CY7B993V-2AXIT [CYPRESS]

High-speed Multi-phase PLL Clock Buffer; 高速多相位锁相环时钟缓冲器
CY7B993V-2AXIT
型号: CY7B993V-2AXIT
厂家: CYPRESS    CYPRESS
描述:

High-speed Multi-phase PLL Clock Buffer
高速多相位锁相环时钟缓冲器

时钟
文件: 总15页 (文件大小:392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RoboClock  
CY7B993V  
CY7B994V  
High-speed Multi-phase PLL Clock Buffer  
Features  
Functional Description  
• 500-ps max. Total Timing Budget™ (TTB™) window  
The CY7B993V and CY7B994V High-speed Multi-phase PLL  
Clock Buffers offer user-selectable control over system clock  
functions. This multiple-output clock driver provides the  
system integrator with functions necessary to optimize the  
timing of high-performance computer and communication  
systems.  
• 12–100-MHz (CY7B993V), or 24–200-MHz (CY7B994V)  
input/output operation  
• Matched pair output skew < 200 ps  
• Zero input-to-output delay  
These devices feature a guaranteed maximum TTB window  
specifying all occurrences of output clocks with respect to the  
input reference clock across variations in output frequency,  
supply voltage, operating temperature, input edge rate, and  
process.  
Eighteen configurable outputs each drive terminated trans-  
mission lines with impedances as low as 50while delivering  
minimal and specified output skews at LVTTL levels. The outputs  
are arranged in five banks. Banks 1 to 4 of four outputs allow  
a divide function of 1 to 12, while simultaneously allowing  
phase adjustments in 625–1300-ps increments up to 10.4 ns.  
One of the output banks also includes an independent clock  
invert function. The feedback bank consists of two outputs,  
which allows divide-by functionality from 1 to 12 and limited  
phase adjustments. Any one of these eighteen outputs can be  
connected to the feedback input as well as driving other inputs.  
18 LVTTL outputs driving 50terminated lines  
• 16 outputs at 200 MHz: Commercial temperature  
• 6 outputs at 200 MHz: Industrial temperature  
• 3.3V LVTTL/LVPECL, fault-tolerant, and hot insertable  
reference inputs  
• Phaseadjustmentsin625-/1300-psstepsupto±10.4 ns  
• Multiply/divide ratios of 1–6, 8, 10, 12  
• Individual output bank disable  
• Output high-impedance option for testing purposes  
• Fully integrated phase-locked loop (PLL) with lock  
indicator  
• <50-ps typical cycle-to-cycle jitter  
• Single 3.3V ± 10% supply  
• 100-pin TQFP package  
Selectable reference input is a fault tolerance feature that  
allows smooth change-over to secondary clock source, when  
the primary clock source is not in operation. The reference  
inputs and feedback inputs are configurable to accommodate  
both LVTTL or Differential (LVPECL) inputs. The completely  
integrated PLL reduces jitter and simplifies board layout.  
• 100-lead BGA package  
FBKA+  
Functional  
FBKA–  
LOCK  
FBKB+  
Block Diagram  
FBKB–  
Control Logic  
VCO  
Phase  
FBSEL  
Freq.  
Divide and Phase  
Generator  
Filter  
FS  
REFA+  
REFA–  
Detector  
REFB+  
REFB–  
REFSEL  
3
3
OUTPUT_MODE  
Divide and  
Phase  
FBF0  
3
3
3
QFA0  
QFA1  
FBDS0  
FBDS1  
FBDIS  
Feedback Bank  
Bank 4  
Select  
Matrix  
4QA0  
4QA1  
4F0  
3
3
3
3
Divide and  
Phase  
4F1  
4DS0  
4DS1  
DIS4  
4QB0  
4QB1  
Select  
Matrix  
3QA0  
3QA1  
3F0  
3F1  
3DS0  
3DS1  
DIS3  
INV3  
3
3
3
3
Divide and  
Phase  
Bank 3  
Bank 2  
Select  
3QB0  
3QB1  
Matrix  
3
2QA0  
2QA1  
3
3
3
3
2F0  
Divide and  
Phase  
2F1  
2DS0  
2DS1  
DIS2  
Select  
2QB0  
2QB1  
Matrix  
1QA0  
1QA1  
1F0  
1F1  
1DS0  
1DS1  
DIS1  
3
3
3
3
Divide and  
Phase  
Bank 1  
Select  
1QB0  
1QB1  
Matrix  
Cypress Semiconductor Corporation  
Document #: 38-07127 Rev. *F  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised August 10, 2005  
RoboClock  
CY7B993V  
CY7B994V  
Pin Configurations  
100-pin TQFP  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
GND  
3F1  
4F1  
1
2
3
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VCCQ  
REFA+  
REFA –  
REFSEL  
REFB–  
REFB+  
2F0  
FS  
GND  
2QA0  
VCCN  
2QA1  
GND  
3F0  
4F0  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
4DS1  
3DS1  
GND  
4QB1  
VCCN  
4QB0  
GND  
GND  
4QA1  
VCCN  
4QA0  
GND  
2DS1  
1DS1  
VCCQ  
4DS0  
3DS0  
2DS0  
CY7B993/4V  
GND  
2QB0  
VCCN  
2QB1  
GND  
FBF0  
1F0  
GND  
VCCQ  
FBDIS  
DIS4  
1DS0  
GND  
24  
25  
DIS3  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Document #: 38-07127 Rev. *F  
Page 2 of 15  
RoboClock  
CY7B993V  
CY7B994V  
Pin Configurations (continued)  
100-lead BGA  
1
2
3
4
5
6
7
8
9
10  
1QB1  
1QB0  
1QA1  
1QA0  
QFA0  
QFA1  
FBKB+ VCCQ FBKA– FBKA+  
A
B
C
D
E
F
VCCN  
GND  
VCCN  
VCCN  
VCCN  
GND  
GND  
GND  
GND  
GND  
VCCQ  
DIS1  
VCCN  
VCCN  
GND  
VCCN  
GND  
VCCQ FBKB– FBSEL REFA+  
GND  
4F0  
GND  
3F1  
