CY28346-2 [CYPRESS]

Clock Synthesizer with Differential CPU Outputs; 时钟合成器,差分CPU输出
CY28346-2
型号: CY28346-2
厂家: CYPRESS    CYPRESS
描述:

Clock Synthesizer with Differential CPU Outputs
时钟合成器,差分CPU输出

时钟
文件: 总20页 (文件大小:237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
CY28346-2  
Clock Synthesizer with Differential CPU Outputs  
Features  
• Compliant with Intel® CK 408 Mobile Clock Synthesizer  
• Spread Spectrum electromagnetic interference (EMI)  
reduction  
specifications  
• 3.3V power supply  
• Dial-a-Frequencyfeatures  
• 3 differential CPU clocks  
• 10 copies of PCI clocks  
• 5/6 copies of 3V66 clocks  
• SMBus support with Read Back capabilities  
• Dial-a-dB™ features  
• Extended operating temperature range, 0°C to 85°C  
• 56-pin TSSOP packages  
Table 1. Frequency Table[1]  
CPU  
66BUFF(0:2)/  
3V66(0:4)  
66IN/  
USB/  
DOT  
48M  
48M  
48M  
48M  
48M  
48M  
48M  
S2  
1
1
1
1
0
0
0
0
S1  
0
0
1
1
0
0
1
1
S0  
0
1
0
1
0
1
0
1
(0:2)  
3V66  
66M  
66M  
66M  
66M  
66M  
66M  
66M  
66M  
3V66-5  
PCIF/PCI  
66IN/2  
66IN/2  
66IN/2  
66IN/2  
33 M  
33 M  
33 M  
33 M  
Hi-Z  
REF  
66M  
100M  
200M  
133M  
66M  
100M  
200M  
133M  
Hi-Z  
66IN  
66IN  
66IN  
66IN  
66M  
66M  
66M  
66M  
Hi-Z  
66-MHz clock input  
66-MHz clock input  
66-MHz clock input  
66-MHz clock input  
14.318M  
14.318M  
14.318M  
14.318M  
14.318M  
14.318M  
14.318M  
14.318M  
Hi-Z  
66M  
66M  
66M  
66M  
Hi-Z  
48M  
Hi-Z  
TCLK/2  
M
M
0
0
0
1
Hi-Z  
TCLK/4  
TCLK/2  
TCLK/4  
TCLK/4  
TCLK/8  
TCLK  
Block Diagram  
Pin Configuration  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
REF  
VDD  
XIN  
XIN  
REF  
2
S1  
S0  
XOUT  
3
XOUT  
4
CPU_STP#  
CPUT0  
CPUC0  
VDD  
VSS  
CPUT(0:2)  
5
PLL1  
PCIF0  
CPUC(0:2)  
6
PCIF1  
7
PCIF2  
CPU_STP#  
8
CPUT1  
CPUC1  
VSS  
VDD  
IREF  
9
VSS  
VSSIREF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
PCI0  
3V66_0  
S(0:2)  
VDD  
PCI1  
CPUT2  
CPUC2  
MULT0  
IREF  
PCI2  
3V66_1/VCH  
MULT0  
PCI3  
VDD  
VTT_PWRGD#  
PCI_STP#  
/2  
PCI(0:6)  
VSS  
VSSIREF  
S2  
PCI4  
PCI_F(0:2)  
48M_USB  
48M_DOT  
PCI5  
48M_USB  
48M_DOT  
VDD  
PLL2  
PCI6  
VDD  
VSS  
VSS  
66B0/3V66_2  
66B1/3V66_3  
66B2/3V66_4  
66IN/3V66_5  
PD#  
WD  
PD#  
3V66_1/VCH  
PCI_STP#  
3V66_0  
VDD  
Logic  
I2C  
SDATA  
SCLK  
Logic  
VSS  
66B[0:2]/3V66[2:4]  
66IN/3V66-5  
VDDA  
SCLK  
Power  
Up Logic  
VSSA  
VDDA  
SDATA  
VTT_PWRGD#  
Note:  
1. TCLK is a test clock driven on the XTAL_IN input during test mode. M = driven to a level between 1.0V and 1.8V. If the S2 pin is at a M level during power-up, a  
0 state will be latched into the devices internal state register.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-07509 Rev. *B  
Revised March 11, 2005  
PRELIMINARY  
CY28346-2  
Pin Description  
Pin  
Name  
PWR  
VDD  
VDD  
I/O  
I
O
Description  
2
3
XIN  
Oscillator Buffer Input. Connect to a crystal or to an external clock.  
XOUT  
Oscillator Buffer Output. Connect to a crystal. Do not connect when an  
external clock is applied at XIN.  
52, 51, 49, 48, CPUT(0:2),  
45, 44 CPUC(0:2)  
VDD  
VDDP  
VDD  
O
O
O
Differential host output clock pairs. See Table 1 for frequencies and  
functionality.  
10, 11, 12, 13, PCI(0:6)  
PCI clock outputs. Are synchronous to 66IN or 3V66 clock. See Table 1.  
16, 17, 18  
5, 6, 7  
PCIF (0:2)  
33-MHz PCI clocks, which are ÷2 copies of 66IN or 3V66 clocks, may  
be free running (not stopped when PCI_STP# is asserted LOW) or  
may be stoppable depending on the programming of SMBus  
register Byte3, Bits (3:5).  
56  
42  
REF  
IREF  
VDD  
VDD  
O
I
Buffered output copy of the device’s XIN clock.  
Current reference programming input for CPU buffers. A resistor is  
connected between this pin and VSSIREF.  
28  
VTT_PWRGD#  
VDD  
I
Qualifying input that latches S(0:2) and MULT0. When this input is at  
a logic low, the S(0:2) and MULT0 are latched.  
39  
38  
33  
35  
48M_USB  
48M_DOT  
3V66_0  
VDD48  
VDD48  
VDD  
O
O
O
O
Fixed 48-MHz USB clock outputs.  
Fixed 48-MHZ DOT clock outputs.  
3.3V 66-MHz fixed frequency clock.  
3.3V clock selectable with SMBus byte0, Bit5, when Byte5, Bit5.  
When Byte 0 Bit 5 is at a logic 1, then this pin is a 48M output clock. When  
byte0, Bit5 is a logic 0, then this is a 66M output clock (default).  
3V66_1/VCH  
VDD  
25  
43  
PD#  
VDD  
VDD  
I
This pin is a power-down mode pin. A logic LOW level causes the  
PU device to enter a power-down state. All internal logic is turned off except  
for the SMBus logic. All output buffers are stopped.  
MULT0  
I
Programming input selection for CPU clock current multiplier.  
PU  
55, 54  
29  
S(0,1)  
SDATA  
I
I
I
I
Frequency select inputs. See Table 1  
Serial data input. Conforms to the SMBus specification of a Slave  
Receive/Transmit device. It is an input when receiving data. It is an open  
drain output when acknowledging or transmitting data.  
30  
40  
SCLK  
S2  
I
I
Serial clock input. Conforms to the SMBus specification.  
VDD  
I
Frequency select input. See Table 1. This is a Tri-level input that is  
T
driven HIGH, LOW, or driven to a intermediate level.  
34  
PCI_STP#  
VDD  
VDD  
