CY7B9940V [CYPRESS]

High-Speed Multi-Frequency PLL Clock Buffer; 高速多频PLL时钟缓冲器
CY7B9940V
型号: CY7B9940V
厂家: CYPRESS    CYPRESS
描述:

High-Speed Multi-Frequency PLL Clock Buffer
高速多频PLL时钟缓冲器

时钟
文件: 总9页 (文件大小:156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RoboClockII™ Junior  
CY7B9930V  
CY7B9940V  
High-Speed Multi-Frequency PLL Clock Buffer  
Features  
Functional Description  
• 12–100MHz (CY7B9930V), or 24–200 MHz (CY7B9940V)  
input/output operation  
• Matched pair output skew < 200 ps  
• Zero input-to-output delay  
• 10 LVTTL 50% duty-cycle outputs capable of driving  
50ω terminated lines  
The CY7B9930V and CY7B9940V High-Speed Multi-  
Frequency PLL Clock Buffers offer user-selectable control  
over system clock functions. This multiple-output clock driver  
provides the system integrator with functions necessary to  
optimize the timing of high-performance computer or commu-  
nication systems.  
Ten configurable outputs can each drive terminated trans-  
mission lines with impedances as low as 50while delivering  
minimal and specified output skews at LVTTL levels. The outputs  
are arranged in three banks. The FB feedback bank consists  
of two outputs, which allows divide-by functionality from 1 to  
12. Any one of these ten outputs can be connected to the  
feedback input as well as driving other inputs.  
• Commercial temp. range with eight outputs at 200 MHz  
• Industrial temp. range with eight outputs at 200 MHz  
• 3.3V LVTTL/LV differential (LVPECL), fault-tolerant and  
hot insertable reference inputs  
• Multiply ratios of (1–6, 8, 10, 12)  
• Operation up to 12x input frequency  
• Individual output bank disable for aggressive power  
management and EMI reduction  
• Output high-impedance option for testing purposes  
• Fully integrated PLL with lock indicator  
• Low cycle-to-cycle jitter (<100 ps peak-peak)  
• Single 3.3V ± 10% supply  
Selectable reference input is a fault tolerance feature that  
allows smooth change over to secondary clock source, when  
the primary clock source is not in operation. The reference  
inputs are configurable to accommodate both LVTTL or Differ-  
ential (LVPECL) inputs. The completely integrated PLL  
reduces jitter and simplifies board layout.  
• 44-pin TQFP package  
Functional Block Diagram  
Pin Configuration  
44-Pin TQFP  
FBKA  
LOCK  
Control Logic  
Divide  
Generator  
Phase  
Freq.  
Detector  
VCO  
Filter  
FS  
REFA+  
REFA–  
REFB+  
3
3
REFB–  
44 43 42 41 40 39 38 37 36 35 34  
Output_Mode  
REFSEL  
GND  
2QB1  
VCCN  
2QB0  
GND  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
VCCQ  
REFA+  
REFA –  
REFSEL  
REFB–  
REFB+  
FS  
2
3
QFA0  
QFA1  
Divide  
Matrix  
3
3
FBDS0  
FBDS1  
Feedback Bank  
Bank 2  
4
5
CY7B9930V/40V  
GND  
6
2QA0  
2QA1  
2QA1  
VCCN  
2QA0  
GND  
7
8
GND  
2QB0  
2QB1  
9
VCCQ  
DIS2  
10  
11  
DIS2  
DIS1  
GND  
DIS1  
1QA0  
1QA1  
12 13  
14 15  
22  
16 17 18  
20 21  
19  
Bank 1  
1QB0  
1QB1  
Cypress Semiconductor Corporation  
Document #: 38-07271 Rev. *B  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised July 25, 2002  
[+] Feedback  
RoboClockII™ Junior  
CY7B9930V  
CY7B9940V  
Pin Definitions[1]  
Name  
I/O  
Type  
Description  
FBKA  
Input LVTTL  
Feedback Input.  
REFA+, REFA– Input LVTTL/ Reference Inputs: These inputs can operate as differential PECL or single-ended TTL  
REFB+, REFB–  
REFSEL  
LVDIFF reference inputs to the PLL. When operating as a single-ended LVTTL input, the comple-  
mentary input must be left open.  
Input LVTTL  
Reference Select Input: The REFSEL input controls how the reference input is configured.  
When LOW, it will use the REFA pair as the reference input. When HIGH, it will use the  
REFB pair as the reference input. This input has an internal pull-down.  
FS  
Input 3-level  
Input  
Frequency Select: This input must be set according to the nominal frequency (fNOM). See  