VCCQ  
2F0  
GND  
GND  
REFA–  
FBDS1 FBDS0  
LOCK  
4QB1  
4QB0  
4QA1  
VCCQ REFSEL REFB–  
(3_level) (3_level)  
(3_level) (3_level) (3_level)  
4DS1  
VCCN  
3F0  
4F1  
FS  
GND  
GND  
GND  
VCCN REFB+  
(3_level)  
(3_level)  
(3_level) (3_level)  
3DS1  
VCCN  
FBF0  
GND  
GND  
GND  
GND  
VCCN  
2QA0  
2QA1  
2QB0  
2QB1  
DIS4  
(3_level)  
(3_level)  
2DS1  
VCCQ  
1F0  
VCCQ  
(3_level)  
(3_level)  
G
H
J
OUTPUT  
1DS1  
1DS0  
4QA0  
4DS0  
GND  
GND  
VCCQ MODE FBDIS  
(3_level)  
(3_level) (3_level)  
3DS0  
2DS0  
INV3  
VCCN  
3QA0  
VCCN  
3QA1  
GND  
GND  
DIS3  
(3_level) (3_level) (3_level)  
(3_level)  
2F1  
1F1  
DIS2  
3QB0  
3QB1  
(3_level) (3_level)  
K
[1]  
Pin Definitions  
Pin Name  
FBSEL  
I/O  
Input  
Pin Type  
LVTTL  
Pin Description  
Feedback Input Select: When LOW, FBKA inputs are selected. When HIGH, the FBKB  
inputs are selected. This input has an internal pull-down.  
FBKA+, FBKA–  
FBKB+, FBKB–  
Input  
LVTTL/ Feedback Inputs: One pair of inputs selected by the FBSEL is used to feedback the clock  
LVDIFF output xQn to the phase detector. The PLL will operate such that the rising edges of the  
reference and feedback signals are aligned in both phase and frequency. These inputs  
can operate as differential PECL or single-ended TTL inputs. When operating as a  
single-ended LVTTL input, the complementary input must be left open.  
REFA+, REFA–  
REFB+, REFB–  
Input  
Input  
LVTTL/ Reference Inputs: These inputs can operate as differential PECL or single-ended TTL  
LVDIFF reference inputs to the PLL. When operating as a single-ended LVTTL input, the comple-  
mentary input must be left open.  
REFSEL  
FS  
LVTTL  
Reference Select Input: The REFSEL input controls how the reference input is  
configured. When LOW, it will use the REFA pair as the reference input. When HIGH, it  
will use the REFB pair as the reference input. This input has an internal pull-down.  
Input  
Input  
3-level  
Input  
Frequency Select: This input must be set according to the nominal frequency (fNOM) (see  
Table 1).  
FBF0  
3-level  
Feedback Output Phase Function Select: This input determines the phase function of  
the Feedback bank’s QFA[0:1] outputs (see Table 3).  
Input  
Note:  
1. For all three-state inputs, HIGH indicates a connection to V , LOW indicates a connection to GND, and MID indicates an open connection. Internal termination  
CC  
circuitry holds an unconnected input to V /2.  
CC  
Document #: 38-07127 Rev. *F  
Page 3 of 15  
RoboClock  
CY7B993V  
CY7B994V  
Pin Definitions (continued)[1]  
Pin Name  
I/O  
Pin Type  
Pin Description  
FBDS[0:1]  
Input  
3-level  
Feedback Divider Function Select: These inputs determine the function of the QFA0  
Input  
and QFA1 outputs (see Table 4).  
FBDIS  
Input  
LVTTL  
Feedback Disable: This input controls the state of QFA[0:1]. When HIGH, the QFA[0:1]  
is disabled to the “HOLD-OFF” or “HI-Z” state; the disable state is determined by  
OUTPUT_MODE. When LOW, the QFA[0:1] is enabled (see Table 5). This input has an  
internal pull-down.  
[1:4]F[0:1]  
[1:4]DS[0:1]  
DIS[1:4]  
Input  
Input  
Input  
3-level  
Input  
Output Phase Function Select: Each pair controls the phase function of the respective  
bank of outputs (see Table 3).  
3-level  
Output Divider Function Select: Each pair controls the divider function of the respective  
bank of outputs (see Table 4).  
Output Disable: Each input controls the state of the respective output bank. When HIGH,  
the output bank is disabled to the “HOLD-OFF” or “HI-Z” state; the disable state is deter-  
mined by OUTPUT_MODE. When LOW, the [1:4]Q[A:B][0:1] is enabled (see Table 5).  
These inputs each have an internal pull-down.  
Input  
LVTTL  
INV3  
Input  
3-level  
Input  
Invert Mode: This input only affects Bank 3. When this input is LOW, each matched output  
pair will become complementary (3QA0+, 3QA1–, 3QB0+, 3QB1–). When this input is  
HIGH, all four outputs in the same bank will be inverted. When this input is MID all four  
outputs will be non inverting.  
LOCK  
Output LVTTL  
PLL Lock Indicator: When HIGH, this output indicates the internal PLL is locked to the  
reference signal. When LOW, the PLL is attempting to acquire lock.  
OUTPUT_MODE Input  
3-Level Output Mode: This pin determines the clock outputs’ disable state. When this input is  
Input  
HIGH, the clock outputs will disable to high-impedance (HI-Z). When this input is LOW,  
the clock outputs will disable to “HOLD-OFF” mode. When in MID, the device will enter  
factory test mode.  
QFA[0:1]  
Output LVTTL  
Output LVTTL  
Clock Feedback Output: This pair of clock outputs is intended to be connected to the  
FB input. These outputs have numerous divide options and three choices of phase adjust-  