I
PCI clock disable input. When asserted LOW, PCI (0:6) clocks are  
PU synchronously disabled in a LOW state. This pin does not effect PCIF  
(0:2) clocks’ outputs if they are programmed to be PCIF clocks via the  
device’s SMBus interface.  
53  
CPU_STP#  
I
CPU clock disable input. When asserted LOW, CPUT (0:2) clocks are  
PU synchronously disabled in a HIGH state and CPUC(0:2) clocks are  
synchronously disabled in a LOW state.  
24  
66IN/3V66_5  
VDD  
VDD  
I/O Input connection for 66CLK(0:2) output clock buffers if S2 = 1, or  
output clock for fixed 66-MHz clock if S2 = 0. See Table 1.  
21, 22, 23  
66B(0:2)/  
3V66(2:4)  
O
3.3V clock outputs. These clocks are buffered copies of the 66IN clock  
or fixed at 66 MHz. See Table 1.  
1, 8, 14, 19, 32, VDD  
PWR 3.3V power supply.  
37, 46, 50  
4, 9, 15, 20, 27, VSS  
31, 36, 47  
PWR Common ground.  
Document #: 38-07509 Rev. *B  
Page 2 of 20  
PRELIMINARY  
CY28346-2  
Pin Description (continued)  
Pin  
Name  
PWR  
I/O  
Description  
41  
26  
VSSIREF  
PWR Current reference programming input for CPU buffers. A resistor is  
connected between this pin and IREF. This pin should also be returned  
to device VSS.  
PWR Analog power input. Used for PLL and internal analog circuits. It is also  
specifically used to detect and determine when power is at an acceptable  
level to enable the device to operate.  
VDDA  
Serial Data Interface  
Data Protocol  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers, can be individually enabled or disabled.  
The registers associated with the Serial Data Interface  
initializes to their default setting upon power-up, and therefore  
use of this interface is optional. Clock device register changes  
are normally made upon system initialization, if any are  
required. The interface can also be used during system  
operation for power management functions.  
The clock driver serial protocol accepts block write and block  
read operations from the controller. For block write/read  
operation, the bytes must be accessed in sequential order  
from lowest to highest byte (most significant bit first) with the  
ability to stop after any complete byte has been transferred.  
The block write and block read protocol is outlined in Table 2.  
The slave receiver address is 11010010 (D2h).  
Table 2. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Bit  
1
Description  
Bit  
1
Description  
Start  
Start  
2:8  
9
Slave address – 7 bits  
Write = 0  
2:8  
9
Slave address – 7 bits  
Write = 0  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
11:18  
Command Code – 8 bit  
11:18  
Command Code – 8 bit  
‘00000000’ stands for block operation  
‘00000000’ stands for block operation  
19  
20:27  
28  
29:36  
37  
38:45  
46  
....  
....  
....  
....  
....  
Acknowledge from slave  
Byte Count – 8 bits  
Acknowledge from slave  
Data byte 1 – 8 bits  
Acknowledge from slave  
Data byte 2 – 8 bits  
Acknowledge from slave  
......................  
Data Byte (N–1) –8 bits  
Acknowledge from slave  
Data Byte N –8 bits  
Acknowledge from slave  
Stop  
19  
20  
21:27  
28  
29  
30:37  
38  
39:46  
47  
48:55  
56  
....  
....  
Acknowledge from slave  
Repeat start  
Slave address – 7 bits  
Read = 1  
Acknowledge from slave  
Byte count from slave – 8 bits  
Acknowledge  
Data byte from slave – 8 bits  
Acknowledge  
Data byte from slave – 8 bits  
Acknowledge  
Data bytes from slave/Acknowledge  
Data byte N from slave – 8 bits  
Not Acknowledge  
....  
....  
....  
Stop  
Document #: 38-07509 Rev. *B  
Page 3 of 20  
PRELIMINARY  
CY28346-2  
Byte 0: CPU Clock Register  
Bit @Pup Name  
Description  
7
0
Spread Spectrum Enable, 0 = Spread Off, 1 = Spread On. This is a Read and Write control bit.  
CPU clock Power-down Mode Select.  
0 = Drive CPUT(0:2) to 4 or 6 IREF and drive CPUC(0:2) to low when PD# is asserted LOW.  
1 = Three-state all CPU outputs. This is only applicable when PD# is LOW. It is not applicable to  
CPU_STP#.  
6
0
3V66_1/VCH 3V66_1/VCH frequency Select, 0 = 66M selected, 1 = 48M selected  
5
4
3
0
This is a Read and Write control bit.  
Pin 53 CPUT,CPUC CPU_STP#. Reflects the current value of the external CPU_STP# (pin 53) This bit is Read-only.  
PCI  
Reflects the current value of the internal PCI_STP# function when read. Internally PCI_STP# is  
Pin 34  
a logical AND function of the internal SMBus register bit and the external PCI_STP# pin.  
2
1
0
Pin 40  
Pin 55  
Pin 54  
Frequency Select Bit 2. Reflects the value of SEL2 (pin 40). This bit is Read-only.  
Frequency Select Bit 1. Reflects the value of SEL1 (pin 55). This bit is Read-only.  
Frequency Select Bit 0. Reflects the value of SEL0 (pin 54). This bit is Read-only.  
Byte 1: CPU Clock Register  
Bit @Pup  
Name  
Description  
7
Pin 43  
MULT0  
MULT0 (Pin 43) Value. This bit is Read-only.  
Controls functionality of CPUT/C(0:2) outputs when CPU_STP# is asserted. 0 = Drive CPUT(0:2) to  
4 or 6 IREF and drive CPUC(0:2) to low when CPU_STP# asserted LOW. 1 = Three-state all CPU  
outputs. This bit will override Byte0, Bit6 such that even if it is a 0, when PD# goes low the CPU  
outputs will be three-stated.  
6
