CY24488 [CYPRESS]

Quad PLL Clock Generator with Serial Interface (I2C); 四PLL时钟发生器,串行接口( I2C )
CY24488
型号: CY24488
厂家: CYPRESS    CYPRESS
描述:

Quad PLL Clock Generator with Serial Interface (I2C)
四PLL时钟发生器,串行接口( I2C )

时钟发生器
文件: 总15页 (文件大小:289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY24488  
Quad PLL Clock Generator with Serial  
Interface (I2C)  
Features  
Benefits  
Three output frequencies plus reference out  
Meets most Digital Set Top Box, DVD Recorder, and DTV  
application requirements  
Programmable output frequencies via I2C serial interface  
Output frequencies from 4.9152 to 148.5 MHz  
Uses an external 27 MHz crystal or 27 MHz input clock  
Optional analog VCXO  
Multiple high-performance PLLs allow synthesis of  
unrelated frequencies  
Integration eliminates the need for external loop filter  
components  
Programmable output drive strength to minimize EMI  
The non-I2C equivalent is the CY22388 / 89 / 91  
16-pin TSSOP package  
Complete VCXO solution with ±120 ppm (typical pull range)  
3.3V operation with 2.5V output buffer option  
Pin Configuration  
Block Diagram  
CLKC  
XIN/CLKIN  
SCLK  
SDAT  
VIN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
XOUT  
AVDD  
DNC  
PLL1  
XIN/CLKIN  
VCXO  
CLKD  
CLKE  
CLKF  
CLKG  
XOUT  
PLL2  
PLL3  
PLL4  
Dividers  
&
Multiplexers  
VIN  
VDD2  
VSS  
VDD1  
VSS  
CLKG  
CLKF  
CLKE  
Serial  
Interface  
&
Select  
Logic  
SCLK  
SDAT  
CLKC  
CLKD  
Table 1. Applications and Frequencies  
Output Clock  
CLKC  
Application  
Frequencies (MHz)  
6.144, 8.192, 11.2896, 12.288, 16.384, 16.9344, 18.432, 22.5792, 24.576,  
33.8688, 36.864  
Audio  
iLink  
HDMI  
24.576  
25.175, 28.322  
CLKD  
CLKE  
Video  
27, 27.027, 54, 54.054, 81  
12, 24, 48  
USB  
Video-Pixel Freq.  
Modem  
74.25/1.001, 74.25, 148.5/1.001, 148.5  
4.9152, 11.0592  
iLink  
24.576  
Video  
13.5, 27, 54, 81, 108  
25  
Ethernet  
PCI  
33.3333, 66.6666  
Processor  
see CLKC/D/E  
see CLKC/D/E  
20, 30, 40, 50, 60, 80, 100  
REFOUT or Copy of CLKC, CLKD or CLKE  
REFOUT or Copy of CLKC, CLKD or CLKE  
CLKF  
CLKG  
Cypress Semiconductor Corporation  
Document #: 001-09608 Rev. *A  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised October 31, 2006  
[+] Feedback  
CY24488  
Pin Description  
Pin Name  
XIN/CLKIN  
XOUT  
CLKC  
CLKD  
CLKE  
CLKF  
Pin Number  
Pin Description  
Crystal Input (27 MHz) or External Input Clock (27 MHz)  
Crystal Output  
1
16  
7
Clock Output  
8
Clock Output  
9
Clock Output  
10  
11  
2
Clock Output  
CLKG  
SCLK  
SDAT  
VIN  
Clock Output  
Serial Interface (I2C) Clock Input  
Serial Interface (I2C) Data  
Analog Control Input for VCXO  
Do Not Connect. This pin should be left floating.  
Core and input Voltage Supply  
Voltage Supply for Outputs CLKC  
Voltage Supply for Outputs CLKD, CLKE, CLKF, CLKG  
Ground  
3
4
DNC  
14  
15  
5
AVDD  
VDD1  
VDD2  
VSS  
13  
6,12  
frequencies. Because the serial programming memory is  
volatile, the device will revert to its default configuration when  
power is cycled.  
General Description  
The CY24488 generates up to three independent clock  
frequencies, plus a buffered copy of the reference crystal  
frequency, from a single crystal or reference input. Five clock  
output pins are available, which allows some frequencies to be  
driven on two or more output pins. Outputs can also be individ-  
ually enabled or disabled. When a CLK output is individually  
disabled, it drives low.  
Reference Input  
There are three programmable reference operating modes for  
the CY24488 family of devices. Table 2 shows the data values  
that must be programmed into the device for each of the  
reference operating modes. The correct values are required to  
ensure frequency accuracy and VCXO pullability.  
The analog voltage controlled crystal oscillator (VCXO) allows  
the user to “pull” the reference crystal to a frequency that is  
slightly higher or lower than nominal. Doing so will cause all  
output clocks to shift by an equivalent parts-per-million (PPM).  
The VCXO is controlled by the analog control voltage applied  
to the VIN pin. For applications that do not require the VCXO  
functionality, it can be disabled.  
The first mode utilizes an external 27 MHz pullable crystal and  
incorporates the internal analog VCXO. The crystal is  
connected between the XIN/CLKIN and XOUT pins. See  
“Crystal Requirements” for further details.  
The second mode disables the VCXO input control and utilizes  
a standard 27 MHz crystal. Crystal requirements are relaxed  
relative to the VCXO mode. The crystal is connected between  
the XIN/CLKIN and XOUT pins. See “Crystal Requirements.”  
In this mode, tie the VIN pin to AVDD.  
A serial programming interface (SPI) permits in-system config-  
uration of the device by writing to internal registers. It is used  