ments. The function is determined by the setting of the FBDS[0:1] pins and FBF0.  
[1:4]Q[A:B][0:1]  
Clock Output: These outputs provide numerous divide and phase select functions deter-  
mined by the [1:4]DS[0:1] and [1:4]F[0:1] inputs.  
VCCN  
VCCQ  
GND  
PWR  
PWR  
PWR  
Output Buffer Power: Power supply for each output pair.  
Internal Power: Power supply for the internal circuitry.  
Device Ground.  
The REF inputs can be changed dynamically. When changing  
from one reference input to the other of the same frequency,  
the PLL is optimized to ensure that the clock output period will  
not be less than the calculated system budget (tMIN = tREF  
Block Diagram Description  
Phase Frequency Detector and Filter  
These two blocks accept signals from the REF inputs (REFA+,  
REFA–, REFB+, or REFB–) and the FB inputs (FBKA+,  
FBKA–, FBKB+, or FBKB–). Correction information is then  
generated to control the frequency of the voltage-controlled  
oscillator (VCO). These two blocks, along with the VCO, form  
a PLL that tracks the incoming REF signal.  
The CY7B993V/994V have a flexible REF and FB input  
scheme. These inputs allow the use of either differential  
LVPECL or single-ended LVTTL inputs. To configure as  
single-ended LVTTL inputs, the complementary pin must be  
left open (internally pulled to 1.5V). The other input pin can  
then be used as an LVTTL input. The REF inputs are also  
tolerant to hot insertion.  
(nominal reference clock period) – tCCJ (cycle-to-cycle jitter) –  
tPDEV (max. period deviation)) while reacquiring the lock.  
VCO, Control Logic, Divider, and Phase Generator  
The VCO accepts analog control inputs from the PLL filter  
block. The FS control pin setting determines the nominal  
operational frequency range of the divide by one output (fNOM  
)
of the device. fNOM is directly related to the VCO frequency.  
There are two versions: a low-speed device (CY7B993V)  
where fNOM ranges from 12 MHz to 100 MHz, and a  
high-speed device (CY7B994V) that ranges from 24 MHz to  
200 MHz. The FS setting for each device is shown in Table 1.  
The fNOM frequency is seen on “divide-by-one” outputs. For  
the CY7B994V, the upper fNOM range extends from 96 MHz to  
200 MHz.  
Document #: 38-07127 Rev. *F  
Page 4 of 15  
RoboClock  
CY7B993V  
CY7B994V  
Table 1. Frequency Range Select  
CY7B993V  
Table 3. Output Skew Select Function  
CY7B994V  
fNOM (MHz)  
Function  
Selects  
Output Skew Function  
f
NOM (MHz)  
FS[2]  
LOW  
Min.  
12  
Max.  
26  
Min.  
Max.  
52  
[1:4]F0  
Feed-  
back  
Bank  
and  
24  
48  
96  
[1:4]F1 FBF0  
Bank1 Bank2 Bank3 Bank4  
MID  
24  
52  
100  
200  
LOW  
LOW  
LOW  
MID  
–4tU  
–3tU  
–2tU  
–1tU  
0tU  
–4tU  
–3tu  
–2tU  
–8tU  
–7tU  
–6tU  
–8tU  
–7tU  
–6tU  
–4tU  
NA  
NA  
NA  
0tu  
NA  
NA  
NA  
+4tU  
HIGH  
48  
100  
Time Unit Definition  
LOW HIGH  
Selectable skew is in discrete increments of time unit (tU). The  
value of a tU is determined by the FS setting and the maximum  
nominal output frequency. The equation to be used to  
determine the tU value is as follows:  
MID  
MID  
MID  
LOW  
MID  
–1tU BK1[3] BK1[3]  
0tU 0tU 0tU  
+1tU BK2[3] BK2[3]  
HIGH  
+1tU  
+2tU  
+3tU  
+4tU  
tU = 1/(fNOM*N).  
N is a multiplication factor which is determined by the FS  
setting. fNOM is nominal frequency of the device. N is defined  
in Table 2.  
HIGH LOW  
HIGH MID  
HIGH HIGH  
+2tU  
+3tU  
+4tU  
+6tU  
+7tU  
+8tU  
+6tU  
+7tU  
+8tU  
Table 2. N Factor Determination  
CY7B993V  
CY7B994V  
Table 4. Output Divider Function  
Function  
f
NOM (MHz) at  
fNOM (MHz) at  
FS  
LOW  
MID  
N
which tU =1.0 ns  
15.625  
N
32  
16  
8
which tU =1.0 ns  
Selects  
Output Divider Function  
64  
32  
16  
31.25  
62.5  
125  
[1:4]DS1 [1:4]DS0  
Feed-  
back  
Bank  
31.25  
62.5  
and  
and  
Bank  
1
Bank Bank Bank  
FBDS1  
FBDS0  
2
/1  
3
/1  
4
/1  
HIGH  
LOW  
LOW  
LOW  
MID  
LOW  
MID  
/1  
/2  
/1  
/2  
Divide and Phase Select Matrix  
/2  
/2  
/2  
The Divide and Phase Select Matrix is comprised of five  
independent banks: four banks of clock outputs and one bank  
for feedback. Each clock output bank has two pairs of  
low-skew, high-fanout output buffers ([1:4]Q[A:B][0:1]), two  
phase function select inputs ([1:4]F[0:1]), two divider function  
selects ([1:4]DS[0:1]), and one output disable (DIS[1:4]).  
HIGH  
LOW  
MID  
/3  
/3  
/3  
/3  
/3  
/4  
/4  
/4  
/4  
/4  
MID  
/5  
/5  
/5  
/5  
/5  
MID  
HIGH  
LOW  
MID  
/6  
/6  
/6  
/6  
/6  
The feedback bank has one pair of low-skew, high-fanout  
output buffers (QFA[0:1]). One of these outputs may connect  
to the selected feedback input (FBK[A:B]±). This feedback  
bank also has one phase function select input (FBF0), two  