0
CPU_STP#  
Controls CPU2 functionality when CPU_STP# is asserted LOW  
1 = Free Running, 0 = Stopped LOW with CPU_STP# asserted LOW  
This is a Read and Write control bit.  
Controls CPU1 functionality when CPU_STP# is asserted LOW  
1 = Free Running, 0 = Stopped LOW with CPU_STP# asserted LOW  
This is a Read and Write control bit.  
Controls CPUT0 functionality when CPU_STP# is asserted LOW  
1 = Free Running, 0 = Stopped LOW with CPU_STP# asserted LOW  
This is a Read and Write control bit.  
CPUT2  
CPUC2  
5
4
3
0
0
0
CPUT1  
CPUC1  
CPUT0  
CPUC0  
CPUT2 CPUT/C2 Output Control, 1 = enabled, 0 = disable HIGH and CPUC2 disables LOW  
2
1
0
1
1
1
CPUC2 This is a Read and Write control bit.  
CPUT1 CPUT/C1 Output Control, 1 = enabled, 0 = disable HIGH and CPUC1 disables LOW  
CPUC1 This is a Read and Write control bit.  
CPUT0 CPUT/C0 Output Control, 1 = enabled, 0 = disable HIGH and CPUC0 disables LOW  
CPUC0 This is a Read and Write control bit.  
Byte 2: PCI Clock Control Register (all bits are read and write functional)  
Bit  
7
6
5
4
3
2
1
0
@Pup  
Name  
REF  
Description  
0
1
1
1
1
1
1
1
REF Output Control. 0 = high strength, 1 = low strength  
PCI6 Output Control. 1 = enabled, 0 = forced LOW  
PCI5 Output Control. 1 = enabled, 0 = forced LOW  
PCI4 Output Control. 1 = enabled, 0 = forced LOW  
PCI3 Output Control. 1 = enabled, 0 = forced LOW  
PCI2 Output Control. 1 = enabled, 0 = forced LOW  
PCI1 Output Control. 1 = enabled, 0 = forced LOW  
PCI0 Output Control. 1 = enabled, 0 = forced LOW  
PCI6  
PCI5  
PCI4  
PCI3  
PCI2  
PCI1  
PCI0  
Document #: 38-07509 Rev. *B  
Page 4 of 20  
PRELIMINARY  
CY28346-2  
Byte 3: PCIF Clock and 48M Control Register (all bits are read and write functional)  
Bit  
7
6
@Pup  
Name  
48M_DOT  
48M_USB  
PCIF2  
Description  
1
1
0
48M_DOT Output Control,1 = enabled, 0 = forced LOW  
48M_USB Output Control,1 = enabled, 0 = forced LOW  
5
PCI_STP#, control of PCIF2.  
0 = Free Running, 1 = Stopped when PCI_STP# is LOW  
4
3
0
0
PCIF1  
PCIF0  
PCI_STP#, control of PCIF1.  
0 = Free Running, 1 = Stopped when PCI_STP# is LOW  
PCI_STP#, control of PCIF0.  
0 = Free Running, 1 = Stopped when PCI_STP# is LOW  
2
1
0
1
1
1
PCIF2  
PCIF1  
PCIF0  
PCIF2 Output Control. 1=running, 0=forced LOW  
PCIF1 Output Control. 1= running, 0=forced LOW  
PCIF0 Output Control. 1= running, 0=forced LOW  
Byte 4: DRCG Control Register(all bits are read and write functional)  
Bit  
7
6
5
4
3
2
1
0
@Pup  
Name  
Description  
0
0
1
1
1
1
1
1
SS2 Spread Spectrum control bit (0 = down spread, 1 = center spread)  
Reserved  
3V66_0  
3V66_1/VCH  
3V66_5  
66B2/3V66_4  
66B1/3V66_3  
66B0/3V66_2  
3V66_0 Output Enabled. 1 = enabled, 0 = disabled  
3V66_1/VCH Output Enable. 1 = enabled, 0 = disabled  
3V66_5 Output Enable. 1 = enabled, 0 = disabled  
66B2/3V66_4 Output Enabled. 1 = enabled, 0 = disabled  
66B1/3V66_3 Output Enabled. 1 = enabled, 0 = disabled  
66B0/3V66_2 Output Enabled. 1 = enabled, 0 = disabled  
Byte 5: Clock Control Register (all bits are read and write functional)  
Bit  
7
6
5
4
3
2
1
0
@Pup  
Name  
Description  
SS1 Spread Spectrum control bit  
SS0 Spread Spectrum control bit  
66IN to 66M delay Control MSB  
66IN to 66M delay Control LSB  
0
1
0
0
0
0
0
0
Reserved  
48M_DOT edge rate control. When set to 1, the edge is slowed by 15%.  
Reserved  
USB edge rate control. When set to 1, the edge is slowed by 15%  
Byte 6: Silicon Signature Register[2] (all bits are read-only)  
Bit  
7
6
5
4
3
2
1
0
@Pup  
Name  
Description  
0
0
0
1
0
0
1
1
Vendor Code, 011 = IMI  
Note:  
2. When writing to this register the device will acknowledge the write operation, but the data itself will be ignored.  
Document #: 38-07509 Rev. *B  
Page 5 of 20  
PRELIMINARY  
CY28346-2  
Byte 7: Watchdog Time Stamp Register  
Bit  
7
6
5
4
3
2
1
0
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Byte 8: Dial-a-Frequency Control Register N (all bits are read and write functional)  
Bit  
7
6
5
4
3
2
1
0
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
N7, MSB  
N6  
N5  
N4  
N3  
N2  
N3  
N0, LSB  
Byte 9: Dial-a-Frequency Control Register R (all bits are read and write functional)  
Bit  
7
6
5
4
3
2
1
0
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
R6 MSB  
R5  
R4  
R3  
R2  
R1  
R0, LSB  
R and N register load gate 0 = gate closed (data is latched), 1 = gate  
open (data is loading from SMBus registers into R and N)  
Dial-a-Frequency Feature  
Dial-a-dB Features  
SMBus Dial-a-Frequency feature is available in this device via  
Byte8 and Byte9. See our App Note AN-0025 for details on our  
Dial-a-Frequency feature.  
P is a large value PLL constant that depends on the frequency  
selection achieved through the hardware selectors (S1, S0).  
P value may be determined from Table 3.  
SMBus Dial-a-dB feature is available in this device via Byte8  
and Byte9.  
Spread Spectrum Clock Generation (SSCG)  
Spread Spectrum is a modulation technique used to  
minimizing EMI radiation generated by repetitive digital  
signals. A clock presents the greatest EMI energy at the center  
frequency it is generating. Spread Spectrum distributes this  