Table 1.  
FBDS[0:1]  
DIS[1:2]  
Input 3-level  
Input  
Feedback Divider Function Select. These inputs determine the function of the QFA0 and  
QFA1 outputs. See Table 2.  
Input LVTTL  
Output Disable: Each input controls the state of the respective output bank. When HIGH,  
the output bank is disabled to the “HOLD-OFF” or “HI-Z” state; the disable state is deter-  
mined by OUTPUT_MODE. When LOW, the [1:4]Q[A:B][0:1] is enabled. See Table 3.  
These inputs each have an internal pull-down.  
LOCK  
Output LVTTL  
PLL Lock Indicator: When HIGH, this output indicates the internal PLL is locked to the  
reference signal. When LOW, the PLL is attempting to acquire lock.  
Output_Mode  
Input 3-Level Output Mode: This pindetermines the clock outputsdisable state. When this input is HIGH,  
Input  
the clock outputs will disable to high-impedance (HI-Z). When this input is LOW, the clock  
outputs will disable to “HOLD-OFF” mode. When in MID, the device will enter factory test  
mode.  
QFA[0:1]  
Output LVTTL  
Clock Feedback Output: This pair of clock outputs is intended to be connected to the FB  
input. These outputs have numerous divide options. The function is determined by the  
setting of the FBDS[0:1] pins.  
[1:2]Q[A:B][0:1] Output LVTTL  
Clock Output.  
VCCN  
VCCQ  
GND  
PWR  
PWR  
PWR  
Output Buffer Power: Power supply for each output pair.  
Internal Power: Power supply for the internal circuitry.  
Device Ground.  
VCO, Control Logic, and Divide Generator  
Block Diagram Description  
Phase Frequency Detector and Filter  
The VCO accepts analog control inputs from the PLL filter  
block. The FS control pin setting determines the nominal  
These two blocks accept signals from the REF inputs (REFA+,  
REFA–, REFB+ or REFB–) and the FB input (FBKA).  
Correction information is then generated to control the  
frequency of the Voltage Controlled Oscillator (VCO). These  
two blocks, along with the VCO, form a Phase-Locked Loop  
(PLL) that tracks the incoming REF signal.  
operational frequency range of the divide by one output (fNOM  
)
of the device. fNOM is directly related to the VCO frequency.  
There are two versions of the RoboClockII Junior, a low-speed  
device (CY7B9930V) where fNOM ranges from 12 MHz to 100  
MHz, and a high-speed device (CY7B9940V) which ranges  
from 24 MHz to 200 MHz. The FS setting for each device is  
shown in Table 1. The fNOM frequency is seen on  
“divide-by-one” outputs.  
The RoboClockII Junior has a flexible REF input scheme.  
These inputs allow the use of either differential LVPECL or  
single-ended LVTTL inputs. To configure as single-ended  
LVTTL inputs, the complementary pin must be left open (inter-  
nally pulled to 1.5V), then the other input pin can be used as  
a LVTTL input. The REF inputs are also tolerant to hot  
insertion.  
Table 1. Frequency Range Select  
CY7B9930V  
fNOM (MHz)  
CY7B9940V  
fNOM (MHz)  
FS[2]  
LOW  
Min.  
Max.  
26  
Min.  
Max.  
52  
The REF inputs can be changed dynamically. When changing  
from one reference input to the other reference input of the  
same frequency, the PLL is optimized to ensure that the clock  
outputs period will not be less than the calculated system  
budget (tMIN = tREF (nominal reference clock period) – tCCJ  
(cycle-to-cycle jitter) – tPDEV (max. period deviation)) while  
12  
24  
48  
24  
48  
96  
MID  
52  
100  
200[3]  
HIGH  
100  
reacquiring lock.  
Note:  
1. For all three-state inputs, HIGH indicates a connection to VCC, LOW indicates a connection to GND, and MID indicates an open connection. Internal termination  
circuitry holds an unconnected input to VCC/2.  
2. The level to be set on FS is determined by the “nominal” operating frequency (fNOM) of the VCO. fNOM always appears on an output when the output is operating  
in the undivided mode. The REF and FB are at fNOM when the output connected to FB is undivided.  