divider function selects FSDS[0:1], and one output disable  
(FBDIS).  
HIGH  
HIGH  
HIGH  
/8  
/8  
/8  
/8  
/8  
/10  
/12  
/10  
/12  
/10  
/12  
/10  
/12  
/10  
/12  
HIGH  
The phase capabilities that are chosen by the phase function  
select pins are shown in Table 3. The divide capabilities for  
each bank are shown in Table 4.  
Figure 1 illustrates the timing relationship of programmable  
skew outputs. All times are measured with respect to REF with  
the output used for feedback programmed with 0tU skew. The  
PLL naturally aligns the rising edge of the FB input and REF  
input. If the output used for feedback is programmed to  
another skew position, then the whole tU matrix will shift with  
respect to REF. For example, if the output used for feedback  
is programmed to shift –8tU, then the whole matrix is shifted  
forward in time by 8tU. Thus an output programmed with 8tU  
of skew will effectively be skewed 16tU with respect to REF.  
Notes:  
2. The level to be set on FS is determined by the “nominal” operating frequency (f  
) of the V and Phase Generator. f always appears on an output when  
NOM  
NOM  
CO  
the output is operating in the undivided mode. The REF and FB are at f  
when the output connected to FB is undivided.  
NOM  
3. BK1, BK2 denotes following the skew setting of Bank1 and Bank2, respectively.  
Document #: 38-07127 Rev. *F  
Page 5 of 15  
RoboClock  
CY7B993V  
CY7B994V  
FBInput  
REFInput  
1F[1:0]  
2F[1:0]  
3F[1:0]  
4F[1:0]  
LL  
–8tU  
–7tU  
–6tU  
(N/A)  
LM  
LH  
(N/A)  
(N/A)  
(N/A)  
(N/A)  
–4tU  
–3tU  
LL  
LM  
–2t  
(N/A)  
(N/A)  
MM  
LH  
U
–1t  
ML  
U
MM  
0t  
U
U
+1t  
(N/A)  
MH  
(N/A)  
(N/A)  
(N/A)  
+2t  
+3t  
HL  
HM  
U
U
+4t  
+6t  
HH  
U
U
(N/A)  
HL  
(N/A)  
(N/A)  
HM  
HH  
+7t  
+8t  
U
U
Figure 1. Typical Outputs with FB Connected to a Zero-Skew Output[4]  
Output Disable Description  
HOLD-OFF state, non-inverting outputs are driven to a logic  
LOW state on its falling edge. Inverting outputs are driven to a  
logic HIGH state on its rising edge. This ensures the output  
clocks are stopped without glitch. When a bank of outputs is  
disabled to HI-Z state, the respective bank of outputs will go  
HI-Z immediately.  
The feedback Divide and Phase Select Matrix Bank has two  
outputs, and each of the four Divide and Phase Select Matrix  
Banks have four outputs. The outputs of each bank can be  
independently put into a HOLD-OFF or high-impedance state.  
The combination of the OUTPUT_MODE and DIS[1:4]/FBDIS  
inputs determines the clock outputs’ state for each bank. When  
the DIS[1:4]/FBDIS is LOW, the outputs of the corresponding  
bank will be enabled. When the DIS[1:4]/FBDIS is HIGH, the  
outputs for that bank will be disabled to a high-impedance  
(HI-Z) or HOLD-OFF state depending on the OUTPUT_MODE  
input. Table 5 defines the disabled output functions.  
Table 5. DIS[1:4]/FBDIS Pin Functionality  
OUTPUT_MODE  
HIGH/LOW  
HIGH  
DIS[1:4]/FBDIS  
Output Mode  
ENABLED  
HI-Z  
HOLD-OFF  
FACTORY TEST  
LOW  
HIGH  
HIGH  
X
LOW  
MID  
The HOLD-OFF state is intended to be a power saving feature.  
An output bank is disabled to the HOLD-OFF state in a  
maximum of six output clock cycles from the time when the  
disable input (DIS[1:4]/FBDIS) is HIGH. When disabled to the  
Note:  
4. FB connected to an output selected for “Zero” skew (i.e., FBF0 = MID or XF[1:0] = MID).  
Document #: 38-07127 Rev. *F  
Page 6 of 15  
RoboClock  
CY7B993V  
CY7B994V  
INV3 Pin Function  
Factory Test Reset  
Bank3 has signal invert capability. The four outputs of Bank3  
will act as two pairs of complementary outputs when the INV3  
pin is driven LOW. In complementary output mode, 3QA0 and  
3QB0 are non-inverting; 3QA1and 3QB1 are inverting outputs.  
All four outputs will be inverted when the INV3 pin is driven  
HIGH. When the INV3 pin is left in MID, the outputs will not  
invert. Inversion of the outputs are independent of the skew  
and divide functions. Therefore, clock outputs of Bank3 can be  
inverted, divided, and skewed at the same time.  
When in factory test mode (OUTPUT_MODE = MID), the  
device can be reset to a deterministic state by driving the DIS4  
input HIGH. When the DIS4 input is driven HIGH in factory test  
mode, all clock outputs will go to HI-Z; after the selected  
reference clock pin has five positive transitions, all the internal  
finite state machines (FSM) will be set to a deterministic state.  
The deterministic state of the state machines will depend on  
the configurations of the divide selects, skew selects, and  
frequency select input. All clock outputs will stay in  
high-impedance mode and all FSMs will stay in the determin-  
istic state until DIS4 is deasserted. When DIS4 is deasserted  