energy over a specific and controlled frequency bandwidth  
therefore causing the average energy at any one point in this  
band to decrease in value. This technique is achieved by  
modulating the clock away from its resting frequency by a  
certain percentage (which also determines the amount of EMI  
reduction). In this device, Spread Spectrum is enabled by  
setting specific register bits in the SMBus control Bytes.  
Table 4 is a listing of the modes and percentages of Spread  
Spectrum modulation that this device incorporates.  
Table 3. P Value  
S(1:0)  
0 0  
0 1  
1 0  
1 1  
P
32005333  
48008000  
96016000  
64010667  
Document #: 38-07509 Rev. *B  
Page 6 of 20  
PRELIMINARY  
CY28346-2  
Configured as VCH (48M), SMBus Byte0, Bit 5 = ‘1’  
Table 4. Spread Spectrum  
SS2 SS1 SS0 Spread Mode  
In this mode, the output is configured as a 48-MHz non-spread  
spectrum output. This output is phase aligned with the other  
48M outputs (USB and DOT), to within 1 ns pin-to-pin skew.  
The switching of 3V66_1/VCH into VCH mode occurs at  
system power on. When the SMBus Bit 5 of Byte 0 is  
programmed from a ‘0’ to a ‘1’, the 3V66_1/VCH output may  
glitch while transitioning to 48M output mode.  
Spread%  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Down  
Down  
Down  
Down  
Center  
Center  
Center  
Center  
+0.00, –0.25  
+0.00, –0.50  
+0.00, –0.75  
+0.00, –1.00  
+0.13, –0.13  
+0.25, –0.25  
+0.37, –0.37  
+0.50, –1.50  
PD# (Power-down) Clarification  
The PD# (Power-down) pin is used to shut off ALL clocks prior  
to shutting off power to the device. PD# is an asynchronous  
active LOW input. This signal is synchronized internally to the  
device powering down the clock synthesizer. PD# is an  
asynchronous function for powering up the system. When PD#  
is low, all clocks are driven to a LOW value and held there and  
the VCO and PLLs are also powered down. All clocks are shut  
down in a synchronous manner so has not to cause glitches  
while transitioning to the low ‘stopped’ state.  
Special Functions  
PCIF and IOAPIC Clock Outputs  
The PCIF clock outputs are intended to be used, if required,  
for systems IOAPIC clock functionality. ANY two of the PCIF  
clock outputs can be used as IOAPIC 33-MHz clock outputs.  
They are 3.3V outputs will be divided down via a simple  
resistive voltage divider to meet specific system IOAPIC clock  
voltage requirements. In the event these clocks are not  
required, then these clocks can be used as general PCI clocks  
or disabled via the assertion of the PCI_STP# pin.  
PD#—Assertion  
When PD# is sampled LOW by two consecutive rising edges  
of the CPUC clock, then on the next HIGH-to-LOW transition  
of PCIF, the PCIF clock is stopped LOW. On the next  
HIGH-to-LOW transition of 66Buff, the 66Buff clock is stopped  
LOW. From this time, each clock will stop LOW on its next  
HIGH-to-LOW transition, except the CPUT clock. The CPU  
clocks are held with the CPUT clock pin driven HIGH with a  
value of 2 x Iref, and CPUC undriven. After the last clock has  
stopped, the rest of the generator will be shut down.  
3V66_1/VCH Clock Output  
The 3V66_1/VCH pin has a dual functionality that is selectable  
via SMBus.  
Configured as DRCG (66M), SMBus Byte0, Bit 5 = ‘0’  
The default condition for this pin is to power up in a 66M  
operation. In 66M operation this output is SSCG capable and  
when spreading is turned on, this clock will be modulated.  
66Buff  
PCIF  
PWRDWN#  
CPU 133MHz  
CPU# 133MHz  
3V66  
66In  
USB 48MHz  
REF 14.318MHz  
Figure 1. Power-down Assertion Timing Waveforms—Buffered Mode  
Document #: 38-07509 Rev. *B  
Page 7 of 20  
PRELIMINARY  
CY28346-2  
PW R D W N #  
C PU T 133M H z  
C PU C 133M H z  
PC I 33M H z  
AG P 66M H z  
U SB 48M H z  
R EF 14.318M H z  
DD R T 133M H z  
D D R C 133M H z  
SD R AM 133M H z  
Figure 2. Power-down Assertion Timing Waveforms—Unbuffered Mode  
PD# Deassertion  
The power-up latency between PD# rising to a valid logic ‘1’  
level and the starting of all clocks is less than 3.0 ms.  
30uS min  
<1.8mS  
400uS max  
66Buff1 / GMCH  
66Buff  
PCIF / APIC  
33MHz  
PCI 33MHz  
PWRDWN#  
CPU 133MHz  
CPU# 133MHz  
3V66  
66In  
USB 48MHz  
REF 14.318MHz  
Figure 3. Power-down Deassertion Timing Waveforms  
Table 5. PD# Functionality  
PD#  
1
0
DRCG  
66M  
Low  
66CLK (0:2)  
66Input  
Low  
PCIF/PCI  
66Input/2  
Low  
PCI  
66Input/2  
Low  
USB/DOT  
48M  
Low  
Document #: 38-07509 Rev. *B  
Page 8 of 20  
PRELIMINARY  
CY28346-2  
CPU_STP# Clarification  
The CPU_STP# signal is an active LOW input used for  
synchronous stopping and starting the CPU output clocks  
while the rest of the clock generator continues to function.  
(Mult 0 ‘select’) x (Iref), and the CPUC signal will not be driven.  
Due to external pull-down circuitry CPUC will be LOW during  
this stopped state.  
CPU_STP# Deassertion  
CPU_STP# Assertion  
The deassertion of the CPU_STP# signal will cause all  
CPUT/C outputs that were stopped to resume normal  
operation in a synchronous manner. Synchronous manner  
meaning that no short or stretched clock pulses will be  
produces when the clock resumes. The maximum latency  