3. The maximum output frequency is 200 MHz.  
Document #: 38-07271 Rev. *B  
Page 2 of 9  
[+] Feedback  
RoboClockII™ Junior  
CY7B9930V  
CY7B9940V  
Divide Matrix  
Lock Detect Output Description  
The Divide Matrix is comprised of three independent banks:  
two banks of clock outputs and one bank for feedback. Each  
clock output bank has two pairs of low-skew, high-fanout  
output buffers ([1:2]Q[A:B][0:1]), and an output disable  
(DIS[1:2]).  
The LOCK detect output indicates the lock condition of the  
integrated PLL. Lock detection is accomplished by comparing  
the phase difference between the reference and feedback  
inputs. Phase error is declared when the phase difference  
between the two inputs is greater than the specified device  
propagation delay limit (tPD).  
The feedback bank has one pair of low-skew, high-fanout  
output buffers (QFA[0:1]). One of these outputs may connect  
to the selected feedback input (FBKA+). This feedback bank  
also has two divider function selects FBDS[0:1].  
When in the locked state, after four or more consecutive  
feedback clock cycles with phase-errors, the LOCK output will  
be forced LOW to indicate out-of-lock state.  
The divide capabilities for each bank are shown in Table 2.  
Table 2. Output Divider Function  
Function  
When in the out-of-lock state, 32 consecutive phase-errorless  
feedback clock cycles are required to allow the LOCK output  
to indicate lock condition (LOCK = HIGH).  
If the feedback clock is removed after LOCK has gone HIGH,  
a “Watchdog” circuit is implemented to indicate the out-of-lock  
condition after a time-out period by deasserting LOCK LOW.  
This time out period is based upon a divided down reference  
clock.  
Selects  
Output Divider Function  
Feedback  
Bank  
FBDS1  
FBDS0  
LOW  
MID  
Bank1  
/1  
Bank2  
/1  
LOW  
LOW  
LOW  
MID  
/1  
/2  
This assumes that there is activity on the selected REF input.  
If there is no activity on the selected REF input then the LOCK  
detect pin may not accurately reflect the state of the internal  
PLL.  
/1  
/1  
HIGH  
LOW  
MID  
/1  
/1  
/3  
/1  
/1  
/4  
MID  
/1  
/1  
/5  
Factory Test Mode Description  
MID  
HIGH  
LOW  
MID  
/1  
/1  
/6  
The device will enter factory test mode when the  
OUTPUT_MODE is driven to MID. In factory test mode, the  
device will operate with its internal PLL disconnected; input  
level supplied to the reference input will be used in place of the  
PLL output. In TEST mode the selected FB input must be tied  
LOW. All functions of the device are still operational in factory  
test mode except the internal PLL and output bank disables.  
The OUTPUT_MODE input is designed to be a static input.  
Dynamically toggling this input from LOW to HIGH may tempo-  
rarily cause the device to go into factory test mode (when  
passing through the MID state).  
HIGH  
HIGH  
HIGH  
/1  
/1  
/8  
/1  
/1  
/10  
/12  
HIGH  
/1  
/1  
Output Disable Description  
The outputs of Bank 1 and Bank 2 can be independently put  
into a HOLD-OFF or high-impedance state. The combination  
of the Output_Mode and DIS[1:2] inputs determines the clock  
outputs’ state for each bank. When the DIS[1:2] is LOW, the  
outputs of the corresponding bank will be enabled. When the  
DIS[1:2] is HIGH, the outputs for that bank will be disabled to  
a high-impedance (HI-Z) or HOLD-OFF state depending on  
the Output_Mode input. Table 3 defines the disabled output  
functions.  
Factory Test Reset  
When in factory test mode (OUTPUT_MODE = MID), the  
device can be reset to a deterministic state by driving the DIS2  
input HIGH. When the DIS2 input is driven HIGH in factory test  
mode, all clock outputs will go to HI-Z; after the selected  
reference clock pin has 5 positive transitions, all the internal  
finite state machines (FSM) will be set to a deterministic state.  