(with OUTPUT_MODE still at MID), the device will re-enter  
factory test mode.  
Lock Detect Output Description  
The LOCK detect output indicates the lock condition of the  
integrated PLL. Lock detection is accomplished by comparing  
the phase difference between the reference and feedback  
inputs. Phase error is declared when the phase difference  
between the two inputs is greater than the specified device  
propagation delay limit (tPD).  
When in the locked state, after four or more consecutive  
feedback clock cycles with phase-errors, the LOCK output will  
be forced LOW to indicate out-of-lock state.  
When in the out-of-lock state, 32 consecutive phase-errorless  
feedback clock cycles are required to allow the LOCK output  
to indicate lock condition (LOCK = HIGH).  
If the feedback clock is removed after LOCK has gone HIGH,  
a “Watchdog” circuit is implemented to indicate the out-of-lock  
condition after a time-out period by deasserting LOCK LOW.  
This time out period is based upon a divided down reference  
clock.  
Safe Operating Zone  
Figure 2 illustrates the operating condition at which the device  
does not exceed its allowable maximum junction temperature  
of 150°C. Figure 2 shows the maximum number of outputs that  
can operate at 185 MHz (with 25-pF load and no air flow) or  
200 MHz (with 10-pF load and no air flow) at various ambient  
temperatures. At the limit line, all other outputs are configured  
to divide-by-two (i.e., operating at 92.5 MHz) or lower  
frequencies. The device will operate below maximum  
allowable junction temperature of 150°C when its configu-  
ration (with the specified constraints) falls within the shaded  
region (safe operating zone). Figure 2 shows that at 85°C, the  
maximum number of outputs that can operate at 200 MHz is  
6; and at 70°C, the maximum number of outputs that can  
operate at 185 MHz is 16 (with 25-pF load and 0-m/s air flow).  
This assumes that there is activity on the selected REF input.  
If there is no activity on the selected REF input then the LOCK  
detect pin may not accurately reflect the state of the internal  
PLL.  
Typical Safe Operating Zone  
(25-pF Load, 0-m/s air flow)  
100  
95  
90  
85  
80  
75  
70  
Factory Test Mode Description  
The device will enter factory test mode when the  
OUTPUT_MODE is driven to MID. In factory test mode, the  
device will operate with its internal PLL disconnected; input  
level supplied to the reference input will be used in place of the  
PLL output. In TEST mode the selected FB input(s) must be  
tied LOW. All functions of the device are still operational in  
factory test mode except the internal PLL and output bank  
disables. The OUTPUT_MODE input is designed to be a static  
input. Dynamically toggling this input from LOW to HIGH may  
temporarily cause the device to go into factory test mode  
(when passing through the MID state).  
Safe Operating Zone  
65  
60  
55  
50  
2
4
6
8
10  
12  
14  
16  
18  
Number of Outputs at 185 MHz  
Figure 2. Typical Safe Operating Zone  
Document #: 38-07127 Rev. *F  
Page 7 of 15  
RoboClock  
CY7B993V  
CY7B994V  
Absolute Maximum Conditions[5]  
Output Current into Outputs (LOW)............................. 40 mA  
Static Discharge Voltage........................................... > 1100V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Latch-up Current.................................................. > ± 200 mA  
Storage Temperature ................................40°C to + 125°C  
Operating Range  
Ambient Temperature with  
Power Applied............................................40°C to + 125°C  
Range  
Commercial  
Industrial  
Ambient Temperature  
VCC  
Supply Voltage to Ground Potential.............. –0.5V to + 4.6V  
DC Input Voltage....................................–0.3V to VCC + 0.5V  
0°C to +70°C  
3.3V ± 10%  
3.3V ± 10%  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
LVTTL Compatible Output Pins (QFA[0:1], [1:4]Q[A:B][0:1], LOCK)  
VOH  
VOL  
IOZ  
LVTTL HIGH Voltage QFA[0:1], [1:4]Q[A:B][0:1]  
VCC = Min., IOH = –30 mA  
OH = –2 mA, VCC = Min.  
VCC = Min., IOL= 30 mA  
OL= 2 mA, VCC = Min.  
2.4  
2.4  
–100  
0.5  
0.5  
100  
V
V
V
V
µA  
LOCK  
LVTTL LOW Voltage QFA[0:1], [1:4]Q[A:B][0:1]  
LOCK  
I
I
High-impedance State Leakage Current  
LVTTL Compatible Input Pins (FBKA±, FBKB±, REFA±, REFB±, FBSEL, REFSEL, FBDIS, DIS[1:4])  
VIH  
LVTTL Input HIGH  
FBK[A:B]±, REF[A:B]±  
Min. < VCC < Max.  
2.0  
2.0  
VCC + 0.3  
VCC + 0.3  
V
V
REFSEL, FBSEL, FBDIS,  
DIS[1:4]  
VIL  
LVTTL Input LOW  
LVTTL VIN >VCC  
FBK[A:B]±, REF[A:B]±  
REFSEL, FBSEL, FBDIS, DIS[1:4]  
FBK[A:B]±, REF[A:B]±  
FBK[A:B]±, REF[A:B]±  
REFSEL, FBSEL, FBDIS, DIS[1:4] VIN = VCC  
Min. < VCC < Max.  
