59  
3277.59  
3477.60  
VDDC  
VDDC  
VDDC  
VDDC_ISO_PHY  
VDDC  
VDDC_ISO_PHY  
VDDC_ISO_DIG  
VDDC_ISO_DIG  
VSSC  
–459.00  
459.00  
GPIO_0  
–996.05  
996.05  
GPIO_1  
–996.05  
996.05  
GPIO_2  
–996.05  
996.05  
GPIO_3  
–996.05  
996.05  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 97  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
Table 20: 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side  
Top Side  
No. Net Name  
X
Y
X
Y
222  
223  
224  
225  
226  
227  
228  
229  
230  
VDDIO  
–990.90  
–960.10  
–1061.10  
–1061.10  
–1058.99  
–852.10  
–461.11  
–769.05  
–759.00  
576.00  
990.90  
960.10  
576.00  
VDDIO_RF  
VDDC  
–117.00  
1843.97  
843.98  
–117.00  
1843.97  
843.98  
1061.10  
1061.10  
1058.99  
852.10  
461.11  
VDDC_ISO_PHY  
VDDC_ISO_PHY  
VDDIO_RF  
VDDC  
1151.99  
–387.00  
–1355.99  
3196.59  
252.00  
1151.99  
–387.00  
–1355.99  
3196.59  
252.00  
GPIO_4  
769.05  
759.00  
VDDIO_PCIEa  
VDDIO  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
–759.00  
–1359.90  
–1319.39  
–1358.99  
–1351.11  
–751.05  
–751.05  
–745.50  
–733.05  
–729.00  
–951.31  
–861.10  
–1440.90  
–1159.90  
–1159.90  
–616.10  
75.91  
552.00  
759.00  
1359.90  
1319.39  
1358.99  
1351.11  
751.05  
552.00  
VSSC  
279.00  
279.00  
VSSC  
2052.00  
2302.00  
–956.00  
2996.59  
3396.60  
2352.00  
2796.58  
–220.50  
–956.00  
–1355.99  
576.00  
2052.00  
2302.00  
–956.00  
2996.59  
3396.60  
2352.00  
2796.58  
–220.50  
–956.00  
–1355.99  
576.00  
VSSC  
VSSC  
GPIO_6  
GPIO_5  
751.05  
VDDIO_SD  
745.50  
JTAG_SEL  
733.05  
VDDC_ISO_PHY  
VDDC  
729.00  
951.31  
VDDC  
861.10  
VSSC  
1440.90  
1159.90  
1159.90  
616.10  
VSSC  
–98.00  
–98.00  
VSSC  
279.00  
279.00  
VDDC  
1843.97  
–3598.00  
–1834.98  
–2065.65  
–3109.71  
–2065.65  
–2303.63  
–1818.42  
–1960.54  
–2417.93  
–2823.85  
–2944.01  
1843.97  
–3598.00  
–1834.98  
–2065.65  
–3109.71  
–2065.65  
–2303.63  
–1818.42  
–1960.54  
–2417.93  
–2823.85  
–2944.01  
WRF_SYNTH_VBAT_VDD3P3  
WRF_XTAL_GND1P2  
WRF_XTAL_VDD1P5  
WRF_VCO_GND1P2  
WRF_XTAL_IN  
WRF_LOGEN_GND1P2  
WRF_XTAL_OUT  
WRF_XTAL_VDD1P2  
WRF_TX_GND1P2_core1  
WRF_BUCK_GND1P5_core1  
WRF_RX5G_GND1P2_core1  
–75.91  
–2003.12  
–2003.12  
198.52  
2003.12  
2003.12  
–198.52  
2205.82  
–126.11  
2205.82  
1807.98  
437.83  
–2205.82  
126.11  
–2205.82  
–1807.98  
–437.83  
–2137.36  
–1968.14  
2137.36  
1968.14  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 98  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
Table 20: 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No. Net Name  
X
Y
X
Y
258  
259  
260  
261  
262  
263  
264  
WRF_GPIO_OUT_core1  
–877.08  
–167.27  
–2253.44  
–201.47  
901.40  
–2398.01  
–2716.52  
–3538.14  
–3598.00  
–2994.96  
–3198.01  
–2792.61  
877.08  
167.27  
–2398.01  
–2716.52  
–3538.14  
–3598.00  
–2994.96  
–3198.01  
–2792.61  
WRF_RX2G_GND1P2_core1  
WRF_RFIN_5G_core1  
WRF_RFIN_2G_core1  
WRF_PFD_VDD1P2  
2253.44  
201.47  
–901.40  
–818.12  
1090.70  
WRF_PFD_GND1P2  
818.12  
WRF_PADRV_VBAT_VDD3P3_core –1090.70  
1
265  
WRF_PADRV_VBAT_GND3P3_core –1401.46  
1
–2798.01  
1401.46  
–2798.01  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
WRF_PA5G_VBAT_VDD3P3_core1 –1401.46  
–3679.00  
–2293.35  
–2798.01  
–2998.01  
–2994.96  
–2798.01  
–1940.22  
–3673.49  
–3598.00  
–1598.02  
–2716.77  
–3433.91  
–2353.01  
–3679.00  
–3198.01  
–2028.11  
–3198.01  
–3276.89  
–3144.01  
–3697.00  
–3225.01  
–2798.01  
–2798.01  
1401.46  
631.56  
–3679.00  
–2293.35  
–2798.01  
–2998.01  
–2994.96  
–2798.01  
–1940.22  
–3673.49  
–3598.00  
–1598.02  
–2716.77  
–3433.91  
–2353.01  
–3679.00  
–3198.01  
–2028.11  
–3198.01  
–3276.89  
–3144.01  
–3697.00  
–3225.01  
–2798.01  
–2798.01  
WRF_AFE_GND1P2_core1  
–631.56  
WRF_PA5G_VBAT_GND3P3_core0 1825.51  
WRF_PA5G_VBAT_VDD3P3_core0 2297.50  
–1825.51  
–2297.50  
–692.41  
–499.12  
–1744.51  
–1877.39  
–539.26  
–1798.51  
1839.15  
–1024.35  
–770.31  
601.47  
WRF_MMD_VDD1P2  
WRF_MMD_GND1P2  
692.41  
499.12  
WRF_PA2G_VBAT_GND3P3_core0 1744.51  
WRF_LNA_5G_GND1P2_core0  
WRF_CP_GND1P2  
1877.39  
539.26  
WRF_LNA_2G_GND1P2_core0  
WRF_TSSI_A_core1  
1798.51  
–1839.15  
1024.35  
770.31  
WRF_BUCK_VDD1P5_core0  
WRF_LOGENG_GND1P2  
WRF_RFOUT_2G_core1  
WRF_RFOUT_5G_core0  
WRF_AFE_GND1P2_core0  
WRF_LNA_2G_GND1P2_core1  
WRF_LNA_5G_GND1P2_core1  
–601.47  
2288.50  
880.13  
–2288.50  
–880.13  
201.47  
–201.47  
–2276.94  
2276.94  
543.68  
WRF_PA2G_VBAT_GND3P3_core1 –543.68  
WRF_PA2G_VBAT_VDD3P3_core1 –801.47  
WRF_PA5G_VBAT_GND3P3_core1 –1801.46  
WRF_PA5G_VBAT_VDD3P3_core0 2279.50  
801.47  
1801.46  
–2279.50  
–1398.51  
WRF_PADRV_VBAT_GND3P3_core 1398.51  
0
289  
WRF_PADRV_VBAT_VDD3P3_core 1393.11  
0
–2487.25  
–1393.11  
–2487.25  
290  
291  
WRF_RFIN_2G_core0  
2198.50  
1317.02  
–1598.02  
–1563.82  
–2198.50  
–1317.02  
–1598.02  
–1563.82  
WRF_RX2G_GND1P2_core0  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 99  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
Table 20: 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No. Net Name  
X
Y
X
Y
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
WRF_RX5G_GND1P2_core0  
1544.51  
1018.43  
1317.27  
1424.35  
–2237.36  
998.51  
–3364.69  
–1834.38  
–3235.69  
–3533.90  
–2423.85  
–2273.63  
–1998.02  
–3688.00  
–2523.25  
–3114.13  
–3649.99  
–3198.01  
–3225.01  
–2398.01  
–2198.02  
–1700.51  
–3633.90  
–3633.90  
–3433.91  
–2423.85  
–2623.85  
–2623.85  
–3697.00  
–3679.00  
–2303.63  
–2888.29  
–3598.00  
3277.01  
–1544.51  
–1018.43  
–1317.27  
–1424.35  
2237.36  
–998.51  
–2279.50  
1801.46  
–1714.63  
1126.70  
–2138.64  
–1825.51  
1401.46  
–2279.50  
–2297.50  
–1488.79  
–1024.35  
–1224.35  
–1224.35  
2037.36  
2037.36  
2237.36  
1601.46  
1001.47  
–326.11  
303.96  
–3364.69  
–1834.38  
–3235.69  
–3533.90  
–2423.85  
–2273.63  
–1998.02  
–3688.00  
–2523.25  
–3114.13  
–3649.99  
–3198.01  
–3225.01  
–2398.01  
–2198.02  
–1700.51  
–3633.90  
–3633.90  
–3433.91  
–2423.85  
–2623.85  
–2623.85  
–3697.00  
–3679.00  
–2303.63  
–2888.29  
–3598.00  
3277.01  
1721.37  
1721.37  
1438.53  
1155.69  
WRF_TX_GND1P2_core0  
WRF_TSSI_A_core0  
WRF_BUCK_GND1P5_core0  
WRF_BUCK_VDD1P5_core1  
WRF_GPIO_OUT_core0  
WRF_RFOUT_2G_core0  
WRF_RFOUT_5G_core1  
2279.50  
–1801.46  
WRF_PA2G_VBAT_GND3P3_core0 1714.63  
WRF_PA2G_VBAT_GND3P3_core1 –1126.70  
WRF_RFIN_5G_core0  
2138.64  
WRF_PA5G_VBAT_GND3P3_core0 1825.51  
WRF_PA5G_VBAT_GND3P3_core1 –1401.46  
WRF_PA2G_VBAT_VDD3P3_core0 2279.50  
WRF_PA2G_VBAT_VDD3P3_core0 2297.50  
WRF_RX2G_GND1P2_core0  
WRF_BUCK_VDD1P5_core0  
WRF_BUCK_VDD1P5_core0  
WRF_BUCK_VDD1P5_core0  
WRF_BUCK_VDD1P5_core1  
WRF_BUCK_VDD1P5_core1  
WRF_BUCK_VDD1P5_core1  
1488.79  
1024.35  
1224.35  
1224.35  
–2037.36  
–2037.36  
–2237.36  
WRF_PA5G_VBAT_VDD3P3_core1 –1601.46  
WRF_PA2G_VBAT_VDD3P3_core1 –1001.47  
WRF_LOGEN_GND1P2  
WRF_RX2G_GND1P2_core1  
WRF_CP_GND1P2  
WL_REG_ON  
326.11  
–303.96  
339.26  
–339.26  
1710.77  
1569.35  
1852.20  
1852.20  
1852.20  
1993.62  
2135.04  
1710.77  
1852.20  
2135.04  
–1710.77  
–1569.35  
–1852.20  
–1852.20  
–1852.20  
–1993.62  
–2135.04  
–1710.77  
–1852.20  
–2135.04  
BT_REG_ON  
1721.37  
LDO_VDDBAT5V  
LDO_VDDBAT5V  
LDO_VDDBAT5V  
VOUT_3P3  
1721.37  
1438.53  
1155.69  
1297.11  
1297.11  
VOUT_3P3  
1155.69  
1155.69  
VDDIO_PMU  
1297.11  
1297.11  
LDO_VDDBAT5V  
LDO_VDDBAT5V  
872.84  
872.84  
872.84  
872.84  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 100  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
Table 20: 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No. Net Name  
X
Y
X
Y
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
LDO_VDDBAT5V  
–2276.46  
–2276.46  
–1710.77  
–1993.62  
–1569.35  
–1569.35  
–1569.35  
–1569.35  
–1569.35  
–1852.20  
–1852.20  
–1852.20  
–1852.20  
–1852.20  
–1993.62  
–2135.04  
–2135.04  
–2135.04  
–2135.04  
–2135.04  
–2135.04  
–1710.77  
–1710.77  
–1710.77  
–1710.77  
–1710.77  
–1993.62  
–1993.62  
–1993.62  
–1993.62  
–1993.62  
–1993.62  
–2276.46  
–2276.46  
–2276.46  
–2276.46  
–2276.46  
1014.26  
1297.11  
1862.79  
1579.95  
1155.69  
1438.53  
2287.06  
2852.74  
3135.59  
3135.59  
2852.74  
2569.90  
2287.06  
2004.21  
1014.26  
1438.53  
1721.37  
2004.21  
2287.06  
2569.90  
3135.59  
1579.95  
2145.64  
2428.48  
2711.32  
2994.17  
1862.79  
2145.64  
2428.48  
2711.32  
2994.17  
3277.01  
1862.79  
2145.64  
2428.48  
3277.01  
1579.95  
2276.46  
2276.46  
1710.77  
1993.62  
1569.35  
1569.35  
1569.35  
1569.35  
1569.35  
1852.20  
1852.20  
1852.20  
1852.20  
1852.20  
1993.62  
2135.04  
2135.04  
2135.04  
2135.04  
2135.04  
2135.04  
1710.77  
1710.77  
1710.77  
1710.77  
1710.77  
1993.62  
1993.62  
1993.62  
1993.62  
1993.62  
1993.62  
2276.46  
2276.46  
2276.46  
2276.46  
2276.46  
1014.26  
1297.11  
1862.79  
1579.95  
1155.69  
1438.53  
2287.06  
2852.74  
3135.59  
3135.59  
2852.74  
2569.90  
2287.06  
2004.21  
1014.26  
1438.53  
1721.37  
2004.21  
2287.06  
2569.90  
3135.59  
1579.95  
2145.64  
2428.48  
2711.32  
2994.17  
1862.79  
2145.64  
2428.48  
2711.32  
2994.17  
3277.01  
1862.79  
2145.64  
2428.48  
3277.01  
1579.95  
VOUT_3P3_SENSE  
LDO_VDDBAT5V  
VOUT_3P3  
VSSC  
VSSC  
PMU_AVSS  
SR_VLX  
SR_VLX  
SR_PVSS  
SR_VLX  
SR_VDDBATA5V  
VOUT_CLDO  
LDO_VDD1P5  
LDO_VDDBAT5V  
VOUT_3P3  
LDO_VDDBAT5V  
VOUT_LDO3P3_B  
LDO_VDD1P5  
SR_VDDBATP5V  
SR_PVSS  
VDDIO_PMU  
VOUT_LNLDO  
VOUT_CLDO  
SR_VLX  
SR_VLX  
VOUT_LDO3P3_B  
LDO_VDD1P5  
VOUT_CLDO  
SR_VDDBATP5V  
SR_VLX  
SR_PVSS  
VOUT_3P3  
VOUT_BTLDO2P5  
LDO_VDD1P5  
SR_PVSS  
VOUT_3P3  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 101  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Pin Lists  
Table 20: 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No. Net Name  
X
Y
X
Y
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
SR_VDDBATP5V  
–2276.46  
1800.31  
1966.81  
1480.37  
1480.37  
1408.19  
1322.34  
1060.28  
666.40  
2711.32  
3068.53  
2956.03  
1005.66  
1225.66  
248.05  
2276.46  
–1800.31  
–1966.81  
–1480.37  
–1480.37  
–1408.19  
–1322.34  
–1060.28  
–666.40  
–617.61  
–338.89  
–1040.28  
–1063.38  
–1063.38  
–1273.37  
–1273.37  
–1273.37  
–1273.37  
–440.99  
1293.24  
1202.10  
1058.99  
1058.99  
959.90  
2711.32  
3068.53  
2956.03  
1005.66  
1225.66  
248.05  
PCIE_TESTP  
PCIE_TESTN  
BT_VDDC  
BT_VDDC  
BT_VDDC  
BT_VDDC  
BT_VDDC  
BT_VDDC  
BT_VDDC  
BT_VSSC  
BT_VSSC  
BT_VSSC  
BT_VSSC  
BT_VSSC  
BT_VSSC  
BT_VSSC  
BT_VSSC  
VSSC  
55.02  
55.02  
–1186.86  
–198.15  
–1324.61  
–475.07  
–724.53  
1020.66  
1320.66  
505.67  
–1186.86  
–198.15  
–1324.61  
–475.07  
–724.53  
1020.66  
1320.66  
505.67  
617.61  
338.89  
1040.28  
1063.38  
1063.38  
1273.37  
1273.37  
1273.37  
1273.37  
440.99  
705.66  
705.66  
1005.66  
1225.66  
2052.00  
–1317.60  
–1504.00  
1451.99  
2302.00  
279.00  
1005.66  
1225.66  
2052.00  
–1317.60  
–1504.00  
1451.99  
2302.00  
279.00  
VSSC  
–1293.24  
–1202.10  
–1058.99  
–1058.99  
–959.90  
–759.00  
–759.00  
–759.00  
–759.00  
–746.31  
–746.31  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
851.99  
759.00  
851.99  
VSSC  
1151.99  
1451.99  
2052.00  
–956.00  
–756.00  
759.00  
1151.99  
1451.99  
2052.00  
–956.00  
–756.00  
VSSC  
759.00  
VSSC  
759.00  
VSSC  
746.31  
VSSC  
746.31  
a. This net name was changed to VDDIO_PCIE to correct an error in the pin definition of bump 230. The correction  
applies to WLCSP package PCIe platform only, and is inconsequential for SDIO platforms.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 102  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Signal Descriptions  
The signal name, type, and description of each pin in the BCM4354 is listed in Table 21 (WLCSP) and Table 22  
on page 111 (WLBGA). The symbols shown under Type indicate pin directions (I/O = bidirectional, I = input, O  
= output) and the internal pull-up/pull-down characteristics (PU = weak internal pull-up resistor and PD = weak  
internal pull-down resistor), if any.  
Table 21: WLCSP Signal Descriptions  
Bump# Signal Name  
Type Description  
WLAN and Bluetooth Receive RF Signal Interface  
290  
261  
WRF_RFIN_2G_CORE0  
WRF_RFIN_2G_CORE1  
I
I
2.4 GHz Bluetooth and WLAN CORE0 receiver  
shared input  
2.4 GHz Bluetooth and WLAN CORE1 receiver  
shared input  
302  
260  
298  
279  
280  
299  
294  
WRF_RFIN_5G_CORE0  
WRF_RFIN_5G_CORE1  
WRF_RFOUT_2G_CORE0  
WRF_RFOUT_2G_CORE1  
WRF_RFOUT_5G_CORE0  
WRF_RFOUT_5G_CORE1  
WRF_TSSI_A_CORE0  
I
5 GHz WLAN CORE0 receiver input  
5 GHz WLAN CORE1 receiver input  
2.4 GHz WLAN CORE0 PA output  
2.4 GHz WLAN CORE1 PA output  
5 GHz WLAN CORE0 PA output  
5 GHz WLAN CORE1 PA output  
I
O
O
O
O
I
5 GHz TSSI CORE0 input from an optional external  
power amplifier/power detector.  
276  
297  
258  
WRF_TSSI_A_CORE1  
I
5 GHz TSSI CORE1 input from an optional external  
power amplifier/power detector.  
WRF_GPIO_OUT_CORE0  
WRF_GPIO_OUT_CORE1  
I/O GPIO or 2.4 GHz TSSI CORE0 input from an optional  
external power amplifier/power detector  
I/O GPIO or 2.4 GHz TSSI CORE1 input from an optional  
external power amplifier/power detector  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 103  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Table 21: WLCSP Signal Descriptions (Cont.)  
Type Description  
Bump# Signal Name  
RF Switch Control Lines  
66  
RF_SW_CTRL_0  
RF_SW_CTRL_1  
RF_SW_CTRL_2  
RF_SW_CTRL_3  
RF_SW_CTRL_4  
RF_SW_CTRL_5  
RF_SW_CTRL_6  
RF_SW_CTRL_7  
RF_SW_CTRL_8  
RF_SW_CTRL_9  
RF_SW_CTRL_10  
RF_SW_CTRL_11  
RF_SW_CTRL_12  
RF_SW_CTRL_13  
RF_SW_CTRL_14  
RF_SW_CTRL_15  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Programmable RF switch control lines. The control  
lines are programmable via the driver and NVRAM  
file.  
175  
186  
193  
86  
183  
190  
197  
181  
187  
194  
202  
184  
191  
198  
207  
WLAN PCI Express Interface  
174  
PCIE_CLKREQ_L  
OD PCIe clock request signal which indicates when the  
REFCLK to the PCIe interface can be gated.  
1 = the clock can be gated  
0 = the clock is required  
180  
PCIE_PERST_L  
I (PU) PCIe System Reset. This input is the PCIe reset as  
defined in the PCIe base specification version 1.1.  
9
PCIE_RDN0  
I
I
Receiver differential pair (×1 lane)  
8
PCIE_RDP0  
4
PCIE_REFCLKN  
PCIE_REFCLKP  
PCIE_TDN0  
I
PCIE Differential Clock inputs (negative and positive).  