The deterministic state of the state machines will depend on  
the configurations of the divide selects and frequency select  
input. All clock outputs will stay in high-impedance mode and  
all FSMs will stay in the deterministic state until DIS2 is  
deasserted. When DIS2 is deasserted (with OUTPUT_MODE  
still at MID), the device will re-enter factory test mode.  
The HOLD-OFF state is intended to be a power saving feature.  
An output bank is disabled to the HOLD-OFF state in a  
maximum of six output clock cycles from the time when the  
disable input (DIS[1:2]) is HIGH. When disabled to the  
HOLD-OFF state, outputs are driven to a logic LOW state on  
its falling edge. This ensures the output clocks are stopped  
without glitch. When a bank of outputs is disabled to HI-Z state,  
the respective bank of outputs will go HI-Z immediately.  
Table 3. DIS[1:2] Pin Functionality  
OUTPUT_MODE  
HIGH/LOW  
HIGH  
DIS[1:2]/FBDIS  
Output Mode  
ENABLED  
LOW  
HIGH  
HIGH  
X
HI-Z  
LOW  
HOLD-OFF  
FACTORY TEST  
MID  
Document #: 38-07271 Rev. *B  
Page 3 of 9  
[+] Feedback  
RoboClockII™ Junior  
CY7B9930V  
CY7B9940V  
Static Discharge Voltage............................................ >2000V  
(per MIL-STD-883, Method 3015)  
Absolute Maximum Conditions  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current.................................................... >±200mA  
Operating Range  
Storage Temperature .....................................−40°C to +125°C  
Ambient Temperature with Power Applied..−40°C to +125°C  
Supply Voltage to Ground Potential .................−0.5V to +4.6V  
DC Input Voltage ..........................................−0.3V to VCC+0.5V  
Output Current into Outputs (LOW) .............................40 mA  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
VCC  
3.3V ±10%  
3.3V ±10%  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
LVTTL Compatible Output Pins (QFA[0:1], [1:4]Q[A:B][0:1], LOCK)  
VOH  
VOL  
IOZ  
LVTTL HIGH Voltage QFA[0:1], [1:2]Q[A:B][0:1]  
VCC = Min., IOH = –30 mA  
IOH = –2 mA, VCC = Min.  
VCC = Min., IOL= 30 mA  
2.4  
2.4  
V
V
LOCK  
LVTTL LOW Voltage QFA[0:1], [1:2]Q[A:B][0:1]  
LOCK  
0.5  
0.5  
100  
V
I
OL= 2 mA, VCC = Min.  
V
High-Impedance State Leakage Current  
–100  
µA  
LVTTL Compatible Input Pins (FBKA, REFA±, REFB±, REFSEL, DIS[1:2])  
VIH  
LVTTL Input HIGH  
LVTTL Input LOW  
LVTTL VIN >VCC  
FBKA+, REF[A:B]±  
Min. < VCC < Max.  
2.0  
2.0  
VCC+0.3  
VCC+0.3  
V
V
REFSEL,  
DIS[1:2]  
VIL  
FBKA+, REF[A:B]±  
Min. < VCC < Max.  
–0.3  
–0.3  
0.8  
0.8  
V
V
REFSEL,  
DIS[1:2]  
II  
FBKA+, REF[A:B]±  
FBKA+, REF[A:B]±  
VCC = GND, VIN = 3.63V  
VCC = Max., VIN = VCC  
VIN = VCC  
100  
500  
500  
µA  
µA  
µA  
IlH  
LVTTL Input HIGH  
Current  
REFSEL,  
DIS[1:2]  
IlL  
LVTTL Input LOW  
Current  
FBKA+, REF[A:B]±  
VCC = Max., VIN = GND  
–500  
–500  
µA  
µA  
REFSEL,  
DIS[1:2]  
3-Level Input Pins (FBDS[0:1], FS, Output_Mode)  
VIHH  
VIMM  
VILL  
IIHH  
Three Level Input HIGH[4]  
Three Level Input MID[4]  
Three Level Input LOW[4]  
Min. < VCC < Max.  
Min. < VCC < Max.  
Min. < VCC < Max.  
VIN = VCC  
0.87*VCC  
V
V
0.47*VCC 0.53*VCC  
0.13*VCC  
V
Three Level Input  
HIGH Current  
3-level input pins  
200  
50  
µA  
IIMM  
IILL  
Three Level Input  
MID Current  
3-level input pins  
3-level input pins  
VIN = VCC/2  
VIN = GND  
–50  
–200  
µA  
µA  
Three Level Input  
LOW Current  
LVDIFF Input Pins (REF[A:B]±)  
VDIFF  
VIHHP  
VILLP  
Input Differential Voltage  
Highest Input HIGH Voltage  
400  
1.0  
VCC  
VCC  
mV  
V
Lowest Input LOW Voltage  
GND  
0.8  
VCC – 0.4  
VCC  
V
VCOM  
Common Mode Range (crossing voltage)  
V
Note:  
4. These inputs are normally wired to VCC, GND, or left unconnected (actual threshold voltages vary as a percentage of VCC). Internal termination resistors hold  