–0.3  
–0.3  
0.8  
0.8  
100  
500  
500  
V
V
II  
IlH  
VCC = GND, VIN = 3.63V  
VCC = Max., VIN = VCC  
µA  
µA  
µA  
µA  
µA  
LVTTL Input HIGH  
Current  
IlL  
LVTTL Input LOW  
Current  
FBK[A:B]±, REF[A:B]±  
REFSEL, FBSEL, FBDIS, DIS[1:4]  
VCC = Max., VIN = GND  
–500  
–500  
Three-level Input Pins (FBF0, FBDS[0:1], [1:4]F[0:1], [1:4]DS[0:1], FS, OUTPUT_MODE(TEST))  
VIHH  
VIMM  
VILL  
IIHH  
Three-level Input HIGH[6]  
Three-level Input MID[6]  
Three-level Input LOW[6]  
Min. < VCC < Max.  
Min. < VCC < Max.  
Min. < VCC < Max.  
0.87*VCC  
0.47*VCC 0.53*VCC  
V
V
V
µA  
µA  
µA  
µA  
µA  
µA  
–50  
–100  
–200  
–400  
0.13*VCC  
Three-level Input  
Three-level input pins excl. FBF0 VIN = VCC  
FBF0  
200  
400  
50  
100  
HIGH Current  
IIMM  
IILL  
Three-level Input  
MID Current  
Three-level input pins excl. FBF0 VIN = VCC/2  
FBF0  
Three-level Input  
LOW Current  
Three-level input pins excl. FBF0 VIN = GND  
FBF0  
LVDIFF Input Pins (FBK[A:B]±, REF[A:B]±)  
VDIFF  
VIHHP  
VILLP  
Input Differential Voltage  
Highest Input HIGH Voltage  
Lowest Input LOW Voltage  
400  
1.0  
VCC  
VCC  
mV  
V
V
GND VCC – 0.4  
0.8 VCC  
VCOM  
Common Mode Range (crossing voltage)  
V
Notes:  
5. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
6. These inputs are normally wired to V , GND, or left unconnected (actual threshold voltages vary as a percentage of V ). Internal termination resistors hold  
CC  
CC  
the unconnected inputs at V /2. If these inputs are switched, the function and timing of the outputs may glitch and the PLL may require an additional t  
CC  
time  
LOCK  
before all data sheet limits are achieved.  
Document #: 38-07127 Rev. *F  
Page 8 of 15  
RoboClock  
CY7B993V  
CY7B994V  
Electrical Characteristics Over the Operating Range (continued)  
Parameter Description  
Operating Current  
Test Conditions  
Min.  
Max.  
Unit  
[7]  
ICCI  
Internal Operating  
CY7B993V  
CY7B994V  
CY7B993V  
CY7B994V  
VCC = Max., fMAX  
250  
250  
40  
mA  
mA  
mA  
mA  
Current  
ICCN  
Output Current  
VCC = Max.,  
Dissipation/Pair[8]  
CLOAD = 25 pF,  
50  
RLOAD = 50at VCC/2,  
fMAX  
Capacitance  
Parameter  
CIN  
Description  
Input Capacitance  
Test Conditions  
TA = 25°C, f = 1 MHz, VCC = 3.3V  
Min.  
Max.  
5
Unit  
pF  
Switching Characteristics Over the Operating Range[9, 10, 11, 12, 13]  
CY7B993/4V-2  
CY7B993/4V-5  
Parameter  
fin  
Description  
Min. Typ. Max. Min. Typ. Max.  
Unit  
MHz  
MHz  
MHz  
MHz  
ps  
Clock Input Frequency  
CY7B993V  
CY7B994V  
CY7B993V  
CY7B994V  
12  
24  
12  
24  
100  
200  
100  
200  
200  
200  
250  
12  
24  
12  
24  
100  
200  
100  
200  
200  
250  
550  
fout  
Clock Output Frequency  
tSKEWPR  
tSKEWBNK  
tSKEW0  
Matched-Pair Skew[14, 15]  
Intrabank Skew[14, 15]  
Output-Output Skew (same frequency and phase, rise to  
ps  
ps  
rise, fall to fall)[14, 15]  
tSKEW1  
tSKEW2  
Output-Output Skew (same frequency and phase, other  
banks at different frequency, rise to rise, fall to fall)[14, 15]  
Output-Output Skew (invert to nominal of different banks,  
compared banks at same frequency, rising edge to falling  
edge aligned, other banks at same frequency)[14, 15]  
250  
250  
650  
700  
ps  
ps  
tSKEW3  
Output-Output Skew (all output configurations outside of  
500  
200  
150  
100  
800  
300  
ps  
ps  
[14, 15]  
tSKEW1and tSKEW2)  
tSKEWCPR Complementary Outputs Skew (crossing to crossing,  
complementary outputs of the same bank)[14, 15, 16, 17]  
Cycle-to-Cycle Jitter (divide by 1 output frequency,  
FB = divide by 1, 2, 3)  
Cycle-to-Cycle Jitter (divide by 1 output frequency,  
FB = divide by 4, 5, 6, 8, 10, 12)  
Propagation Delay, REF to FB Rise  
tCCJ1-3  
50  
50  
50  
50  
150 ps Peak  
100 ps Peak  
tCCJ4-12  
tPD  
–250  
250 –500  
500  
ps  
Notes:  
7. I  
measurement is performed with Bank1 and FB Bank configured to run at maximum frequency (f  
= 100 MHz for CY7B993V, f  
= 200 MHz for  
CCI  
NOM  
NOM  
CY7B994V), and all other clock output banks to run at half the maximum frequency. FS and OUTPUT_MODE are asserted to the HIGH state.  
8. This is dependent upon frequency and number of outputs of a bank being loaded. The value indicates maximum I  
at maximum frequency and maximum  
CCN  
load of 25 pF terminated to 50at V /2.  
CC  
9. This is for non-three level inputs.  
10. Assumes 25-pF max. load capacitance up to 185 MHz. At 200 MHz the max. load is 10 pF.  
11. Both outputs of pair must be terminated, even if only one is being used.  
12. Each package must be properly decoupled.  
13. AC parameters are measured at 1.5V unless otherwise indicated.  
14. Test Load C = 25 pF, terminated to V /2 with 50up to185 MHz and 10-pF load to 200 MHz.  
L
CC  