100 MHz differential.  
3
I
5
O
O
Transmitter differential pair (×1 lane)  
6
PCIE_TDP0  
165  
PCIE_PME_L  
OD PCI power management event output. Used to  
request a change in the device or system power state.  
The assertion and deassertion of this signal is  
asynchronous to the PCIe reference clock. This signal  
has an open-drain output structure, as per the PCI  
Bus Local Bus Specification, revision 2.3.  
367  
368  
PCIE_TESTP  
PCIE_TESTN  
PCIe test pin  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 104  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Table 21: WLCSP Signal Descriptions (Cont.)  
Type Description  
Bump# Signal Name  
WLAN SDIO Bus Interface  
These signals can support alternate functionality depending on package and host interface mode. See  
Table 26: “GPIO Alternative Signal Functions,” on page 120  
78  
81  
82  
77  
80  
79  
SDIO_CLK  
I
SDIO clock input  
SDIO_CMD  
I/O SDIO command line  
I/O SDIO data line 0  
I/O SDIO data line 1  
I/O SDIO data line 2  
I/O SDIO data line 3  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
WLAN HSIC Interface  
100  
101  
99  
HSIC_STROBE  
I/O HSIC Strobe  
I/O HSIC Data  
HSIC_DATA  
RREFHSIC  
I
HSIC reference resistor input. If HSIC is used,  
connect this pin to ground via a 51-ohm 5% resistor.  
On SDIO designs this pin should not be connected.  
WLAN GPIO Interface  
The GPIO signals can be multiplexed via software and the JTAG_SEL pin to support other functions. See  
Table 23: “WLAN GPIO Functions and Strapping Options,” on page 119 and Table 26: “GPIO Alternative Signal  
Functions,” on page 120 for additional details.  
218  
219  
220  
221  
229  
237  
236  
189  
196  
205  
185  
192  
199  
182  
188  
195  
GPIO_0  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
I/O Programmable GPIO pins  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
JTAG Interface  
239  
JTAG_SEL  
I/O JTAG select: pull high to select the JTAG interface. If  
the JTAG interface is not used this pin may be left  
floating or connected to ground.  
Note: See Table 26: “GPIO Alternative Signal  
Functions,” on page 120 for the JTAG signal pins.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 105  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Table 21: WLCSP Signal Descriptions (Cont.)  
Type Description  
Bump# Signal Name  
Clocks  
251  
253  
159  
161  
WRF_XTAL_IN  
WRF_XTAL_OUT  
LPO_IN  
I
XTAL oscillator input  
XTAL oscillator output  
O
I
External sleep clock input (32.768 kHz)  
CLK_REQ  
O
Reference clock request (shared by BT and WLAN).  
If not used, this can be no-connect.  
Bluetooth/FM Transceiver  
49  
BT_RF  
O
I
Bluetooth PA output  
SFLASH_CLK  
BT_SF_CLK  
BT_SF_CS_L  
BT_SF_MISO  
BT_SF_MOSI  
FM_RFIN  
I/O SFLASH_CSN  
I/O SFLASH master input, slave output  
I/O SFLASH master output, slave input  
61  
60  
54  
55  
I
FM radio antenna port  
FM radio auxiliary antenna port  
FM DAC output 1  
FM_RFAUX  
FM_AOUT1  
FM_AOUT2  
I
O
O
FM DAC output 2  
Bluetooth PCM  
179  
173  
177  
163  
BT_PCM_CLK  
I/O PCM clock; can be master (output) or slave (input)  
BT_PCM_IN  
I
PCM data input  
PCM data output  
BT_PCM_OUT  
BT_PCM_SYNC  
O
I/O PCM sync; can be master (output) or slave (input).  
Bluetooth USB Interface  
164  
BT_USB_DN  
I/O USB (Host) data negative. Negative terminal of the  
USB transceiver.  
169  
BT_USB_DP  
I/O USB (Host) data positive. Positive terminal of the USB  
transceiver.  
Bluetooth UART  
172  
178  
162  
157  
BT_UART_CTS_L  
I
UART clear-to-send. Active-low clear-to-send signal  
for the HCI UART interface.  
BT_UART_RTS_L  
BT_UART_RXD  
BT_UART_TXD  
O
I
UART request-to-send. Active-low request-to-send  
signal for the HCI UART interface. BT LED control pin.  
UART serial input. Serial data input for the HCI UART  
interface.  
O
UART serial output. Serial data output for the HCI  
UART interface.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 106  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Table 21: WLCSP Signal Descriptions (Cont.)  
Type Description  
Bump# Signal Name  
Bluetooth/FM I2S  
I2S clock, can be master (output) or slave (input).  
167  
171  
156  
158  
BT_I2S_CLK  
BT_I2S_DO  
BT_I2S_DI  
I/O  
I2S data output  
I2S data input  
I/O  
I/O  
I/O  
I2S WS; can be master (output) or slave (input).  
BT_I2S_WS  
Bluetooth GPIOs  
155  
154  
168  
153  
BT_GPIO_2  
I/O Bluetooth general-purpose I/O  
I/O Bluetooth general-purpose I/O  
I/O Bluetooth general-purpose I/O  
I/O Bluetooth general-purpose I/O  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
Miscellaneous  
319  
WL_REG_ON  
I
Used by PMU to power up or power down the internal  
BCM4354 regulators used by the WLAN section.  
Also, when deasserted, this pin holds the WLAN  
section in reset. This pin has an internal 200 kpull-  
down resistor that is enabled by default. It can be  
disabled through programming.  
320  
BT_REG_ON  
I
Used by PMU to power up or power down the internal  
BCM4354 regulators used by the Bluetooth/FM  
section. Also, when deasserted, this pin holds the  
Bluetooth/FM section in reset. This pin has an internal  
200 kpull-down resistor that is enabled by default. It  
can be disabled through programming.  
176  
170  
BT_DEV_WAKE  
BT_HOST_WAKE  
I/O Bluetooth DEV_WAKE  
I/O Bluetooth HOST_WAKE  
Integrated Voltage Regulators  
340  
348  
336  
SR_VDDBATA5V  
SR_VDDBATP5V  
SR_VLX  
I
I
Quiet VBAT  
Power VBAT  
O
CBuck switching regulator output. Refer to Table 43  
on page 158 for details of the inductor and capacitor  
required on this output.  
342  
327  
249  
254  
351  
341  
362  
346  
324  
LDO_VDD1P5  
I
LNLDO input  
LDO_VDDBAT5V  
WRF_XTAL_VDD1P5  
WRF_XTAL_VDD1P2  
VOUT_LNLDO  
I
LDO VBAT.  
I
XTAL LDO input (1.35V)  
XTAL LDO output (1.2V)  
Output of LNLDO  
Output of core LDO  
Output of BT LDO  
Output of 3.3V LDO  
LDO 3.3V output  
O
O
O
O
O
O
VOUT_CLDO  
VOUT_BTLDO2P5  
VOUT_LDO3P3_B  
VOUT_3P3  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 107  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Table 21: WLCSP Signal Descriptions (Cont.)  
Type Description  
Bump# Signal Name  
330  
VOUT_3P3_SENSE  
O
Voltage sense pin for LDO 3.3V output  
Bluetooth Supplies  
46  
44  
42  
47  
50  
BT_PAVDD2P5  
PWR Bluetooth PA power supply  
PWR Bluetooth LNA power supply  
PWR Bluetooth IF block power supply  
PWR Bluetooth RF PLL power supply  
PWR Bluetooth RF power supply  
PWR Core supply  
BT_LNAVDD1P2  
BT_IFVDD1P2  
BT_PLLVDD1P2  
BT_VCOVDD1P2  
148, 149, BT_VDDIO  
150,151  
FM Transceiver Supplies  
FM_LNAVCOVDD1P2  
PWR FM LNA and VCO 1.2V power supply  
PWR FM LNA 1.2V power supply  
PWR FM VCO 1.2V power supply  
PWR FM PLL 1.2V power supply  
PWR FM AUDIO power supply  
62  
64  
59  
52  
FM_LNAVDD1P2  
FM_VCOVDD1P2  
FM_PLLVDD1P2  
FM_AUDIOVDD1P2  
WLAN Supplies  
277  
296  
262  
289  
WRF_BUCK_VDD1P5_CORE0  
PWR Internal capacitor-less CORE0 LDO supply  
PWR Internal capacitor-less CORE1 LDO supply  
PWR Synth VDD 3.3V supply  
WRF_BUCK_VDD1P5_CORE1  
WRF_SYNTH_VBAT_VDD3P3  
WRF_PADRV_VBAT_VDD3P3_CO PWR CORE0 PA Driver VBAT supply  
RE0  
264  
269  
266  
305  
285  
WRF_PADRV_VBAT_VDD3P3_CO PWR CORE1 PA Driver VBAT supply  
RE1  
WRF_PA5G_VBAT_VDD3P3_COR PWR 5 GHz CORE0 PA 3.3V VBAT supply  
E0  
WRF_PA5G_VBAT_VDD3P3_COR PWR 5 GHz CORE1 PA 3.3V VBAT supply  
E1  
WRF_PA2G_VBAT_VDD3P3_COR PWR 2 GHz CORE0 PA 3.3V VBAT supply  
E0  
WRF_PA2G_VBAT_VDD3P3_COR PWR 2 GHz CORE1 PA 3.3V VBAT supply  
E1  
270  
262  
WRF_MMD_VDD1P2  
WRF_PFD_VDD1P2  
PWR 1.2V supply  
PWR 1.2V supply  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 108  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Table 21: WLCSP Signal Descriptions (Cont.)  
Type Description  
Bump# Signal Name  
Miscellaneous Supplies  
160  
OTP_VDD33  
VDDC  
PWR OTP 3.3V supply  
67, 74,  
PWR 1.2V core supply for WLAN  
87, 103,  
107–115,  
127–129,  
134–140,  
203, 204,  
208–211,  
213, 224,  
228, 241,  
242, 246  
206, 222, VDDIO  
231  
PWR 1.8V–3.3V supply for WLAN. Must be directly  
connected to PMU_VDDIO and BT_VDDIO on the  
PCB.  
145, 147, BT_VDDC  
369– 375,  
PWR 1.2V core supply for BT  
326  
VDDIO_PMU  
PWR 1.8V–3.3V supply for PMU controls. Must be directly  
connected to VDDIO and BT_VDDIO on the PCB.  
76  
VDDIO_SD  
PWR 1.8V–3.3V supply for SDIO pads  
PWR IO supply for RF switch control pads (3.3V)  
PWR 1.2V supply for HSIC PLL  
223  
98  
VDDIO_RF  
HSIC_AVDD12PLL  
HSIC_DVDD12  
AVDD_BBPLL  
102  
143  
11  
PWR 1.2V supply for HSIC digital  
PWR Baseband PLL supply  
PCIE_PLL_AVDD1P2  
PCIE_RXTX_AVDD1P2  
VDDIO_PCIE  
PWR 1.2V supply for PCIe PLL  
7
PWR 1.2V supply for PCIE TX and RX  
230  
PWR Supply the same voltage to this pin as used for the  
PCIe out-of-band signals (that is, PCIE_PME_L). This  
would be 1.8V or 3.3V, and cannot be turned off.  
Ground  
250  
281  
267  
295  
256  
275  
282  
273  
283  
293  
255  
288  
WRF_VCO_GND1P2  
GND VCO/LOGEN ground  
WRF_AFE_GND1P2_CORE0  
WRF_AFE_GND1P2_CORE1  
WRF_BUCK_GND1P5_CORE0  
WRF_BUCK_GND1P5_CORE1  
WRF_LNA_2G_GND1P2_CORE0  
WRF_LNA_2G_GND1P2_CORE1  
WRF_LNA_5G_GND1P2_CORE0  
WRF_LNA_5G_GND1P2_CORE1  
WRF_TX_GND1P2_CORE0  
WRF_TX_GND1P2_CORE1  
GND CORE0 AFE ground  
GND CORE1 AFE ground  
GND Internal capacitor-less CORE0 LDO ground  
GND Internal capacitor-less CORE1 LDO ground  
GND 2 GHz internal CORE0 LNA ground  
GND 2 GHz internal CORE1 LNA ground  
GND 5 GHz internal CORE0 LNA ground  
GND 5 GHz internal CORE1 LNA ground  
GND TX CORE0 ground  
GND TX CORE1 ground  
WRF_PADRV_VBAT_GND3P3_CO GND PAD CORE0 ground  
RE0  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 109  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Table 21: WLCSP Signal Descriptions (Cont.)  
Type Description  
Bump# Signal Name  
265  
WRF_PADRV_VBAT_GND3P3_CO GND PAD CORE1 ground  
RE1  
248  
WRF_XTAL_GND1P2  
GND XTAL ground  
291, 307 WRF_RX2G_GND1P2_CORE0  
259, 317 WRF_RX2G_GND1P2_CORE1  
GND RX 2GHz CORE0 ground  
GND RX 2GHz CORE1 ground  
GND RX 5GHz CORE0 ground  
GND RX 5GHz CORE1 ground  
GND LOGEN ground  
292  
257  
WRF_RX5G_GND1P2_CORE0  
WRF_RX5G_GND1P2_CORE1  
252, 316 WRF_LOGEN_GND1P2  
278 WRF_LOGENG_GND1P2  
GND LOGEN ground  
268, 030 WRF_PA5G_VBAT_GND3P3_COR GND 5 GHz PA CORE0 ground  
E0  
286, 304 WRF_PA5G_VBAT_GND3P3_COR GND 5 GHz PA CORE1 ground  
E1  
272, 300 WRF_PA2G_VBAT_GND3P3_COR GND 2 GHz PA CORE0 ground  
E0  
284, 301 WRF_PA2G_VBAT_GND3P3_COR GND 2 GHz PA CORE1 ground  
E1  
271  
WRF_MMD_GND1P2  
GND Ground  
274, 318 WRF_CP_GND1P2  
GND Ground  
263  
WRF_PFD_GND1P2  
VSSC  
GND Ground  
68–73,  
GND Core ground for WLAN and BT  
75,  
83–85,  
88–95,  
104–106,  
116–122,  
130, 200,  
201, 217,  
232–235,  
254–245,  
333, 334,  
384–395  
338, 349, SR_PVSS  
360, 364  
GND Power ground  
335  
97  
40  
43  
48  
51  
65  
63  
58  
53  
PMU_AVSS  
GND Quiet ground  
HSIC_AGND12PLL  
BT_PAVSS  
GND HSIC PLL ground  
GND Bluetooth PA ground  
GND Bluetooth IF block ground  
GND Bluetooth PLL ground  
GND Bluetooth VCO ground  
GND FM VCO ground  
BT_IFVSS  
BT_PLLVSS  
BT_VCOVSS  
FM_VCOVSS  
FM_LNAVSS  
FM_PLLVSS  
FM_AUDIOVSS  
GND FM LNA ground  
GND FM PLL ground  
GND FM AUDIO ground  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 110  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Table 21: WLCSP Signal Descriptions (Cont.)  
Type Description  
Bump# Signal Name  
144  
10  
1
AVSS_BBPLL  
PCIE_AVSS  
GND Baseband PLL ground  
GND PCIe ground  
GND PCIe ground  
GND PCIe ground  
GND Ground  
PCIE_RXTX_AVSS  
PCIE_PLL_AVSS  
RGND  
2
17, 18,  
23, 26, 96  
BTRGND  
GND Ground  
Table 22: WLBGA Signal Descriptions  
Type Description  
Ball#  
Signal Name  
WLAN and Bluetooth Receive RF Signal Interface  
N1  
WRF_RFIN_2G_CORE0  
I
2.4 GHz Bluetooth and WLAN CORE0 receiver  
shared input  
V7  
WRF_RFIN_2G_CORE1  
I
2.4 GHz Bluetooth and WLAN CORE1 receiver  
shared input  
V1  
WRF_RFIN_5G_CORE0  
WRF_RFIN_5G_CORE1  
WRF_RFOUT_2G_CORE0  
WRF_RFOUT_2G_CORE1  
WRF_RFOUT_5G_CORE0  
WRF_RFOUT_5G_CORE1  
WRF_TSSI_A_CORE0  
I
5 GHz WLAN CORE0 receiver input  
5 GHz WLAN CORE1 receiver input  
2.4 GHz WLAN CORE0 PA output  
2.4 GHz WLAN CORE1 PA output  
5 GHz WLAN CORE0 PA output  
5 GHz WLAN CORE1 PA output  
V12  
P1  
I
O
O
O
O
I
V8  
U1  
V11  
U3  
5 GHz TSSI CORE0 input from an optional external  
power amplifier/power detector.  
T11  
R4  
R9  
WRF_TSSI_A_CORE1  
I
5 GHz TSSI CORE1 input from an optional external  
power amplifier/power detector.  
WRF_GPIO_OUT_CORE0  
WRF_GPIO_OUT_CORE1  
I/O GPIO or 2.4 GHz TSSI CORE0 input from an optional  
external power amplifier/power detector  
I/O GPIO or 2.4 GHz TSSI CORE1 input from an optional  
external power amplifier/power detector  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 111  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Table 22: WLBGA Signal Descriptions  
Type Description  
Ball#  
Signal Name  
RF Switch Control Lines  
R7  
RF_SW_CTRL_0  
RF_SW_CTRL_1  
RF_SW_CTRL_2  
RF_SW_CTRL_3  
RF_SW_CTRL_4  
RF_SW_CTRL_5  
RF_SW_CTRL_6  
RF_SW_CTRL_7  
RF_SW_CTRL_8  
RF_SW_CTRL_9  
RF_SW_CTRL_10  
RF_SW_CTRL_11  
RF_SW_CTRL_12  
RF_SW_CTRL_13  
RF_SW_CTRL_14  
RF_SW_CTRL_15  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Programmable RF switch control lines. The control  
lines are programmable via the driver and NVRAM  
file.  
N8  
P9  
N7  
N5  
P7  
P5  
M8  
K12  
J11  
M12  
L9  
J9  
K10  
M10  
L8  
WLAN PCI Express Interface  
D5  
PCIE_CLKREQ_L  
OD PCIe clock request signal which indicates when the  
REFCLK to the PCIe interface can be gated.  
1 = the clock can be gated  
0 = the clock is required  
C4  
PCIE_PERST_L  
I (PU) PCIe System Reset. This input is the PCIe reset as  
defined in the PCIe base specification version 1.1.  
B1  
C1  
A5  
A4  
A3  
A2  
C5  
PCIE_RDN0  
I
I
Receiver differential pair (×1 lane)  
PCIE_RDP0  
PCIE_REFCLKN  
PCIE_REFCLKP  
PCIE_TDN0  
I
PCIE Differential Clock inputs (negative and positive).  
100 MHz differential.  
I
O
O
Transmitter differential pair (×1 lane)  
PCIE_TDP0  
PCIE_PME_L  
OD PCI power management event output. Used to  
request a change in the device or system power state.  
The assertion and deassertion of this signal is  
asynchronous to the PCIe reference clock. This signal  
has an open-drain output structure, as per the PCI  
Bus Local Bus Specification, revision 2.3.  
C3  
C2  
PCIE_TESTP  
PCIE_TESTN  
PCIe test pin  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 112  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Table 22: WLBGA Signal Descriptions  
Type Description  
Ball#  
Signal Name  
WLAN SDIO Bus Interface  
Note: These signals can support alternate functionality depending on package and host interface mode. See  
Table 26: “GPIO Alternative Signal Functions,” on page 120 for additional details.  
A8  
A9  
B9  
C9  
B8  
C8  
SDIO_CLK  
I
SDIO clock input  
SDIO_CMD  
I/O SDIO command line  
I/O SDIO data line 0  
I/O SDIO data line 1  
I/O SDIO data line 2  
I/O SDIO data line 3  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
WLAN HSIC Interface  
A7  
A6  
D7  
HSIC_STROBE  
HSIC_DATA  
RREFHSIC  
I/O HSIC Strobe  
I/O HSIC Data  
I
HSIC reference resistor input. If HSIC is used,  
connect this pin to ground via a 51-ohm 5% resistor.  
On SDIO designs this pin should not be connected.  
WLAN GPIO Interface  
Note: The GPIO signals can be multiplexed via software and the JTAG_SEL pin to support other functions.  
See Table 23: “WLAN GPIO Functions and Strapping Options,” on page 119 and Table 26: “GPIO Alternative  
Signal Functions,” on page 120 for additional details.  
G11  
F10  
F11  
G9  
H9  
F9  
F8  
E7  
F7  
E6  
H12  
GPIO_0  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
I/O Programmable GPIO pins  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 113  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Table 22: WLBGA Signal Descriptions  
Type Description  
Ball#  
Signal Name  
JTAG Interface  
D9  
JTAG_SEL  
I/O JTAG select: pull high to select the JTAG interface. If  
the JTAG interface is not used this pin may be left  
floating or connected to ground.  
Note: See Table 26: “GPIO Alternative Signal  
Functions,” on page 120 for the JTAG signal pins.  
Clocks  
P12  
N12  
F6  
WRF_XTAL_IN  
WRF_XTAL_OUT  
LPO_IN  
I
XTAL oscillator input  
O
I
XTAL oscillator output  
External sleep clock input (32.768 kHz)  
F4  
CLK_REQ  
O
Reference clock request (shared by BT and WLAN).  