the unconnected inputs at VCC/2. If these inputs are switched, the function and timing of the outputs may glitch and the PLL may require an additional tLOCK  
time before all data sheet limits are achieved.  
Document #: 38-07271 Rev. *B  
Page 4 of 9  
[+] Feedback  
RoboClockII™ Junior  
CY7B9930V  
CY7B9940V  
Electrical Characteristics Over the Operating Range (continued)  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
Operating Current  
[5]  
ICCI  
Internal Operating  
Current  
CY7B9930V  
CY7B9940V  
CY7B9930V  
CY7B9940V  
VCC = Max., fMAX  
200  
200  
40  
mA  
mA  
mA  
mA  
ICCN  
Output Current  
VCC = Max.,  
CLOAD = 25 pF,  
R
Dissipation/Pair[6]  
50  
LOAD = 50at VCC/2,  
fMAX  
Capacitance  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
CIN  
Input Capacitance  
TA = 25°C, f = 1 MHz, VCC = 3.3V  
5
pF  
Switching Characteristics Over the Operating Range[7, 8, 9, 10, 11]  
CY7B9930/40V-2 CY7B9930/40V-5  
Parameter  
fin  
Description  
Min.  
12  
24  
12  
24  
Max.  
100  
200  
100  
200  
185  
200  
250  
Min.  
12  
24  
12  
24  
Max.  
100  
200  
100  
200  
185  
250  
550  
Unit  
MHz  
MHz  
MHz  
MHz  
ps  
Clock Input Frequency  
Clock Output Frequency  
CY7B9930V  
CY7B9940V  
CY7B9930V  
CY7B9940V  
fout  
tSKEWPR  
tSKEWBNK  
tSKEW0  
Matched-Pair Skew[12, 13]  
Intrabank Skew[12, 13]  
ps  
Output-Output Skew (same frequency and phase, rise to rise, fall  
to fall)[12, 13]  
ps  
tSKEW1  
tCCJ1-3  
Output-Output Skew (same frequency and phase, other banks at  
different frequency, rise to rise, fall to fall)[12, 13]  
250  
150  
650  
150  
ps  
Cycle-to-Cycle Jitter (divide by 1 output frequency,  
FB = divide by 1, 2, 3)  
ps  
Peak-  
Peak  
tCCJ4-12  
Cycle-to-Cycle Jitter (divide by 1 output frequency,  
FB = divide by 4, 5, 6, 8, 10, 12)  
100  
100  
ps  
Peak-  
Peak  
tPD  
Propagation Delay, REF to FB Rise  
Propagation Delay difference between two devices[14]  
REF input (Pulse Width HIGH)[15]  
REF input (Pulse Width LOW)[15]  
Output Rise/Fall Time[16]  
–250  
250  
200  
–500  
500  
200  
ps  
ps  
ns  
ns  
ns  
ms  
µs  
tPDDELTA  
tREFpwh  
tREFpwl  
tr/tf  
2.0  
2.0  
0.15  
2.0  
2.0  
0.15  
2.0  
10  
2.0  
10  
tLOCK  
PLL Lock Time From Power-up  
tRELOCK1  
PLL Re-Lock Time (from same frequency, different phase) with  
Stable Power Supply  
500  
500  
Notes:  
5.  
ICCI measurement is performed with Bank1 and FB Bank configured to run at maximum frequency (fNOM = 100 MHz for CY7B9930V, fNOM = 200 MHz for  
CY7B9940V), and all other clock output banks to run at half the maximum frequency. FS and OUTPUT_MODE are asserted to the HIGH state.  
6. This is dependent upon frequency and number of outputs of a bank being loaded. The value indicates maximum ICCN at maximum frequency and maximum  
load of 25 pF terminated to 50at VCC/2.  
7. This is for non-three level inputs.  
8. Assumes 25 pF Max. Load Capacitance up to 185 Mhz. At 200 MHz the max load is 10 pF.  
9. Both outputs of pair must be terminated, even if only one is being used.  
10. Each package must be properly decoupled.  
11. AC parameters are measured at 1.5V, unless otherwise indicated.  
12. Test Load CL= 25 pF, terminated to VCC/2 with 50.  
13. SKEW is defined as the time between the earliest and the latest output transition among all outputs for which the same phase delay has been selected when  
all outputs are loaded with 25 pF and properly terminated up to 185 MHz. At 200 MHz the max load is 10 pF.  
14. Guaranteed by statistical correlation. Tested initially and after any design or process changes that may affect these parameters.  
15. Tested initially and after any design or process changes that may affect these parameters.  
16. Rise and fall times are measured between 2.0V and 0.8V.  
Document #: 38-07271 Rev. *B  
Page 5 of 9  
[+] Feedback  
RoboClockII™ Junior  
CY7B9930V  
CY7B9940V  
Switching Characteristics Over the Operating Range[7, 8, 9, 10, 11] (continued)  