15. SKEW is defined as the time between the earliest and the latest output transition among all outputs for which the same phase delay has been selected when  
all outputs are loaded with 25 pF and properly terminated up to 185 MHz. At 200 MHz the max load is 10 pF.  
16. Complementary output skews are measured at complementary signal pair intersections.  
17. Guaranteed by statistical correlation. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 38-07127 Rev. *F  
Page 9 of 15  
RoboClock  
CY7B993V  
CY7B994V  
Switching Characteristics Over the Operating Range[9, 10, 11, 12, 13] (continued)  
CY7B993/4V-2  
CY7B993/4V-5  
Parameter  
TTB  
Description  
Min. Typ. Max. Min. Typ. Max.  
Unit  
ps  
Total Timing Budget window (same frequency and phase)[17,  
500  
700  
18]  
tPDDELTA  
tREFpwh  
tREFpwl  
tr/tf  
tLOCK  
tRELOCK1  
Propagation Delay difference between two devices[17]  
REF input (Pulse Width HIGH)[19]  
REF input (Pulse Width LOW)[19]  
Output Rise/Fall Time[20]  
PLL Lock Time From Power-up  
PLL Relock Time (from same frequency, different phase)  
with Stable Power Supply  
2.0  
2.0  
0.15  
200  
2.0  
10  
500  
2.0  
2.0  
0.15  
200  
2.0  
10  
500  
ps  
ns  
ns  
ns  
ms  
µs  
tRELOCK2  
PLL Relock Time (from different frequency, different phase)  
1000  
1000  
µs  
with Stable Power Supply[21]  
tODCV  
tPWH  
tPWL  
Output duty cycle deviation from 50%[13]  
Output HIGH time deviation from 50%[22]  
Output LOW time deviation from 50%[22]  
–1.0  
1.0  
1.5  
2.0  
–1.0  
1.0  
1.5  
2.0  
ns  
ns  
ns  
UI  
tPDEV  
Period deviation when changing from reference to  
0.025  
0.025  
reference[23]  
tOAZ  
tOAZ  
DIS[1:4]/FBDIS HIGH to output high-impedance from  
ACTIVE[14, 24]  
1.0  
0.5  
10  
14  
1.0  
0.5  
10  
14  
ns  
ns  
DIS[1:4]/FBDIS LOW to output ACTIVE from output  
high-impedance[24, 25]  
AC Test Loads and Waveform[26]  
3.3V  
R1  
R2  
For LOCK output only  
R1 = 910Ω  
For all other outputs  
OUTPUT  
R1 = 100Ω  
R2 = 100Ω  
C
L
R2 = 910Ω  
C < 30 pF  
L
C < 25 pF to 185 MHz  
L
or 10 pF at 200 MHz  
(Includes fixture and  
probe capacitance)  
(a) LVTTL AC Test Load  
3.3V  
GND  
2.0V  
0.8V  
2.0V  
0.8V  
< 1 ns  
< 1 ns  
(b)TTL Input Test Waveform  
Notes:  
18. TTB is the window between the earliest and the latest output clocks with respect to the input reference clock across variations in output frequency, supply voltage,  
operating temperature, input clock edge rate, and process. The measurements are taken with the AC test load specified and include output-output skew, cycle-cycle  
jitter, and dynamic phase error. TTB will be equal to or smaller than the maximum specified value at a given frequency.  
19. Tested initially and after any design or process changes that may affect these parameters.  
20. Rise and fall times are measured between 2.0V and 0.8V.  
21. f  
22. t  
must be within the frequency range defined by the same FS state.  
NOM  
PWH  
is measured at 2.0V. t  
is measured at 0.8V.  
PWL  
23. UI = Unit Interval. Examples: 1 UI is a full period. 0.1UI is 10% of period.  
24. Measured at 0.5V deviation from starting voltage.  
25. For t  
minimum, C = 0 pF. For t  
maximum, C = 25 pF to 185 MHz or 10 pF to 200 MHz.  
OZA  
L
OZA L  
26. These figures are for illustrations only. The actual ATE loads may vary.  
Document #: 38-07127 Rev. *F  
Page 10 of 15  
RoboClock  
CY7B993V  
CY7B994V  
AC Timing Diagrams[13]  
t
REFpwl  
QFA0 or  
t
REFpwh  
[1:4]Q[A:B]0  
REF  
tPD  
t
t
SKEWPR  
SKEWPR  
t
PWH  
t
PWL  
QFA1 or  
[1:4]Q[A:B]1  
2.0V  
FB  
Q
0.8V  
t
CCJ1-3,4-12  
[1:4]QA[0:1]  
t
t
SKEWBNK  
SKEWBNK  
[1:4]QB[0:1]  
Q
REF TO DEVICE 1 and 2  
t
ODCV  
t
ODCV  
t
PD  
FB DEVICE1  
FB DEVICE2  
t
SKEW0,1  
t
SKEW0,1  
t
PDELTA  
t
PDELTA  
Other Q  
t
SKEWCPR  
COMPLEMENTARY A  
COMPLEMENTARY B  
crossing  
Q
t
SKEW2  
t
SKEW2  
crossing  
INVERTED Q  
Ordering Information  
Propagation Max. Speed  
Delay (ps)  
250  
(MHz)  
100  
100  
100  
100  
200  
200  
200  
200  
200  
200  
200  
200  
Ordering Code  
CY7B993V-2AC  
CY7B993V-2ACT  
CY7B993V-2AI  
CY7B993V-2AIT  
CY7B994V-2AC  
CY7B994V-2ACT  
CY7B994V-2BBC  
CY7B994V-2BBCT  
CY7B994V-2AI  
Package Type  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
100-ball Thin Ball Grid Array  
100-ball Thin Ball Grid Array - Tape and Reel  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
100-ball Thin Ball Grid Array  
100-ball Thin Ball Grid Array -Tape and Reel  
Operating Range  
Commercial  
Commercial  
Industrial  
250  
250  
250  
250  
250  
250  
250  
250  
Industrial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
Industrial  
Industrial  
Industrial  
250  
250  
250  
CY7B994V-2AIT  
CY7B994V-2BBI  
CY7B994V-2BBIT  
Document #: 38-07127 Rev. *F  
Page 11 of 15  
RoboClock  