from the deassertion to active outputs is no more than two  
CPUC clock cycles.  
When CPU_STP# pin is asserted, all CPUT/C outputs that are  
set with the SMBus configuration to be stoppable via assertion  
of CPU_STP# will be stopped after being sampled by two  
falling CPUT/C clock edges. The final state of the stopped  
CPU signals is CPUT = HIGH and CPU0C = LOW. There is no  
change to the output drive current values during the stopped  
state. The CPUT is driven HIGH with a current value equal to  
CPU_STP#  
CPUT  
CPUC  
CPUT  
CPUC  
Figure 4. CPU_STP# Assertion Waveforms  
CPU_STP#  
CPUT  
CPUC  
CPUT  
CPUC  
Figure 5. CPU_STP# Deassertion Waveforms  
Document #: 38-07509 Rev. *B  
Page 9 of 20  
PRELIMINARY  
CY28346-2  
PCI_STP# Deassertion  
Three-state Control of CPU Clocks Clarification  
The deassertion of the PCI_STP# signal will cause all PCI and  
stoppable PCIF clocks to resume running in a synchronous  
manner within two PCI clock periods after PCI_STP# transi-  
tions to a high level.  
During CPU_STP# and PD# modes, CPU clock outputs may  
be set to driven or undriven (three-state) by setting the corre-  
sponding SMBus entry in Bit6 of Byte0 and Bit6 of Byte1.  
PCI_STP# Assertion  
Note that the PCI STOP function is controlled by two inputs.  
One is the device PCI_STP# pin number 34 and the other is  
SMBus byte 0 bit 3. These two inputs to the function are  
logically ANDed. If either the external pin or the internal  
SMBus register bit is set low then the stoppable PCI clocks will  
be stopped in a logic low state. Reading SMBus Byte 0 Bit 3  
will return a 0 value if either of these control bits are set LOW  
thereby indicating the devices stoppable PCI clocks are not  
running.  
The PCI_STP# signal is an active LOW input used for  
synchronous stopping and starting the PCI outputs while the  
rest of the clock generator continues to function. The set-up  
time for capturing PCI_STP# going LOW is 10 ns (tsetup). (See  
Figure 2.) The PCIF (0:2) clocks will not be affected by this pin  
if their control bits in the SMBus register are set to allow them  
to be free running.  
Table 6. Cypress Clock Power Management Truth Table  
Stoppable  
Stoppable  
CPUC  
Running  
Iref x6  
Low  
Low  
Running  
Hi Z  
Hi Z  
Hi Z  
Running  
Iref x6  
Hi Z  
B0b6  
B1b6  
PD#  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
CPU_STP#  
CPUT  
Running  
Iref x6  
Iref x2  
Iref x2  
Running  
Hi Z  
Non-Stop CPUT Non-Stop CPUC  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Running  
Running  
Iref x2  
Iref x2  
Running  
Running  
Hi Z  
Running  
Running  
Low  
Low  
Running  
Running  
Hi Z  
Hi Z  
Hi Z  
Running  
Iref x6  
Hi Z  
Hi Z  
Running  
Hi Z  
Hi Z  
Hi Z  
Hi Z  
Hi Z  
Running  
Running  
Hi Z  
Running  
Running  
Hi Z  
Hi Z  
Running  
Hi Z  
Hi Z  
Hi Z  
Hi Z  
Hi Z  
Running  
Running  
Hi Z  
Running  
Running  
Hi Z  
Hi Z  
Hi Z  
t setup  
PCI_STP#  
PCIF 33M  
PCI 33M  
Figure 6. PCI_STP# Assertion Waveforms  
Document #: 38-07509 Rev. *B  
Page 10 of 20  
PRELIMINARY  
CY28346-2  
t setup  
PCI_STP#  
PCIF  
PCI  
Figure 7. PCI_STP# Deassertion Waveforms  
VID  
SEL  
VTT_PWRGD#  
PWRGD  
0.2-0.3mS  
Wait for  
Device is not affected,  
VTT_PWRGD# is ignored.  
Sample Sels  
State 2  
VDD Clock Gen  
Clock State  
Delay  
VTT_PWRGD#  
State 0  
Off  
State 1  
State 3  
On  
Clock Outputs  
Clock VCO  
On  
Off  
Figure 8. VTT_PWRGD# Timing Diagram  
S2  
S1  
VTT_PWRGD# = Low  
Delay  
>0.25mS  
Sample  
Inputs straps  
VDDA = 2.0V  
S0  
Wait for <1.8ms  
S3  
VDD3.3= off  
Normal  
Operation  
Enable Outputs  
Power Off  
VTT_PWRGD# = toggle  
Figure 9. Clock Generator Power-up/Run State Program  
Iout is selectable depending on implementation. The param-  
eters above apply to all configurations. Vout is the voltage at  
the pin of the device.  
The various output current configurations are shown in the  
host swing select functions table. For all configurations, the  
deviation from the expected output current is ±7% as shown in  
the current accuracy table.  
Document #: 38-07509 Rev. *B  
Page 11 of 20  
PRELIMINARY  
CY28346-2  
Table 7. Host Clock (HCSL) Buffer Characteristics  
Characteristic  
Minimum  
Maximum  
Ro  
3000 Ohms (recommended)  
N/A  
Ros  
Vout  
N/A  
1.2V  
Table 8. CPU Clock Current Select Function  
Mult0  
0
1
Board Target Trace/Term Z  
50 Ohms  
Reference R, Iref – Vdd (3*Rr)  
Rr = 221 1%, Iref = 5.00 mA  
Rr = 475 1%, Iref = 2.32 mA  
Output Current  
Ioh = 4*Iref  
Voh @ Z  
1.0V @ 50  
0.7V @ 50  
50 Ohms  
Ioh = 6*Iref  
Table 9. Group Timing Relationship and Tolerances  
Description  
Offset  
2.5 ns  
0.0 ns  
2.5 ns  
Tolerance  
±1.0 ns  
±1.0 ns  
Conditions  
3V66 Leads PCI (unbuffered mode)  
0 degrees phase shift  
66B leads PCI (buffered mode)  
3V66 to PCI  
48M_USB to 48M_DOT Skew  
66B to PCI offset  
±1.0 ns  
Table 10.Maximum Lumped Capacitive Output Loads  
66IN to 66B Buffered Prop Delay  
The 66IN to 66B(0:2) output delay is shown in Figure 11.  
The Tpd is the prop delay from the input pin (66IN) to the  
output pins (66B[0:2]). The outputs’ variation of Tpd is  