If not used, this can be no-connect.  
Bluetooth/FM Transceiver  
L1  
BT_RF  
O
I
Bluetooth PA output  
SFLASH_CLK  
BT_SF_CLK  
BT_SF_CS_L  
BT_SF_MISO  
BT_SF_MOSI  
FM_RFIN  
I/O SFLASH_CSN  
I/O SFLASH master input, slave output  
I/O SFLASH master output, slave input  
H1  
I
FM radio antenna port  
FM radio auxiliary antenna port  
FM DAC output 1  
FM_RFAUX  
FM_AOUT1  
FM_AOUT2  
I
E1  
F1  
O
O
FM DAC output 2  
Bluetooth PCM  
M6  
J4  
BT_PCM_CLK  
I/O PCM clock; can be master (output) or slave (input)  
BT_PCM_IN  
I
PCM data input  
PCM data output  
H4  
K6  
BT_PCM_OUT  
BT_PCM_SYNC  
O
I/O PCM sync; can be master (output) or slave (input).  
Bluetooth USB Interface  
E5  
BT_USB_DN  
I/O USB (Host) data negative. Negative terminal of the  
USB transceiver.  
F5  
BT_USB_DP  
I/O USB (Host) data positive. Positive terminal of the USB  
transceiver.  
Bluetooth UART  
L5  
K5  
H5  
BT_UART_CTS_L  
I
O
I
UART clear-to-send. Active-low clear-to-send signal  
for the HCI UART interface.  
BT_UART_RTS_L  
BT_UART_RXD  
UART request-to-send. Active-low request-to-send  
signal for the HCI UART interface. BT LED control pin.  
UART serial input. Serial data input for the HCI UART  
interface.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 114  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Table 22: WLBGA Signal Descriptions  
Type Description  
Ball#  
Signal Name  
BT_UART_TXD  
J5  
O
UART serial output. Serial data output for the HCI  
UART interface.  
Bluetooth/FM I2S  
I2S clock, can be master (output) or slave (input).  
I2S data output  
J6  
BT_I2S_CLK  
I/O  
I/O  
I/O  
I/O  
G6  
G5  
L6  
BT_I2S_DO  
BT_I2S_DI  
BT_I2S_WS  
I2S data input  
I2S WS; can be master (output) or slave (input).  
Bluetooth GPIO  
BT_GPIO_2  
I/O Bluetooth general-purpose I/O  
I/O Bluetooth general-purpose I/O  
I/O Bluetooth general-purpose I/O  
I/O Bluetooth general-purpose I/O  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
K4  
Miscellaneous  
A10  
WL_REG_ON  
I
Used by PMU to power up or power down the internal  
BCM4354 regulators used by the WLAN section.  
Also, when deasserted, this pin holds the WLAN  
section in reset. This pin has an internal 200 kpull-  
down resistor that is enabled by default. It can be  
disabled through programming.  
D10  
BT_REG_ON  
I
Used by PMU to power up or power down the internal  
BCM4354 regulators used by the Bluetooth/FM  
section. Also, when deasserted, this pin holds the  
Bluetooth/FM section in reset. This pin has an internal  
200 kpull-down resistor that is enabled by default. It  
can be disabled through programming.  
L4  
J3  
BT_DEV_WAKE  
BT_HOST_WAKE  
I/O Bluetooth DEV_WAKE  
I/O Bluetooth HOST_WAKE  
Integrated Voltage Regulators  
B11  
B12  
A11  
SR_VDDBATA5V  
SR_VDDBATP5V  
SR_VLX  
I
I
Quiet VBAT  
Power VBAT  
O
CBuck switching regulator output. Refer to Table 43  
on page 158 for details of the inductor and capacitor  
required on this output.  
C12  
E12  
P11  
N10  
D11  
C11  
D12  
E11  
LDO_VDD1P5  
I
LNLDO input  
LDO_VDDBAT5V  
WRF_XTAL_VDD1P5  
WRF_XTAL_VDD1P2  
VOUT_LNLDO  
I
LDO VBAT.  
I
XTAL LDO input (1.35V)  
XTAL LDO output (1.2V)  
Output of LNLDO  
Output of core LDO  
Output of BT LDO  
Output of 3.3V LDO  
O
O
O
O
O
VOUT_CLDO  
VOUT_BTLDO2P5  
VOUT_LDO3P3_B  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 115  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Table 22: WLBGA Signal Descriptions  
Type Description  
Ball#  
Signal Name  
F12  
VOUT_3P3  
O
O
LDO 3.3V output  
Voltage sense pin for LDO 3.3V output  
VOUT_3P3_SENSE  
Bluetooth Supplies  
M1  
K1  
K3  
K2  
J1  
BT_PAVDD2P5  
PWR Bluetooth PA power supply  
PWR Bluetooth LNA power supply  
PWR Bluetooth IF block power supply  
PWR Bluetooth RF PLL power supply  
PWR Bluetooth RF power supply  
PWR Core supply  
BT_LNAVDD1P2  
BT_IFVDD1P2  
BT_PLLVDD1P2  
BT_VCOVDD1P2  
BT_VDDIO  
K7  
FM Transceiver Supplies  
G1  
FM_LNAVCOVDD1P2  
PWR FM LNA and VCO 1.2V power supply  
PWR FM LNA 1.2V power supply  
PWR FM VCO 1.2V power supply  
PWR FM PLL 1.2V power supply  
PWR FM AUDIO power supply  
FM_LNAVDD1P2  
FM_VCOVDD1P2  
FM_PLLVDD1P2  
FM_AUDIOVDD1P2  
F3  
E2  
WLAN Supplies  
U4  
R11  
V6  
WRF_BUCK_VDD1P5_CORE0  
PWR Internal capacitor-less CORE0 LDO supply  
PWR Internal capacitor-less CORE1 LDO supply  
PWR Synth VDD 3.3V supply  
WRF_BUCK_VDD1P5_CORE1  
WRF_SYNTH_VBAT_VDD3P3  
R3  
WRF_PADRV_VBAT_VDD3P3_CO PWR CORE0 PA Driver VBAT supply  
RE0  
T9  
WRF_PADRV_VBAT_VDD3P3_CO PWR CORE1 PA Driver VBAT supply  
RE1  
T1  
WRF_PA5G_VBAT_VDD3P3_COR PWR 5 GHz CORE0 PA 3.3V VBAT supply  
E0  
V10  
R1  
V9  
WRF_PA5G_VBAT_VDD3P3_COR PWR 5 GHz CORE1 PA 3.3V VBAT supply  
E1  
WRF_PA2G_VBAT_VDD3P3_COR PWR 2 GHz CORE0 PA 3.3V VBAT supply  
E0  
WRF_PA2G_VBAT_VDD3P3_COR PWR 2 GHz CORE1 PA 3.3V VBAT supply  
E1  
T5  
T4  
WRF_MMD_VDD1P2  
WRF_PFD_VDD1P2  
PWR 1.2V supply  
PWR 1.2V supply  
Miscellaneous Supplies  
OTP_VDD33  
PWR OTP 3.3V supply  
B7, D4, VDDC  
E9, G10,  
PWR 1.2V core supply for WLAN  
J8, J12,  
L10, M7  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 116  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Signal Descriptions  
Table 22: WLBGA Signal Descriptions  
Type Description  
Ball#  
Signal Name  
VDDIO  
E10  
PWR 1.8V–3.3V supply for WLAN. Must be directly  
connected to PMU_VDDIO and BT_VDDIO on the  
PCB.  
E4, H3, BT_VDDC  
M5  
PWR 1.2V core supply for BT  
VDDIO_PMU  
PWR 1.8V–3.3V supply for PMU controls. Must be directly  
connected to VDDIO and BT_VDDIO on the PCB.  
E8  
H11  
C7  
C6  
H7  
B3  
B2  
VDDIO_SD  
PWR 1.8V–3.3V supply for SDIO pads  
PWR IO supply for RF switch control pads (3.3V)  
PWR 1.2V supply for HSIC PLL  
VDDIO_RF  
HSIC_AVDD12PLL  
HSIC_DVDD12  
AVDD_BBPLL  
PWR 1.2V supply for HSIC digital  
PWR Baseband PLL supply  
PCIE_PLL_AVDD1P2  
PCIE_RXTX_AVDD1P2  
PWR 1.2V supply for PCIe PLL  
PWR 1.2V supply for PCIE TX and RX  
Ground  
U6  
P4  
R8  
V4  
R12  
N2  
U7  
V2  
U12  
P3  
T8  
WRF_VCO_GND1P2  
GND VCO/LOGEN ground  
WRF_AFE_GND1P2_CORE0  
WRF_AFE_GND1P2_CORE1  
WRF_BUCK_GND1P5_CORE0  
WRF_BUCK_GND1P5_CORE1  
WRF_LNA_2G_GND1P2_CORE0  
WRF_LNA_2G_GND1P2_CORE1  
WRF_LNA_5G_GND1P2_CORE0  
WRF_LNA_5G_GND1P2_CORE1  
WRF_TX_GND1P2_CORE0  
WRF_TX_GND1P2_CORE1  
GND CORE0 AFE ground  
GND CORE1 AFE ground  
GND Internal capacitor-less CORE0 LDO ground  
GND Internal capacitor-less CORE1 LDO ground  
GND 2 GHz internal CORE0 LNA ground  
GND 2 GHz internal CORE1 LNA ground  
GND 5 GHz internal CORE0 LNA ground  
GND 5 GHz internal CORE1 LNA ground  
GND TX CORE0 ground  
GND TX CORE1 ground  
T3  
WRF_PADRV_VBAT_GND3P3_CO GND PAD CORE0 ground  
RE0  
T10  
WRF_PADRV_VBAT_GND3P3_CO GND PAD CORE1 ground  
RE1  
N11  
N3  
WRF_XTAL_GND1P2  
GND XTAL ground  
WRF_RX2G_GND1P2_CORE0  
WRF_RX2G_GND1P2_CORE1  
WRF_RX5G_GND1P2_CORE0  
WRF_RX5G_GND1P2_CORE1  
WRF_LOGEN_GND1P2  
GND RX 2GHz CORE0 ground  
GND RX 2GHz CORE1 ground  
GND RX 5GHz CORE0 ground  
GND RX 5GHz CORE1 ground  
GND LOGEN ground  
T7  
V3  
T12  
R6  
R5  
WRF_LOGENG_GND1P2  
GND LOGEN ground  
T2, U2  
WRF_PA5G_VBAT_GND3P3_COR GND 5 GHz PA CORE0 ground  
E0  
U10, U11 WRF_PA5G_VBAT_GND3P3_COR GND 5 GHz PA CORE1 ground  
E1  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
BROADCOM CONFIDENTIAL  
Page 117  
BCM4354 Data Sheet  
Signal Descriptions  
Table 22: WLBGA Signal Descriptions  
Type Description  
Ball#  
Signal Name  
P2, R2  
WRF_PA2G_VBAT_GND3P3_COR GND 2 GHz PA CORE0 ground  
E0  
U8, U9  
WRF_PA2G_VBAT_GND3P3_COR GND 2 GHz PA CORE1 ground  
E1  
T6  
V5  
U5  
WRF_MMD_GND1P2  
WRF_CP_GND1P2  
WRF_PFD_GND1P2  
GND Ground  
GND Ground  
GND Ground  
C10, D3, VSSC  
D6, G4,  
GND Core ground for WLAN and BT  
G8, G12,  
L7, L11,  
M4  
A12  
B10  
B6  
L2  
M3  
L3  
J2  
SR_PVSS  
GND Power ground  
PMU_AVSS  
GND Quiet ground  
HSIC_AGND12PLL  
BT_PAVSS  
GND HSIC PLL ground  
GND Bluetooth PA ground  
GND Bluetooth IF block ground  
GND Bluetooth PLL ground  
GND Bluetooth VCO ground  
GND FM VCO ground  
GND FM LNA ground  
GND FM PLL ground  
GND FM AUDIO ground  
GND Baseband PLL ground  
GND PCIe ground  
BT_IFVSS  
BT_PLLVSS  
BT_VCOVSS  
FM_VCOVSS  
FM_LNAVSS  
FM_PLLVSS  
FM_AUDIOVSS  
AVSS_BBPLL  
PCIE_AVSS  
PCIE_RXTX_AVSS  
PCIE_PLL_AVSS  
RGND  
G2  
H2  
G3  
F2  
G7  
B4  
B5  
GND PCIe ground  
GND PCIe ground  
GND Ground  
BTRGND  
GND Ground  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 118  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN/BT GPIO Signals and Strapping Options  
WLAN/BT GPIO Signals and Strapping Options  
The pins listed in Table 23 and Table 24 are sampled at power-on reset (POR) to determine the various  
operating modes. Sampling occurs a few milliseconds after an internal POR or deassertion of the external POR.  
After the POR, each pin assumes the GPIO or alternative function specified in the signal descriptions table.  
Each strapping option pin has an internal pull-up (PU) or pull-down (PD) resistor that determines the default  
mode. To change the mode, connect an external PU resistor to VDDIO or a PD resistor to GND, using a 10 kꢀ  
resistor or less.  
Note: Refer to the reference board schematics for more information.  
Table 23: WLAN GPIO Functions and Strapping Options  
Pin Name  
Default Function Description  
GPIO_4  
0
1: SPROM is present  
0: SPROM is absent (default). Applicable in PCIe Host mode.  
Note: In SDIO Host mode, sdioPadVddio is 3.3V while set to 1, and 1.8V  
while set to 0.  
GPIO_5  
0
0: sflash absent (default)  
1: sflash present  
GPIO_[10, 9, 8]  
GPIO_12  
[0,0,0]  
1
Host interface selection: see Table 25.  
1 = HTAvailable (default)  
0 = ResourceModeInit is ALPAvailable. On PCBs, use a pull-down and tie  
to ALP clock mode.  
Table 24: BT GPIO Functions and Strapping Options  
Default  
Function Description  
Pin Name  
BT_GPIO4  
0
1: BT Serial Flash is present.  
0: BT Serial Flash is absent (default)  
Table 25: GPIO_[10, 9, 8] Host Interface Selection  
GPIO_[10, 9, 8]  
Bit Setting  
WLAN Host Interface Mode  
Bluetooth Mode  
000  
010  
011  
SDIO  
BTUART or BTUSB;  
BT tPorts stand-alone.  
HSIC_30D  
PCIE  
BTUART or BTUSB;  
BT tPorts stand-alone  
BTUART or BTUSB;  
BT tPorts stand-alone  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 119  
BROADCOM CONFIDENTIAL  
GPIO Alternative Signal Functions  
BCM4354 Data Sheet  
GPIO Alternative Signal Functions  
Table 26: GPIO Alternative Signal Functions  
Miscellaneous-  
0 (JTAG_SEL =  
1)  
Test Mode  
UART  
2
SFLASH  
3
SPROM  
BSC  
GCI  
7
Miscellaneous-1 Miscellaneous-2 PWDOG  
Function Select  
0
Pin  
Additional  
Names  
4
5
6
8
9
10  
Functionality  
GPIO_0  
GPIO_1  
TEST_GPIO_0 FAST_UART UART_DBG  
_RX _TX  
BSC_CLK  
GCI_GPIO_ SDIO_SEP_INT SDIO_SEP_INT PWDOG  
WL_HOST_WAK  
E
4
_OD  
_GPIO_0  
TEST_GPIO_1 FAST_UART UART_DBG  
_TX _RX  
BSC _SDA RF_DISABLE_L GCI_GPIO_  
5
PWDOG  
WL_DEV_WAKE/  
_GPIO_1 HSIC_HOST_RD  
Y
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
TEST_GPIO_2 FAST_UART –  
_CTS_IN  
N/A  
N/A  
N/A  
N/A  
N/A  
TCK  
GCI_GPIO_  
1
––  
TEST_GPIO_3 FAST_UART –  
_RTS_OUT  
TMS  
TDI  
GCI_GPIO_  
0
TEST_GPIO_4 UART_RX  
TEST_GPIO_5 UART_TX  
TEST_GPIO_6 –  
UART_DBG  
_RX  
SECI_IN  
UART_DBG  
_TX  
TDO  
TRST_L  
SECI_OUT  
GCI_GPIO_ SECI_IN  
2
TEST_GPIO_7 FAST_UART SFLASH_CS SPROM_CS BSC_SDA PMU_TEST_O GCI_GPIO_ USB_MDC/  
PWDOG  
_GPIO_2 (For WLBGA)  
WL_LED  
_RTS_OUT  
3
HSIC_MDC  
TEST_GPIO_8 FAST_UART SFLASH_CLK SPROM_CLK BSC_CLK  
_CTS_IN  
SECI_IN  
USB_MDIO/  
HSIC_MDIO  
PWDOG  
_GPIO_3  
TEST_GPIO_9 FAST_UART SFLASH_MI SPROM_MI  
_RX  
PALDO  
_PU  
SECI_OUT PALDO_PD  
PWDOG  
_GPIO_4  
GPIO_10 TEST_GPIO_1 FAST_UART SFLASH_MO SPROM_MO  
_TX  
GCI_GPIO_  
4
PWDOG  
_GPIO_5  
HSIC_DEV_RDY  
0
GPIO_11 TEST_GPIO_1 FAST_UART –  
_RX  
PALDO  
_PU  
GCI_GPIO_ PALDO_PD  
5
USB_VBUS  
_PRESENT  
1
GPIO_12 TEST_GPIO_1 FAST_UART –  
_TX  
GCI_GPIO_  
1
2
GPIO_13 TEST_GPIO_1 usbphy  
GCI_GPIO_  
0
3
_scan  
_resetb  
GPIO_14 TEST_GPIO_1 FAST_UART UART_DBG  
GCI_GPIO_  
2
4
_RTS_OUT  
_RX  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 120  
BROADCOM CONFIDENTIAL  
GPIO Alternative Signal Functions  
BCM4354 Data Sheet  
Table 26: GPIO Alternative Signal Functions (Cont.)  
Miscellaneous-  
0 (JTAG_SEL =  
Test Mode  
UART  
2
SFLASH  
3
SPROM  
BSC  
1)  
GCI  
7
Miscellaneous-1 Miscellaneous-2 PWDOG  
Function Select  
Pin  
Additional  
Names  
0
4
5
6
8
9
10  
Functionality  
GPIO_15 TEST_GPIO_1 FAST_UART UART_DBG  
_CTS_IN _TX  
GCI_GPIO_  
3
5
Note:  
1. GPIO_0 and WL_DEV_WAKE signals are selected by using software.  
2. USB_VBUS_PRESENT indicates that USB30D is selected.  
3. SDIO_PADVDDIO = 1 (not in straps table) is set to 3.3V by default for all packages.  
4.GPIO_7 can be used as WL_LED in WLBGA packages.  
5. USB_MDx/HSIC_MDx MDIO is the interface of USB1.0/2.0/3.0 PHY or of HSIC PHY (depending on the strap option).  
Table 27 defines status for all BCM4354 GPIOs based on the tristate test mode.  
Table 27: GPIO Status Vs. Test Modes  
Test Mode  
Function Select  
Status for All GPIOs  
TRISTATE_IND  
TRISTATE_PDN  
TRISTATE_PUP  
TRISTATE  
12  
13  
14  
15  
Input disable  
Pull down  
Pull up  
Tristate  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 121  
BROADCOM CONFIDENTIAL  
I/O States  
BCM4354 Data Sheet  
I/O States  
The following notations are used in Table 28: “I/O States,” on page 122:  
I: Input signal  
O: Output signal  
I/O: Input/Output signal  
PU = Pulled up  
PD = Pulled down  
NoPull = Neither pulled up nor pulled down  
Note: Where applicable, the default value is shown in bold brackets (for example, [default value].  