CY7B993V  
CY7B994V  
Ordering Information (continued)  
Propagation Max. Speed  
Delay (ps)  
500  
(MHz)  
100  
100  
100  
100  
200  
200  
200  
200  
200  
200  
200  
200  
Ordering Code  
CY7B993V-5AC  
CY7B993V-5ACT  
CY7B993V-5AI  
CY7B993V-5AIT  
CY7B994V-5AC  
CY7B994V-5ACT  
CY7B994V-5BBC  
CY7B994V-5BBCT  
CY7B994V-5BBI  
CY7B994V-5BBIT  
CY7B994V-5AI  
Package Type  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
100-ball Thin Ball Grid Array  
100-ball Thin Ball Grid Array - Tape and Reel  
100-ball Thin Ball Grid Array  
100-ball Thin Ball Grid Array -Tape and Reel  
100-lead Thin Quad Flat Pack  
Operating Range  
Commercial  
Commercial  
Industrial  
500  
500  
500  
500  
500  
500  
500  
500  
Industrial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
Industrial  
Industrial  
Industrial  
500  
500  
500  
CY7B994V-5AIT  
100-lead Thin Quad Flat Pack - Tape and Reel  
Lead-free  
250  
100  
100  
100  
100  
200  
200  
200  
200  
200  
200  
200  
200  
100  
100  
100  
100  
200  
200  
200  
200  
200  
200  
200  
200  
CY7B993V-2AXC  
CY7B993V-2AXCT  
CY7B993V-2AXI  
CY7B993V-2AXIT  
CY7B994V-2AXC  
CY7B994V-2AXCT  
CY7B994V-2BBXC  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
100-ball Thin Ball Grid Array  
Commercial  
Commercial  
Industrial  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
Industrial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
Industrial  
Industrial  
Industrial  
CY7B994V-2BBXCT 100-ball Thin Ball Grid Array - Tape and Reel  
CY7B994V-2AXI  
CY7B994V-2AXIT  
CY7B994V-2BBXI  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
100-ball Thin Ball Grid Array  
CY7B994V-2BBXIT 100-ball Thin Ball Grid Array -Tape and Reel  
CY7B993V-5AXC  
CY7B993V-5AXCT  
CY7B993V-5AXI  
CY7B993V-5AXIT  
CY7B994V-5AXC  
CY7B994V-5AXCT  
CY7B994V-5BBXC  
CY7B994V-5BBXCT 100-ball Thin Ball Grid Array -Tape and Reel  
CY7B994V-5BBXI 100-ball Thin Ball Grid Array  
CY7B994V-5BBXIT 100-ball Thin Ball Grid Array - Tape and Reel  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
100-ball Thin Ball Grid Array  
Commercial  
Commercial  
Industrial  
Industrial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
Industrial  
Industrial  
Industrial  
CY7B994V-5AXI  
CY7B994V-5AXIT  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack - Tape and Reel  
Document #: 38-07127 Rev. *F  
Page 12 of 15  
RoboClock  
CY7B993V  
CY7B994V  
Package Diagrams  
100-pin Thin Plastic Quad Flat Pack (TQFP) A100  
51-85048-*B  
Document #: 38-07127 Rev. *F  
Page 13 of 15  
RoboClock  
CY7B993V  
CY7B994V  
Package Diagrams (continued)  
100-ball Thin Ball Grid Array (11 x 11 x 1.4 mm) BB100  
51-85107-*B  
RoboClock is a registered trademark, and TTB and Total Timing Budget are trademarks, of Cypress Semiconductor. All product  
and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-07127 Rev. *F  
Page 14 of 15  
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
RoboClock  
CY7B993V  
CY7B994V  
Document History Page  
Document Title: RoboClockCY7B994V/CY7B993V High-speed Multi-phase PLL Clock Buffer  
Document Number: 38-07127  
Orig. of  
REV.  
**  
*A  
*B  
*C  
ECN NO. Issue Date Change  
Description of Change  
Changed from Spec number: 38-00747 to 38-07127  
Added three industrial packages  
Added TTB Features  
Power-up requirements to operating conditions information  
109957  
114376  
116570  
122794  
123694  
12/16/01  
05/06/02  
09/04/02  
12/14/02  
03/04/03  
SZV  
CTK  
HWT  
RBI  
*D  
RGL  
Added min. Fout value of 12 MHz for CY7B993V and 24 MHz for CY7B994V  
to switching characteristics table  
Corrected prop delay limit parameter from (tPDSL,M,H) to tPD in the Lock Detect  
Output Description paragraph  
*E  
*F  
128462  
391560  
07/29/03  
See ECN  
RGL  
RGL  
Added clock input frequency (fin) specifications in the switching characteristics  
table  
Added Lead-free devices  
Added typical values for jitter  
Document #: 38-07127 Rev. *F  
Page 15 of 15  

相关型号:

CY7B993V-5AC

High-Speed Multi-Phase PLL Clock Buffer
CYPRESS

CY7B993V-5ACT

High-speed Multi-phase PLL Clock Buffer
CYPRESS

CY7B993V-5AI

High-Speed Multi-Phase PLL Clock Buffer
CYPRESS

CY7B993V-5AIT

High-speed Multi-phase PLL Clock Buffer
CYPRESS

CY7B993V-5AXC

High-speed Multi-phase PLL Clock Buffer
CYPRESS

CY7B993V-5AXCT

High-speed Multi-phase PLL Clock Buffer
CYPRESS

CY7B993V-5AXI

High-speed Multi-phase PLL Clock Buffer
CYPRESS

CY7B993V-5AXIT

High-speed Multi-phase PLL Clock Buffer
CYPRESS

CY7B993V-7AC

High-Speed Multi-Phase PLL Clock Buffer
CYPRESS

CY7B993V_05

High-speed Multi-phase PLL Clock Buffer
CYPRESS

CY7B993V_11

High Speed Multi Phase PLL Clock Buffer
CYPRESS

CY7B9940V

High-Speed Multi-Frequency PLL Clock Buffer
CYPRESS