described in the AC parameters section of this data sheet. The  
measurement is taken at 1.5V.  
Clock  
PCI Clocks  
3V66  
Max Load  
Unit  
pF  
pF  
pF  
pF  
pF  
pF  
30  
30  
30  
20  
10  
50  
66B  
48M_USB Clock  
48M_DOT  
REF Clock  
66B to PCI Buffered Clock Skew  
Figure 12 shows the difference (skew) between the 3V33(0:5)  
outputs when the 66M clocks are connected to 66IN. This  
offset is described in the Group Timing Relationship and Toler-  
ances section of this data sheet. The measurements were  
taken at 1.5V.  
USB and DOT 48M Phase Relationship  
The 48M_USB and 48M_DOT clocks are in phase. It is under-  
stood that the difference in edge rate will introduce some in  
inherent offset. When 3V66_1/VCH clock is configured for  
VCH (48-MHz) operation it is also in phase with the USB and  
DOT outputs. See Figure 10.  
3V66 to PCI Unbuffered Clock Skew  
Figure 13 shows the timing relationship between 3V66(0:5)  
and PCI(0:6) and PCIF when configured to run in the unbuf-  
fered mode.  
48MUSB  
48MDOT  
Figure 10. 48M_USB and 48M_DOT Phase Relationship  
66IN  
66B  
Tpd  
Figure 11. 66IN to 66B(0:2) Output Delay Figure  
Document #: 38-07509 Rev. *B  
Page 12 of 20  
PRELIMINARY  
CY28346-2  
66B  
1.5-  
3.5ns  
PCI  
PCIF  
Figure 12. Buffer Mode – 33V66(0:1); 66BUF(0:2) Phase Relationship  
3V66  
Tpci  
PCI  
PCIF  
Figure 13. Unbuffered Mode – 3V66(0:5) to PCI (0:6) and PCIF(0:2) Phase Relationship  
Buffer Characteristics  
Current Mode CPU Clock Buffer Characteristics  
The current mode output buffer detail and current reference  
circuit details are contained in the previous table of this data  
sheet. The following parameters are used to specify output  
buffer characteristics:  
1. Output impedance of the current mode buffer circuit – Ro  
(see Figure 14).  
2. Minimum and maximum required voltage operation range  
of the circuit – Vop (see Figure 14).  
3. Series resistance in the buffer circuit – Ros (see Figure 14).  
4. Current accuracy at given configuration into nominal test  
load for given configuration.  
VDD3 (3.3V +/- 5%)  
Slope ~ 1/R0  
Ro  
Iout  
Ros  
0V  
1.2V  
Iout  
Vout = 1.2V max  
Vout  
Figure 14.  
Document #: 38-07509 Rev. *B  
Page 13 of 20  
PRELIMINARY  
CY28346-2  
Absolute Maximum Conditions  
Parameter  
VDD  
VDD_A  
VIN  
TS  
TA  
TJ  
ØJC  
ØJA  
Description  
Core Supply Voltage  
Analog Supply Voltage  
Input Voltage  
Temperature, Storage  
Temperature, Operating Ambient  
Temperature, Junction  
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
ESD Protection (Human Body Model) MIL-STD-883, Method 3015  
Flammability Rating  
Condition  
Min.  
–0.5  
–0.5  
–0.5  
–65  
0
2000  
Max.  
4.6  
4.6  
VDD + 0.5  
150  
85  
Unit  
V
V
VDC  
°C  
°C  
Relative to VSS  
Non-functional  
Functional  
Functional  
150  
45  
15  
10  
°C  
Mil-Spec 883E Method 1012.1  
JEDEC (JESD 51)  
°C/W  
°C/W  
V
ESDHBM  
Ul-94  
MSL  
V–0 @1/8 in.  
ppm  
Moisture Sensitivity Level  
1
DC Parameters (VDD = VDDA = 3.3V ±5%)  
Parameter Description  
Idd3.3V Dynamic Supply Current  
Ipd3.3V Power-down Supply Current PD# Asserted  
Conditions  
All frequencies at maximum values[3]  
Min.  
Typ.  
Max.  
280  
Note 4  
Unit  
mA  
mA  
pF  
pF  
nH  
pF  
Cin  
Cout  
Lpin  
Cxtal  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
5
6
7
Crystal Pin Capacitance  
Measured from the Xin or Xout Pin to Ground.  
30  
36  
42  
AC Parameters (VDD = VDDA = 3.3V ±5%)  
66 MHz  
100 MHz  
133 MHz  
200 MHz  
Min. Max. Unit  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Notes  
Crystal  
Tdc  
Xin Duty Cycle  
Xin Period  
Xin High Voltage  
Xin Low Voltage  
47.5  
69.84  
0.7Vdd  
0
52.5  
71.0  
Vdd  
0.3Vdd  
10.0  
47.5  
69.84  
0.7Vdd  
0
52.5  
71.0  
Vdd  
0.3Vdd  
10.0  
47.5  
69.84  
0.7Vdd  
0
52.5  
71.0  
Vdd  
0.3Vdd  
10.0  
47.5  
69.84  
0.7Vdd  
0
52.5  
71.0  
Vdd  
0.3Vdd  
10.0  
%
ns  
V
V
ns  
5, 6, 7  
5, 8, 9, 6  
Tperiod  
Vhigh  
Vlow  
Tr/Tf  
Xin Rise and Fall  
10  
Times  
Tccj  
Xin Cycle to Cycle  
Jitter  
500  
500  
500  
500  
ps  
8, 11, 6  
CPU at 0.7V Timing  
Tdc  
CPUT and CPUC  
45  
55  
45  
55  
45  
55  
45  
55  
5.1  
100  
%
ns  
ps  
11, 12, 13  
11, 12, 13  
8, 11, 12  
Duty Cycle  
Tperiod  
CPUT and CPUC  
14.85  
15.3  
100  
9.85  
10.2  
100  
7.35  
7.65  
100  
4.85  
Period  
Tskew  
Any CPU to CPU  
Clock Skew  
Notes:  
3. All outputs loaded as per maximum capacitive load table.  
4. Absolute value = ((Programmed CPU Iref) x (2)) + 10 mA.  
5. This parameter is measured as an average over 1-µs duration, with a crystal center frequency of 14.31818 MHz  
6. When Xin is driven from an external clock source.  
7. This is required for the duty cycle on the REF clock out to be as specified. The device will operate reliably with input duty cycles up to 30/70 but the REF clock  
duty cycle will not be within data sheet specifications.  
8. All outputs loaded as perTable 10.  
9. Probes are placed on the pins and measurements are acquired at 1.5V for 3.3V signals (see test and measurement set-up section of this data sheet).  
10. Measured between 0.2Vdd and 0.7Vdd.  
11. This measurement is applicable with Spread ON or Spread OFF.  