Table 28: I/O States  
b
Power-down  
(BT_REG_ON and  
Out-of-Reset; Before  
SW Download  
(BT_REG_ON High;  
WL_REG_ON High)  
(WL_REG_ON High  
and BT_REG_ON Low)  
and VDDIOs Are  
Present  
Low Power State/Sleep (All WL_REG_ON Held  
a
Name  
I/O Keeper Active Mode  
Power Present)  
Low)  
Power Rail  
WL_REG_ON  
BT_REG_ON  
CLK_REQ  
I
N
I: PD  
I: PD  
I: PD (of 200K)  
I: PD (of 200K)  
I: PD (of 200K)  
Pull-down can be disabled  
Pull-down can be disabled  
I/O  
Y
Open drain or push-pull  
Programmable  
Active high  
Open drain or push-pull  
Programmable  
Active high  
High-Z, NoPull  
High-Z, NoPull  
Open drain  
Active high  
Open drain  
Active high  
BT_VDDIO  
BT_HOST_WAKE I/O  
BT_DEV_WAKE  
BT_GPIO 5  
Y
Y
I/O: PU, PD, NoPull  
Programmable  
I/O: PU, PD, NoPull  
Programmable  
I: PD  
I: PD  
BT_GPIO 4  
I: Floating, but input  
disabled  
BT_GPIO 2, 3  
I: PU  
I: PU  
I: PU  
I: PU  
BT_UART_CTS  
BT_UART_RTS  
BT_UART_RXD  
BT_UART_TXD  
I
I: NoPull; PU programmable I: NoPull  
High-Z, NoPull  
O
I
O: NoPull  
I: PU  
O: NoPull  
I: NoPull  
O: NoPull  
O
O: NoPull  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 122  
BROADCOM CONFIDENTIAL  
I/O States  
BCM4354 Data Sheet  
Table 28: I/O States (Cont.)  
b
Power-down  
Out-of-Reset; Before  
SW Download  
(BT_REG_ON High;  
WL_REG_ON High)  
(WL_REG_ON High  
and BT_REG_ON Low)  
and VDDIOs Are  
Present  
(BT_REG_ON and  
Low Power State/Sleep (All WL_REG_ON Held  
a
Name  
I/O Keeper Active Mode  
Power Present)  
Low)  
Power Rail  
SDIO Data  
I/O  
N
I/O:  
I:  
High-Z, NoPull  
I:  
I: PU (SDIO Mode)  
VDDIO_SD  
PU (SDIO Mode)  
PU (SDIO Mode)  
PU (SDIO Mode)  
SDIO CMD  
SDIO_CLK  
I
I: NoPull  
I: noPull  
I: NoPull  
I: PD  
I: NoPull  
I: PD  
c
c
BT_PCM_CLK  
BT_PCM_IN  
BT_PCM_OUT  
BT_PCM_SYNC  
I/O  
Y
High-Z, NoPull  
BT_VDDIO  
I: NoPull  
I: NoPull  
I: Floating, but input  
disabled  
d
d
BT_I2S_WS  
BT_I2S_CLK  
BT_I2S_DI  
BT_I2S_DO  
GPIO_0  
I: PD  
I: NoPull  
I: NoPull  
I/O  
Y
Y
Y
Y
Y
I/O: PU, PD, NoPull  
Programmable [NoPull]  
I/O: PU, PD, NoPull  
Programmable [NoPull]  
High-Z, NoPull  
I: NoPull  
I: NoPull  
I: PD  
VDDIO  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
I/O: PU, PD, NoPull  
I/O: PU, PD, NoPull  
I: PD  
Programmable [PD]  
Programmable [PD]  
GPIO_5  
Y
I/O: PU, PD, NoPull  
I/O: PU, PD, NoPull  
I: PD  
Programmable [PD]  
Programmable [PD]  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
Y
Y
Y
Y
Y
I/O: PU, PD, NoPull  
Programmable [NoPull]  
I/O: PU, PD, NoPull  
Programmable [NoPull]  
High-Z, NoPull  
I: NoPull  
I: NoPull  
I: NoPull  
e
I/O: PU, PD, NoPull  
Programmable  
I/O: PU, PD, NoPull  
Programmable  
I
I: PD  
I/O: PU, PD, NoPull  
I/O: PU, PD, NoPull  
High-Z, NoPull  
I: PD  
I: PD  
Programmable [PD]  
Programmable [PD]  
GPIO_11  
GPIO_12  
Y
Y
I/O: PU, PD, NoPull  
Programmable [NoPull]  
I/O: PU, PD, NoPull  
Programmable [NoPull]  
I: PD  
I: NoPull  
I: PU  
I: NoPull  
I: PU  
I/O: PU, PD, NoPull  
I/O: PU, PD, NoPull  
High-Z, NoPull  
Programmable [PU]  
Programmable [PU]  
GPIO_13  
GPIO_14  
GPIO_15  
Y
Y
Y
I/O: PU, PD, NoPull  
Programmable [NoPull]  
I/O: PU, PD, NoPull  
Programmable [NoPull]  
I: NoPull  
I: NoPull  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 123  
BROADCOM CONFIDENTIAL  
I/O States  
BCM4354 Data Sheet  
Table 28: I/O States (Cont.)  
b
Power-down  
Out-of-Reset; Before  
SW Download  
(BT_REG_ON High;  
WL_REG_ON High)  
(WL_REG_ON High  
and BT_REG_ON Low)  
and VDDIOs Are  
Present  
(BT_REG_ON and  
Low Power State/Sleep (All WL_REG_ON Held  
a
Name  
I/O Keeper Active Mode  
O: NoPull  
Power Present)  
Low)  
Power Rail  
RF_SW_CTRL_X I/O  
Y
O: NoPull  
I: PD  
O: NoPull  
: NoPull  
VDDIO_RF  
a. Keeper column: N = pad has no keeper. Y = pad has a keeper. Keeper is always active except in Power-down state. If there is no keeper, and it is an input  
and there is Nopull, then the pad should be driven to prevent leakage due to floating pad (SDIO_CLK, for example).  
b. In the Power-down state (xx_REG_ON=0): High-Z; NoPull => the pad is disabled because power is not supplied.  
c. Depending on whether the PCM interface is enabled and the configuration of PCM is in master or slave mode, it can be either input or output.  
d. Depending on whether the I2S interface is enabled and the configuration of I2S is in master or slave mode, it can be either input or output.  
e. For WLBGA this GPIO has NoPull in this state. For WLCSP this GPIO has a PU in this state.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 124  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
DC Characteristics  
Section 14: DC Characteristics  
Note: Values in this data sheet are design goals and are subject to change based on the results of  
device characterization.  
Absolute Maximum Ratings  
Caution! The absolute maximum ratings in Table 29 indicate levels where permanent damage to the  
device can occur, even if these limits are exceeded for only a brief duration. Functional operation is  
not guaranteed under these conditions. Operation at absolute maximum conditions for extended  
periods can adversely affect long-term reliability of the device.  
Table 29: Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
DC supply for VBAT and PA driver supplya  
DC supply voltage for digital I/O  
DC supply voltage for RF switch I/Os  
DC input supply voltage for CLDO and LNLDO  
DC supply voltage for RF analog  
DC supply voltage for core  
VBAT  
–0.5 to +6.0  
V
VDDIO  
VDDIO_RF  
–0.5 to 3.9  
–0.5 to 3.9  
–0.5 to 1.575  
–0.5 to 1.32  
–0.5 to 1.32  
–0.5 to 3.63  
–0.5  
V
V
V
V
V
V
V
VDDRF  
VDDC  
WRF_TCXO_VDD  
Maximum undershoot voltage for I/Ob  
Vundershoot  
Maximum overshoot voltage for I/Ob  
Maximum junction temperature  
Vovershoot  
Tj  
VDDIO + 0.5  
125  
V
°C  
a. The maximum continuous voltage is 5.25V. Voltage transients up to 6.0V for up to 10 seconds, cumulative  
duration over the lifetime of the device, are allowed. Voltage transients as high as 5.5V for up to 250 seconds,  
cumulative duration over the lifetime of the device, are allowed.  
b. Duration not to exceed 25% of the duty cycle.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 125  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Environmental Ratings  
Environmental Ratings  
The environmental ratings are shown in Table 30.  
Table 30: Environmental Ratings  
Characteristic  
Value  
Units  
Conditions/Comments  
Functional operationa  
Ambient Temperature (TA)  
–30 to +85  
°C  
Storage Temperature  
Relative Humidity  
–40 to +125  
Less than 60  
Less than 85  
°C  
%
%
Storage  
Operation  
a. Functionality is guaranteed but specifications require derating at extreme temperatures; see the specification  
tables for details.  
Electrostatic Discharge Specifications  
Proper use of wrist and heel grounding straps is required to discharge static electricity when handling the  
BCM4354.  
Caution! Electrostatic discharge (ESD) damage can occur if the BCM4354 is mishandled. Always  
wear an ESD-preventive wrist or heel ground strap when handling the BCM4354. As with all electrical  
devices of this type, take all necessary safety precautions to prevent damage to the equipment. When  
not being used, always store the BCM4354 in antistatic packaging.  
Table 31: Electrostatic Discharge Specifications  
Pin Type Symbol  
Condition  
ESD Rating  
Unit  
ESDa  
ESD_HAND_HBM  
Human body model contact discharge per  
JEDEC EID/JESD22-A114.  
WLBGA:  
WLCSP:  
WLBGA:  
WLCSP:  
1.k  
V
1.5k  
300  
500  
CDM  
ESD_HAND_CDM Charged device model contact JEDEC EIA/  
JESD22-C101.  
V
a. Handling Reference: NQY00083, Section 3.4, Group D9, Table B.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 126  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Recommended Operating Conditions and DC Characteristics  
Recommended Operating Conditions and DC Characteristics  
Caution! Functional operation is not guaranteed outside of the limits shown in Table 32, and operation  
outside these limits for extended periods can adversely affect long-term reliability of the device.  
Table 32: Recommended Operating Conditions and DC Characteristics  
Value  
Parameter  
Symbol  
Minimum Typical Maximum Unit  
3.0a  
1.14  
1.14  
5.25b  
1.26  
1.26  
1.98  
DC supply voltage for VBAT  
VBAT  
V
DC supply voltage for core  
VDD  
1.2  
1.2  
1.8  
V
V
V
DC supply voltage for RF blocks in chip  
DC supply voltage for TCXO input buffer  
VDDRF  
WRF_TCXO_VD 1.62  
D
DC supply voltage for digital I/O  
VDDIO,  
VDDIO_SD  
1.62  
3.63  
V
DC supply voltage for RF switch I/Os  
External TSSI input  
VDDIO_RF  
TSSI  
3.13  
0.15  
0.4  
3.3  
3.46  
0.95  
0.7  
V
V
V
Internal POR threshold  
Vth_POR  
SDIO Interface I/O Pins  
For VDDIO_SD = 1.8V:  
Input high voltage  
VIH  
VIL  
1.27  
V
V
V
V
Input low voltage  
0.58  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
For VDDIO_SD = 3.3V:  
Input high voltage  
VOH  
VOL  
1.40  
0.45  
VIH  
VIL  
0.625 ×  
VDDIO  
V
V
V
V
Input low voltage  
0.25 ×  
VDDIO  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
VOH  
VOL  
0.75 ×  
VDDIO  
0.125 ×  
VDDIO  
Other Digital I/O Pins  
For VDDIO = 1.8V:  
Input high voltage  
VIH  
VIL  
0.65 ×  
VDDIO  
V
V
V
Input low voltage  
0.35 ×  
VDDIO  
Output high voltage @ 2 mA  
VOH  
VDDIO –  
0.45  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 127  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Recommended Operating Conditions and DC Characteristics  
Table 32: Recommended Operating Conditions and DC Characteristics (Cont.)  
Value  
Parameter  
Output low voltage @ 2 mA  
Symbol  
Minimum Typical Maximum Unit  
VOL  
0.45  
V
For VDDIO = 3.3V:  
Input high voltage  
VIH  
VIL  
2.00  
V
V
V
Input low voltage  
0.80  
Output high voltage @ 2 mA  
VOH  
VDDIO –  
0.4  
Output low Voltage @ 2 mA  
VOL  
0.40  
V
RF Switch Control Output Pinsc  
For VDDIO_RF = 3.3V:  
Output high voltage @ 2 mA  
VOH  
VDDIO –  
0.4  
V
Output low voltage @ 2 mA  
Input capacitance  
VOL  
CIN  
0.40  
5
V
pF  
a. The BCM4354 is functional across this range of voltages. Optimal RF performance specified in the data sheet,  
however, is guaranteed only for 3.13V < VBAT < 4.8V.  
b. The maximum continuous voltage is 5.25V. Voltage transients up to 6.0V for up to 10 seconds, cumulative  
duration over the lifetime of the device, are allowed. Voltage transients as high as 5.5V for up to 250 seconds,  
cumulative duration over the lifetime of the device, are allowed.  
c. Programmable 2 mA to 16 mA drive strength. Default is 10 mA.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 128  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth RF Specifications  
Section 15: Bluetooth RF Specifications  
Note: Values in this data sheet are design goals and are subject to change based on the results of  
device characterization.  
Unless otherwise stated, limit values apply for the conditions specified in Table 30: “Environmental Ratings,” on  
page 126 and Table 32: “Recommended Operating Conditions and DC Characteristics,” on page 127. Typical  
values apply for an ambient temperature of +25°C.  
Figure 35: RF Port Location for Bluetooth Testing  
BCM4354  
RF Switch  
(0.5 dB Insertion Loss)  
WLAN Tx  
BT Tx  
Filter  
WLAN/BT Rx  
Antenna  
Port  
RF Port  
Chip  
Port  
Note: All Bluetooth specifications are measured at the chip port unless otherwise specified.  
Table 33: Bluetooth Receiver RF Specifications  
Parameter  
Conditions  
Minimum Typical  
Maximum Unit  
Note: The specifications in this table are measured at the chip port output unless otherwise specified.  
General  
Frequency range  
RX sensitivity  
2402  
2480  
MHz  
dBm  
dBm  
GFSK, 0.1% BER, 1 Mbps –  
–93.5  
–95.5  
/4–DQPSK, 0.01% BER,  
2 Mbps  
8–DPSK, 0.01% BER,  
3 Mbps  
–89.5  
dBm  
Input IP3  
–16  
dBm  
dBm  
Maximum input at antenna  
–20  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 129  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth RF Specifications  
Table 33: Bluetooth Receiver RF Specifications (Cont.)  
Parameter  
Conditions  
Minimum Typical  
Maximum Unit  
RX LO Leakage  
2.4 GHz band  
–90.0  
–80.0  
dBm  
Interference Performancea  
C/I co-channel  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
8
11  
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
–7  
0
–38  
–56  
–31  
–46  
–30  
–40  
–9  
C/I 3 MHz adjacent channel GFSK, 0.1% BER  
C/I image channel GFSK, 0.1% BER  
C/I 1 MHz adjacent to image GFSK, 0.1% BER  
channel  
–20  
C/I co-channel  
/4–DQPSK, 0.1% BER  
9
13  
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
/4–DQPSK, 0.1% BER  
/4–DQPSK, 0.1% BER  
–11  
–39  
–55  
–23  
–43  
0
–30  
–40  
–7  
C/I 3 MHz adjacent channel /4–DQPSK, 0.1% BER  
C/I image channel /4–DQPSK, 0.1% BER  
C/I 1 MHz adjacent to image /4–DQPSK, 0.1% BER  
channel  
–20  
C/I co-channel  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
17  
21  
5
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
–4  
–37  
–53  
–16  
–37  
–25  
–33  
0
C/I 3 MHz adjacent channel 8–DPSK, 0.1% BER  
C/I Image channel 8–DPSK, 0.1% BER  
C/I 1 MHz adjacent to image 8–DPSK, 0.1% BER  
channel  
–13  
Out-of-Band Blocking Performance (CW)  
30–2000 MHz  
0.1% BER  
0.1% BER  
0.1% BER  
0.1% BER  
–10.0  
–27  
dBm  
dBm  
dBm  
dBm  
2000–2399 MHz  
2498–3000 MHz  
3000 MHz–12.75 GHz  
–27  
–10.0  
Out-of-Band Blocking Performance, Modulated Interferer  
GFSK (1 Mbps)b  
698–716 MHz  
776–849 MHz  
824–849 MHz  
824–849 MHz  
880–915 MHz  
880–915 MHz  
1710–1785 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–13.5  
–13.8  
–13.5  
–14.3  
–13.1  
–13.1  
–18.1  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
WCDMA  
GSM1800  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 130  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth RF Specifications  
Table 33: Bluetooth Receiver RF Specifications (Cont.)  
Parameter  
Conditions  
Minimum Typical  
Maximum Unit  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
WCDMA  
TD–SCDMA  
WCDMA  
Band 7  
–17.4  
–19.4  
–18.8  
–19.7  
–19.6  
–20.4  
–20.4  
–30.5  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
2500–2570 MHzc  
2300–2400 MHzd  
2570–2620 MHze  
2545–2575 MHzf  
Band 40  
Band 38  
XGP Band  
–34.0  
–30.8  
–29.5  
dBm  
dBm  
dBm  
DPSK (2 Mbps)b  
π/4  
698–716 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–9.8  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
776–794 MHz  
–9.7  
824–849 MHz  
–10.7  
–11.4  
–10.4  
–10.2  
–15.8  
–15.4  
–16.6  
–16.4  
–17.9  
–16.8  
–18.6  
–20.4  
–31.9  
824–849 MHz  
880–915 MHz  
880–915 MHz  
WCDMA  
GSM1800  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
WCDMA  
TD-SCDMA  
WCDMA  
Band 7  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
2500–2570 MHzc  
2300–2400 MHzd  
2570–2620 MHze  
2545–2575 MHzf  
Band 40  
Band 38  
XGP Band  
–35.3  
–31.8  
–31.1  
dBm  
dBm  
dBm  
8DPSK (3 Mbps)b  
698–716 MHz  
776–794 MHz  
824–849 MHz  
824–849 MHz  
880–915 MHz  
880–915 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–12.6  
–12.6  
–12.7  
–13.7  
–12.8  
–12.6  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
WCDMA  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 131  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth RF Specifications  
Table 33: Bluetooth Receiver RF Specifications (Cont.)  
Parameter  
Conditions  
Minimum Typical  
Maximum Unit  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
GSM1800  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
WCDMA  
TD-SCDMA  
WCDMA  
Band 7  
–18.1  
–17.4  
–19.1  
–18.6  
–19.3  
–18.9  
–20.4  
–21.4  
–31.0  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
2500–2570 MHzc  
2300–2400 MHzd  
2570–2620 MHze  
2545–2575 MHzf  
Spurious Emissions  
Band 40  
Band 38  
XGP Band  
–34.5  
–31.2  
–30.0  
dBm  
dBm  
dBm  
30 MHz–1 GHz  
1–12.75 GHz  
–95  
–62  
–47  
dBm  
–70  
dBm  
851–894 MHz  
925–960 MHz  
1805–1880 MHz  
1930–1990 MHz  
2110–2170 MHz  
–147  
–147  
–147  
–147  
–147  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
a. The maximum value represents the actual Bluetooth specification required for Bluetooth qualification as defined  
in the version 4.1 specification.  
b. Bluetooth reference level for the wanted signal at the Bluetooth Chip port = at 3 dB desense for each data rate.  
c. Interferer: 2560 MHz, BW=10 MHz; measured at 2480 MHz.  
d. Interferer: 2360 MHz, BW=10 MHz; measured at 2402 MHz.  
e. Interferer: 2380 MHz, BW=10 MHz; measured at 2480 MHz.  
f. Interferer: 2355 MHz, BW=10 MHz; measured at 2480 MHz.  
Table 34: Bluetooth Transmitter RF Specifications  
Parameter  
Conditions  
Minimum Typical Maximum Unit  
Note: The specifications in this table are measured at the Chip port output unless otherwise specified.  
General  
Frequency range  
2402  
2480  
MHz  
dBm  
dBm  
dBm  
dB  
Basic rate (GFSK) TX power at Bluetooth  
QPSK TX power at Bluetooth  
8PSK TX power at Bluetooth  
2
13.0  
10.0  
10.0  
4
8
Power control step  
Note: Output power is with TCA and TSSI enabled.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 132  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth RF Specifications  
Table 34: Bluetooth Transmitter RF Specifications (Cont.)  
Conditions Minimum Typical Maximum Unit  
Parameter  
GFSK In-Band Spurious Emissions  
–20 dBc BW  
0.93  
1
MHz  
EDR In-Band Spurious Emissions  
1.0 MHz < |M – N| < 1.5 MHz  
1.5 MHz < |M – N| < 2.5 MHz  
M – N = the frequency range for –  
–38  
–31  
–43  
–26.0  
–20.0  
–40.0  
dBc  
which the spurious emission is  
measured relative to the  
dBm  
dBm  
|M – N| 2.5 MHza  
transmit center frequency.  
Out-of-Band Spurious Emissions  
–36.0 b,c  
30 MHz to 1 GHz  
dBm  
dBm  
–30.0 b,d,e  
–47.0  
1 GHz to 12.75 GHz  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
dBm  
dBm  
–47.0  
GPS Band Spurious Emissions  
Spurious emissions  
–103  
dBm  
Out-of-Band Noise Floorf  
65–108 MHz  
FM RX  
–147  
–147  
–147  
–147  
–146  
–145  
–144  
–141  
–140  
–140  
–140  
–140  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm  
776–794 MHz  
CDMA2000  
cdmaOne, GSM850  
E-GSM  
869–960 MHz  
925–960 MHz  
1570–1580 MHz  
1805–1880 MHz  
1930–1990 MHz  
2110–2170 MHz  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
GPS  
GSM1800  
GSM1900, cdmaOne, WCDMA –  
WCDMA  
Band 7  
Band 40  
Band 38  
XGP Band  
dBm  
dBm  
dBm  
a. The typical number is measured at ± 3 MHz offset.  
b. The maximum value represents the value required for Bluetooth qualification as defined in the v4.1 specification.  
c. The spurious emissions during Idle mode are the same as specified in Table 34 on page 132.  
d. Specified at the Bluetooth Antenna port.  
e. Meets this specification using a front–end band–pass filter.  
f. Transmitted power in cellular and FM bands at the Bluetooth Antenna port. See Figure 35 on page 129 for  
location of the port.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 133  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth RF Specifications  
Table 35: Local Oscillator Performance  
Minimum Typical  
Parameter  
Maximum Unit  
LO Performance  
Lock time  
72  
s  
Initial carrier frequency tolerance  
±25  
±75  
kHz  
Frequency Drift  
DH1 packet  
DH3 packet  
DH5 packet  
Drift rate  
±8  
±8  
±8  
5
±25  
±40  
±40  
20  
kHz  
kHz  
kHz  
kHz/50 µs  
Frequency Deviation  
00001111 sequence in payloada  
140  
115  
155  
140  
1
175  
kHz  
kHz  
MHz  
10101010 sequence in payloadb  
Channel spacing  
a. This pattern represents an average deviation in payload.  
b. Pattern represents the maximum deviation in payload for 99.9% of all frequency deviations.  