CY7B9930/40V-2 CY7B9930/40V-5  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
tRELOCK2  
PLL Re-Lock Time (from different frequency, different phase) with  
Stable Power Supply[17]  
1000  
1000  
µs  
tODCV  
tPWH  
tPWL  
tPDEV  
tOAZ  
Output duty cycle deviation from 50%[11]  
Output HIGH time deviation from 50%[18]  
Output LOW time deviation from 50%[18]  
Period deviation when changing from reference to reference[19]  
DIS[1:2] HIGH to output high-impedance from ACTIVE[12, 20]  
–1.0  
1.0  
1.5  
–1.0  
1.0  
1.5  
ns  
ns  
ns  
UI  
ns  
ns  
2.0  
2.0  
0.025  
10  
0.025  
10  
1.0  
0.5  
1.0  
0.5  
tOZA  
DIS[1:2] LOW to output ACTIVE from output is high-impedance[20,  
14  
14  
21]  
AC Test Loads and Waveform[22]  
3.3V  
R1  
For LOCK output only  
For all other outputs  
OUTPUT  
R1 = 910  
R2 = 910  
R1 = 100Ω  
R2 = 100Ω  
C
L
R2  
C < 30 pF  
L
C < 25 pF up to 185 MHz  
L
10 pF from 185 to 200 MHz  
(Includes fixture and  
probe capacitance)  
(a) LVTTL AC Test Load  
3.3V  
GND  
2.0V  
0.8V  
2.0V  
0.8V  
< 1 ns  
< 1 ns  
(b)TTL Input Test Waveform  
Notes:  
17. NOM must be within the frequency range defined by the same FS state.  
f
18. tPWH is measured at 2.0V. tPWL is measured at 0.8V.  
19. UI = Unit Interval. Examples: 1 UI is a full period. 0.1 UI is 10% of period.  
20. Measured at 0.5V deviation from starting voltage.  
21. For tOZA minimum, CL = 0 pF. For tOZA maximum, CL= 25 pF to 18 MHz, 10 pF from 185 to 200 MHz.  
22. These figures are for illustration only. The actual ATE loads may vary.  
Document #: 38-07271 Rev. *B  
Page 6 of 9  
[+] Feedback  
RoboClockII™ Junior  
CY7B9930V  
CY7B9940V  
AC Timing Diagrams[11]  
t
REFpwl  
QFA0 or  
t
REFpwh  
[1:4]Q[A:B]0  
REF  
t
t
SKEWPR  
SKEWPR  
t
t
PWH  
t
PWL  
PD  
QFA1 or  
2.0V  
[1:4]Q[A:B]1  
FB  
Q
0.8V  
t
CCJ1-3,4-12  
[1:4]QA[0:1]  
t
t
SKEWBNK  
SKEWBNK  
[1:4]QB[0:1]  
REF TO DEVICE 1 and 2  
t
ODCV  
t
ODCV  
t
PD  
Q
FB DEVICE1  
FB DEVICE2  
t
SKEW0,1  
t
SKEW0,1  
t
PDELTA  
t
PDELTA  
Other Q  
Ordering Information  
Propagation  
Delay (ps)  
Max. Speed  
(MHz)  
100  
100  
200  
200  
100  
200  
100  
200  
Ordering Code  
CY7B9930V-5AC  
CY7B9930V-5AI  
CY7B9940V-5AC  
CY7B9940V-5AI  
CY7B9930V-2AC  
CY7B9940V-2AC  
CY7B9930V-2AI  
CY7B9940V-2AI  
Package Name  
Package Type  
Operating Range  
500  
500  
500  
500  
250  
250  
250  
250  
A44  
A44  
A44  
A44  
A44  
A44  
A44  
A44  
44-Lead Thin Quad Flat Pack Commercial  
44-Lead Thin Quad Flat Pack Industrial  
44-Lead Thin Quad Flat Pack Commercial  
44-Lead Thin Quad Flat Pack Industrial  
44-Lead Thin Quad Flat Pack  
Commercial  
44-Lead Thin Quad Flat Pack  
44-Lead Thin Quad Flat Pack  
Industrial  
44-Lead Thin Quad Flat Pack  
Document #: 38-07271 Rev. *B  
Page 7 of 9  
[+] Feedback  
RoboClockII™ Junior  
CY7B9930V  
CY7B9940V  
Package Diagrams  
44-Lead Thin Plastic Quad Flat Pack A44  
51-85064-*B  
RoboClockII is a trademark of Cypress Semiconductor. All product and company names mentioned in this document are the  
trademarks of their respective holders.  
Document #: 38-07271 Rev. *B  
Page 8 of 9  
© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
[+] Feedback  
RoboClockII™ Junior  
CY7B9930V  
CY7B9940V  
Document History Page  
Document Title: CY7B9930V/CY7B9940V RoboClockII™ Junior High-Speed Multi-Frequency PLL Clock Buffer  
Document Number: 38-07271  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
Change from Spec number: 38-01141  
110536  
115109  
128463  
12/02/01  
7/03/02  
7/29/03  
SZV  
HWT  
RGL  
*A  
Add 44TQFP package for both CY7B9930/40V – Industrial Operating Range  
*B  
Added clock input frequency (fin) specifications in the switching character-  
istics table.  
Added Min. values for the clock output frequency (fout) in the switching  
characteristics table.  
Document #: 38-07271 Rev. *B  
Page 9 of 9  
[+] Feedback  