12. Measured at crossing point (Vx) or where subtraction of CLK-CLK# crosses 0 volts Measured from Vol = 0.175V to Voh = 0.525V.  
13. Test load is Rta = 33.2 ohms, Rd = 49.9 ohms.  
Document #: 38-07509 Rev. *B  
Page 14 of 20  
PRELIMINARY  
CY28346-2  
AC Parameters (VDD = VDDA = 3.3V ±5%) (continued)  
66 MHz 100 MHz  
133 MHz  
200 MHz  
Min. Max. Unit  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Notes  
Tccj  
CPU Cycle to Cycle  
150  
700  
20%  
150  
700  
20%  
150  
700  
20%  
150  
700  
20%  
ps  
11, 12, 13  
Jitter  
Tr/Tf  
CPUT and CPUC  
175  
175  
175  
175  
ps 11, Notes:,  
16  
Rise and Fall Times  
Rise/Fall Matching  
Notes:, 15,  
13  
DeltaTr  
DeltaTf  
Vcross  
Rise Time Variation  
Fall Time Variation  
Crossing Point  
Voltage at 0.7V  
Swing  
125  
125  
430  
125  
125  
430  
125  
125  
430  
125  
125  
430  
ps Notes:, 13  
ps Notes:, 13  
280  
280  
280  
280  
mV  
11, 13  
CPU at 1.0V Timing  
Tdc  
CPUT and CPUC  
45  
55  
15.3  
100  
150  
467  
325  
45  
55  
45  
55  
45  
55  
%
nS  
pS  
pS  
ps  
ps  
11, 12  
11, 12  
8, 11, 12  
8, 12  
Duty Cycle  
Tperiod  
Tskew  
Tccj  
CPUT and CPUC  
14.85  
9.85  
10.2  
100  
150  
467  
325  
7.35  
7.65  
100  
150  
467  
325  
4.85  
5.1  
Period  
Any CPU to Any  
CPU Clock Skew  
100  
150  
467  
325  
CPU Cycle to Cycle  
Jitter  
Differential CPUT and CPUC  
175  
510  
175  
510  
175  
510  
175  
510  
11, 16  
17, 18  
Tr/Tf  
SE-  
Rise and Fall Times  
Absolute Single-  
DeltaSlew ended Rise/Fall  
Waveform  
Symmetry  
Vcross  
Cross Point at 1.0V  
760  
760  
760  
760  
mV  
18  
swing  
3V66  
Tdc  
3V66 Duty Cycle  
3V66 Period  
3V66 High Time  
3V66 Low Time  
45  
55  
15.3  
45  
55  
15.3  
45  
55  
15.3  
45  
55  
15.3  
%
ns  
ns  
ns  
ns  
8, 9  
5, 8, 9  
19  
20  
21  
Tperiod  
Thigh  
Tlow  
15.0  
4.95  
4.55  
0.5  
15.0  
4.95  
4.55  
0.5  
15.0  
4.95  
4.55  
0.5  
15.0  
4.95  
4.55  
0.5  
Tr / Tf  
3V66 Rise and Fall  
2.0  
500  
250  
250  
2.0  
500  
250  
250  
2.0  
500  
250  
250  
2.0  
500  
250  
250  
Times  
Tskew  
3V66 to 3V66 Clock  
ps  
ps  
ps  
8, 9  
8, 9  
8, 9  
Unbuffered Skew  
Tskew  
3V66 to 3V66 Clock  
Buffered  
Skew  
Tccj  
DRCG Cycle to  
Cycle Jitter  
Notes:  
14. Measured from Vol = 0.175V to Voh = 0.525V.  
15. Determined as a fraction of 2*(Trise – Tfall)/ (Trise + Tfall).  
16. Measurement taken from differential waveform, from –0.35V to +0.35V.  
17. Measurements taken from common mode waveforms, measure rise/fall time from 0.41 to 0.86V. Rise/fall time matching is definedas “the instantaneous difference  
between maximum clk rise (fall) and minimum clk# fall (rise) time or minimum clk rise (fall) and maximum clk# fall (rise) time”. This parameter is designed form  
waveform symmetry.  
18. Measured in absolute voltage, i.e. single-ended measurement.  
19. THIGH is measured at 2.4V for non host outputs.  
20. TLOW is measured at 0.4V for all outputs.  
21. Probes are placed on the pins, and measurements are acquired between 0.4V and 2.4V for 3.3V signals (see test and measurement set-up section of this data  
sheet).  
Document #: 38-07509 Rev. *B  
Page 15 of 20  
PRELIMINARY  
CY28346-2  
AC Parameters (VDD = VDDA = 3.3V ±5%) (continued)  
66 MHz 100 MHz  
133 MHz  
200 MHz  
Min. Max. Unit  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Notes  
66B  
Tdc  
66B(0:2) Duty Cycle  
45  
55  
45  
55  
45  
55  
45  
55  
%
8, 9  
Tr / Tf  
Tskew  
Tpd  
66B(0:2) Rise and  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
ns  
8, 21  
Fall Times  
Any 66B to Any 66B  
Skew  
175  
4.5  
175  
4.5  
175  
4.5  
175  
4.5  
ps  
ns  
ps  
8, 9  
8, 9  
66IN to 66B(0:2)  
2.5  
2.5  
2.5  
2.5  
Propagation Delay  
Tccj  
66B(0:2) Cycle to  
100  
100  
100  
100  
8, 9, 22  
Cycle Jitter  
PCI  
Tdc  
PCIF(0:2) PCI (0:6)  
Duty Cycle  
45  
55  
45  
55  
45  
55  
45  
30  
55  
%
8, 9  
5, 8, 9  
19  
Tperiod  
Thigh  
Tlow  
PCIF(0:2) PCI (0:6)  
30.0  
12.0  
12.0  
0.5  
30.0  
12.0  
12.0  
0.5  
30.0  
12.0  
12.0  
0.5  
nS  
nS  
nS  
nS  
pS  
ps  
period  
PCIF(0:2) PCI (0:6)  
high time  
12.0  
12.0  
0.5  
PCIF(0:2) PCI (0:6)  
20  
low time  
Tr/Tf  
PCIF(0:2) PCI (0:6)  
rise and fall times  
2.0  
500  
250  
2.0  
500  
250  
2.0  
500  
250  
2.0  
500  
250  
21  
Tskew  
Tccj  
Any PCI clock to  
8, 9  
8, 9  
Any PCI clock Skew  
PCIF(0:2) PCI (0:6)  
Cycle to Cycle Jitter  
48M_USB  
Tdc  
48M_USB Duty  
Cycle  
45  
55  
45  
55  
45  
55  
45  
55  
%
8, 9  
Tperiod  
Tr/Tf  
48M_USB Period  
20.8299 20.8333 20.8299 20.8333 20.8299 20.8333 20.8299 20.8333 ns  
8, 9  
8, 21  
48M_USB Rise and  
1.0  
2.0  
1.0  
2.0  
1.0  
2.0  
1.0  
2.10  
ns  
Fall Times  
Tccj  
48M_USB Cycle to  
Cycle Jitter  
350  
350  
350  
350  
ps  
5, 8, 9  
48M_DOT  
Tdc  
48M_DOT Duty  
Cycle  
45  
55  
45  
55  
45  
55  
45  
55  
%
8, 9  
Tperiod  
Tr/Tf  
48M_DOT Period  
20.837  
0.5  
20.837  
0.5  
20.837  
0.5  
20.837  
0.5  
ns  
ns  
8, 9  
8, 9  
48M_DOT Rise and  
1.0  
1.0  
1.0  
1.0  
Fall Times  
Tccj  
48M_DOT Cycle to  
Cycle Jitter  
350  
350  
350  
350  
ps  
8, 9  