Table 36: BLE RF Specifications  
Parameter  
Conditions  
Minimum Typical  
Maximum Unit  
Frequency range  
RX sensea  
2402  
2480  
MHz  
dBm  
GFSK, 0.1% BER, 1 Mbps  
–95.5  
TX powerb  
8.5  
dBm  
Mod Char: delta F1 average –  
225  
255  
275  
kHz  
%
Mod Char: delta F2 max.c  
99.9  
Mod Char: ratio  
0.8  
0.95  
%
a. Dirty TX is On.  
b. BLE TX power can be increased to compensate for front-end losses such as BPF, diplexer, switch, etc.). The  
output is capped at 12 dBm out. The BLE TX power at the antenna port cannot exceed the 10 dBm specification  
limit.  
c. At least 99.9% of all delta F2 max. frequency values recorded over 10 packets must be greater than 185 kHz.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 134  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
FM Receiver Specifications  
Section 16: FM Receiver Specifications  
Note: Values in this data sheet are design goals and are subject to change based on the results of  
device characterization.  
Unless otherwise stated, limit values apply for the conditions specified inTable 30: “Environmental Ratings,” on  
page 126 and Table 32: “Recommended Operating Conditions and DC Characteristics,” on page 127. Typical  
values apply for an ambient temperature +25°C.  
Table 37: FM Receiver Specifications  
Typica  
Parameter  
Conditionsa  
Minimum l  
Maximum Units  
RF Parameters  
Operating frequencyb  
Sensitivityc  
Frequencies inclusive  
65  
108  
MHz  
FM only  
SNR 26 dB  
0
dBµV  
EMF  
1
µV EMF  
dBuV  
dB  
–6  
51  
Receiver adjacent  
channel selectivityc,d  
Measured for 30 dB SNR at the audio  
output.  
Wanted Signal: 23 dBµV EMF (14.1 µV  
EMF), at ± 200 kHz.  
At ± 400 kHz  
62  
53  
dB  
dB  
Intermediate signal plus Vin = 20 dBµV EMF (10 µV EMF)  
noise-to-noise ratio (S+N)/  
45  
N, stereoc  
Intermodulation  
performancec,d  
Blocker level increased until desired at  
30 dB SNR  
Wanted Signal: 33 dBµV EMF (45 µV  
55  
dBc  
EMF)  
Modulated Interferer: At fWanted  
±400 kHz and ±4 MHz  
CW Interferer: At fWanted ± 800 kHz and  
±8 MHz  
AM suppression, monoc  
Vin = 23 dBµV EMF (14.1 µV EMF)  
AM at 400 Hz with m = 0.3  
No A-weighted or any other filtering  
applied.  
40  
dB  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 135  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
FM Receiver Specifications  
Table 37: FM Receiver Specifications (Cont.)  
Typica  
Minimum l Maximum Units  
Parameter  
RDS  
Conditionsa  
RDS sensitivitye,f  
RDS deviation = 1.2 kHz  
RDS deviation = 2 kHz  
16  
dBµV  
EMF  
6.3  
10  
12  
µV EMF  
dBuV  
dBµV  
EMF  
4
6
µV EMF  
dBuV  
RDS selectivityf  
Wanted Signal: 33 dBµV EMF (45 µV EMF), 2 kHz RDS deviation  
Interferer: f = 40 kHz, fmod = 1 kHz  
± 200 kHz  
± 300 kHz  
± 400 kHz  
49  
52  
52  
dB  
dB  
dB  
kꢀ  
pF  
RF input impedance  
1.5  
2.5  
Antenna tuning capacitor –  
SNR > 26 dB  
30  
113  
Maximum input levelc  
dBµV  
EMF  
446  
107  
–55  
mV EMF  
dBuV  
RF conducted emissions Local oscillator breakthrough measured –  
dBm  
(measured into a 50ꢀ  
on the reference port  
load)  
869–894 MHz, 925–960 MHz,  
1805–1880 MHz, 1930–1990 MHz.  
GPS  
–90  
dBm  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 136  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
FM Receiver Specifications  
Table 37: FM Receiver Specifications (Cont.)  
Typica  
Minimum l  
Parameter  
Conditionsa  
Maximum Units  
RF blocking levels at the GSM850, E-GSM (std), BW = 0.2 MHz,  
FM antenna input 40 dB 824–849 MHz  
7
dBm  
SNR (assumes a 50at 880–915 MHz  
the radio input and  
excludes spurs)  
GSM850, E-GSM (edge),  
BW = 0.2 MHz,  
824–849 MHz  
880–915 MHz  
–1  
dBm  
GSM DCS 1800, PCS 1900 (std/edge),  
BW = 0.2 MHz,  
1710–1785 MHz  
12  
12  
dBm  
dBm  
1850–1910 MHz  
WCDMA: II(I), III(IV, X),  
BW = 5 MHz,  
1850–1980 MHz (1920–1980 MHz),  
1710–1785 MHz (1710–1755 MHz,  
1710–1770 MHz)  
WCDMA: V(VI), VIII, XII, XIII, XIV,  
BW = 5 MHz,  
824–849 MHz (830–840 MHz),  
5
0
dBm  
dBm  
dBm  
880–915 MHz  
CDMA2000, cdmaOne, BW = 1.25 MHz,  
824–849 MHz,  
887–925 MHz,  
776–794 MHz  
CDMA2000, cdmaOne, BW = 1.25 MHz,  
1850–1910 MHz,  
12  
1750–1780 MHz,  
1920–1980 MHz  
Bluetooth, BW = 1 MHz,  
2402–2480 MHz  
11  
11  
6
dBm  
dBm  
dBm  
IEEE 802.11g/b, BW = 20 MHz,  
2400–2483.5 MHz  
IEEE 802.11a, BW = 20 MHz,  
4915–5825 MHz  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
Band 7  
11  
dBm  
dBm  
dBm  
dBm  
Band 40  
Band 38  
XGP Band  
11  
11  
11  
Tuning  
Frequency step  
Settling time  
10  
kHz  
µs  
Single-frequency switch in any direction –  
to a frequency within the bands 88–  
108 MHz or 76–90 MHz. Time measured  
to within 5 kHz of the final frequency.  
150  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 137  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
FM Receiver Specifications  
Table 37: FM Receiver Specifications (Cont.)  
Typica  
Minimum l Maximum Units  
Parameter  
Conditionsa  
Search time  
Total time for an automatic search to  
sweep from 88–108 MHz or 76–90 MHz  
(and reverse direction) assuming no  
channels are found.  
8
sec  
General Audio  
Audio output levelg  
Maximum audio output  
levelh  
–14.5  
–12.5  
0
dBFS  
dBFS  
Audio DAC output levelg  
Maximum DAC audio  
output levelh  
72  
88  
mV rms  
mV rms  
333  
Audio DAC output level  
differencei  
–1  
1
dB  
Left and right AC mute  
FM input signal fully muted with DAC  
enabled  
60  
80  
dB  
dB  
Left and right hard mute FM input signal fully muted with DAC  
disabled  
Soft mute attenuation and Muting is performed dynamically  
start level  
proportional to the FM wanted input  
signal C/N. The muting characteristic is  
fully programmable. Refer to “Audio  
Features” on page 63 for further details.  
Maximum signal plus  
noise-to-noise ratio  
69  
64  
dB  
dB  
%
(S + N)/N, mono i  
Maximum signal plus  
noise-to-noise ratio  
(S + N)/N, stereog  
Total harmonic distortion, Vin = 66 dBµV EMF (2 mV EMF),  
0.8  
mono  
f = 75 kHz, fmod = 400 Hz  
f = 75 kHz, fmod = 1 kHz  
f = 75 kHz, fmod = 3 kHz  
f = 100 kHz, fmod = 1 kHz  
0.8  
0.8  
1.0  
1.5  
%
%
%
%
Total harmonic distortion, Vin = 66 dBµV EMF (2 mV EMF)  
stereo  
f = 67.5 kHz, fmod = 1 kHz, f  
Pilot = 7.5 kHz, L = R  
Audio spurious productsi  
Range from 300 Hz to 15 kHz, with  
respect to 1 kHz tone  
–60  
dBc  
kHz  
Hz  
Audio bandwidth, upper (– Vin = 66 dBµV EMF (2 mV EMF)  
15  
3 dB point)  
f = 8 kHz, for 50 µs  
Audio bandwidth, lower (–  
3 dB point)  
20  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 138  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
FM Receiver Specifications  
Table 37: FM Receiver Specifications (Cont.)  
Typica  
Minimum l Maximum Units  
Parameter  
Conditionsa  
Audio in-band ripple  
100 Hz to 13 kHz,  
Vin = 66 dBµV EMF (2 mV EMF)  
–0.5  
0.5  
dB  
f = 8 kHz, for 50 µs  
De-emphasis time  
constant tolerance  
With respect to 50 and 75 µs  
3
±5  
83  
%
RSSI range  
With 1 dB resolution and ± 5 dB  
accuracy at room temp  
dBµV  
EMF  
1.41  
–3  
14.1m  
77  
µV EMF  
dBuV  
Stereo Decoder  
Stereo channel separation Forced Stereo mode  
Vin = 66 dBµV EMF (2 mV EMF),  
48  
dB  
f = 67.5 kHz, fmod = 1 kHz,  
f Pilot = 6.75 kHz  
R = 0, L = 1  
Mono stereo blend and  
switching  
Blending and switching is dynamically proportional to the FM wanted input signal C/  
N. The blending and switching characteristics are fully programmable. Refer to  
“Audio Features” on page 63 for further details.  
Pilot suppression  
Vin = 66 dBµV EMF (2 mV EMF),  
f = 75 kHz, fmod = 1 kHz  
46  
dB  
Pause detection  
Audio level at which a  
pause is detected  
Relative to 1 kHz tone, f = 22.5 kHz  
Four values in 3 dB steps  
Four values  
–21  
20  
–12  
40  
dB  
ms  
Audio pause duration  
a. Following conditions are applied to all relevant tests unless otherwise indicated: Pre-emphasis and de-emphasis  
of 50 us, R = L for mono, DAC Load 20 k, BAF = 300 Hz to 15 kHz, and A-weighted filtering applied.  
b. Contact Broadcom regarding applications that operate between 65 and 76 MHz.  
c. Wanted Signal: f = 22.5 kHz, and fmod = 1 kHz.  
d. Interferer: f = 22.5 kHz, and fmod = 1 kHz.  
e. RDS sensitivity numbers are for 87.5–108 MHz only.  
f. Vin = f = 32 kHz, fmod = 1 kHz, f Pilot = 7.5 kHz, and 95% of blocks decoded with no errors after correction.  
g. Vin = 66 dBµV EMF (2 mV EMF), f = 22.5 kHz, fmod = 1 kHz, and f Pilot = 6.75 kHz.  
h. Vin = 66 dBµV EMF (2 mV EMF), f = 100 kHz, fmod = 1 kHz, and f Pilot = 6.75 kHz.  
i. Vin = 66 dBµV EMF (2 mV EMF), f = 22.5 kHz, and fmod = 1 kHz.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 139  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN RF Specifications  
Section 17: WLAN RF Specifications  
Introduction  
The BCM4354 includes an integrated dual-band direct conversion radio that supports the 2.4 GHz and the  
5 GHz bands. This section describes the RF characteristics of the 2.4 GHz and 5 GHz radios.  
Note: Values in this section of the data sheet are design goals and are subject to change based on the  
results of device characterization.  
Unless otherwise stated, limit values apply for the conditions specified inTable 30: “Environmental Ratings,” on  
page 126 and Table 32: “Recommended Operating Conditions and DC Characteristics,” on page 127. Typical  
values apply for an ambient temperature +25°C.  
Figure 36: Port Locations (Applies to 2.4 GHz and 5 GHz)  
BCM4354  
RF Switch  
(0.5 dB Insertion Loss)  
WLAN Tx  
BT Tx  
Filter  
WLAN/BT Rx  
Antenna  
Port  
RF Port  
Chip  
Port  
2.4 GHz Band General RF Specifications  
Table 38: 2.4 GHz Band General RF Specifications  
Item  
Condition  
Including TX ramp down –  
Including TX ramp up  
Minimum Typical  
Maximum Unit  
TX/RX switch time  
RX/TX switch time  
5
µs  
µs  
µs  
2
Power-up and power-down ramp  
time  
DSSS/CCK modulations –  
< 2  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 140  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 2.4 GHz Receiver Performance Specifications  
WLAN 2.4 GHz Receiver Performance Specifications  
Note: The values in Table 39 are specified at the RF port unless otherwise noted.  
Table 39: WLAN 2.4 GHz Receiver Performance Specifications  
Parameter  
Condition/Notes  
Min.  
Typ. Max.  
Unit  
Frequency range  
RX sensitivity IEEE  
802.11ba  
2400  
2500  
MHz  
1 Mbps DSSS  
2 Mbps DSSS  
5.5 Mbps DSSS  
11 Mbps DSSS  
–96.4  
–94.5  
–91.7  
–89.4  
–93.5  
–92.1  
–91.2  
–88.6  
–85.3  
–82  
dBm  
dBm  
dBm  
dBm  
SISO RX sensitivity IEEE 6 Mbps OFDM  
802.11g  
dBm  
9 Mbps OFDM  
dBm  
(10% PER for 1024 octet  
PSDU)a  
12 Mbps OFDM  
dBm  
18 Mbps OFDM  
dBm  
24 Mbps OFDM  
36 Mbps OFDM  
dBm  
dBm  
48 Mbps OFDM  
–77.3  
–75.8  
–94.5  
–94  
dBm  
54 Mbps OFDM  
dBm  
MIMO RX sensitivity IEEE 6 Mbps OFDM  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
802.11g  
9 Mbps OFDM  
(10% PER for 1024 octet  
PSDU)a  
12 Mbps OFDM  
–93.2  
–91.6  
–88.3  
–85  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
–80.3  
–78.8  
54 Mbps OFDM  
SISO RX sensitivity IEEE 20 MHz channel spacing for all MCS rates  
802.11n  
MCS0  
–93  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
MCS1  
–90.7  
–88.2  
–85.1  
–81.5  
–76.9  
–75.3  
–73.7  
PSDU)a,b  
MCS2  
Defined for default  
parameters: GF, 800 ns GI,  
and non–STBC.  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 141  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 2.4 GHz Receiver Performance Specifications  
Table 39: WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ. Max.  
Unit  
MIMO RX sensitivity IEEE 20 MHz channel spacing for all MCS rates  
802.11n  
MCS0  
–94.5  
–93.7  
–91.2  
–88.1  
–84.5  
–79.9  
–78.3  
–76.7  
–93  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 4096 octet  
MCS1  
PSDU)a,b  
MCS2  
Defined for default  
parameters: GF, 800 ns GI,  
and non–STBC.  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS15  
–73.7  
SISO RX sensitivity IEEE 40 MHz channel spacing for all MCS rates  
802.11n  
MCS0  
–90.8  
–87.9  
–85.5  
–82  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
MCS1  
PSDU)a,b  
MCS2  
Defined for default  
parameters: GF, 800 ns GI,  
and non–STBC.  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
–78.9  
–74.2  
–72.7  
–71.3  
MIMO RX sensitivity IEEE 40 MHz channel spacing for all MCS rates  
802.11n  
MCS0  
–92.3  
–90.9  
–88.5  
–85  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 4096 octet  
MCS1  
PSDU)a,b  
MCS2  
Defined for default  
parameters: GF, 800 ns GI,  
and non–STBC.  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS15  
–81.9  
–77.2  
–75.7  
–74.3  
–90.8  
–71.3  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 142  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 2.4 GHz Receiver Performance Specifications  
Table 39: WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ. Max.  
Unit  
SISO RX sensitivity IEEE 20 MHz channel spacing for all MCS rates  
802.11ac  
MCS0, Nss 1  
–92.3  
–89.9  
–88.1  
–84.9  
–81.4  
–76.9  
–75.3  
–73.6  
–69.2  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
MCS1, Nss 1  
PSDU)a,b  
MCS2, Nss 1  
Defined for default  
MCS3, Nss 1  
parameters: GF, 800 ns GI,  
and non–STBC  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MIMO RX sensitivity IEEE 20 MHz channel spacing for all MCS rates  
802.11ac  
MCS0, Nss 1  
–93.8  
–92.9  
–91.1  
–87.9  
–84.4  
–79.9  
–78.3  
–76.6  
–72.2  
–92  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 4096 octet  
MCS1, Nss 1  
PSDU)a,b  
MCS2, Nss 1  
Defined for default  
MCS3, Nss 1  
parameters: GF, 800 ns GI,  
and non–STBC  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS0, Nss 2  
MCS8, Nss 2  
–68.1  
SISO RX sensitivity IEEE 40 MHz channel spacing for all MCS rates  
802.11ac  
MCS0, Nss 1  
–89.5  
–87  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
MCS1, Nss 1  
PSDU)a,b  
MCS2, Nss 1  
Defined for default  
–85.2  
–82  
MCS3, Nss 1  
parameters: GF, 800 ns GI,  
and non–STBC.  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
–78.8  
–74.3  
–72.7  
–71.3  
–66.9  
–65.6  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 143  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 2.4 GHz Receiver Performance Specifications  
Table 39: WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ. Max.  
Unit  
MIMO RX sensitivity IEEE 40 MHz channel spacing for all MCS rates  
802.11ac  
MCS0, Nss 1  
–91  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm  
(10% PER for 4096 octet  
MCS1, Nss 1  
–90  
PSDU)a,b  
MCS2, Nss 1  
Defined for default  
–88.2  
–85  
MCS3, Nss 1  
parameters: GF, 800 ns GI,  
and non–STBC.  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
MCS0, Nss 2  
MCS9, Nss 2  
–81.8  
–77.3  
–75.7  
–74.3  
–69.9  
–68.6  
–89  
–64.2  
–75.4  
–72.7  
–69.4  
–72.8  
–68.5  
–67.3  
SISO RX sensitivity IEEE MCS7, Nss 1  
802.11ac 20/40/80 MHz  
channel spacing with LDPC  
20 MHz  
20 MHz  
20 MHz  
40 MHz  
40 MHz  
40 MHz  
MCS8, Nss 1  
dBm  
MCS9, Nss 1  
dBm  
(10% PER for 4096 octet  
PSDU)a,b at WLAN RF port.  
Defined for default  
parameters: GF, 800 ns GI,  
LDPC coding, and non–  
STBC.  
MCS7, Nss 1  
dBm  
MCS8, Nss 1  
MCS9, Nss 1  
dBm  
dBm  
MIMO RX sensitivity IEEE MCS7, Nss 2  
20 MHz  
20 MHz  
20 MHz  
40 MHz  
40 MHz  
40 MHz  
–74  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
802.11ac 20/40/80 MHz  
channel spacing with LDPC  
MCS8, Nss 2  
–71.2  
–68.0  
–71.8  
–67  
MCS9, Nss 2  
(10% PER for 4096 octet  
PSDU)a,b at WLAN RF port.  
MCS7, Nss 2  
MCS8, Nss 2  
MCS9, Nss 2  
Defined for default  
parameters: GF, 800 ns GI,  
LDPC coding, and non–  
STBC.  
–65.5  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 144  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 2.4 GHz Receiver Performance Specifications  
Table 39: WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ. Max.  
Unit  
Blocking level for 3dB RX 776–794 MHz  
CDMA2000  
cdmaOne  
–8  
–24  
–25  
dBm  
dBm  
sensitivity degradation  
(without external filtering)c  
824–849 MHzd  
–24.5  
824–849 MHzd  
880–915 MHz  
GSM850  
–16.5  
–15  
dBm  
E–GSM  
–2  
–16  
–18  
–19  
–26  
–26  
–28.5  
–45  
–50  
–45  
–45  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1850–1910 MHz  
1920–1980 MHz  
2500–2570 MHz  
2300–2400 MHz  
2570-2620 MHz  
2545-2575 MHz  
GSM1800  
GSM1800  
cdmaOne  
WCDMA  
WCDMA  
Band 7  
–17  
–21  
–32  
–29  
–32  
–45  
–50  
–45  
–45  
–80  
Band 40  
Band 38  
XGP band  
In-band static CW jammer RX PER < 1%, 54 Mbps OFDM,  
immunity  
1000 octet PSDU for:  
(fc – 8 MHz < fcw < + 8 MHz)  
(RxSense + 23 dB < Rxlevel < max. input  
level)  
Input In–Band IP3  
Maximum LNA gain  
–15.5  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
MHz  
Minimum LNA gain  
–1.5  
Maximum Receive Level  
@ 2.4 GHz  
@ 1, 2 Mbps (8% PER, 1024 octets)  
–3.5  
@ 5.5, 11 Mbps (8% PER, 1024 octets) –9.5  
@ 6–54 Mbps (10% PER, 1024 octets) –9.5  
@ MCS0–7 rates (10% PER, 4095 octets) –9.5  
@ MCS8–9 rates (10% PER, 4095 octets) –11.5  
LPF 3 dB Bandwidth  
9
36  
Adjacent channel rejection– Desired and interfering signal 30 MHz apart  
DSSS  
1 Mbps DSSS  
2 Mbps DSSS  
–74 dBm  
–74 dBm  
35  
35  
dB  
dB  
(Difference between  
interfering and desired  
signal at 8% PER for 1024  
octet PSDU with desired  
signal level as specified in  
Condition/Notes)  
Desired and interfering signal 25 MHz apart  
5.5 Mbps DSSS  
11 Mbps DSSS  
–70 dBm  
–70 dBm  
35  
35  
dB  
dB  
Adjacent channel rejection– 6 Mbps OFDM  
–79 dBm  
–78 dBm  
–76 dBm  
–74 dBm  
–71 dBm  
–67 dBm  
–63 dBm  
–62 dBm  
16  
15  
13  
11  
8
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
OFDM  
9 Mbps OFDM  
(difference between  
interfering and desired  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
signal (25 MHz apart) at  
10% PER for 1024 octet  
PSDU with desired signal  
level as specified in  
4
0
Condition/Notes)  
–1  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 145  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 2.4 GHz Receiver Performance Specifications  
Table 39: WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ. Max.  