相关型号:

CY7B9940V-2AC

High-Speed Multi-Frequency PLL Clock Buffer
CYPRESS

CY7B9940V-2ACT

PLL Based Clock Driver, 7B Series, 8 True Output(s), 0 Inverted Output(s), PQFP44, 10 X 10 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-44
CYPRESS

CY7B9940V-2AI

High-Speed Multi-Frequency PLL Clock Buffer
CYPRESS

CY7B9940V-2AXC

High Speed Multifrequency PLL Clock Buffer
CYPRESS

CY7B9940V-2AXCT

High Speed Multifrequency PLL Clock Buffer
CYPRESS

CY7B9940V-2AXI

High Speed Multifrequency PLL Clock Buffer
CYPRESS

CY7B9940V-2AXIT

High Speed Multifrequency PLL Clock Buffer
CYPRESS

CY7B9940V-5AC

High-Speed Multi-Frequency PLL Clock Buffer
CYPRESS

CY7B9940V-5ACT

暂无描述
CYPRESS

CY7B9940V-5AI

High-Speed Multi-Frequency PLL Clock Buffer
CYPRESS

CY7B9940V-5AXC

High Speed Multifrequency PLL Clock Buffer
CYPRESS

CY7B9940V-5AXCT

High Speed Multifrequency PLL Clock Buffer
CYPRESS