REF  
Tdc  
REF Duty Cycle  
REF Period  
45  
69.84  
1.0  
55  
71.0  
4.0  
45  
69.84  
1.0  
55  
71.0  
4.0  
45  
69.84  
1.0  
55  
71.0  
4.0  
45  
69.84  
1.0  
55  
71.0  
4.0  
%
ns  
ns  
8, 9  
8, 9  
8, 21  
Tperiod  
Tr / Tf  
REF Rise and Fall  
Times  
Tccj  
REF Cycle to Cycle  
Jitter  
1000  
1000  
1000  
1000  
ps  
8, 9  
Note:  
22. This figure is additive to any jitter already present when the 66IN pin is being used as an input. Otherwise a 500-ps jitter figure is specified.  
Document #: 38-07509 Rev. *B  
Page 16 of 20  
PRELIMINARY  
CY28346-2  
AC Parameters (VDD = VDDA = 3.3V ±5%) (continued)  
66 MHz 100 MHz  
133 MHz  
200 MHz  
Min. Max. Unit  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Notes  
Tpzl/Tpzh Output Enable  
Delay (all outputs)  
1.0  
1.0  
10.0  
10.0  
3
1.0  
1.0  
10.0  
10.0  
3
1.0  
1.0  
10.0  
10.0  
3
1.0  
1.0  
10.0  
10.0  
3
ns  
ns  
6
6
6
Tplz/Tpzh Output disable  
delay (all outputs)  
Tstable  
All Clock Stabili-  
zation from  
ms  
Power-up  
Tss  
Tsh  
Tsu  
Stopclock Set-up  
10.0  
0
10.0  
0
10.0  
0
10.0  
0
ns  
ns  
23  
23  
24  
Time  
Stopclock Hold  
Time  
Oscillator Start-up  
1.2  
1.2  
1.2  
1.2  
ms  
Time  
Test and Measurement Set-up  
For Differential CPU Output Signals  
The following diagram shows lumped test load configurations  
for the differential Host Clock Outputs.  
TPCB  
33.2Ω  
Measurement Point  
Measurem ent Point  
CPUT  
2pF  
2pF  
475Ω  
33.2Ω  
MULTSEL  
TPCB  
CPUC  
63.4Ω  
63.4Ω  
220Ω  
Figure 15. 1.0V Test Load Termination  
Notes:  
23. CPU_STP# and PCI _STP# setup time with respect to any PCIF clock to guarantee that the effected clock will stop or start at the next PCIF clock’s rising edge.  
24. When Crystal meets minimum 40-ohm device series resistance specification.  
Document #: 38-07509 Rev. *B  
Page 17 of 20  
PRELIMINARY  
CY28346-2  
TPCB  
33Ω  
33Ω  
Measurement Point  
Measurement Point  
CPUT  
VDD  
49.9Ω  
49.9Ω  
2pF  
2pF  
MULTSEL  
TPCB  
CPUC  
221Ω  
Figure 16. 0.7V Test Load Termination  
For Single-Ended Output Signals  
Output under Test  
Probe  
Load Cap  
3.3V signals  
tDC  
-
-
3.3V  
2.4V  
1.5V  
0.4V  
0V  
Tr  
Tf  
Figure 17.  
Ordering Information  
Part Number  
Package Type  
56-pin TSSOP–Tube  
Product Flow  
Commercial, 0° to 70°C  
CY28346ZC-2  
CY28346ZC-2T  
CY28346ZI-2  
CY28346ZI-2T  
56-pin TSSOP–Tape and Reel  
56-pin TSSOP–Tube  
56-pin TSSOP–Tape and Reel  
Commercial, 0° to 70°C  
Industrial, 0° to 85°C  
Industrial, 0° to 85°C  
Lead-free  
CY28346ZXC-2  
CY28346ZXC-2T  
56-pin TSSOP–Tube  
56-pin TSSOP–Tape and Reel  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Document #: 38-07509 Rev. *B  
Page 18 of 20  
PRELIMINARY  
CY28346-2  
Package Drawings and Dimensions  
56-Lead Thin Shrunk Small Outline Package, Type II (6 mm x 12 mm) Z56  
0.249[0.009]  
28  
1
DIMENSIONS IN MM[INCHES] MIN.  
MAX.  
7.950[0.313]  
8.255[0.325]  
REFERENCE JEDEC MO-153  
PACKAGE WEIGHT 0.42gms  
5.994[0.236]  
6.198[0.244]  
PART #  
Z5624 STANDARD PKG.  
ZZ5624 LEAD FREE PKG.  
29  
56  
13.894[0.547]  
14.097[0.555]  
1.100[0.043]  
MAX.  
GAUGE PLANE  
0.25[0.010]  
0.20[0.008]  
0.508[0.020]  
0.762[0.030]  
0.051[0.002]  
0.152[0.006]  
0.851[0.033]  
0.950[0.037]  
0.500[0.020]  
BSC  
0°-8°  
0.100[0.003]  
0.200[0.008]  
0.170[0.006]  
0.279[0.011]  
SEATING  
PLANE  
51-85060-*C  
Intel is a registered trademark of Intel Corporation. Dial-a-Frequency is a registered trademark, and Dial-a-dB is a trademark, of  
Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective  
holders.  
Document #: 38-07509 Rev. *B  
Page 19 of 20  
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
PRELIMINARY  
CY28346-2  
Document History Page  
Document Title: CY28346-2 Clock Synthesizer with Differential CPU Outputs  
Document Number: 38-07509  
Issue  
Date  
12/11/02  
06/10/03  
Orig. of  
Change  
RGL  
RGL  
REV.  
**  
*A  
ECN NO.  
122429  
127147  
Description of Change  
New Data Sheet  
Corrected the value of TSU parameter in the AC parameters table from x to 1.2  
Removed “Preliminary” (it is a final data sheet)  
*B  
333295  
See ECN  
RGL  
Added Lead-free for tssop commercial only  
Document #: 38-07509 Rev. *B  
Page 20 of 20  

相关型号:

CY28346-2_05

Clock Synthesizer with Differential CPU Outputs
CYPRESS

CY28346OC

Clock Synthesizer with Differential CPU Outputs
CYPRESS

CY28346OC

Clock Synthesizer with Differential CPU Outputs
SPECTRALINEAR

CY28346OCT

Clock Synthesizer with Differential CPU Outputs
CYPRESS

CY28346OCT

Clock Synthesizer with Differential CPU Outputs
SPECTRALINEAR

CY28346OXC

Clock Synthesizer with Differential CPU Outputs
SPECTRALINEAR

CY28346OXC

Clock Synthesizer with Differential CPU Outputs
CYPRESS

CY28346OXC

Processor Specific Clock Generator, 200MHz, CMOS, PDSO56, LEAD FREE, SSOP-56
SILICON

CY28346OXCT

Clock Synthesizer with Differential CPU Outputs
SPECTRALINEAR

CY28346OXCT

Clock Synthesizer with Differential CPU Outputs
CYPRESS

CY28346OXCT

Processor Specific Clock Generator, 200MHz, CMOS, PDSO56, LEAD FREE, SSOP-56
SILICON

CY28346ZC

Clock Synthesizer with Differential CPU Outputs
CYPRESS