Unit  
Adjacent channel rejection MCS0  
–79 dBm  
–76 dBm  
–74 dBm  
–71 dBm  
–67 dBm  
–63 dBm  
–62 dBm  
–61 dBm  
–59 dBm  
–57 dBm  
–82 dBm  
–80 dBm  
–77 dBm  
–74 dBm  
–70 dBm  
–66 dBm  
–65 dBm  
–64 dBm  
–59 dBm  
–57 dBm  
16  
13  
11  
8
5
8
13  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
MCS0–9 (Difference  
between interfering and  
desired signal (25 MHz  
MCS1  
MCS2  
apart) at 10% PER for 4096  
octet PSDU with desired  
signal level as specified in  
Condition/Notes)  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS9  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS9  
4
0
–1  
–2  
–4  
–6  
IEEE 802.11ac Adjacent  
channel rejection MCS0–9  
(Difference between  
interfering and desired  
signal at 10% PER for 4096  
octet PSDU with desired  
signal level as specified in  
Condition/Notes)  
Maximum receiver gain  
Gain control step  
95  
3
RSSI accuracye  
Range –90 dBm to –30 dBm  
Range above –30 dBm  
–5  
–8  
10  
Return loss  
Zo = 50, across the dynamic range  
At maximum gain  
11.5  
4
Receiver cascaded noise  
figure  
General spurs  
1–18 GHz  
–60  
dBm/MHz  
a. Derate by 1.5 dB for 55°C to 70°C.  
b. Sensitivity degradations for alternate settings in MCS modes. MM: 0.5 dB drop, and SGI: 2 dB drop.  
c. The cellular standard listed for each band indicates the type of modulation used to generate the interfering signal in that band  
for the purpose of this test. It is not intended to indicate any specific usage of each band in any specific country.  
d. The blocking levels are valid for channels 1 to 11. (For higher channels, the performance may be lower due to third harmonic  
signals (3 × 824 MHz) falling within band.)  
e. The minimum and maximum values shown have a 95% confidence level.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 146  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 2.4 GHz Transmitter Performance Specifications  
WLAN 2.4 GHz Transmitter Performance Specifications  
Note: The values in Table 40 are specified at the RF port unless otherwise noted.  
Table 40: WLAN 2.4 GHz Transmitter Performance Specifications  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
Frequency range  
2400  
2500  
MHz  
Transmitted power in  
cellular and FM bands at 18  
dBm, 100% duty cycle, 1  
Mbps CCKa  
76-108 MHz  
776-794 MHz  
869-960 MHz  
FM RX  
–149  
–162  
–162  
dBm/Hz  
dBm/Hz  
dBm/Hz  
cdmaOne,  
GSM850  
925-960 MHz  
E-GSM  
GPS  
–162  
–152  
-142  
–143  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
1570-1580 MHz  
1805-1880 MHz  
1930-1990 MHz  
GSM1800  
GSM1900,  
cdmaOne,  
cdmaOne  
2110-2170 MHz  
2500-2570 MHz  
2300-2400 MHz  
2570-2620 MHz  
2545-2575 MHz  
WCDMA  
Band 7  
–128  
–92  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
Band 40  
Band 38  
XGP Band  
–95  
–110  
–110  
–18  
2nd harmonic  
Harmonic level (at 18 dBm 4.8-5.0 GHz  
with 100% duty cycle)  
7.2-7.5 GHz  
rd harmonic  
–20  
dBm/Hz  
3
General spurs (at 18 dBm 1–18 GHz  
with 100% duty cycle)  
–60  
dBm/MHz  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 147  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 2.4 GHz Transmitter Performance Specifications  
Table 40: WLAN 2.4 GHz Transmitter Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
EVM Does Not Exceed  
TX power at RF port for  
highest power level setting  
at 25°C with spectral mask  
and EVM complianceb  
802.11b  
–9 dB  
18  
19.5  
dBm  
(DSSS/CCK)  
OFDM, BPSK  
OFDM, QPSK  
–8 dB  
18  
19  
19  
18  
17  
dBm  
dBm  
dBm  
dBm  
–13 dB  
18  
OFDM, 16-QAM –19 dB  
OFDM, 64-QAM –25 dB  
(R = 3/4)  
16.5  
15.5  
OFDM, 64-QAM –28 dB  
(R = 5/6)  
14.5  
16  
dBm  
OFDM, 256-QAM –30 dB  
(R = 3/4, VHT20)  
13.5  
12  
15  
13.5  
0.45  
dBm  
dBm  
OFDM, 256-QAM –32 dB  
(R = 5/6, VHT20)  
Phase noise  
37.4 MHz Crystal, Integrated from –  
10 kHz to 10 MHz  
Degrees  
dB  
TX power control dynamic  
range  
10  
Closed-loop TX power  
Across full temperature and  
±1.5  
dB  
variation at highest power voltage range. Applies across 10  
level setting  
dBm to 20 dBm output power  
range.  
Carrier suppression  
Gain control step  
15  
dBc  
dB  
0.25  
6
Return loss at chip port TX Zo = 50ꢀ  
dB  
a. The cellular standards listed only indicate the typical usages of that band in some countries: other standards  
may also be used within those bands  
b. Derate by 1.5 dB for temperatures higher than 55°C, or supply voltages lower than 3.0V. Derate by 3.0 dB for  
supply voltages of lower than 2.7V, or supply voltages lower than 3.0V at temperatures higher than 55°C.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 148  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 5 GHz Receiver Performance Specifications  
WLAN 5 GHz Receiver Performance Specifications  
Note: The values in Table 41 on page 149 are specified at the RF port unless otherwise noted.  
Table 41: WLAN 5 GHz Receiver Performance Specifications  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
Frequency range  
4900  
5845  
MHz  
SISO RX sensitivity IEEE 6 Mbps OFDM  
802.11a  
–92.5  
–91.1  
–90.2  
–87.6  
–84.3  
–81  
dBm  
9 Mbps OFDM  
dBm  
(10% PER for 1000 octet  
PSDU)a  
12 Mbps OFDM  
dBm  
18 Mbps OFDM  
dBm  
24 Mbps OFDM  
36 Mbps OFDM  
dBm  
dBm  
48 Mbps OFDM  
–76.3  
–74.8  
–93.5  
–93  
dBm  
54 Mbps OFDM  
dBm  
MIMO RX sensitivity IEEE 6 Mbps OFDM  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
802.11a  
9 Mbps OFDM  
(10% PER for 1024 octet  
PSDU)a,b  
12 Mbps OFDM  
–92.2  
–90.6  
–87.3  
–84  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
–79.3  
–75.8  
SISO RX sensitivity IEEE 20 MHz channel spacing for all MCS rates  
802.11n  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
–92  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
PSDU)a,b  
–89.7  
–87.2  
–84.1  
–80.5  
–75.9  
–74.3  
–72.7  
Defined for default  
parameters: GF, 800 ns GI,  
and non-STBC.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 149  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 5 GHz Receiver Performance Specifications  
Table 41: WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
MIMO RX sensitivity IEEE 20 MHz channel spacing for all MCS rates  
802.11n  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS15  
–93.5  
–92.7  
–90.2  
–87.1  
–83.5  
–78.9  
–77.3  
–75.7  
–92  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 4096 octet  
PSDU)a,b Defined for  
default parameters: GF,  
800 ns GI, and non-STBC.  
–72.7  
SISO RX sensitivity IEEE 40 MHz channel spacing for all MCS rates  
802.11n  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
–89.8  
–86.9  
–84.5  
–81  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
PSDU)a,b  
Defined for default  
parameters: GF, 800 ns GI,  
and non-STBC.  
–77.9  
–73.2  
–71.7  
–70.3  
MIMO RX sensitivity IEEE 40 MHz channel spacing for all MCS rates  
802.11n  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS15  
–91.3  
–89.9  
–87.5  
–84  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 4096 octet  
PSDU)a,b  
Defined for default  
parameters: GF, 800 ns GI,  
and non-STBC.  
–80.9  
–76.2  
–74.7  
–73.3  
–89.8  
–70.3  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 150  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 5 GHz Receiver Performance Specifications  
Table 41: WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
SISO RX sensitivity IEEE 20 MHz channel spacing for all MCS rates  
802.11ac  
MCS0, Nss 1  
MCS1, Nss 1  
MCS2, Nss 1  
MCS3, Nss 1  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
–91.3  
–88.3  
–86  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
PSDU)a,b  
Defined for default  
parameters: GF, 800 ns GI,  
and non-STBC  
–83  
–79.4  
–74.9  
–73.3  
–72.6  
–68.2  
MIMO RX sensitivity IEEE 20 MHz channel spacing for all MCS rates  
802.11ac  
MCS0, Nss 1  
MCS1, Nss 1  
MCS2, Nss 1  
MCS3, Nss 1  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS0, Nss 2  
MCS8, Nss 2  
–92.8  
–91.3  
–89  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 4096 octet  
PSDU)a,b  
Defined for default  
parameters: GF, 800 ns GI,  
and non-STBC  
–86  
–82.4  
–77.9  
–76.3  
–75.6  
–71.2  
–91  
–67.1  
SISO RX sensitivity IEEE 40 MHz channel spacing for all MCS rates  
802.11ac  
MCS0, Nss 1  
MCS1, Nss 1  
MCS2, Nss 1  
MCS3, Nss 1  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
–88.5  
–85.5  
–83.7  
–80.5  
–77.5  
–72.5  
–71.7  
–70.3  
–65.9  
–64.6  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
PSDU)a,b  
Defined for default  
parameters: GF, 800 ns GI,  
and non-STBC.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 151  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 5 GHz Receiver Performance Specifications  
Table 41: WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
MIMO RX sensitivity IEEE 40 MHz channel spacing for all MCS rates  
802.11ac  
MCS0, Nss 1  
MCS1, Nss 1  
MCS2, Nss 1  
MCS3, Nss 1  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
MCS0, Nss 2  
MCS9, Nss 2  
–90  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 4096 octet  
PSDU)a,b  
–88.5  
–86.7  
–83.5  
–80.5  
–75.5  
–74.7  
–73.3  
–68.9  
–67.6  
–88  
Defined for default  
parameters: GF, 800 ns GI,  
and non-STBC.  
–63.2  
SISO RX sensitivity IEEE 80 MHz channel spacing for all MCS rates  
802.11ac  
MCS0, Nss 1  
MCS1, Nss 1  
MCS2, Nss 1  
MCS3, Nss 1  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
–85  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
PSDU)a,b  
–82  
–80  
Defined for default  
parameters: GF, 800 ns GI,  
and non-STBC.  
–76.7  
–73.7  
–70.5  
–68  
–66.5  
–62.3  
–60.5  
MIMO RX sensitivity IEEE 80 MHz channel spacing for all MCS rates  
802.11ac  
MCS0, Nss 1  
MCS1, Nss 1  
MCS2, Nss 1  
MCS3, Nss 1  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
MCS0, Nss 2  
MCS9, Nss 2  
–86.5  
–85  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 4096 octet  
PSDU)a,b  
–83  
Defined for default  
parameters: GF, 800 ns GI,  
and non-STBC.  
–79.7  
–76.7  
–73.5  
–71  
–69.5  
–65.3  
–63.5  
–84.3  
–59.5  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 152  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 5 GHz Receiver Performance Specifications  
Table 41: WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
SISO RX sensitivity IEEE MCS7, Nss 1  
802.11ac 20/40/80 MHz  
channel spacing with  
LDPC  
20 MHz  
–74.4  
dBm  
(10% PER for 4096 octet  
PSDU)a,b at WLAN RF  
port. Defined for default  
parameters: GF, 800 ns GI,  
LDPC coding, and non-  
STBC.  
MCS8, Nss 1  
MCS9, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
20 MHz  
20 MHz  
40 MHz  
40 MHz  
40 MHz  
80 MHz  
80 MHz  
80 MHz  
20 MHz  
–71.7  
–71.4  
–71.8  
–67.5  
–66.5  
–68  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
–64.3  
–62.5  
–73  
dBm  
dBm  
MIMO RX sensitivity IEEE MCS7, Nss 2  
802.11ac 20/40/80 MHz  
channel spacing with  
LDPC  
dBm/core  
(10% PER for 4096 octet  
PSDU)a,b at WLAN RF  
port. Defined for default  
parameters: GF, 800 ns GI,  
LDPC coding, and non-  
STBC.  
MCS8, Nss 2  
MCS9, Nss 2  
MCS7, Nss 2  
MCS8, Nss 2  
MCS9, Nss 2  
MCS7, Nss 2  
MCS8, Nss 2  
MCS9, Nss 2  
20 MHz  
20 MHz  
40 MHz  
40 MHz  
40 MHz  
80 MHz  
80 MHz  
80 MHz  
–70.2  
–66.5  
–70.8  
–66  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
–64.7  
–67  
–62.8  
–60.5  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 153  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 5 GHz Receiver Performance Specifications  
Table 41: WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
Alternate adjacent channel 776–794 MHz  
CDMA2000  
cdmaOne  
–21  
–20  
dBm  
dBm  
rejection  
824–849 MHzd  
Blocking level for 3 dB RX  
sensitivity degradationc  
(without external filtering)  
824–849 MHzd  
GSM850  
–12  
dBm  
880–915 MHz  
E-GSM  
–12  
–15  
–15  
–20  
–21  
–21  
–21  
–21  
–21  
–21  
36  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
MHz  
dB  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1850–1910 MHz  
1920–1980 MHz  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
Maximum LNA gain  
Minimum LNA gain  
@ 6, 9, 12 Mbps  
GSM1800  
GSM1800  
cdmaOne  
WCDMA  
WCDMA  
Band 7  
Band 40  
Band 38  
XGP Band  
Input In-Band IP3  
–15.5  
–1.5  
Maximum receive level  
@ 5.24 GHz  
–9.5  
–14.5  
9
@ 18, 24, 36, 48, 54 Mbps  
LPF 3 dB bandwidth  
Adjacent channel rejection 6 Mbps OFDM  
–79 dBm  
16  
15  
13  
11  
(Difference between  
interfering and desired  
signal (20 MHz apart) at  
10% PER for 1000 octet  
PSDU with desired signal  
level as specified in  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
65 Mbps OFDM  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
65 Mbps OFDM  
–78 dBm  
dB  
–76 dBm  
dB  
–74 dBm  
dB  
–71 dBm  
8
dB  
–67 dBm  
4
dB  
Condition/Notes)  
–63 dBm  
0
dB  
–62 dBm  
–1  
–2  
32  
31  
29  
27  
24  
20  
16  
15  
14  
dB  
–61 dBm  
dB  
(Difference between  
interfering and desired  
signal (40 MHz apart) at  
10% PER for 1000e octet  
PSDU with desired signal  
level as specified in  
–78.5 dBm  
–77.5 dBm  
–75.5 dBm  
–73.5 dBm  
–70.5 dBm  
–66.5 dBm  
–62.5 dBm  
–61.5 dBm  
–60.5 dBm  
dB  
dB  
dB  
dB  
dB  
Condition/Notes)  
dB  
dB  
dB  
dB  
Maximum receiver gain  
Gain control step  
95  
3
dB  
dB  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 154  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 5 GHz Receiver Performance Specifications  
Table 41: WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
RSSI accuracyf  
Range –90 dBm to –30 dBm  
Range above –30 dBm  
–5  
–8  
10  
5
5
dB  
dB  
dB  
dB  
8
Return loss  
Zo = 50, across the dynamic range  
13  
Receiver cascaded noise At maximum gain  
figure  
General spurs  
1–18 GHz  
–65  
dBm/MHz  
a. Derate by 1.5 dB for 55°C to 70°C.  
b. The cellular standard listed for each band indicates the type of modulation used to generate the interfering signal  
in that band for the purpose of this test. It is not intended to indicate any specific usage of each band in any  
specific country.  
c. The cellular standard listed for each band indicates the type of modulation used to generate the interfering signal  
in that band for the purpose of this test. It is not intended to indicate any specific usage of each band in any  
specific country.  
d. The blocking levels are valid for channels 1 to 11. (For higher channels, the performance may be lower due to  
third harmonic signals (3 × 824 MHz) falling within band.)  
e. For 65 Mbps, the size is 4096.  
f. The minimum and maximum values shown have a 95% confidence level.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 155  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 5 GHz Transmitter Performance Specifications  
WLAN 5 GHz Transmitter Performance Specifications  
Note: The values in Table 42 are specified at the RF port unless otherwise noted.  
Table 42: WLAN 5 GHz Transmitter Performance Specifications  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
Frequency range  
4900  
5845  
MHz  
Transmitted power in  
cellular and FM bands (at  
18 dBm)a  
76-108 MHz  
776-794 MHz  
869-960 MHz  
FMRX  
–162  
–168  
–167  
dBm/Hz  
dBm/Hz  
dBm/Hz  
cdmaOne,  
GSM850  
1570-1580 MHz GPS  
–170  
–162  
–169  
–169  
–168  
–168  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
1592-1610 MHz GLONASS  
1805-1880 MHz GSM1800  
1850-1910 MHz GSM1900  
1910-1930 MHz Band 37  
1930-1990 MHz GSM1900,  
cdmaOne,  
WCDMA  
2010-2075 MHz TDSCDMA  
2110-2170 MHz WCDMA  
2300-2370 MHz Band 40  
2370-2400 MHz Band 40  
2496-2530 MHz Band 41  
2530-2560 MHz Band 41  
2570-2690 MHz Band 41  
–168  
–160  
–166  
–162  
–165  
–165  
–158  
–30  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/MHz  
2nd harmonic  
Harmonic level  
(at 17 dBm)  
9.8-11.570 GHz  
General spurs  
1-18 GHz  
–57  
dBm/MHz  
dBm  
dBm  
TX power at RF port for  
highest power level setting  
at 25°C with spectral mask  
and EVM complianceb  
OFDM, QPSK  
–13 dB  
17.5  
16  
18.5  
17.5  
OFDM, 16-QAM –19 dB  
OFDM, 64-QAM  
(R = 3/4)  
–25 dB  
15  
16.5  
dBm  
OFDM, 64-QAM  
(R = 5/6)  
–28 dB  
14  
13  
15.5  
14.5  
dBm  
dBm  
OFDM, 256-QAM –30 dB  
(R = 3/4, VHT)  
OFDM, 256-QAM –32 dB  
(R = 5/6, VHT)  
11  
12.5  
dBm  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 156  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN 5 GHz Transmitter Performance Specifications  
Table 42: WLAN 5 GHz Transmitter Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
Phase noise  
37.4 MHz Crystal, Integrated from 10 –  
kHz to 10 MHz  
0.5  
Degrees  
TX power control dynamic –  
range  
10  
dB  
dB  
Closed loop TX power  
Across full-temperature and voltage  
±2.0  
variation at highest power range. Applies across 10 to 20 dBm  
level setting  
output power range.  
Carrier suppression  
Gain control step  
Return loss  
15  
dBc  
dB  
0.25  
6
Zo = 50ꢀ  
dB  
a. The cellular standards listed indicate only typical usages of that band in some countries. Other standards may  
also be used within those bands.  
b. Derate by 1.5 dB for temperatures higher than 55°C, or supply voltages lower than 3.0V. Derate by 3.0 dB for  
supply voltages of lower than 2.7V, or supply voltages lower than 3.0V at temperatures higher than 55°C.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 157  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Internal Regulator Electrical Specifications  
Section 18: Internal Regulator Electrical  
Specifications  
Note: Values in this data sheet are design goals and are subject to change based on the results of  
device characterization.  
Functional operation is not guaranteed outside of the specification limits provided in this section.  
Core Buck Switching Regulator  
Table 43: Core Buck Switching Regulator (CBUCK) Specifications  
Specification  
Notes  
Min.  
Typ.  
Max. Units  
5.25a  
V
Input supply voltage (DC)  
DC voltage range inclusive of  
disturbances.  