to set the output frequencies, enable and disable outputs,  
enable and disable the VCXO feature, etc. The SPI provides  
volatile programming. When powered down, the device  
reverts to its pre-SPI state. When the system is powered back  
up, the SPI registers will need to be configured again. Specific  
configuration details are given later in this data sheet.  
The third mode accepts an external 27 MHz reference clock,  
applied to the XIN/CLKIN pin. In this configuration, the XOUT  
pin must be unconnected. The VCXO feature is not available;  
tie the VIN pin to AVDD.  
Customers may contact their Cypress FAE or salesperson for  
any frequency that is not listed in this data sheet. The data  
sheet can be updated with a new hex code for the requested  
frequency.  
Analog VCXO  
The VCXO feature allows the user to fine tune the output  
frequency via a control voltage applied to the VIN pin. A  
special pullable crystal must be used in order to have  
adequate VCXO pull range. This data sheet lists specific  
crystals that have been qualified for used with the CY24488.  
Specific serial programming values are also given for each  
crystal.  
Default Start-up Configuration  
The default state of the device refers to its state at power on.  
All output clocks are off except CLKG, which outputs a copy of  
the 27 MHz reference clock. The serial programming interface  
must be used to configure the device for the desired output  
Document #: 001-09608 Rev. *A  
Page 2 of 15  
[+] Feedback  
CY24488  
The special crystal requirements are eliminated if the VCXO  
feature is not needed. To disable the VCXO, the VIN pin must  
be tied high, and the appropriate register values given in the  
programming table must be programmed into the device.  
clock frequencies, as shown in the tables below. To do this,  
find the desired frequency from the appropriate table, then use  
the serial programming interface to write the specified  
hexadecimal data into the specified memory addresses.  
The VCXO is completely analog, so there is infinite resolution  
on the VCXO pull curve. The analog-to-digital converter steps  
that are normally associated with a digital VCXO input are not  
present in this device.  
In some cases the data at a particular memory address  
controls multiple functions, so only some of the bit values are  
specified. Since a byte is the smallest unit of data that can be  
written, it is necessary to construct the full data byte prior to  
writing it. To do this, look in the other tables to find the correct  
values for the other bits in that byte.  
VCXO Profile  
Figure 1 shows an example of what a VCXO profile looks like.  
The analog voltage input is on the X-axis and the PPM range  
is on the Y-axis. An increase in the VCXO input voltage results  
in a corresponding increase in the output frequency. This has  
the effect of moving the PPM from a negative to positive offset  
Any of the remaining output clocks (CLKF and CLKG) can be  
configured to generate duplicate copies of any the three  
primary clocks. Any of them can also drive a buffered version  
of the reference crystal frequency.  
Enabling and Disabling Output Clocks  
Figure 1. VCXO Profile  
All output clocks can be individually enabled or disabled. Only  
CLKG is on at power on. All other clocks are off (driven low),  
and their respective PLLs are off. When using the serial  
programming interface to set an output to a desired frequency,  
the PLL Lock Time (AC Parameters Table) applies.  
200  
150  
100  
50  
When turning off an output, the output buffer and associated  
PLL are turned off by different register addresses. Therefore it  
is possible to turn off an output by programming just one byte,  
but the PLL will continue to run and consume some power.  
Therefore the PLL Lock Time does not apply when turning the  
output back on.  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
-50  
-100  
-150  
-200  
VCXO input [V]  
The clock configuration tables also show a second off state  
that also turns off the PLL, saving additional power. This  
requires programming one or two additional bytes, and the  
PLL Lock Time applies.  
Crystal Requirements  
The crystal requirements for the CY24488 differ for the VCXO  
and non-VCXO modes. In all cases, the device must be  
programmed correctly for the specific crystal used, as  
indicated in Table 2.  
Output Drive Strength  
Output drive strength is configurable, with 2 bits available to  
set the drive strength for each output. The default value is ‘10’,  
which is medium-high. This is the recommended setting for  
outputs operating at 3.3V. The recommended setting for 2.5V  
outputs is ‘11’, which must be programmed by the user.  
Table 10 shows which bits must be changed, and how to  
integrate these bits with other control bits to create valid bytes  
for shifting in.  
Crystals for Non-VCXO Mode  
When not using the VCXO, the VIN pin should be tied high.  
The CY24488 uses a standard AT-cut parallel resonant  
crystal, which is available in a variety of packages. The key  
crystal parameter is load capacitance (CL). The CY24488 has  
programmable load capacitance, to match a range of crystal  
CL values. The specific configurations are shown in Table 2.  
Crystals with CL values outside this range are not recom-  
mended.  
The user may program any output to a lower drive strength if  
EMI is a problem. ‘00’ is the lowest drive strength, while ‘11’ is  
the highest. Note that the lowest setting is very weak and is  
not suitable for most applications.  
Pullable Crystals for VCXO Mode  
Output Supply Voltage  
When the VCXO mode is used, the crystal requirements  
increase considerably in order to ensure the pullable range  
and glitch-free pulling. Table 2 lists the crystals that Cypress  
has qualified for use with the CY24488, as well as the corre-  
sponding programming configurations. Customers wishing to  
use non-qualified crystals should first contact Cypress  
technical support.  
The clock outputs may be operated at either 3.3V or 2.5V.  
CLKC has its own power pin (VDD1), while all other clocks are  
powered by VDD2. VDD1 and VDD2 may be operated at  
different voltages if desired. AVDD must always be 3.3V.  
The CY24488 also has internal register settings that should be  
configured for the actual output supply voltage. The default  
settings are optimized for VDD1 = VDD2 = 3.3V. Table 10 and  
Table 3 show the values that need to be programmed for 2.5V  
supply voltage.  
Output Configurations  
CLKC, CLKD, and CLKE are the three primary synthesized  
output clocks. For each one, the user can select from several  
Document #: 001-09608 Rev. *A  
Page 3 of 15  
[+] Feedback  
CY24488  
Example: configure CLKC for 33.8688 MHz and 2.5V output.  
For address 48H, start with the value in Table 4: 89H (binary  
10001001). Table 9 shows that bits 7 & 6 control the drive  
strength, which should be ‘11’ (from Table 10). Therefore, the  
final value is 11001001, which is C9H. This value is written  
once.  
Programming Flow  
The device registers may be programmed in any sequence,  
but for convenience, a suggested programming flow is shown  
in Figure 2.  
Any step in this programming sequence may be skipped if the  
default value is the desired value.  
Figure 2. Programming Flow  
When programming an output frequency, the new frequency  
will be valid on that output after all of the specified data values  
have been written to all of the specified addresses. When  
changing an output frequency, the output may transition  
through one or more indeterminate frequencies between the  
writing of the first byte and the last byte.  
Default  
CLKC, D & E  
Frequency settings  
(Tables 4 - 6)  
Note that some of the programming steps are not as  
independent as they appear in the flow diagram. In particular,  
addresses 48H, 53H, and 57H control both output frequencies  
and drive strength. Because a byte is the smallest unit that  
may be programmed through the serial interface, the user  
must consider both the frequency setting and the output drive  
strength when constructing the byte value to be written into  
these particular address. It is not necessary to write more than  
once to any given address, but that one write must have all of  
the bits set correctly.  
Reference CLK &  
Crystal settings  
CLKF & G  
Frequency settings  
(Tables 7 - 8)  
(Table 2)  
Output Supply  
Voltage settings if  
2.5V (Table 3)  
Drive Strength  
settings for 2.5V  
or EMI  
(Tables 9, 4, 6, 8)  
Table 2. Register Settings for VCXO and Reference  
Reference Clock and VCXO  
Crystal  
Package  
Address  
16H  
Manufacturer Part No.  
Specified CL  
17H  
3A  
4F  
5F  
67  
CLKIN (external reference), VCXO off  
Crystal, VCXO off  
89  
88  
88  
88  
88  
88  
88  
88  
88  
88  
88  
any  
any  
any  
10.7 pF  
12 pF  
12.6 pF  
14 pF  
12.6 pF  
10.7 pF  
12 pF  
12 pF  
12 pF  
12 pF  
Crystal, VCXO off  
any  
Crystal, VCXO off (default)  
Crystal, VCXO off  
any  
any  
any  
any  
77  
Crystal, VCXO on  
KDS DSX530GA  
KDS DSX530GA  
RIVER FCX-03  
KDK  
5x3.2 mm  
5x3.2 mm  
5x3.2 mm  
5x3.2 mm  
SMD-49  
SMD-49  
3A  
2A  
41  
Crystal, VCXO on  
Crystal, VCXO on  
Crystal, VCXO on  
3A  
39  
Crystal, VCXO on  
KDS  
Crystal, VCXO on  
Ecliptek ECX-6277  
41  
Table 3. Register Settings for Output Supply Voltages  
Address  
Output  
Output Supply Voltages  
41H  
43H  
CLKC  
VDD1 = 3.3V  
VDD1 = 2.5V  
VDD2 = 3.3V  
VDD2 = 2.5V  
BF (default)  
7F  
CLKD, CLKE, CLKF, CLKG  
A0 (default)  
90  
Document #: 001-09608 Rev. *A  
Page 4 of 15  
[+] Feedback  
CY24488  
Table 4. CLKC Output Frequencies (Audio, iLink, or HDMI)  
Frequency  
Register Address  
Frequency (MHz)  
Application  
48H[1]  
Error  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
CLKC off and PLL off  
(default)  
88  
44  
8D  
CLKC off  
HDMI  
HDMI  
Audio  
Audio  
Audio  
Audio  
Audio, iLink  
Audio  
Audio  
Audio  
Audio  
Audio  
8D  
AD  
91  
A5  
A9  
81  
89  
B5  
95  
A5  
85  
A9  
89  
25.175  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
01  
10  
17  
17  
17  
17  
17  
17  
17  
17  
17  
17  
07  
39  
3E  
3E  
3E  
3E  
3E  
3E  
3E  
3E  
3E  
3E  
D2  
E2  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
26  
94  
1C  
1C  
19  
1C  
1C  
1C  
30  
30  
30  
30  
18  
39  
06  
06  
0E  
06  
06  
06  
16  
16  
16  
16  
72  
6A  
64  
64  
64  
64  
64  
64  
66  
66  
66  
66  
28.322  
6.144 (48K x 128)  
12.288 (32K x 384)  
16.384 (32K x 512)  
18.432 (48K x 384)  
24.576 (48K x 512)  
36.864 (48K x 768)  
11.2896 (44.1K x 256)  
16.9344 (44.1K x 384)  
22.5792 (44.1K x 512)  
33.8688 (44.1K x 768)  
Table 5. CLKD Output Frequencies (Video, Pixel rate, USB, modem or iLink)  
Frequency  
Register Address  
Frequency (MHz)  
Application  
Error  
10H  
11H  
12H  
00  
50H  
8E  
8E  
A2  
86  
8A  
A2  
A6  
82  
9A  
86  
8A  
8A  
96  
96  
B6  
B2  
B2  
CLKD off and PLL off (default)  
CLKD off  
12  
USB  
0 ppm  
0 ppm  
0 ppm  
+38 ppm  
+11 ppm  
6 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
01  
07  
07  
18  
39  
56  
08  
1E  
1E  
21  
8F  
8E  
30  
30  
30  
26  
28  
33  
02  
33  
30  
33  
2C  
22  
30  
2C  
22  
24  
USB  
48  
USB  
4.9152  
Modem  
Modem  
iLink  
11.0592  
24.576  
27 (reference)  
27.027  
Video  
Video  
7B  
02  
7B  
59  
00  
00  
59  
00  
F2  
0E  
F2  
F8  
03  
07  
F8  
03  
54 (ref * 2)  
54.054  
Video  
Video  
74.25/1.001  
74.25  
Video pixel rate  
Video pixel rate  
Video  
81 (ref * 3)  
148.5/1.001  
148.5  
Video pixel rate  
Video pixel rate  
Note  
1. Bits [7:6] control CLKC drive strength. The values given in this table correspond to a drive strength setting of ‘10’. See Table 9 and Table 10.  
Document #: 001-09608 Rev. *A  
Page 5 of 15  
[+] Feedback  
CY24488  
Table 6. CLKE Output Frequencies (Ethernet, Video, PCI, Processor)  
Frequency  
Register Address  
Frequency (MHz)  
Application  
53H[2]  
3E  
Error  
13H  
14H  
15H  
00  
CLKE off and PLL off (default)  
CLKE off  
3E  
13.5  
Video  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
0 ppm  
00  
05  
26  
02  
24  
24  
24  
24  
30  
28  
30  
30  
30  
28  
30  
30  
30  
8E  
27 (reference)  
Video  
6E  
54  
Video  
00  
00  
00  
07  
07  
01  
19  
07  
19  
01  
19  
07  
19  
06  
07  
06  
26  
17  
08  
62  
26  
62  
08  
62  
26  
62  
2E  
81  
Video  
DE  
5E  
108  
Video  
20  
Processor  
Ethernet  
Processor  
PCI  
9E  
25  
AE  
AE  
AE  
AE  
2E  
30  
33.333333  
40  
Processor  
Processor  
Processor  
PCI  
50  
60  
DE  
DE  
DE  
5E  
66.666666  
80  
Processor  
Processor  
100  
Table 7. CLKF Output Clock  
Frequency (MHz)  
Address 55H  
Data value (hex)  
CLKF off (default)  
27 MHz reference  
Copy of CLKC  
0C  
18  
copy of data from Table 4 address 48H  
Copy of CLKD  
copy of data from Table 5 address 50H  
Copy of CLKE  
copy of data from Table 6 address 53H, divided by 4[3]  
\
Table 8. CLKG Output Clock (Default = Reference out)  
Frequency (MHz)  
Address 57H  
bits [7:6]  
10  
bits [5:0]  
001100  
011000  
CLKG off  
27 MHz reference (default)  
Copy of CLKC  
Copy of CLKD  
Copy of CLKE  
drive strength (default=10) – see Table 10  
drive strength (default=10) – see Table 10  
drive strength (default=10) – see Table 10  
drive strength (default=10) – see Table 10  
bits[5:0] of address 48H – see Table 4  
bits[5:0] of address 50H – see Table 5  
bits[7:2] of address 53H – see Table 6  
Notes  
2. Bits [1:0] control CLKD drive strength. The values given in this table correspond to a drive strength setting of ‘10’. See Table 9 and Table 10.  
3. Bits [7:6] of address 55H are don’t care. Dividing by 4 is equivalent to right shifting by 2 bits.  
Document #: 001-09608 Rev. *A  
Page 6 of 15  
[+] Feedback  
CY24488  
Table 9. Register Settings for Output Drive Strength[4]  
Output Clock  
CLKC  
Drive strength bits  
bits[7:6] of 48H  
bits[1:0] of 53H  
bits[7:6] of 54H  
bits[5:4] of 56H  
bits[7:6] of 57H  
bit 7  
bit 6  
bit 5  
bit 4  
see address 48H in Table 4  
see address 53H in Table 6  
bit 3  
bit 2  
bit 1  
bit 0  
DS  
DS  
DS  
CLKD  
CLKE  
CLKF  
CLKG  
DS  
0
0
0
0
0
0
0
0
0
0
1
1
DS  
see address 57H in Table 8  
[]  
Table 10. Drive Strength (DS) Values[4]  
DS Value  
Drive Strength  
Very low  
3.3V Output  
2.5V Output  
EMI Adjustment  
EMI Adjustment  
EMI Adjustment  
Standard  
00  
01  
EMI Adjustment  
EMI Adjustment  
Standard  
Medium low  
Medium high  
High  
10 (default)  
11  
Extra Drive  
Notes  
4. The default drive strength (DS) setting for all clocks is ‘10’. All output specifications for 3.3V outputs are given for this value. Output specifications for 2.5V outputs  
are given for a setting of ‘11’. To change the DS settings, the serial programming interface must be used to program in the desired values. Users may program  
in any 2-bit value, but certain output specifications will not be valid for settings other than ‘10’ (3.3V) or ‘11’ (2.5V). See the DC Parameters and AC Parameters  
tables for further details.  
Document #: 001-09608 Rev. *A  
Page 7 of 15  
[+] Feedback  
CY24488  
Writing Multiple Bytes  
Serial Programming Interface Protocol and  
Timing  
In order to write more than one byte at a time, the master does  
not end the write sequence with a STOP condition. Instead,  
the master can send multiple contiguous bytes of data to be  
stored. After each byte, the slave responds with an  
acknowledge bit, the same as after the first byte, and will  
accept data until the acknowledge bit is responded to by the  
STOP condition. When receiving multiple bytes, the CY24488  
internally increments the register address.  
The CY24488 utilizes pins SDAT and SCLK for a 2-wire serial  
interface that operates up to 400 kbit/s in Read or Write mode.  
The basic Write protocol is as follows:  
Start Bit; 7-bit Device Address (DA); R/W Bit; Slave Clock  
Acknowledge (ACK); 8-bit Memory Address (MA); ACK; 8-bit  
Data; ACK; 8-bit Data in MA+1 if desired; ACK; 8-bit Data in  
MA+2; ACK; etc. until STOP Bit. The basic serial format is  
illustrated in Figure 4.  
Read Operations  
Read operations are initiated the same way as Write opera-  
tions except that the R/W bit of the slave address is set to ‘1’  
(HIGH). There are three basic read operations: current  
address read, random read, and sequential read.  
Device Address  
The device address is a 7-bit value. The default serial interface  
address is 47H.  
Data Valid  
Current Address Read  
Data is valid when the clock is HIGH, and may only be transi-  
tioned when the clock is LOW, as illustrated in Figure 5.  
The CY24488 has an onboard address counter that retains 1  
more than the address of the last word access. If the last word  
written or read was word ‘n’, then a current address read  
operation would return the value stored in location ‘n+1’. When  
the CY24488 receives the slave address with the R/W bit set  
to a ‘1’, the CY24488 issues an acknowledge and transmits  
the 8-bit word. The master device does not acknowledge the  
transfer, but does generate a STOP condition, which causes  
the CY24488 to stop transmission.  
Data Frame  
Every new data frame is indicated by a start and stop  
sequence, as illustrated in Figure 6.  
START Sequence - Start Frame is indicated by SDAT going  
LOW when SCLK is HIGH. Every time a start signal is given,  
the next 8-bit data must be the device address (seven bits) and  
a R/W bit, followed by register address (eight bits) and register  
data (eight bits).  
Random Read  
Through random read operations, the master may access any  
memory location. To perform this type of read operation, first  
set the word address. Send the address to the CY24488 as  
part of a write operation. After the word address is sent, the  
STOP Sequence - Stop Frame is indicated by SDAT going  
HIGH when SCLK is HIGH. A Stop Frame frees the bus to  
write to another part on the same bus or writing to another  
random register address.  
master generates  
a
START condition following the  
acknowledge. This terminates the write operation before any  
data is stored in the address, but not before the internal  
address pointer is set. Next the master reissues the control  
byte with the R/W byte set to ‘1’. The CY24488 then issues an  
acknowledge and transmits the 8-bit word. The master device  
does not acknowledge the transfer, but does generate a STOP  
condition, which causes the CY24488 to stop transmission.  
Acknowledge Pulse  
During Write Mode the CY24488 will respond with an  
Acknowledge (ACK) pulse after every eight bits. This is  
accomplished by pulling the SDAT line LOW during the N*9th  
clock cycle, as illustrated in Figure 7 (N = the number of bytes  
transmitted). During Read Mode the acknowledge pulse after  
the data packet is sent is generated by the master.  
Sequential Read  
Write Operations  
Sequential read operations follow the same process as  
random reads except that the master issues an acknowledge  
instead of a STOP condition after transmission of the first 8-bit  
data word. This action results in an incrementing of the internal  
address pointer, and subsequently output of the next 8-bit data  
word. By continuing to issue acknowledges instead of STOP  
conditions, the master may serially read the entire contents of  
the slave device memory. Note that register addresses outside  
of 0AH to 17H and 40H to 57H can be read from but are not  
real registers and do not contain configuration information.  
When the internal address pointer points to the FFH register,  
after the next increment, the pointer will point to the 00H  
register.  
Writing Individual Bytes  
A valid write operation must have a full 8-bit register address  
after the device address word from the master, which is  
followed by an acknowledge bit from the slave (SDAT =  
0/LOW). The next eight bits must contain the data word  
intended for storage. After the data word is received, the slave  
responds with another acknowledge bit (SDAT = 0/LOW), and  
the master must end the write sequence with a STOP  
condition.  
Document #: 001-09608 Rev. *A  
Page 8 of 15  
[+] Feedback  
CY24488  
Figure 3. Data Transfer Sequence on the Serial Bus  
SCL  
SDAT  
STOP  
Condition  
Address or  
Acknowledge  
Valid  
Data may  
be changed  
START  
Condition  
Figure 4. Data Frame Architecture  
1 Bit  
Slave  
ACK  
1 Bit  
Slave  
ACK  
1 Bit  
Slave  
ACK  
1 Bit  
Slave  
ACK  
1 Bit  
Slave  
ACK  
1 Bit  
Slave  
ACK  
1 Bit  
Slave  
ACK  
1 Bit  
Slave  
ACK  
1 Bit  
R/W = 0  
SDAT Write  
Multiple  
Contiguous  
Registers  
7-bit  
8-bit  
8-bit  
8-bit  
8-bit  
Register  
Data  
8-bit  
Register  
Data  
8-bit  
Register  
Data  
Device  
Address  
Register Register Register  
Address Data  
Data  
(XXH+1)  
(XXH)  
(XXH)  
(XXH+2)  
(FFH)  
(00H)  
Stop Signal  
Start Signal  
1 Bit  
Slave  
ACK  
1 Bit  
Slave  
ACK  
1 Bit  
Master  
ACK  
1 Bit  
R/W = 1  
SDAT Read  
7-bit  
Device  
Address  
Current  
Address  
Read  
8-bit  
Register  
Data  
Stop Signal  
Start Signal  
1 Bit  
Slave  
ACK  
1 Bit  
Master  
ACK  
1 Bit  
Master  
ACK  
1 Bit  
Master  
ACK  
1 Bit  
Master  
ACK  
1 Bit  
Master  
ACK  
1 Bit  
Slave  
ACK  
1 Bit  
Master  
ACK  
1 Bit  
R/W = 0  
SDAT Read  
Multiple  
Contiguous  
Registers  
7-bit  
Device  
Address  
8-bit  
7-bit  
8-bit  
Register  
Data  
8-bit  
Register  
Data  
8-bit  
Register  
Data  
8-bit  
Register  
Data  
Register Device  
Address  
(XXH)  
Address  
+R/W=1  
(XXH)  
(XXH+1)  
(FFH)  
(00H)  
Stop Signal  
Start Signal  
Repeated  
Start bit  
Figure 5. Data Valid and Data Transition Periods  
Transition  
to next Bit  
Data Valid  
SDAT  
tDH  
tSU  
CLKHIGH  
VIH  
VIL  
SCLK  
CLKLOW  
Document #: 001-09608 Rev. *A  
Page 9 of 15  
[+] Feedback  
CY24488  
Serial Programming Interface Timing  
Figure 6. Start and Stop Frame  
SDAT  
SCLK  
Transition  
to next Bit  
START  
STOP  
Figure 7. Frame Format (Device Address, R/W, Register Address, Register Data)  
SDAT  
+
+
+
+
START  
D7  
D6  
D1  
D0  
DA6  
DA5 DA0  
R/W  
ACK  
RA7  
RA6 RA1  
RA0  
ACK  
ACK  
STOP  
+
+
SCLK  
Serial Programming Interface Timing Specifications  
Parameter  
fSCLK  
Description  
Frequency of SCLK  
Min.  
Max.  
Unit  
0.6  
1.3  
0.6  
100  
0
400  
kHz  
s  
s  
s  
ns  
ns  
ns  
ns  
s  
s  
Start Mode Time from SDA LOW to SCL LOW  
SCLK LOW Period  
CLKLOW  
CLKHIGH  
tSU  
SCLK HIGH Period  
Data Transition to SCLK HIGH  
Data Hold (SCLK LOW to data transition)  
Rise Time of SCLK and SDAT  
Fall Time of SCLK and SDAT  
tDH  
300  
300  
Stop Mode Time from SCLK HIGH to SDAT HIGH  
Stop Mode to Start Mode  
0.6  
1.3  
Document #: 001-09608 Rev. *A  
Page 10 of 15  
[+] Feedback  
CY24488  
Absolute Maximum Conditions  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
AVDD/VDD1 Core Supply Voltage  
/VDD2  
–0.5  
4.6  
V
VIN  
Input Voltage  
Relative to VSS  
Non-Functional  
–0.5  
–65  
2000  
VDD + 0.5 VDC  
TS  
Temperature, Storage  
+125  
°C  
ESDHBM  
UL-94  
MSL  
ESD Protection (Human Body Model) MIL-STD-883, Method 3015  
Volts  
ppm  
Flammability Rating  
V-0 @1/8 in.  
16 TSSOP  
10  
Moisture Sensitivity Level  
1
Pullable Crystal Specifications (for VCXO applications)[5]  
Parameter  
FNOM  
Description  
AT-cut Crystal  
Comments  
Min. Typ. Max. Unit  
Parallel resonance, Fundamental mode  
27  
12  
MHz  
pF  
CLNOM  
Nominal Load Capacitance  
Order crystal at one specific CLNOM  
0 ppm  
11.4  
12.6  
R1  
DL  
Equivalent Series Resistance (ESR)  
Crystal Drive Level  
Fundamental mode (CL = Series)  
40  
Nominal VDD @ 25°C over ±120 ppm Pull  
Range  
300  
W  
[6]  
F3SEPHI  
Third Overtone Separation from 3*FNOM Mechanical Third (High side of 3*FNOM  
Third Overtone Separation from 3*FNOM Mechanical Third (Low side of 3*FNOM  
)
240  
ppm  
[6]  
F3SEPLO  
)
–120 ppm  
Non-pullable Crystal Specifications (for non-VCXO applications)[5]  
Parameter  
FNOM  
Description  
AT-cut Crystal  
Comments  
Min. Typ. Max. Unit  
Parallel resonance, Fundamental mode  
27  
12  
MHz  
pF  
CLNOM  
Nominal Load Capacitance  
Order crystal at one specific CLNOM  
0 ppm  
10.7  
14.0  
R1  
DL  
Equivalent Series Resistance (ESR)  
Crystal Drive Level  
Fundamental mode (CL = Series)  
Nominal VDD @ 25°C  
40  
300  
W  
Recommended Operating Conditions  
Parameter  
Description  
Min. Typ. Max. Unit  
AVDD  
Core Operating Voltage  
3.0  
3.0  
2.3  
–10  
3.3  
3.3  
2.5  
3.6  
3.6  
2.7  
70  
V
V
VDD1/VDD2 Output Operating Voltage  
V
TA  
Ambient Temperature  
°C  
pF  
ms  
CLOAD  
tPU  
Maximum Load Capacitance  
15  
Power up time for all VDDs reach minimum specified voltage (power ramps must be 0.05  
monotonic)  
500  
Notes  
5. Device operates to following specs which are guaranteed by design.  
6. Increased tolerance available from pull range less than ±120 PPM.  
Document #: 001-09608 Rev. *A  
Page 11 of 15  
[+] Feedback  
CY24488  
DC Parameters [7]  
Parameter  
Description  
Conditions  
VOH = VDD – 0.5, VDD = 3.3V  
VOL = 0.5, VDD = 3.3V  
Min.  
Typ.  
Max.  
Unit  
mA  
mA  
µA  
µA  
V
[8]  
IOH  
Output High Current  
Output Low Current  
Input High Current  
Input Low Current  
Input High Voltage  
Input Low Voltage  
12  
5
5
[8]  
IOL  
IIH  
12  
VIH = VDD, excluding Vin, XIN/CLKIN  
VIL = 0V, excluding Vin, XIN/CLKIN  
XIN/CLKIN input CMOS levels  
XIN/CLKIN input CMOS levels  
10  
10  
IIL  
0.7xAVDD  
VIH  
VIL  
0.3xAVD  
D
V
VVCXO  
CIN  
VIN Input Range  
Input Capacitance  
Supply Current  
0
AVDD  
V
XIN/CLKIN pin only  
TBD  
pF  
mA  
pF  
IVDD  
VDD Current  
60  
15  
CINXIN  
Input Capacitance at  
XIN/CLKIN  
VCXO Disabled External Reference  
CINXTAL  
Input Capacitance at Crystal VCXO Disabled Fixed Freq. Oscillator  
12  
pF  
AC Parameters[7]  
Parameter  
Description  
Conditions  
PLL minmax/Dividermaximum  
Min. Typ. Max. Units  
1/t1  
DC1[8, 9]  
Output Frequency  
4.2  
45  
166 MHz  
Output Duty Cycle  
(excluding REFOUT  
Duty Cycle is defined in Figure 9; t2/t1, 50% of VDD  
50  
55  
60  
%
%
External reference duty cycle between 40% and 60%  
measured at V /2 (Clock output is 125 MHz)  
DD  
DC2[8, 9]  
Output Duty Cycle  
(excluding REFOUT  
Duty Cycle is defined in Figure 9; t2/t1, 50% of VDD  
40  
40  
50  
External reference duty cycle between 40% and 60%  
measured at V /2 (Clock output is 125 MHz)  
DD  
[8, 9]  
DCREFOUT  
ER[8]  
EF[8]  
T9  
Output Duty Cycle  
Rising Edge Rate  
Falling Edge Rate  
Clock Jitter  
Duty Cycle is defined in Figure 9; t2/t1, 50% of VDD  
(XIN/CLKIN Duty Cycle = 45/55%)  
50  
1.2  
1.2  
±250  
1
60  
%
Output Clock Edge Rate. Measured from 20% to 80% 0.75  
of VDD. CLOAD = 15 pF. See Figure 10.  
V/ns  
V/ns  
ps  
Output Clock Edge Rate. Measured from 80% to 20% 0.75  
of VDD. CLOAD = 15 pF See Figure 10.  
Period Jitter; VDD1 = VDD2 = 3.3V, drive strength =  
‘10’  
T10  
PLL Lock Time  
From end of serial programming sequence to correct  
output frequency  
5
ms  
fXO  
VCXO Crystal Pull Range Using non-SMD-49 crystal specified in Table 2.  
Nominal Crystal Frequency Input assumed (0 ppm)  
@ 25°C and 3.3V  
±110 ±120  
ppm  
Using SMD-49 crystal specified in Table 2. Nominal ±105 ±120  
Crystal Frequency Input assumed (0 ppm) @ 25°C  
and 3.3V  
ppm  
Notes  
7. Parameters are guaranteed by design and characterization. Not 100% tested in production. All parameters specified with fully loaded outputs.  
8. Drive strength settings: ‘10’ for 3.3V outputs; ‘11’ for 2.5V outputs.  
9. Guaranteed when values in Table 3 and Table 9 are programmed to match the output supply voltage.  
Document #: 001-09608 Rev. *A  
Page 12 of 15  
[+] Feedback  
CY24488  
Test and Measurement Set-up  
Figure 8. Test and Measurement Diagram  
VDDs  
Outputs  
CLOAD  
DUT  
GND  
0.1F  
Voltage and Timing Definitions  
Figure 9. Duty Cycle Definition  
t1  
t2  
VDD  
50% of VDD  
0V  
Clock  
Output  
Figure 10. ER = (0.6 VDD)/t3, EF = (0.6 VDD)/t4  
t3 t4  
VDD  
80% of VDD  
20% of VDD  
0V  
Clock  
Output  
Document #: 001-09608 Rev. *A  
Page 13 of 15  
[+] Feedback  
CY24488  
Ordering Information  
Part Number  
Lead-free  
Type  
Production Flow  
CY24488ZXC  
16-pin TSSOP  
16-pin TSSOP - Tape and Reel  
Commercial, 0°C to +70°C  
Commercial, 0°C to +70°C  
CY24488ZXCT  
Package Drawing and Dimensions  
Figure 11. 16-lead TSSOP 4.40 mm Body Z16.173  
51-85091-*A  
All product and company names mentioned in this document are trademarks of their respective holders.  
Document #: 001-09608 Rev. *A  
Page 14 of 15  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CY24488  
Document History Page  
Document Title: CY24488 Quad PLL Clock Generator with Serial Interface (I2C) (Final)  
Document Number: 001-09608  
Orig. of  
Change  
REV.  
ECN NO.  
Issue Date  
Description of Change  
**  
497098  
504259  
See ECN  
See ECN  
RGL  
New data sheet  
*A  
RGL  
Minor text additions  
Change status from Advance Information to Final  
Document #: 001-09608 Rev. *A  
Page 15 of 15  
[+] Feedback  

相关型号:

CY24488ZXC

Quad PLL Clock Generator with Serial Interface (I2C)
CYPRESS

CY24488ZXCT

Quad PLL Clock Generator with Serial Interface (I2C)
CYPRESS

CY244ZXC

Factory Programmable Quad PLL Clock Generator with VCXO
CYPRESS

CY244ZXC-XXX

Factory Programmable Quad PLL Clock Generator with VCXO
CYPRESS

CY244ZXC-XXXT

Factory Programmable Quad PLL Clock Generator with VCXO
CYPRESS

CY245ZXC

Factory Programmable Quad PLL Clock Generator with VCXO
CYPRESS

CY245ZXC-XXX

Factory Programmable Quad PLL Clock Generator with VCXO
CYPRESS

CY245ZXC-XXXT

Factory Programmable Quad PLL Clock Generator with VCXO
CYPRESS

CY24712

Clocks and Buffers
ETC

CY24712SC

Clock Generator, 27MHz, CMOS, PDSO8, 0.150 INCH, SOIC-8
CYPRESS

CY24713

Set-top Box Clock Generator with VCXO
CYPRESS

CY24713KSXC

27 MHz, OTHER CLOCK GENERATOR, PDSO8, 0.150 INCH, LEAD FREE, MS-012, SOIC-8
ROCHESTER