3.0  
3.6  
PWM mode switching frequency CCM, Load > 100 mA VBAT = 3.6V  
2.8  
4
5.2  
600  
MHz  
mA  
mA  
V
PWM output current  
Output current limit  
Output voltage range  
1400  
1.35  
Programmable, 30 mV steps  
Default = 1.35V  
1.2  
1.5  
PWM output voltage  
DC accuracy  
Includes load and line regulation.  
Forced PWM mode  
–4  
7
4
%
PWM ripple voltage, static  
Measure with 20 MHz bandwidth limit.  
20  
mVpp  
Static Load. Max. ripple based on  
VBAT = 3.6V, Vout = 1.35V,  
Fsw = 4 MHz, 2.2 μH inductor L > 1.05 μH,  
Cap + Board total-ESR < 20 m,  
C
out > 1.9 μF, ESL<200pH  
PWM mode peak efficiency  
PFM mode efficiency  
Peak Efficiency at 200 mA load  
10 mA load current  
78  
70  
86  
81  
%
%
µs  
Start-up time from  
power down  
VIO already ON and steady.  
Time from REG_ON rising edge to CLDO  
reaching 1.2V  
850  
External inductor  
0806 size, ± 30%, 0.11 ± 25% Ohms  
2.2  
4.7  
µH  
µF  
2.0b  
10c  
External output capacitor  
Ceramic, X5R, 0402,  
ESR <30 mat 4 MHz, ± 20%, 6.3V  
0.67b  
External input capacitor  
For SR_VDDBATP5V pin,  
ceramic, X5R, 0603,  
4.7  
µF  
ESR < 30 mat 4 MHz, ± 20%, 6.3V,  
4.7 µF  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 158  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
3.3V LDO (LDO3P3)  
Table 43: Core Buck Switching Regulator (CBUCK) Specifications (Cont.)  
Specification  
Notes  
Min.  
Typ.  
Max. Units  
– µs  
Input supply voltage ramp-up  
time  
0 to 4.3V  
40  
a. The maximum continuous voltage is 5.25V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over  
the lifetime of the device are allowed. Voltages as high as 5.5V for up to 250 seconds, cumulative duration, over  
the lifetime of the device are allowed.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part–to–part  
tolerance, DC–bias, temperature, and aging.  
c. Total capacitance includes those connected at the far end of the active load.  
3.3V LDO (LDO3P3)  
Table 44: LDO3P3 Specifications  
Specification  
Notes  
Min.  
Typ.  
Max. Units  
5.25a  
Input supply voltage, Vin  
Min. = Vo + 0.2V = 3.5V dropout voltage  
2.3  
3.6  
V
requirement must be met under maximum  
load for performance specifications.  
Output current  
0.2  
600  
mA  
V
Nominal output voltage, Vo  
Default = 3.3V  
3.3  
Dropout voltage  
At max. load.  
200  
+5  
120  
6
mV  
%
Output voltage DC accuracy  
Quiescent current  
Includes line/load regulation.  
No load  
–5  
100  
5.8  
1.5  
µA  
mA  
µA  
Maximum load (600 mA)  
Leakage current  
Line regulation  
Power-Down mode,  
junction temperature = 85°C  
5
Vin from (Vo + 0.2V) to 4.8V, max. load  
load from 1 mA to 450 mA  
3.5  
mV/V  
Load regulation  
PSRR  
0.25  
mV/mA  
dB  
Vin Vo + 0.2V,  
20  
Vo = 3.3V, Co = 4.7 µF,  
Max. load, 100 Hz to 100 kHz  
LDO turn-on time  
Chip already powered up.  
160  
4.7  
250  
µs  
1.0b  
External output capacitor, Co Ceramic, X5R, 0402,  
(ESR: 5 m–240 m), ± 10%, 10V  
µF  
External input capacitor  
For SR_VDDBATA5V pin (shared with  
Bandgap) Ceramic, X5R, 0402,  
(ESR: 30m-200 m), ± 10%, 10V.  
Not needed if sharing VBAT capacitor 4.7 µF  
with SR_VDDBATP5V.  
4.7  
µF  
a. The maximum continuous voltage is 5.25V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over  
the lifetime of the device are allowed. Voltages as high as 5.5V for up to 250 seconds, cumulative duration, over  
the lifetime of the device are allowed.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part  
tolerance, DC-bias, temperature, and aging.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 159  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
3.3V LDO (LDO3P3_B)  
3.3V LDO (LDO3P3_B)  
Table 45: LDO3P3_B Specifications  
Specification  
Notes  
Min.  
Typ.  
Max. Units  
5.25a  
V
Input supply voltage, Vin  
Min. = Vo + 0.2V = 3.5V dropout voltage  
2.3  
3.6  
requirement must be met under maximum  
load for performance specifications.  
Output current  
0.1  
150  
mA  
V
Nominal output voltage, Vo  
Default = 3.3V  
3.3  
Dropout voltage  
At max. load.  
200  
+5  
16  
1.4  
5
mV  
%
Output voltage DC accuracy  
Quiescent current  
Includes line/load regulation.  
–5  
No load  
10  
1.38  
1.5  
µA  
mA  
µA  
Maximum load (150 mA)  
Leakage current  
Power-Down mode,  
junction temperature = 85°C  
Line regulation  
Vin from (Vo + 0.2V) to 4.8V, max. load  
load from 1 mA to 450 mA  
3.5  
mV/V  
Load regulation  
PSRR  
0.25  
mV/mA  
dB  
Vin Vo + 0.2V,  
20  
Vo = 3.3V, Co = 4.7 µF,  
Max. load, 100 Hz to 100 kHz  
LDO turn-on time  
Chip already powered up.  
150  
µs  
0.7b  
External output capacitor, Co Ceramic, X5R, 0402,  
(ESR: 5 m–240 m), ± 10%, 10V  
2.2  
µF  
External input capacitor  
For SR_VDDBATA5V pin (shared with  
Bandgap) Ceramic, X5R, 0402  
4.7  
µF  
a. The maximum continuous voltage is 5.25V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over  
the lifetime of the device are allowed. Voltages as high as 5.5V for up to 250 seconds, cumulative duration, over  
the lifetime of the device are allowed.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part–to–part  
tolerance, DC–bias, temperature, and aging.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 160  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
2.5V LDO (BTLDO2P5)  
2.5V LDO (BTLDO2P5)  
Table 46: BTLDO2P5 Specifications  
Specification  
Notes  
Min.  
Typ.  
Max. Units  
5.25a  
V
Input supply voltage  
Min. = 2.5V + 0.2V = 2.7V.  
3.0  
3.6  
Dropout voltage requirement must be  
met under maximum load for  
performance specifications.  
Nominal output voltage  
Default = 2.5V.  
Range  
2.5  
2.5  
V
Output voltage programmability  
2.2  
–5  
2.8  
5
V
Accuracy at any step (including line/  
load regulation), load > 0.1 mA.  
%
Dropout voltage  
Output current  
At maximum load.  
200  
70  
mV  
mA  
µA  
0.1  
Quiescent current  
No load.  
8
16  
Maximum load at 70 mA.  
Power-down mode.  
660  
1.5  
700  
5
µA  
Leakage current  
Line regulation  
µA  
Vin from (Vo + 0.2V) to 4.8V,  
maximum load.  
3.5  
mV/V  
Load regulation  
PSRR  
Load from 1 mA to 70 mA,  
Vin = 3.6V.  
0.3  
mV/mA  
dB  
Vin Vo + 0.2V, Vo = 2.5V, Co = 2.2 µF, 20  
maximum load, 100 Hz to 100 kHz.  
LDO turn-on time  
In-rush current  
Chip already powered up.  
150  
250  
µs  
Vin = Vo + 0.15V to 4.8V, Co = 2.2 µF,  
No load.  
mA  
0.7b  
2.2  
4.7  
µF  
µF  
External output capacitor, Co  
External input capacitor  
Ceramic, X5R, 0402,  
(ESR: 5–240 m), ±10%, 10V  
2.64  
For SR_VDDBATA5V pin (shared with –  
Bandgap) ceramic, X5R, 0402,  
(ESR: 30–200 m), ±10%, 10V.  
Not needed if sharing VBAT 4.7 µF  
capacitor with SR_VDDBATP5V.  
a. The maximum continuous voltage is 5.25V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over  
the lifetime of the device are allowed. Voltages as high as 5.5V for up to 250 seconds, cumulative duration, over  
the lifetime of the device are allowed.  
b. The minimum value refers to the residual capacitor value after taking into account part–to–part tolerance, DC–  
bias, temperature, and aging.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 161  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
CLDO  
CLDO  
Table 47: CLDO Specifications  
Notes  
Specification  
Min. Typ. Max. Units  
1.35 1.5  
Input supply voltage, Vin  
Min. = 1.2 + 0.15V = 1.35V dropout voltage 1.3  
requirement must be met under maximum  
load.  
V
Output current  
0.2  
1.1  
300 mA  
1.275 V  
Output voltage, Vo  
Programmable in 25 mV steps.  
Default = 1.2.V  
1.2  
Dropout voltage  
At max. load  
150 mV  
Output voltage DC accuracy  
Quiescent current  
Includes line/load regulation  
No load  
–4  
+4  
%
24  
2.1  
µA  
mA  
300 mA load  
Line Regulation  
Vin from (Vo + 0.15V) to 1.5V, maximum load –  
5
mV/V  
Load Regulation  
Leakage Current  
Load from 1 mA to 300 mA  
Power down  
0.02 0.05 mV/mA  
1
20  
3
µA  
µA  
dB  
Bypass mode  
PSRR  
@1 kHz, Vin 1.35V, Co = 4.7 µF  
20  
Start-up Time of PMU  
VIO up and steady. Time from the REG_ON –  
rising edge to the CLDO reaching 1.2V.  
700 µs  
LDO Turn-on Time  
LDO turn-on time when rest of the chip is up –  
140 180 µs  
1.32a  
External Output Capacitor, Co  
Total ESR: 5 m–240 mꢀ  
4.7  
1
µF  
µF  
External Input Capacitor  
Only use an external input capacitor at the  
VDD_LDO pin if it is not supplied from  
CBUCK output.  
2.2  
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part–to–part  
tolerance, DC–bias, temperature, and aging.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 162  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
LNLDO  
LNLDO  
Table 48: LNLDO Specifications  
Specification  
Notes  
Min.  
Typ.  
Max. Units  
Input supply voltage, Vin  
Min. = 1.2Vo + 0.15V = 1.35V dropout  
1.3  
1.35  
1.5  
V
voltage requirement must be met under  
maximum load.  
Output Current  
0.1  
1.1  
150  
mA  
V
Output Voltage, Vo  
Programmable in 25 mV steps.  
Default = 1.2V  
1.2  
1.275  
Dropout Voltage  
At maximum load  
150  
+4  
mV  
%
Output Voltage DC Accuracy Includes line/load regulation  
–4  
Quiescent current  
No load  
44  
970  
µA  
µA  
Max. load  
990  
5
Line Regulation  
Vin from (Vo + 0.1V) to 1.5V, max. load  
mV/V  
Load Regulation  
Leakage Current  
Output Noise  
Load from 1 mA to 150 mA  
Power-down  
0.02  
0.05  
10  
mV/mA  
µA  
@30 kHz, 60–150 mA load Co = 2.2 µF  
@100 kHz, 60–150 mA load Co = 2.2 µF  
60  
35  
nV/rt Hz  
nV/rt Hz  
PSRR  
@ 1kHz, Input > 1.35V, Co= 2.2 µF, Vo =  
1.2V  
20  
dB  
LDO Turn-on Time  
LDO turn-on time when rest of chip is up  
140  
2.2  
180  
4.7  
µs  
0.5a  
External Output Capacitor, Total ESR (trace/capacitor):  
Co  
µF  
5 m–240 mꢀ  
External Input Capacitor  
Only use an external input capacitor at the –  
VDD_LDO pin if it is not supplied from  
CBUCK output.  
1
2.2  
µF  
Total ESR (trace/capacitor): 30 m–200 mꢀ  
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part–to–part  
tolerance, DC–bias, temperature, and aging.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 163  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
System Power Consumption  
Section 19: System Power Consumption  
Note: Values in this data sheet are design goals and are subject to change based on the results of  
device characterization.  
Unless otherwise stated, these values apply for the conditions specified in Table 32: “Recommended  
Operating Conditions and DC Characteristics,” on page 127.  
WLAN Current Consumption  
The WLAN current consumption measurements are shown in Table 49.  
All values in Table 49 are with the Bluetooth core in reset (that is, Bluetooth and FM are OFF).  
.
Table 49: Typical WLAN Power Consumption  
Vio = 1.8V  
uAa  
Bandwidth Band Vbat = 3.6V)  
Mode  
(MHz)  
(GHz) mA  
Sleep Modes  
OFFb  
0.003  
5.5  
Sleepc  
0.005  
1.2  
0.4  
1.2  
0.4  
1.5  
0.5  
2.0  
0.7  
260  
260  
260  
260  
260  
260  
260  
260  
260  
IEEE power save, DTIM 1 1 RX cored  
20  
20  
20  
20  
40  
40  
80  
80  
2.4  
2.4  
5
IEEE power save, DTIM 3 1 RX cored  
IEEE power save, DTIM 1 1 RX cored  
IEEE power save, DTIM 3 1 RX cored  
IEEE power save, DTIM 1 1 RX cored  
IEEE power save, DTIM 3 1 RX cored  
IEEE power save, DTIM 1 1 RX cored  
IEEE power save, DTIM 3 1 RX cored  
5
5
5
5
5
Active Modes  
Transmit  
CCK 1 chaine  
20  
20  
20  
20  
20  
40  
2.4  
2.4  
2.4  
5
350  
270  
540  
310  
620  
315  
60  
60  
60  
60  
60  
60  
MCS8, Nss 1, HT20, SGIf,g,h  
TMCS8, Nss 2, HT20, SGIf,g,h  
MCS7, SGIf, g,i  
MCS15, SGIf, g,i  
5
MCS7f,g,i  
5
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 164  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
WLAN Current Consumption  
Table 49: Typical WLAN Power Consumption (Cont.)  
Bandwidth Band Vbat = 3.6V)  
Vio = 1.8V  
uAa  
Mode  
(MHz)  
(GHz) mA  
MCS9, Nss 1, SGIf,g,j  
40  
5
5
5
5
295  
590  
305  
610  
60  
60  
60  
60  
MCS9, Nss 2, SGIf,g,j  
MCS9, Nss 1, SGIf,g,j  
MCS9, Nss 2, SGIf,g,j  
40  
80  
80  
Receive  
1 Mbps, 1 RX core  
1 Mbps, 2 RX cores  
20  
20  
20  
2.4  
2.4  
2.4  
59  
75  
62  
60  
60  
60  
MCS7, HT20 1 RX corek  
MCS7, HT20 2 RX coresk  
MCS15, HT20k  
20  
20  
20  
20  
20  
20  
20  
20  
20  
40  
40  
40  
40  
40  
80  
80  
80  
80  
80  
2.4  
2.4  
2.4  
2.4  
5
81  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
86  
CRS 1 RX corel  
57  
CRS 2 RX coresl  
76  
Receive MCS7, SGI 1 RX corek  
Receive MCS7, SGI 2 RX coresk  
Receiver MCS15, SGIk  
CRS 1 RX corel  
71  
5
102  
106  
67  
5
5
CRS 2 RX coresl  
5
96  
Receive MCS 7, SGI 1 RX corek  
Receive MCS 7, SGI 2 RX coresk  
Receive MCS 15, SGIk  
CRS 1 RX corel  
5
91  
5
135  
141  
80  
5
5
CRS 2 RX coresl  
5
121  
123  
189  
206  
102  
163  
Receive MCS9, Nss 1, SGIk  
Receive MCS9, Nss 1, SGI 2 RX coresk  
Receive MCS9, Nss 2, SGIk  
CRS 1 RX corel  
5
5
5
5
CRS 2 RX coresl  
5
a. Specified with all pins idle (not switching) and not driving any loads.  
b. WL_REG_ON, BT_REG_ON low, no VDDIO.  
c. Idle, not associated, or inter-beacon.  
d. Beacon Interval = 102.4 ms. Beacon duration = 1 ms @1 Mbps. Average current over 3 DTIM intervals.  
e. Output power per core at RF port = 21 dBm  
f.  
Duty cycle is 100%  
g. Measured using packet engine test mode.  
h. Output power per core at RF port = 17 dBm.  
i.  
j.  
Output power per core at RF port = 17.5 dBm.  
Output power per core at RF port = 14 dBm.  
k.  
l.  
Duty cycle is 100%. Carrier sense (CS) detect/packet receive.  
Carrier sense (CCA) when no carrier present.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 165  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Bluetooth and FM Current Consumption  
Bluetooth and FM Current Consumption  
The Bluetooth, BLE, and FM current consumption measurements are shown in Table 50.  
Note:  
The WLAN core is in reset (WLAN_REG_ON = low) for all measurements provided in Table 50.  
For FM measurements, the Bluetooth core is in Sleep mode.  
The BT current consumption numbers are measured based on GFSK TX output power = 10 dBm.  
Table 50: Bluetooth BLE and FM Current Consumption  
VBAT (VBAT = 3.6V)  
Operating Mode  
Typical  
VDDIO (VDDIO = 1.8V) Typical Units  
Sleep  
13  
198  
µA  
mA  
µA  
Standard 1.28s Inquiry Scan  
0.217  
440  
0.197  
194  
P and I Scanb  
500 ms Sniff Master  
500 ms Sniff Slave  
DM1/DH1 Master  
DM3/DH3 Master  
DM5/DH5 Master  
3DH5 Master  
0.168  
0.124  
25.3  
30.6  
31.4  
29.2  
11.45  
11.7  
0.195  
0.190  
0.024  
0.035  
0.037  
0.094  
0.089  
0.090  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
SCO HV3 Master  
HV3 + Sniff + Scana  
FMRX I2S Audio  
8.0  
mA  
FMRX Analog Audio only  
8.6  
8.0  
mA  
mA  
FMRX I2S Audio + RDS  
FMRX Analog Audio + RDS  
8.6  
mA  
µA  
BLE Scanb  
244  
196  
BLE Scan 10 ms  
21.34  
0.013  
199  
mA  
µA  
µA  
µA  
mA  
µA  
µA  
BLE Adv—Unconnectable 1.00 sec 67  
BLE Adv—Unconnectable 1.28 sec 55  
BLE Adv—Unconnectable 2.00 sec 58  
199  
199  
BLE Connected 7.5 ms  
BLE Connected 1 sec.  
BLE Connected 1.28 sec.  
3.95  
0.013  
198  
57  
52  
197  
a. At maximum class 1 TX power, 500 ms sniff, four attempts (slave), P = 1.28s, and I = 2.56s.  
b. No devices present. A 1.28 second interval with a scan window of 11.25 ms.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 166  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Interface Timing and AC Characteristics  
Section 20: Interface Timing and AC  
Characteristics  
SDIO Timing  
SDIO Default Mode Timing  
SDIO default mode timing is shown by the combination of Figure 37 and Table 51.  
Figure 37: SDIO Bus Timing (Default Mode)  
fPP  
tWL  
tWH  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
Input  
Output  
tODLY  
tODLY  
(max)  
(min)  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 167  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
SDIO Timing  
Table 51: SDIO Bus Timinga Parameters (Default Mode)  
Symbol Minimum Typical  
Parameter  
Maximum Unit  
SDIO CLK (All values are referred to minimum VIH and maximum VILb)  
Frequency – Data Transfer mode  
Frequency – Identification mode  
Clock low time  
fPP  
0
25  
400  
MHz  
kHz  
ns  
fOD  
tWL  
tWH  
tTLH  
tTHL  
0
10  
10  
Clock high time  
ns  
Clock rise time  
10  
10  
ns  
Clock low time  
ns  
Inputs: CMD, DAT (referenced to CLK)  
Input setup time  
Input hold time  
tISU  
tIH  
5
5
ns  
ns  
Outputs: CMD, DAT (referenced to CLK)  
Output delay time – Data Transfer mode  
Output delay time – Identification mode  
tODLY  
tODLY  
0
0
14  
50  
ns  
ns  
a. Timing is based on CL 40pF load on CMD and Data.  
b. Min. (Vih) = 0.7 × VDDIO and max. (Vil) = 0.2 × VDDIO.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 168  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
SDIO Timing  
SDIO High-Speed Mode Timing  
SDIO high-speed mode timing is shown by the combination of Figure 38 and Table 52.  
Figure 38: SDIO Bus Timing (High-Speed Mode)  
fPP  
tWL  
tWH  
50% VDD  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
Input  
Output  
tODLY  
tOH  
Table 52: SDIO Bus Timinga Parameters (High-Speed Mode)  
Parameter  
Symbol  
Minimum Typical  
Maximum Unit  
SDIO CLK (all values are referred to minimum VIH and maximum VILb)  
Frequency – Data Transfer Mode  
Frequency – Identification Mode  
Clock low time  
fPP  
fOD  
tWL  
tWH  
tTLH  
tTHL  
0
0
7
7
50  
400  
MHz  
kHz  
ns  
Clock high time  
ns  
Clock rise time  
3
ns  
Clock low time  
3
ns  
Inputs: CMD, DAT (referenced to CLK)  
Input setup Time  
Input hold Time  
tISU  
tIH  
6
2
ns  
ns  
Outputs: CMD, DAT (referenced to CLK)  
Output delay time – Data Transfer Mode  
Output hold time  
tODLY  
tOH  
14  
ns  
ns  
pF  
2.5  
Total system capacitance (each line)  
CL  
40  
a. Timing is based on CL 40pF load on CMD and Data.  
b. Min. (Vih) = 0.7 × VDDIO and max. (Vil) = 0.2 × VDDIO.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 169  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
SDIO Timing  
SDIO Bus Timing Specifications in SDR Modes  
Clock Timing  
Figure 39: SDIO Clock Timing (SDR Modes)  
tCLK  
SDIO_CLK  
tCR  
tCF  
tCR  
Table 53: SDIO Bus Clock Timing Parameters (SDR Modes)  
Parameter  
Symbol  
Minimum  
Maximum  
Unit  
Comments  
tCLK  
40  
20  
10  
4.8  
ns  
ns  
ns  
ns  
ns  
SDR12 mode  
SDR25 mode  
SDR50 mode  
SDR104 mode  
t
CR, tCF  
0.2 × tCLK  
tCR, tCF < 2.00 ns (max.) @100 MHz,  
CCARD = 10 pF  
tCR, tCF < 0.96 ns (max.) @208 MHz,  
CCARD = 10 pF  
Clock duty  
30  
70  
%
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 170  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
SDIO Timing  
Device Input Timing  
Figure 40: SDIO Bus Input Timing (SDR Modes)  
SDIO_CLK  
tIS  
tIH  
CMD input  
DAT[3:0] input  
Table 54: SDIO Bus Input Timing Parameters (SDR Modes)  
Symbol  
Minimum  
Maximum  
Unit  
Comments  
SDR104 Mode  
tIS  
tIH  
1.4  
ns  
ns  
CCARD = 10 pF, VCT = 0.975V  
CCARD = 5 pF, VCT = 0.975V  
0.80  
SDR50 Mode  
tIS  
tIH  
3.00  
0.80  
ns  
ns  
CCARD = 10 pF, VCT = 0.975V  
CCARD = 5 pF, VCT = 0.975V  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 171  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
SDIO Timing  
Device Output Timing  
Figure 41: SDIO Bus Output Timing (SDR Modes up to 100 MHz)  
tCLK  
SDIO_CLK  
tODLY  
tOH  
CMD input  
DAT[3:0] input  
Table 55: SDIO Bus Output Timing Parameters (SDR Modes up to 100 MHz)  
Symbol  
tODLY  
tODLY  
tOH  
Minimum  
Maximum  
Unit  
ns  
Comments  
7.5  
14.0  
tCLK 10 ns CL= 30 pF using driver type B for SDR50  
tCLK 20 ns CL= 40 pF using for SDR12, SDR25  
Hold time at the tODLY (min.) CL= 15 pF  
ns  
1.5  
ns  
Figure 42: SDIO Bus Output Timing (SDR Modes 100 MHz to 208 MHz)  
tCLK  
SDIO_CLK  
tOP  
tODW  
CMD input  
DAT[3:0] input  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 172  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
SDIO Timing  
Table 56: SDIO Bus Output Timing Parameters (SDR Modes 100 MHz to 208 MHz)  
Symbol  
tOP  
Minimum  
0
Maximum  
Unit  
UI  
Comments  
2
Card output phase  
tOP  
–350  
0.60  
+1550  
ps  
Delay variation due to temp change after tuning  
tODW=2.88 ns @208 MHz  
tODW  
UI  
tOP = +1550 ps for junction temperature of tOP = 90 degrees during operation  
tOP = –350 ps for junction temperature of tOP = –20 degrees during operation  
tOP = +2600 ps for junction temperature of tOP = –20 to +125 degrees during operation  
Figure 43: tOP Consideration for Variable Data Window (SDR 104 Mode)  
Data valid window  
Sampling point after tuning  
ȴtOP  
1550 ps  
=
Data valid window  
ȴtOP  
–350 ps  
=
Sampling point after card junction heating  
by +90°C from tuning temperature  
Data valid window  
Sampling point after card junction cooling  
by –20°C from tuning temperature  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 173  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
SDIO Timing  
SDIO Bus Timing Specifications in DDR50 Mode  
Figure 44: SDIO Clock Timing (DDR50 Mode)  
tCLK  
SDIO_CLK  
tCR  
tCF  
tCR  
Table 57: SDIO Bus Clock Timing Parameters (DDR50 Mode)  
Parameter  
Symbol  
Minimum  
Maximum  
Unit  
ns  
Comments  
tCLK  
20  
DDR50 mode  
t
CR,tCF  
0.2 × tCLK  
ns  
tCR, tCF < 4.00 ns (max.) @50 MHz,  
CCARD = 10 pF  
Clock duty  
45  
55  
%
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 174  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
SDIO Timing  
Data Timing, DDR50 Mode  
Figure 45: SDIO Data Timing (DDR50 Mode)  
FPP  
SDIO_CLK  
tISU2x  
tIH2x  
tISU2x  
tIH2x  
DAT[3:0]  
input  
Invalid  
Data  
Invalid  
Data  
Invalid  
Data  
Invalid  
tODLY2x (max)  
tODLY2x (max)  
tODLY2x  
(min)  
tODLY2x  
(min)  
Available timing  
window for card  
output transition  
DAT[3:0]  
output  
Data  
Data  
Data  
In DDR50 mode, DAT[3:0] lines are sampled on both edges of  
the clock (not applicable for CMD line)  
Available timing  
window for host to  
sample data from card  
Table 58: SDIO Bus Timing Parameters (DDR50 Mode)  
Parameter  
Input CMD  
Symbol  
Minimum  
Maximum  
Unit Comments  
Input setup time  
Input hold time  
tISU  
tIH  
6
ns  
ns  
CCARD < 10 pF (1 Card)  
CCARD < 10 pF (1 Card)  
0.8  
Output CMD  
Output delay time  
Output hold time  
tODLY  
tOH  
13.7  
ns  
ns  
CCARD < 30 pF (1 Card)  
CCARD < 15 pF (1 Card)  
1.5  
Input DAT  
Input setup time  
Input hold time  
tISU2x  
tIH2x  
3
ns  
ns  
CCARD < 10 pF (1 Card)  
CCARD < 10 pF (1 Card)  
0.8  
Output DAT  
Output delay time  
Output hold time  
tODLY2x  
tODLY2x  
7.5  
ns  
ns  
CCARD < 25 pF (1 Card)  
CCARD < 15 pF (1 Card)  
1.5  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 175  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
HSIC Interface Specifications  
HSIC Interface Specifications  
Table 59: HSIC Interface Parameters  
Parameter  
Symbol Minimum  
Typical  
Maximum  
1.3  
Unit  
Comments  
HSIC signaling voltage  
I/O voltage input low  
I/O Voltage input high  
I/O voltage output low  
I/O voltage output high  
I/O pad drive strength  
VDD  
VIL  
1.1  
1.2  
V
V
V
V
V
–0.3  
0.35 × VDD  
VDD + 0.3  
0.25 × VDD  
VIH  
VOL  
VOH  
OD  
0.65 × VDD  
0.75 × VDD  
40  
60  
Controlled output  
impedance driver  
I/O weak keepers  
IL  
20  
100  
3
70  
mA  
kꢀ  
pF  
I/O input impedance  
ZI  
CL  
TI  
Total capacitive loada  
14  
55  
Characteristic trace  
impedance  
45  
50  
Circuit board trace length TL  
10  
15  
cm  
ps  
Circuit board trace  
propagation skewb  
TS  
STROBE frequencyc  
Slew rate (rise and fall)  
STROBE and DATAC  
FSTROBE 239.988  
Tslew  
240  
240.012  
1.2  
MHz  
V/ns  
± 500 ppm  
0.60 × VDD 1.0  
Averaged from  
30% ~ 70% points  
Receiver data setup time Ts  
(with respect to STROBE)c  
300  
300  
ps  
ps  
Measured at the  
50% point  
Receiver data hold time  
Tb  
Measured at the  
50% point  
(with respect to STROBE)c  
a. Total Capacitive Load (CL), includes device Input/Output capacitance, and capacitance of a 50PCB trace with  
a length of 10 cm.  
b. Maximum propagation delay skew in STROBE or DATA with respect to each other. The trace delay should be  
matched between STROBE and DATA to ensure that the signal timing is within specification limits at the  
receiver.  
c. Jitter and duty cycle are not separately specified parameters, they are incorporated into the values in the  
Table 59.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 176  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PCI Express Interface Parameters  
PCI Express Interface Parameters  
Table 60: PCI Express Interface Parameters  
Parameter  
Symbol  
Comments  
Minimum Typical Maximum Unit  
General  
Baud rate  
BPS  
Vref  
1
5
Gbaud  
V
Reference clock  
amplitude  
LVPECL  
Receiver  
Differential termination ZRX-DIFF-DC  
Differential termination 80  
100  
50  
120  
60  
DC impedance  
ZRX-DC  
DC common-mode  
impedance  
40  
Powered down  
termination (POS)  
ZRX-HIGH-IMP-DC- Power-down or RESET 100k  
POS high impedance  
Powered down  
termination (NEG)  
ZRX-HIGH-IMP-DC- Power-down or RESET 1k  
NEG  
high impedance  
Input voltage  
VRX-DIFFp-p  
AC coupled, differential 175  
p-p  
mV  
UI  
Jitter tolerance  
TRX-EYE  
Minimum receiver eye 0.4  
width  
Differential return loss RLRX-DIFF  
Differential return loss 10  
dB  
dB  
Common-mode return RLRX-CM  
loss  
Common-mode return  
loss  
6
Unexpected electrical TRX-IDEL-DET-  
An unexpected  
10  
ms  
idle enter detect  
threshold integration  
time  
DIFF-ENTERTIME electrical idle must be  
recognized no longer  
than this time to signal  
an unexpected idle  
condition.  
Signal detect threshold VRX-IDLE-DET-  
DIFFp-p  
Electrical idle detect  
threshold  
65  
175  
mV  
Transmitter  
Output voltage  
VTX-DIFFp-p  
VTX-RISE  
Differential p-p,  
programmable in 16  
steps  
0.8  
1200  
mV  
UI  
Output voltage rise  
time  
20% to 80%  
0.125  
(2.5 GT/s)  
0.15  
(5 GT/s)  
Output voltage fall time VTX-FALL  
80% to 20%  
0.125  
(2.5 GT/s)  
UI  
0.15  
(5 GT/s)  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 177  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
PCI Express Interface Parameters  
Table 60: PCI Express Interface Parameters (Cont.)  
Symbol Comments Minimum Typical Maximum Unit  
Parameter  
RX detection voltage VTX-RCV-DETECT The amount of voltage –  
600  
100  
20  
mV  
mV  
mV  
mV  
swing  
change allowed during  
receiver detection.  
TX AC peak common- VTX-CM-AC-PP  
mode voltage  
(5 GT/s)  
TX AC common mode  
voltage (5 GT/s)  
0
TX AC peak common- VTX-CM-AC-P  
mode voltage  
(2.5 GT/s)  
TX AC common mode  
voltage (2.5 GT/s)  
Absolute delta of DC VTX-CM-DC-  
Absolute delta of DC  
common-model voltage  
during L0 and electrical  
idle.  
100  
common-model  
ACTIVE-IDLE-  
voltage during L0 and DELTA  
electrical idle  
Absolute delta of DC VTX-CM-DC-LINE- DC offset between D+  
0
25  
mV  
common-model  
voltage between D+  
and D-  
DELTA  
and D-  
Electrical idle  
differential peak output p  
voltage  
VTX-IDLE-DIFF-AC- Peak-to-peak voltage  
0
20  
mV  
mA  
TX short circuit  
current  
ITX-SHORT  
Current limit when TX  
output is shorted to  
ground.  
90  
DC differential TX  
termination  
ZTX-DIFF-DC  
RLTX-DIFF  
Low impedance defined 80  
during signaling  
(parameter is captured  
for 5.0 GHz by RLTX-  
DIFF)  
120  
Differential  
return loss  
Differential  
return loss  
10 (min.)  
for 0.05:  
dB  
1.25 GHz  
Common-mode  
return loss  
RLTX-CM  
TTX-EYE  
Common-mode return  
loss  
6
dB  
UI  
TX eye width  
Minimum TX  
eye width  
0.75  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 178  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
JTAG Timing  
Signal Name  
JTAG Timing  
Table 61: JTAG Timing Characteristics  
Output  
Output  
Minimum  
Period  
Maximum  
Setup  
Hold  
TCK  
125 ns  
TDI  
20 ns  
20 ns  
0 ns  
0 ns  
TMS  
TDO  
100 ns  
0 ns  
JTAG_TRST  
250 ns  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 179  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Power-Up Sequence and Timing  
Section 21: Power-Up Sequence and  
Timing  
Sequencing of Reset and Regulator Control Signals  
The BCM4354 has two signals that allow the host to control power consumption by enabling or disabling the  
Bluetooth, WLAN, and internal regulator blocks. These signals are described below. Additionally, diagrams are  
provided to indicate proper sequencing of the signals for various operational states (see Figure 46, Figure 47  
on page 181, and Figure 48 and Figure 49 on page 182). The timing values indicated are minimum required  
values; longer delays are also acceptable.  
Description of Control Signals  
WL_REG_ON: Used by the PMU to power up the WLAN section. It is also OR-gated with the BT_REG_ON  
input to control the internal BCM4354 regulators. When this pin is high, the regulators are enabled and the  
WLAN section is out of reset. When this pin is low the WLAN section is in reset. If both the BT_REG_ON  
and WL_REG_ON pins are low, the regulators are disabled.  
BT_REG_ON: Used by the PMU (OR-gated with WL_REG_ON) to power up the internal BCM4354  
regulators. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled. When this  
pin is low and WL_REG_ON is high, the BT section is in reset.  
Note:  
For both the WL_REG_ON and BT_REG_ON pins, there should be at least a 10 ms time delay  
between consecutive toggles (where both signals have been driven low). This is to allow time for  
the CBUCK regulator to discharge. If this delay is not followed, then there may be a VDDIO in-rush  
current on the order of 36 mA during the next PMU cold start.  
The reset requirements for the Bluetooth core are also applicable for the FM core. In other words,  
if FM is to be used, then the Bluetooth core must be enabled.  
The BCM4354 has an internal power-on reset (POR) circuit. The device will be held in reset for a  
maximum of 110 ms after VDDC and VDDIO have both passed the POR threshold. Wait at least  
150 ms after VDDC and VDDIO are available before initiating SDIO accesses.  
VBAT should not rise 10%–90% faster than 40 microseconds. VBAT should be up before or at the  
same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 180  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Sequencing of Reset and Regulator Control Signals  
Control Signal Timing Diagrams  
Figure 46: WLAN = ON, Bluetooth = ON  
32.678 kHz  
Sleep Clock  
90% of VH  
VBAT*  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds.  
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high  
before VBAT is high.  
Figure 47: WLAN = OFF, Bluetooth = OFF  
32.678 kHz  
Sleep Clock  
VBAT*  
VDDIO  
WL_REG_ON  
BT_REG_ON  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds.  
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 181  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Sequencing of Reset and Regulator Control Signals  
Figure 48: WLAN = ON, Bluetooth = OFF  
32.678 kHz  
Sleep Clock  
90% of VH  
VBAT*  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds.  
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.  
Figure 49: WLAN = OFF, Bluetooth = ON  
32.678 kHz  
Sleep Clock  
90% of VH  
VBAT*  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds.  
2. VBAT should be up before or at the same time as VDDIO . VDDIO should NOT be present first or be held high before VBAT is high .  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 182  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Sequencing of Reset and Regulator Control Signals  
Figure 50 shows the WLAN boot-up sequence from power-up to firmware download.  
Figure 50: WLAN Boot-Up Sequence  
VBAT*  
VDDIO  
WL_REG_ON  
< 950 µs  
VDDC  
(from internal PMU)  
< 104 ms  
Internal POR  
After a fixed delay following Internal POR and WL_REG_ON going high,  
the device responds to host F0 (address 0x14) reads.  
< 4 ms  
Device requests for reference clock  
8 ms  
After 8 ms the reference clock is  
assumed to be up. Access to PLL  
registers is possible.  
Host Interaction:  
Host polls F0 (address 0x14) until it reads a  
predefined pattern.  
Host sets wake-up-wlan bit and  
waits 8 ms, the maximum time for  
reference clock availability.  
After 8 ms, host programs PLL  
registers to set crystal frequency  
Chip active interrupt is asserted after the PLL locks  
Host downloads  
code.  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds.  
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 183  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Package Information  
Section 22: Package Information  
Package Thermal Characteristics  
The information in Table 62 and Table 63 is based on the following conditions:  
No heat sink, TA = 70°C. This is an estimate, based on a 4-layer PCB that conforms to EIA/JESD51–7  
(101.6 mm × 101.6 mm × 1.6 mm) and P = 1.53W continuous dissipation.  
Absolute junction temperature limits are maintained through active thermal monitoring and driver-based  
techniques that may include duty-cycle limiting or turning off one of the TX chains, or both.  
Table 62: WLCSP Package Thermal Characteristics  
Characteristic  
WLCSP  
26.86  
2.23  
θ
θ
θ
JA (°C/W) (value in still air)  
JB (°C/W)  
JC (°C/W)  
1.09  
JT (°C/W)  
JB (°C/W)  
2.48  
11.61  
125  
Maximum Junction Temperature Tj (°C)  
Maximum Power Dissipation (W)  
1.53  
Table 63: WLBGA Package Thermal Characteristics  
Characteristic  
WLBGA  
26.80  
1.66  
θ
θ
JA (°C/W) (value in still air)  
JB (°C/W)  
θJC (°C/W)  
1.16  
JT (°C/W)  
JB (°C/W)  
1.85  
7.93  
Maximum Junction Temperature Tj (°C)  
Maximum Power Dissipation (W)  
125  
1.53  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 184  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Junction Temperature Estimation and PSIJT Versus ThetaJC  
Junction Temperature Estimation and PSIJT Versus ThetaJC  
The package thermal characterization parameter PSIJT (JT) yields a better estimation of actual junction  
temperature (TJ) than using the junction-to-case thermal resistance parameter ThetaJC (θJC). The reason for  
this is that θJC is based on the assumption that all the power is dissipated through the top surface of the package  
case. In actual applications, however, some of the power is dissipated through the bottom and sides of the  
package. JT takes into account the power dissipated through the top, bottom, and sides of the package. The  
equation for calculating the device junction temperature is:  
TJ = TT + P x JT  
Where:  
TJ = Junction temperature at steady-state condition (°C)  
TT = Package case top center temperature at steady-state condition (°C)  
P = Device power dissipation (Watts)  
JT = Package thermal characteristics; no airflow (°C/W)  
Environmental Characteristics  
For environmental characteristics data, see Table 30: “Environmental Ratings,” on page 126.  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
BROADCOM CONFIDENTIAL  
Page 185  
BCM4354 Data Sheet  
Mechanical Information  
Section 23: Mechanical Information  
Figure 51: 192-Ball WLBGA Package Mechanical Information  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 186  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Mechanical Information  
Figure 52: WLBGA Keep-Out Areas for PCB Layout (Top View, Balls Facing Down)  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 187  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Mechanical Information  
Figure 53: 395-Bump WLCSP Package  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 188  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Mechanical Information  
Figure 54: WLCSP Keep-Out Areas for PCB Layout (Top View, Balls Facing Down)  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 189  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Ordering Information  
Section 24: Ordering Information  
Operating  
Ambient  
Temperature  
Part Number  
Package  
Description  
BCM4354XKUBG 192-ball WLBGA  
(4.87 mm × 7.67 mm,  
Dual-band 2.4 GHz and 5 GHz WLAN + BT 4.0 –30°C to +85°C  
+ FMRX (–22°F to 185°F)  
0.4 mm pitch)  
BCM4354XKWBG 395-bump WLCSP  
(4.87 mm × 7.67 mm,  
Dual-band 2.4 GHz and 5 GHz WLAN + BT 4.0 –30°C to +85°C  
+ FMRX  
(–22°F to 185°F)  
0.2 mm pitch)  
BCM4354ZKUBG 192-ball WLBGA  
(4.87 mm × 7.67 mm,  
Dual-band 2.4 GHz and 5 GHz WLAN  
–30°C to +85°C  
(–22°F to 185°F)  
0.4 mm pitch)  
Broadcom®  
October 15, 2014 • 4354-DS109-R  
Page 190  
BROADCOM CONFIDENTIAL  
BCM4354 Data Sheet  
Broadcom® Corporation reserves the right to make changes without further notice to any products or  
data herein to improve reliability, function, or design.  
Information furnished by Broadcom Corporation is believed to be accurate and reliable. However,  
Broadcom Corporation does not assume any liability arising out of the application or use of this  
information, nor the application or use of any product or circuit described herein, neither does it  
convey any license under its patent rights nor the rights of others.  
®
Broadcom Corporation  
Phone: 949-926-5000  
Fax: 949-926-5203  
5300 California Avenue  
E-mail: info@broadcom.com  
Web: www.broadcom.com  
Irvine, CA 92617  
© 2014 by BROADCOM CORPORATION. All rights reserved.  
4354-DS109-R  
October 15, 2014  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY