CY7C09579V-83AXC [CYPRESS]

3.3 V 16 K / 32 K × 36 FLEx36® Synchronous Dual-Port Static RAM; 3.3 V 16 K / 32 K A ? 36 FLEx36®同步双端口静态RAM
CY7C09579V-83AXC
型号: CY7C09579V-83AXC
厂家: CYPRESS    CYPRESS
描述:

3.3 V 16 K / 32 K × 36 FLEx36® Synchronous Dual-Port Static RAM
3.3 V 16 K / 32 K A ? 36 FLEx36®同步双端口静态RAM

文件: 总32页 (文件大小:688K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C09569V CY7C09579V CY7C09289V CY7C09369V CY7C09379V CY7C09389V3.3  
Synchronous Dual-Port Static RAM  
V 16 K / 32 K × 36 FLEx36®  
CY7C09569V  
CY7C09579V  
3.3 V 16 K / 32 K × 36 FLEx36®  
Synchronous Dual-Port Static RAM  
Features  
Functional Description  
True dual-ported memory cells which allow simultaneous  
access of the same memory location  
The CY7C09569V and CY7C09579V are high-speed 3.3 V  
synchronous CMOS 16 K and 32 K × 36 dual-port static RAMs.  
Two ports are provided, permitting independent, simultaneous  
access for reads and writes to any location in memory.  
Registers on control, address, and data lines allow for minimal  
set-up and hold times. In pipelined output mode, data is regis-  
tered for decreased cycle time. Clock to data valid tCD2 = 5 ns  
(pipelined). Flow-through mode can also be used to bypass  
the pipelined output register to eliminate access latency. In  
flow-through mode data will be available tCD1 = 12.5 ns after  
the address is clocked into the device. Pipelined output or  
flow-through mode is selected via the FT/Pipe pin.  
Two flow-through/pipelined devices  
16 K × 36 organization (CY7C09569V)  
32 K × 36 organization (CY7C09579V)  
0.25-micron CMOS for optimum speed/power  
Three modes  
Flow-through  
Pipelined  
Burst  
Each port contains a burst counter on the input address  
register. The internal write pulse width is independent of the  
external R/W LOW duration. The internal write pulse is  
self-timed to allow the shortest possible cycle times.  
Bus-matching capabilities on right port  
(×36 to ×18 or ×9)  
Byte-select capabilities on left port  
100-MHz pipelined operation  
A HIGH on CE for one clock cycle will power down the internal  
circuitry to reduce the static power consumption. In the  
pipelined mode, one cycle is required with CE LOW to  
reactivate the outputs.  
High-speed clock to data access 5/6 ns  
3.3 V low operating power  
Active = 250 mA (typical)  
Standby = 10 μA (typical)  
Counter Enable Inputs are provided to stall the operation of the  
address input and utilize the internal address generated by the  
internal counter for fast interleaved memory applications. A  
port’s burst counter is loaded with the port’s Address Strobe  
(ADS). When the port’s Count Enable (CNTEN) is asserted,  
the address counter will increment on each LOW-to-HIGH  
transition of that port’s clock signal. This will read/write one  
word from/into each successive address location until CNTEN  
is deasserted. The counter can address the entire memory  
array and will loop back to the start. Counter Reset (CNTRST)  
is used to reset the burst counter.  
Fully synchronous interface for ease of use  
Burst counters increment addresses internally  
Shorten cycle times  
Minimize bus noise  
Supported in flow-through and pipelined modes  
Counter address read back via I/O lines  
Single chip enable  
Parts are available in 144-pin Thin Quad Plastic Flatpack  
(TQFP), 144-pin Pb-free Thin Quad Plastic Flatpack (TQFP)  
and 172-ball Ball Grid Array (BGA) packages.  
Automatic power-down  
Commercial and industrial temperature ranges  
Compact package  
144-pin TQFP (20 × 20 × 1.4 mm)  
144-pin Pb-free TQFP (20 × 20 × 1.4 mm)  
172-ball BGA (1.0-mm pitch) (15 × 15 × 0.51 mm)  
Selection Guide  
CY7C09569V  
CY7C09579V  
Unit  
–100  
100  
5
–83  
83  
6
fMAX2 (pipelined)  
MHz  
ns  
Maximum access time (clock to data, pipelined)  
Typical operating current ICC  
250  
30  
240  
25  
10  
mA  
mA  
μA  
Typical standby current for ISB1 (both ports TTL level)  
Typical standby current for ISB3 (both ports CMOS level)  
10  
Cypress Semiconductor Corporation  
Document Number: 38-06054 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised August 23, 2011  
CY7C09569V  
CY7C09579V  
Logic Block Diagram  
R/WL  
OEL  
R/WR  
OER  
Left  
Port  
Control  
Logic  
B0–B3  
CEL  
Right  
Port  
Control  
Logic  
FT/PipeL  
CER  
FT/PipeR  
9
I/O0L–I/O8L  
BE  
9
9
9
9
9
9
9
I/O9L–I/O17L  
I/O18L–I/O26L  
I/O27L–I/O35L  
I/O  
Control  
9/18/36  
Bus  
Match  
I/O  
Control  
I/OR  
14/15  
14/15  
[1]  
BM  
[1]  
A0–A13/14L  
A0–A13/14R  
SIZE  
Counter/  
Address  
Register  
Decode  
Counter/  
CLKL  
CLKR  
True Dual-Ported  
RAM Array  
Address  
Register  
Decode  
ADSL  
ADSR  
CNTENR  
CNTENL  
CNTRSTL  
CNTRSTR  
Note  
1. A –A for 16K; A –A for 32 K devices.  
0
13  
0
14  
Document Number: 38-06054 Rev. *F  
Page 2 of 32  
CY7C09569V  
CY7C09579V  
Contents  
Pin Configurations ...........................................................4  
Pin Definitions ..................................................................6  
Maximum Ratings..............................................................7  
Operating Range ...............................................................7  
Electrical Characteristics .................................................7  
Capacitance ......................................................................7  
AC Test Load and Waveforms .........................................8  
Switching Characteristics ................................................9  
Switching Waveforms ....................................................10  
Read/Write and Enable Operation..................................23  
Address Counter Control Operation..............................23  
Right Port Configuration.................................................24  
Right Port Operation .......................................................24  
Readout of Internal Address Counter............................24  
Left Port Operation .........................................................24  
Counter Operation ..........................................................25  
Bus Match Operation .....................................................25  
Ordering Information ......................................................27  
Ordering Code Definitions .........................................27  
Package Diagrams ..........................................................28  
Acronyms ........................................................................30  
Document Conventions .................................................30  
Units of Measure .......................................................30  
Sales, Solutions, and Legal Information ......................32  
Worldwide Sales and Design Support .......................32  
Products ....................................................................32  
PSoC Solutions .........................................................32  
Document Number: 38-06054 Rev. *F  
Page 3 of 32  
CY7C09569V  
CY7C09579V  
Pin Configurations  
144-pin Thin Quad Flatpack (TQFP)  
Top View  
I/O33L  
I/O34L  
1
2
108  
I/O33R  
I/O34R  
107  
106  
I/O35L  
A0L  
I/O35R  
A0R  
3
4
105  
104  
103  
102  
A1L  
5
6
7
8
A1R  
A2R  
A2L  
A3R  
A4R  
A3L  
A4L  
101  
100  
A5R  
A6R  
A7R  
A5L  
A6L  
A7L  
9
10  
99  
98  
97  
96  
11  
12  
13  
BM  
SIZE  
B0  
B1  
BE  
B2  
B3  
14  
15  
95  
94  
vss  
OER  
R/WR  
16  
17  
18  
19  
93  
92  
91  
90  
OEL  
R/WL  
VDD  
VSS  
VSS  
VDD  
VSS  
CY7C09569V (16 K × 36)  
CY7C09579V (32 K × 36)  
VSS  
20  
21  
89  
88  
CEL  
CER  
CLKL  
22  
23  
24  
25  
87  
86  
85  
84  
83  
82  
CLKR  
ADSR  
ADSL  
CNTRSTL  
CNTENL  
FT/PIPEL  
A8L  
CNTRSTR  
CNTENR  
FT/PIPER  
A8R  
26  
27  
28  
29  
30  
31  
A9R  
A9L  
81  
80  
A10R  
A10L  
79  
78  
77  
A11R  
A12R  
A11L  
A12L  
A13R  
A13L  
32  
33  
[3]  
[2]  
NC  
NC  
76  
75  
I/O26L  
I/O25L  
I/O24L  
34  
35  
36  
I/O26R  
74  
73  
I/O25R  
I/O24R  
Notes  
2. This pin is A14L for CY7C09579V.  
3. This pin is A14R for CY7C09579V.  
Document Number: 38-06054 Rev. *F  
Page 4 of 32  
CY7C09569V  
CY7C09579V  
172-ball Ball Grid Array (BGA)  
Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
I/O32L I/O30L NC  
A0L I/O33L I/O29 I/O17L I/O14L I/O12L I/O9L I/O9R I/O12R I/O14R I/O17R I/O29R I/O33R A0R  
VSS I/O13L VDD I/O11L I/O11R VDD I/O13R VSS  
NC I/O30R I/O32R  
A
B
C
D
E
F
NC  
A2L  
A4L  
VDD  
OEL  
A1L I/O31L I/O27L NC I/O15L I/O10L I/O10R I/O15R NC I/O27R I/O31R A1R  
A3L I/O35L I/O34L I/O28L I/O16L VSS VSS I/O16R I/O28R I/O34R I/O35R A3R  
NC  
A2R  
A4R  
VDD  
OER  
A5L  
A6L  
B2L  
NC  
A7L  
B3L  
B0L  
B1L  
CEL  
NC  
NC  
NC  
NC  
NC  
NC  
BM  
SIZE A7R  
CER VSS  
NC  
A5R  
A6R  
BE  
G
H
J
VSS R/WL A8L CLKL  
CLKR A8R R/WR VSS  
A9L  
A10L VSS ADSL  
NC  
NC  
NC ADSR VSS A10R  
A9R  
CNTRSTL  
CNTRSTR  
A11L A12L  
NC  
NC  
NC  
NC  
NC  
A12R A11R  
K
L
FT/PIPEL  
CNTENL  
CNTENR  
FT/PIPER  
A13L  
I/O26L I/O25L I/O19L VSS  
I/O7L I/O2L I/O2R I/O7R  
I/O24L I/O20L I/O8L I/O6L I/O5L I/O3L I/O0L I/O0R I/3R I/O5R I/O6R I/O8R I/O20R I/O24R  
I/O23L I/O21L NC VSS I/O4L VDD I/O1L I/O1R VDD I/O4R VSS NC I/O21R I/O23R  
VSS I/O19R I/O25R I/O26R  
A13R  
NC  
NC[4] I/O22L I/O18L NC  
NC I/O18R I/O22R NC[5]  
NC  
M
N
P
Notes  
4. This pin is A14L for CY7C09579V.  
5. This pin is A14R for CY7C09579V.  
Document Number: 38-06054 Rev. *F  
Page 5 of 32  
CY7C09569V  
CY7C09579V  
Pin Definitions  
Left Port  
A0L–A13/14L  
ADSL  
Right Port  
Description  
A0R–A13/14R  
ADSR  
Address Inputs (A0–A13 for 16 K, A0–A14 for 32 K devices)  
Address Strobe Input. Used as an address qualifier. This signal should be asserted LOW to assert  
the part using the externally supplied address on Address Pins. To load this address into the Burst  
Address Counter both ADS and CNTEN have to be LOW. ADS is disabled if CNTRST is asserted  
LOW  
CEL  
CER  
Chip Enable Input  
CLKL  
CLKR  
Clock Signal. This input can be free-running or strobed. Maximum clock input rate is fMAX  
CNTENL  
CNTENR  
Counter Enable Input. Asserting this signal LOW increments the burst address counter of its  
respective port on each rising edge of CLK. CNTEN is disabled if CNTRST is asserted LOW  
CNTRSTL  
CNTRSTR  
Counter Reset Input. Asserting this signal LOW resets the burst address counter of its respective  
port to zero. CNTRST is not disabled by asserting ADS or CNTEN  
I/O0L–I/O35L  
OEL  
I/O0R–I/O35R  
OER  
Data Bus Input/Output  
Output Enable Input. This signal must be asserted LOW to enable the I/O data pins during read  
operations  
R/WL  
R/WR  
FT/PIPER  
Read/Write Enable Input. This signal is asserted LOW to write to the dual port memory array. For  
read operations, assert this pin HIGH  
FT/PIPEL  
B0L–B3L  
Flow-Through/Pipelined Select Input. For flow-through mode operation, assert this pin LOW. For  
pipelined mode operation, assert this pin HIGH  
Byte Select Inputs. Asserting these signals enable read and write operations to the corresponding  
bytes of the memory array  
BM, SIZE  
BE  
Select Pins for Bus Matching. See Bus Matching for details  
Big Endian Pin. See Bus Matching for details  
Ground Input  
VSS  
VDD  
Power Input  
Document Number: 38-06054 Rev. *F  
Page 6 of 32  
CY7C09569V  
CY7C09579V  
Maximum Ratings[6]  
Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested.  
Static discharge voltage............................................... > 2001 V  
Latch-up current ..........................................................> 200 mA  
Storage temperature.................................... –65 °C to +150 °C  
Ambient temperature with  
power applied ................................................–55 °C to +125 °C  
Operating Range  
Ambient  
Temperature  
Supply voltage to ground potential ................... –0.5 V to +4.6 V  
Range  
VDD  
DC voltage applied to  
outputs in High Z state..............................–0.5 V to VDD + 0.5 V  
Commercial  
0 °C to +70 °C  
3.3 V ± 165 mV  
DC input voltage....................................–0.5 V to VDD + 0.5 V[7]  
Output current into outputs (LOW) .................................. 20 mA  
Electrical Characteristics  
Over the Operating Range  
CY7C09569V  
CY7C09579V  
Parameter  
Description  
Unit  
-100  
-83  
Min  
Typ  
Max  
Min  
2.4  
Typ  
Max  
VOH  
VOL  
VIH  
Output HIGH Voltage (VDD = Min., IOH = –4.0 mA)  
Output LOW Voltage (VDD = Min., IOL= +4.0 mA)  
Input HIGH Voltage  
2.4  
V
V
0.4  
0.4  
2.0  
2.0  
V
VIL  
Input LOW Voltage  
0.8  
10  
385  
75  
220  
1
0.8  
10  
360  
70  
210  
1
V
IOZ  
Output Leakage Current  
–10  
–10  
μA  
mA  
mA  
mA  
mA  
ICC  
Operating Current (VDD = Max., IOUT = 0 mA) Outputs Disabled  
Standby Current (Both Ports TTL Level)CEL & CER VIH, f = fMAX  
Standby Current (One Port TTL Level) CEL | CER VIH, f = fMAX  
250  
30  
170  
0.01  
240  
25  
160  
0.01  
ISB1  
ISB2  
ISB3  
Standby Current (Both Ports CMOS Level)  
CEL & CER VDD – 0.2V, f = 0  
ISB4  
Standby Current (One Port CMOS Level)  
CEL | CER VIH, f = fMAX  
150  
200  
140  
190  
mA  
Capacitance  
Parameter  
Description  
Input capacitance  
Output capacitance  
Test Conditions  
Max  
Unit  
CIN  
TA = 25 °C, f = 1 MHz, VDD = 3.3 V  
10  
10  
pF  
pF  
COUT  
Notes  
6. The voltage on any input or I/O pin can not exceed the power pin during power-up.  
7. Pulse width < 20 ns.  
Document Number: 38-06054 Rev. *F  
Page 7 of 32  
CY7C09569V  
CY7C09579V  
AC Test Load and Waveforms  
3.3 V  
Z0 = 50 Ω  
R = 50 Ω  
Output  
R1 = 590 Ω  
[8]  
C
Output  
V
TH  
= 1.5 V  
C = 5 pF  
R2 = 435 Ω  
(b) Three-State Delay (Load 2)  
(a) Normal Load (Load 1)  
3.0 V  
VSS  
90%  
10%  
90%  
10%  
3 ns  
All Input Pulses  
3 ns  
7
6
5
4
3
2
1
20[9]  
30 60 80 100  
200  
Capacitance (pF)  
(b) Load Derating Curve  
Notes  
8. External AC Test Load Capacitance = 10 pF.  
9. (Internal I/O pad Capacitance = 10 pF) + AC Test Load.  
Document Number: 38-06054 Rev. *F  
Page 8 of 32  
CY7C09569V  
CY7C09579V  
Switching Characteristics (Over the Operating Range)  
CY7C09569V/CY7C09579V  
–100 –83  
Parameter  
Description  
Unit  
Max  
Min  
Max  
67  
100  
Min  
fMAX1  
fMax Flow-Through  
fMax Pipelined  
45  
83  
MHz  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
fMAX2  
tCYC1  
tCYC2  
tCH1  
tCL1  
tCH2  
tCL2  
tR  
Clock Cycle Time - Flow-Through  
Clock Cycle Time - Pipelined  
Clock HIGH Time - Flow-Through  
Clock LOW Time - Flow-Through  
Clock HIGH Time - Pipelined  
Clock LOW Time - Pipelined  
Clock Rise Time  
15  
10  
6.5  
6.5  
4
22  
12  
7.5  
7.5  
5
4
5
3
3
tF  
Clock Fall Time  
3
3
tSA  
Address Set-Up Time  
Address Hold Time  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
4
tHA  
0.5  
4
tSB  
Byte Select Set-Up Time  
Byte Select Hold Time  
Chip Enable Set-Up Time  
Chip Enable Hold Time  
R/W Set-Up Time  
tHB  
0.5  
4
tSC  
tHC  
0.5  
4
tSW  
tHW  
tSD  
R/W Hold Time  
0.5  
4
Input Data Set-Up Time  
Input Data Hold Time  
ADS Set-Up Time  
tHD  
0.5  
4
tSAD  
tHAD  
tSCN  
tHCN  
tSRST  
tHRST  
tOE  
ADS Hold Time  
0.5  
4
CNTEN Set-Up Time  
CNTEN Hold Time  
0.5  
4
CNTRST Set-Up Time  
CNTRST Hold Time  
0.5  
Output Enable to Data Valid  
OE to Low Z  
8
9
[10, 11]  
tOLZ  
tOHZ  
tCD1  
tCD2  
tCA1  
2
2
[10, 11]  
OE to High Z  
1
7
1
7
Clock to Data Valid - Flow-Through  
Clock to Data Valid - Pipelined  
12.5  
5
18  
6
Clock to Counter Address Valid -  
Flow-Through  
12.5  
18  
tCA2  
tDC  
tCKHZ  
Clock to Counter Address Valid - Pipelined  
Data Output Hold After Clock HIGH  
Clock HIGH to Output High Z  
2
2
2
9
6
2
2
2
10  
ns  
ns  
ns  
ns  
[10, 11]  
[10, 11]  
7
tCKLZ  
Clock HIGH to Output Low Z  
Port to Port Delays  
tCWDD  
tCCS  
Write Port Clock HIGH to Read Data Delay  
Clock to Clock Set-Up Time  
30  
9
35  
10  
ns  
ns  
Notes  
10. This parameter is guaranteed by design, but it is not production tested.  
11. Test conditions used are Load 2.  
Document Number: 38-06054 Rev. *F  
Page 9 of 32  
CY7C09569V  
CY7C09579V  
Switching Waveforms  
Read Cycle for Flow-Through Output (FT/PIPE = V )[12, 13, 14, 15]  
IL  
tCYC1  
tCH1  
tCL1  
CLK  
CE  
tSC  
tHC  
tSC  
tHC  
tSB  
tHB  
B0-3  
R/W  
tSW  
tSA  
tHW  
tHA  
An  
An+1  
An+2  
An+3  
Address  
DataOUT  
tCKHZ  
Qn+2  
tDC  
tDC  
Qn  
tCD1  
Qn+1  
tCKLZ  
tOHZ  
tOLZ  
OE  
tOE  
Read Cycle for Pipelined Operation (FT/PIPE = V )[12, 13, 14, 15]  
IH  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSC  
tHC  
tSB  
tHB  
B0-3  
R/W  
tSW  
tSA  
tHW  
tHA  
Address  
DataOUT  
An  
An+1  
An+2  
An+3  
tDC  
1 Latency  
tCD2  
Qn  
Qn+1  
tOHZ  
Qn+2  
tCKLZ  
tOLZ  
OE  
t
OE  
Notes  
12. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.  
13. ADS = V , CNTEN = V and CNTRST = V  
.
IH  
IL  
IL  
14. The output is disabled (high-impedance state) by CE=V following the next rising edge of the clock.  
IH  
15. Addresses do not have to be accessed sequentially since ADS = V constantly loads the address on the rising edge of the CLK. Numbers are for reference only.  
IL  
Document Number: 38-06054 Rev. *F  
Page 10 of 32  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Bus Match Read Cycle for Flow-Through Output (FT/PIPE = V )[16, 17, 18, 19, 20]  
IL  
tCYC1  
tCH1  
tCL1  
CLK  
CE  
tSC  
tHC  
ADS  
R/W  
tSW  
tSA  
tHW  
tHA  
An  
An  
An+1  
An+1  
Address  
DataOUT  
tDC  
Qn  
tCD1  
Qn  
Qn+1  
1st  
Cycle  
Qn+1  
2nd  
Cycle  
1st  
Cycle  
2nd  
Cycle  
tCKLZ  
tDC  
LOW  
OE  
Bus Match Read Cycle for Pipelined Operation (FT/PIPE = V )[16, 17, 18, 19, 20]  
IH  
tCYC2  
tCL2  
tCH2  
CLK  
CE  
tHC  
tSC  
R/W  
tSW tHW  
ADS  
Address  
An+1  
An  
An  
An+1  
tSA tHA  
t
tCD2  
tCD2  
CD2  
tCLKZ  
DataOUT  
Qn  
Qn  
Qn+1  
1 Latency  
tDC  
tDC  
2nd Cycle  
tDC  
1st Cycle  
OE  
LOW  
1st Cycle  
Notes  
16. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.  
17. The output is disabled (high-impedance state) by CE=V following the next rising edge of the clock.  
IH  
18. Timing shown is for x18 bus matching; x9 bus matching is similar with 4 cycles between address inputs.  
19. See table “Right Port Operation“ for data output on first and subsequent cycles.  
20. CNTEN = V . In x9 and x18 Bus Matching Burst Mode operations (Write or Read), ADS can toggle on the rising edge of every clock cycle or it can be at V level  
IL  
IH  
all the time except when loading the initial external address (i.e. ADS = V only required when reading or writing the first Byte or Word).  
IL  
Document Number: 38-06054 Rev. *F  
Page 11 of 32  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Bank Select Pipelined Read[21, 22]  
tCYC2  
tCH2  
tCL2  
CLKL  
tHA  
tSA  
A3  
A4  
Address(B1)  
A5  
A0  
A1  
A2  
tHC  
tSC  
CE(B1)  
tCD2  
tCD2  
tCD2  
tCKHZ  
tHC  
tCKHZ  
tSC  
Q0  
Q3  
Q1  
DataOUT(B1)  
Address(B2)  
tHA  
tSA  
tDC  
A2  
tDC  
A3  
tCKLZ  
A4  
A5  
A0  
A1  
tHC  
tSC  
CE(B2)  
tCD2  
tCKHZ  
tCD2  
tSC  
tHC  
DataOUT(B2)  
Q4  
Q2  
tCKLZ  
tCKLZ  
Left Port Write to Flow-Through Right Port Read[22, 23, 24, 25, 26]  
CLKL  
tHW  
tSW  
R/WL  
tHA  
tSA  
No  
Match  
AddressL  
Match  
Valid  
tHD  
tSD  
DataINL  
tCCS  
CLKR  
R/WR  
tCD1  
tSW tHW  
tSA tHA  
No  
Match  
Match  
AddressR  
tCWDD  
tCD1  
DataOUTR  
Valid  
Valid  
tDC  
tDC  
Notes  
21. In this depth expansion example, B1 represents Bank #1 and B2 is Bank #2; Each Bank consists of one Cypress dual-port device from this data sheet.  
ADDRESS = ADDRESS  
.
(B2)  
(B1)  
22. B0 = B1 = B2 = B3 = BM = SIZE = ADS = CNTEN = V , CNTRST = V  
.
IL  
IH  
23. The same waveforms apply for a right port write to flow-through left port read.  
24. CE = B0 = B1 = B2 = B3 = ADS = CNTEN=V ; CNTRST= V  
.
IH  
IL  
25. OE = V for the right port, which is being read from. OE = V for the left port, which is being written to.  
IL  
IH  
26. If t  
maximum specified, then data from right port READ is not valid until the maximum specified for t  
. If t >maximum specified, then data is not valid  
CCS  
CCS  
CWDD  
until t  
+ t  
(t  
does not apply in this case).  
CCS  
CD1 CWDD  
Document Number: 38-06054 Rev. *F  
Page 12 of 32  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Pipelined Read-to-Write-to-Read (OE = V )[27, 28, 29, 30]  
IL  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSW  
tHW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
An+3  
An+4  
Address  
DataIN  
tSD tHD  
tSA  
tHA  
Dn+2  
tCD2  
tCD2  
tCKHZ  
tCKLZ  
Qn  
Qn+3  
DataOUT  
Read  
No Operation  
Write  
Read  
Notes  
27. Addresses do not have to be accessed sequentially since ADS = V constantly loads the address on the rising edge of the CLK. Numbers are for reference only.  
IL  
28. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.  
29. CE = ADS = CNTEN = V ; CNTRST = V  
.
IL  
IH  
30. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
Document Number: 38-06054 Rev. *F  
Page 13 of 32  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Pipelined Read-to-Write-to-Read (OE Controlled)[31, 32, 33, 34]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tHW  
tSW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
Address  
DataIN  
tSA  
tHA  
tSD tHD  
Dn+2  
Dn+3  
tCD2  
tCKLZ  
tCD2  
DataOUT  
Qn  
Qn+4  
tOHZ  
OE  
Read  
Write  
Read  
Notes  
31. Test conditions used are Load 2.  
32. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.  
33. CE = ADS = CNTEN = V ; CNTRST = V  
.
IH  
IL  
34. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
Document Number: 38-06054 Rev. *F  
Page 14 of 32  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Bus Match Pipelined Read-to-Write-to-Read (OE = V )[35, 36, 37, 38, 39, 40, 41]  
IL  
tCYC2  
CLK  
tCL2  
tCH2  
CE  
tSC  
tHC  
R/W  
tSW  
tHW  
Address  
An+3  
An+2  
An+4  
An+1  
An+2  
An+4  
An  
An+3  
An  
An+1  
tSA  
tHA  
ADS  
tCKLZ  
2nd Word  
Qn+3  
2nd Word  
Qn  
1st Word  
Qn+3  
1st Word  
Qn  
DataOUT  
tCKHZ  
tCD2  
tCD2  
tCD2  
2nd Word  
Dn+2  
1st Word  
Dn+2  
tDC  
DataIN  
tHD  
tSD  
No  
Operation 1st Cycle  
Read  
1st Cycle  
Read  
1st Cycle  
Write  
2nd Cycle  
Read  
Read  
2nd Cycle  
Read  
Read  
2nd Cycle  
Write  
Notes  
35. Test conditions used are Load 2.  
36. Timing shown is for x18 bus matching; x9 bus matching is similar with 4 cycles between address inputs.  
37. See table “Right Port Operation“ for data output on first and subsequent cycles.  
38. CNTEN = V . In x9 and x18 Bus Matching Burst Mode operations (Write or Read), ADS can toggle on the rising edge of every clock cycle or it can be at V level  
IL  
IH  
all the time except when loading the initial external address (i.e. ADS = V only required when reading or writing the first Byte or Word).  
IL  
39. CE = ADS = CNTEN = V ; CNTRST = V  
.
IL  
IH  
40. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
41. BM, SIZE, and BE must be reconfigured 1 cycle before operation is guaranteed. BM, SIZE, and BE should remain static for any particular port configuration.  
Document Number: 38-06054 Rev. *F  
Page 15 of 32  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Flow-Through Read-to-Write-to-Read (OE = V )[42, 43, 44, 45, 46, 47]  
IL  
tCYC1  
tCH1  
tCL1  
CLK  
CE  
tSW  
tHW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
An+3  
An+4  
Address  
DataIN  
tSD  
tHD  
tSA  
tHA  
Dn+2  
tCD1  
tCD1  
tCD1  
tCD1  
DataOUT  
Qn  
tDC  
Qn+1  
tCKHZ  
Qn+3  
tCKLZ  
tDC  
No  
Operation  
Read  
Write  
Read  
Flow-Through Read-to-Write-to-Read (OE Controlled)[42, 43,46, 47, 48]  
tCYC1  
tCH1  
tCL1  
CLK  
CE  
tSW  
tHW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
Address  
DataIN  
tSD  
tHD  
tSA  
tHA  
Dn+2  
Dn+3  
tOE  
tCD1  
tDC  
tCD1  
tCD1  
Qn  
Qn+4  
DataOUT  
OE  
tOHZ  
tCKLZ  
tDC  
Read  
Write  
Read  
Notes  
42. ADS = V , CNTEN = V and CNTRST = V .  
IH  
IL  
IL  
43. Addresses do not have to be accessed sequentially since ADS = V constantly loads the address on the rising edge of the CLK. Numbers are for reference only.  
IL  
44. Timing shown is for x18 bus matching; x9 bus matching is similar with 4 cycles between address inputs.  
45. See table “Right Port Operation“ for data output on first and subsequent cycles.  
46. CE = ADS = CNTEN = V ; CNTRST = V  
.
IL  
IH  
47. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
48. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.  
Document Number: 38-06054 Rev. *F  
Page 16 of 32  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Bus Match Flow-Through Read-to-Write-to-Read (OE = V )[49, 50, 51, 52, 53, 54, 55]  
IL  
tCYC1  
tCH1 tCL1  
CLK  
tSC tHC  
CE  
tSW tHW  
tSW tHW  
R/W  
tSA tHA  
An+1  
An+1  
Address  
ADS  
An  
An+1  
An+2  
An+1  
An+1  
An  
tSD tHD  
Dn+1  
Dn+1  
DataIN  
tCD1  
tDC  
2nd Word  
1st Word  
tCKHZ  
tCD1  
tCD1  
tCD1  
Qn  
1st Word  
Qn+1  
Qn+1  
Qn  
DataOUT  
2nd Word  
tDC  
tCKLZ  
Read  
1st Cycle  
Read  
2nd Cycle  
No  
Operation  
Write  
1st Cycle  
Write  
2nd Cycle  
Read  
1st Cycle  
Read  
2nd Cycle  
Notes  
49. Test conditions used are Load 2.  
50. Timing shown is for x18 bus matching; x9 bus matching is similar with 4 cycles between address inputs.  
51. See table “Right Port Operation“ for data output on first and subsequent cycles.  
52. CNTEN = V . In x9 and x18 Bus Matching Burst Mode operations (Write or Read), ADS can toggle on the rising edge of every clock cycle or it can be at V level  
IL  
IH  
all the time except when loading the initial external address (i.e. ADS = V only required when reading or writing the first Byte or Word).  
IL  
53. CE = ADS = CNTEN = V ; CNTRST = V  
.
IL  
IH  
54. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
55. BM, SIZE, and BE must be reconfigured 1 cycle before operation is guaranteed. BM, SIZE, and BE should remain static for any particular port configuration.  
Document Number: 38-06054 Rev. *F  
Page 17 of 32  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Pipelined Read with Address Counter Advance[56]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
Address  
An  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tSCN  
tHCN  
tCD2  
DataOUT  
Qx–1  
Qx  
tDC  
Qn  
Qn+1  
Qn+2  
Qn+3  
Read  
Counter Hold  
Read with Counter  
Read with Counter  
External  
Address  
Flow-Through Read with Address Counter Advance[56]  
tCYC1  
tCH1  
tCL1  
CLK  
tSA  
tHA  
An  
Address  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tCD1  
tSCN  
Qn+2  
tHCN  
Qx  
tDC  
Qn  
Qn+1  
DataOUT  
Qn+3  
Qn+4  
Counter Hold  
Read  
tDC  
tDC  
Read  
with  
External  
Address  
Read with Counter  
tCD1  
tCD1  
Counter  
Note  
56. CE = OE = V ; R/W = CNTRST = V  
.
IH  
IL  
Document Number: 38-06054 Rev. *F  
Page 18 of 32  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Write with Address Counter Advance (Flow-Through or Pipelined Outputs)[57, 58]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
Address  
Internal  
Address  
An  
An+1  
An+2  
An+3  
An+4  
tSAD  
tHAD  
ADS  
CNTEN  
DataIN  
tSCN  
tHCN  
Dn  
Dn+1  
Dn+1  
Dn+2  
Dn+3  
Dn+4  
tSD  
tHD  
Write External  
Address  
Write with  
Counter  
Write Counter  
Hold  
Write with Counter  
Notes  
57. CE= B0 = B1 = B2 = B3 = R/W = V ; CNTRST = V  
.
IH  
IL  
58. The “Internal Address” is equal to the “External Address” when ADS = CNTEN = V and CNTRST=V  
.
IL  
IH  
Document Number: 38-06054 Rev. *F  
Page 19 of 32  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Counter Reset (Pipelined Outputs)[59, 60, 61, 62, 63]  
tCYC2  
tCH2 tCL2  
CLK  
tHA  
Am  
tSA  
Ap  
An  
Address  
Internal  
Ap  
Ax  
An  
1
0
Am  
Address  
tHW  
tSW  
R/W  
ADS  
CNTEN  
CNTRST  
tHRST  
tSRST  
tHD  
tSD  
DataIN  
D0  
tCD2  
tCD2  
[63]  
DataOUT  
Q0  
Qn  
Q1  
tCKLZ  
Read  
Address 1  
Read  
Address An  
Counter  
Reset  
Write  
Address 0  
Read  
Address 0  
Read  
Address Am  
Notes  
59. Test conditions used are Load 2.  
60. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.  
61. CE = B0 = B1 = B2 = B3 = V  
.
IL  
62. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset.  
63. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals. Ideally, DATA  
should be in the High-Impedance state  
OUT  
during a valid WRITE cycle.  
Document Number: 38-06054 Rev. *F  
Page 20 of 32  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Counter Reset (Flow-Through Outputs)[64, 65, 66, 67, 68]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA tHA  
An  
An+1  
Address  
Internal  
Address  
AX  
0
An  
An+1  
1
tSW tHW  
R/W  
ADS  
CNTEN  
tHRST  
tSRST  
CNTRST  
DataIN  
tHD  
tSD  
D0  
tCD1  
DataOUT  
Q0  
Qn  
Q1  
Counter  
Reset  
Write  
Address 0  
Read  
Address 0  
Read  
Address 1  
Read  
Address n  
Notes  
64. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.  
65. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
66. CE = B0 = B1 = B2 = B3 = V  
.
IL  
67. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset.  
68. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals. Ideally, DATA  
during a valid WRITE cycle.  
should be in the High-Impedance state  
OUT  
Document Number: 38-06054 Rev. *F  
Page 21 of 32  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Pipelined Read of State of Address Counter [69, 70, 71]  
tCYC2  
tCH2 tCL2  
CLK  
tSA  
tHA  
An  
Address  
Internal  
Address  
An  
An+2  
An+1  
tSAD  
tHAD  
ADS  
CNTEN  
DataOUT  
tSAD  
tHAD  
tSCN  
tHCN  
tSCN  
tHCN  
tSCN  
tHCN  
tCA2  
Qx-1  
Qx-2  
Qn  
An  
Qn+1  
Qn+2  
Read with  
Counter  
Load  
External  
Address  
tDC  
Read Counter Address  
Counter  
Hold  
Read With Counter  
Flow-Through Read of State of Address Counter [69, 70, 72]  
tCYC1  
tCH1 tCL1  
CLK  
tSA  
tHA  
An  
Address  
Internal  
Address  
An  
An+1  
An+3  
An+2  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
tSCN  
tHCN  
tSCN  
tHCN  
CNTEN  
tCA1  
tHCN  
tSCN  
DataOUT  
Qn  
Qx  
An  
Qn+2  
Qn+1  
Qn+3  
Read with  
Counter  
tDC  
Read Counter Address  
Load  
External  
Address  
Counter  
Hold  
Read with Counter  
Notes  
69. CE = OE = V ; R/W = CNTRST = V  
.
IH  
IL  
70. When reading ADDRESS  
in x9 Bus Match mode, readout of A is extended by 1 cycle.  
OUT  
N
71. For Pipelined address counter read, signals from address counter operation table from must be valid for 2 consecutive cycles for x36 and x18 mode and for 3  
consecutive cycles for x9 mode.  
72. For flow-through address counter read, signals from address counter operation table must be valid for consecutive cycles for x36.  
Document Number: 38-06054 Rev. *F  
Page 22 of 32  
CY7C09569V  
CY7C09579V  
Read/Write and Enable Operation[73, 74, 75]  
Inputs  
Outputs  
I/O0I/O35  
High Z  
Operation  
OE  
CLK  
CE  
R/W  
X
H
X
Deselected[76]  
Write  
X
L
L
L
L
L
H
X
DIN  
DOUT  
High Z  
Read[76]  
H
X
Outputs disabled  
Address Counter Control Operation[73, 77]  
Previous  
Address  
CLK  
OE  
R/W  
ADS  
CNTEN CNTRST  
Mode  
Operation  
Counter reset  
Address load into counter  
Address  
X
X
X
X
X
X
L
L
H
H
Reset  
Load  
An  
An  
X
X
L
X
H
L
L
An  
H
Hold + External address blocked -  
Read  
counter address readout  
X
X
An  
An  
X
X
X
X
H
H
H
L
H
H
Hold  
External address blocked -  
counter disabled  
Increment Counter increment  
Notes  
73. “X” = “Don’t Care,” “H” = V , “L” = V  
.
IL  
IH  
74. ADS, CNTEN, CNTRST = “Don’t Care.”  
75. OE is an asynchronous input signal.  
76. When CE changes state In the pipelined mode, deselection and read happen in the following clock cycle.  
77. Counter operation is independent of CE.  
Document Number: 38-06054 Rev. *F  
Page 23 of 32  
CY7C09569V  
CY7C09579V  
Right Port Configuration[78, 79]  
BM  
0
SIZE  
Configuration  
I/O Pins used  
0
0
1
x36  
x18  
x9  
I/O0R–35R  
I/O0R–17R  
I/O0R–8R  
1
1
Right Port Operation[80]  
Configuration  
BE  
0
Data on 1st Cycle  
DQ0R–17R  
Data on 2nd Cycle  
DQ18R–35R  
Data on 3rd Cycle  
Data on 4th Cycle  
x18  
x18  
x9  
1
DQ18R–35R  
DQ0R–8R  
DQ0R–17R  
0
DQ9R–17R  
DQ18R–26R  
DQ9R–17R  
DQ27R–35R  
DQ0R–8R  
x9  
1
DQ27R–35R  
DQ18R–26R  
Readout of Internal Address Counter[81]  
Address on 2nd  
Cycle  
I/O Pins used on 2nd  
Cycle  
Configuration  
Address on 1st Cycle  
I/O Pins used on 1st Cycle  
Left Port x36  
Right Port x36  
Right Port x18  
Right Port x9  
A0L–14L  
A0R–14R  
I/O3L–17L  
I/O3R–17R  
I/O2R–17R  
I/O0R–8R  
WA, A0R–14R  
A6R–14R  
BA, WA, A0R–5R  
I/O1R–8R  
Left Port Operation  
Control Pin  
Effect  
B0  
B1  
B2  
B3  
I/O0–8 Byte Control  
I/O9–17 Byte Control  
I/O18–26 Byte Control  
I/O27–35 Byte Control  
Notes  
78. BM, SIZE, and BE must be reconfigured 1 cycle before operation is guaranteed. BM, SIZE, and BE should remain static for any particular port configuration.  
79. In x36 mode, BE input is a “Don’t Care.”  
80. DQ represents data output of the chip.  
81. x18 and x9 configuration apply to right port only.  
Document Number: 38-06054 Rev. *F  
Page 24 of 32  
CY7C09569V  
CY7C09579V  
Counter Operation  
Bus Match Operation  
The CY7C09569V/09579V Dual-Port RAM (DPRAM) contains  
on-chip address counters (one for each port) for the  
synchronous members of the product family. Besides the main  
x36 format, the right port allows bus matching (x18 or x9,  
user-selectable). An internal sub-counter provides the extra  
addresses required to sequence out the 36-bit word in 18-bit  
or 9-bit increments. The sub-counter counts up in the “Little  
Endian” mode, and counts down if the user has chosen the  
“Big Endian” mode. The address counter is required to be in  
increment mode in order for the sub-counter to sequence out  
the second word (in x18 mode) or the remaining three bytes  
(in x9 mode).  
The right port of the CY7C09569V/09579V 16K/32Kx36  
dual-port SRAM can be configured in a 36-bit long-word, 18-bit  
word, or 9-bit byte format for data I/O. The data lines are  
divided into four lanes, each consisting of 9 bits (byte-size data  
lines).  
Figure 2. Bus Match Operation Diagram  
BE  
9
/
9
/
9
CY7C09569V  
CY7C09579V  
16K/32Kx36  
Dual Port  
x36  
/
x9, x18, x36  
/
For a x36 format (the only active format on the left port), each  
address counter in the CY7C09579V uses addresses (A0–14).  
/
9
/
For the right port (allowing for the bus-matching feature), a  
maximum of two address bits (out of a 2-bit sub-counter) are  
added.  
BM SIZE  
1. ADSL/R (pin #23/86) is a port’s address strobe, allowing the  
loading of that port's burst counters if the corresponding  
CNTENL/R pin is active as well.  
The Bus Match Select (BM) pin works with Bus Size Select  
(SIZE) and Big Endian Select (BE) to select the bus width  
(long-word, word, or byte) and data sequencing arrangement  
for the right port of the dual-port device. A logic “0” applied to  
both the Bus Match Select (BM) pin and to the Bus Size Select  
(SIZE) pin will select long-word (36-bit) operation. A logic “1”  
level applied to the Bus Match Select (BM) pin will enable  
whether byte or word bus width operation on the right port I/Os  
depending on the logic level applied to the SIZE pin. The level  
of Bus Match Select (BM) must be static throughout normal  
device operation.  
2. CNTENL/R (pin #25/84) is a port’s count enable, provided  
to stall the operation of the address input and utilize the  
internal address generated by the internal counter for fast  
interleaved memory applications; when asserted, the  
address counter will increment on each positive transition  
of that port's clock signal.  
3. CNTRSTL/R (pin #24/85) is a port's burst counter reset.  
A new read-back (Hold+Read Mode) feature has been added,  
which is different between the left and right port due to the bus  
matching feature provided only for the right port. In read-back  
mode the internal address of the counter will be read from the  
data I/Os as shown in Figure 1.  
The Bus Size Select (SIZE) pin selects either a byte or word  
data arrangement on the right port when the Bus Match Select  
(BM) pin is HIGH. A logic “1” on the SIZE pin when the BM pin  
is HIGH selects a byte bus (9-bit) data arrangement. A logic  
“0” on the SIZE pin when the BM pin is HIGH selects a word  
bus (18-bit) data arrangement. The level of the Bus Size Select  
(SIZE) must also be static throughout normal device operation.  
Figure 1. Counter Operation Diagram  
The Big Endian Select (BE) pin is a multiple-function pin during  
word or byte bus selection (BM = 1). BE is used in Big Endian  
Select mode to determine the order by which bytes (or words)  
of data are transferred through the right data port. A logic “0”  
on the BE pin will select Little Endian data sequencing  
arrangement and a logic “1” on the BE pin will select a Big  
Endian data sequencing arrangement. Under these circum-  
stances, the level on the BE pin should be static throughout  
dual-port operation.  
Address  
CY7C09569V  
CY7C09579V  
RAM  
ARRAY  
_______  
Long-Word (36-bit) Operation  
ADS  
______________  
Bus Match Select (BM) and Bus Size Select (SIZE) set to a  
logic “0” will enable standard cycle long-word (36-bit)  
operation. In this mode, the right port’s I/O operates essentially  
in an identical fashion to the left port of the dual-port SRAM.  
However no Byte Select control is available. All 36 bits of the  
long-word are shifted into and out of the right port’s I/O buffer  
stages. All read and write timing parameters may be identical  
with respect to the two data ports. When the right port is  
configured for a long-word size, Big- Endian Select (BE) pin  
has no application and their inputs are “Don’t Care”[82] for the  
external user.  
CNTRST  
____________  
CNTEN  
I/O’s  
Note  
82. Even though a logic level applied to a “Don’t Care” input will not change the logical operation of the dual-port, inputs that are temporarily a “Don’t Care” (along  
with unused inputs) must not be allowed to float. They must be forced either HIGH or LOW.  
Document Number: 38-06054 Rev. *F  
Page 25 of 32  
CY7C09569V  
CY7C09579V  
Word (18-bit) Operation  
Byte (9-bit) Operation  
Word (18-bit) bus sizing operation is enabled when Bus Match  
Select (BM) is set to a logic “1” and the Bus Size Select (SIZE)  
pin is set to a logic “0.” In this mode, 18 bits of data are ported  
through I/O0R–17R. The level applied to the Big Endian (BE) pin  
determines the right port data I/O sequencing order (Big Endian  
or Little Endian).  
Byte (9-bit) bus sizing operation is enabled when Bus Match  
Select (BM) is set to a logic “1” and the Bus Size Select (SIZE)  
pin is set to a logic “1.” In this mode, 9 bits of data are ported  
through I/O0R–8R  
.
Big Endian and Little Endian data sequencing is available for  
dual-port operation. The level applied to the Big Endian pin (BE)  
under these circumstances will determine the right port data I/O  
sequencing order (Big or Little Endian). A logic LOW applied to  
the BE pin during byte (9-bit) bus size operation will select Little  
Endian operation. In this case, the least significant data byte is  
read from the right port first or written to the right port first. A logic  
“1” on the BE pin during byte (9-bit) bus size operation will select  
Big Endian operation resulting in the most significant data word  
to be transferred through the right port first. Internally, the data  
will be stored in the appropriate 36-bit LSB or MSB I/O memory  
location. Device operation requires a minimum of four clock  
cycles to read or write during byte (9-bit) bus size operation. An  
internal sub-counter automatically increments the right port  
multiplexer control when Little or Big Endian operation is in  
effect. When transferring data in byte (9-bit) bus match format,  
the unused I/O pins (I/O9RQ–35R) are three-stated.  
During word (18-bit) bus size operation, a logic LOW applied to  
the BE pin will select Little Endian operation. In this case, the  
least significant data word is read from the right port first or  
written to the right port first. A logic “1” on the BE pin during word  
(18-bit) bus size operation will select Big Endian operation  
resulting in the most significant data word being transferred  
through the right port first. Internally, the data will be stored in the  
appropriate 36-bit LSB or MSB I/O memory location. Device  
operation requires a minimum of two clock cycles to read or write  
during word (18-bit) bus size operation. An internal sub-counter  
automatically increments the right port multiplexer control when  
Little or Big Endian operation is in effect.  
Document Number: 38-06054 Rev. *F  
Page 26 of 32  
CY7C09569V  
CY7C09579V  
Ordering Information  
16 K × 36 3.3 V Synchronous Dual-Port SRAM  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
100  
CY7C09569V-100AXC  
CY7C09569V-100BBC  
A144  
144-pin Pb-free Thin Quad Flat Pack  
172-ball Ball Grid Array (BGA)  
Commercial  
BB172  
32K × 36 3.3 V Synchronous Dual-Port SRAM  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
100  
CY7C09579V-100AC  
CY7C09579V-100AXC  
CY7C09579V-100BBC  
CY7C09579V-83AC  
CY7C09579V-83AXC  
CY7C09579V-83BBC  
A144  
144-pin Thin Quad Flat Pack  
Commercial  
A144  
144-pin Pb-free Thin Quad Flat Pack  
172-ball Ball Grid Array (BGA)  
144-pin Thin Quad Flat Pack  
BB172  
A144  
83  
Commercial  
A144  
144-pin Pb-free Thin Quad Flat Pack  
172-ball Ball Grid Array (BGA)  
BB172  
Ordering Code Definitions  
CY 7C 09 X9 V - XXX X  
5
X
X
Temperature Range:  
C = Commercial  
X = Pb-free (RoHS Compliant)  
Package Type: X = A or BB  
A = 144-pin TQFP  
BB = 172-ball BGA  
Speed Grade: XXX = 83 MHz or 100 MHz  
V = 3.3 V  
X9 = Depth: X = 6 or 7  
6 = 16K; 7 = 32K  
5 = Width: × 36  
09 = Sync  
7C = Dual Port SRAM  
CY = Cypress Device  
Document Number: 38-06054 Rev. *F  
Page 27 of 32  
CY7C09569V  
CY7C09579V  
Package Diagrams  
Figure 3. 144-pin TQFP (20 × 20 × 1.4 mm)  
51-85047 *D  
Document Number: 38-06054 Rev. *F  
Page 28 of 32  
CY7C09569V  
CY7C09579V  
Figure 4. 172-ball FBGA (15 × 15 × 1.25 mm)  
51-85114 *C  
Document Number: 38-06054 Rev. *F  
Page 29 of 32  
CY7C09569V  
CY7C09579V  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
BGA  
Description  
ball grid array  
Symbol  
ns  
Unit of Measure  
CMOS  
CE  
complementary metal oxide semiconductor  
chip enable  
nano seconds  
volts  
V
I/O  
input/output  
µA  
mA  
pF  
°C  
W
micro amperes  
milli amperes  
pico Farad  
degree Celsius  
watts  
OE  
output enable  
SRAM  
TQFP  
TSOP  
WE  
static random access memory  
thin quad plastic flatpack  
thin small outline package  
write enable  
Document Number: 38-06054 Rev. *F  
Page 30 of 32  
CY7C09569V  
CY7C09579V  
Document History Page  
Document Title: CY7C09569V/CY7C09579V 3.3 V 16 K / 32 K × 36 FLEx36® Synchronous Dual-Port Static RAM  
Document Number: 38-06054  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
110213  
122304  
349775  
2897215  
SZV  
RBI  
12/16/01  
12/27/02  
See ECN  
03/22/10  
Change from Spec number: 38-00743 to 38-06054  
Power up requirements added to Maximum Ratings Information  
Added Pb-free Information  
*A  
*B  
*C  
RUY  
RAME  
Removed inactive parts from ordering information. Updated package  
diagrams.  
*D  
*E  
*F  
3110406  
3162642  
3352391  
ADMU  
ADMU  
ADMU  
12/14/10  
02/04/11  
08/23/11  
Added Ordering Code Definitions.  
Minor edits and updated in new template.  
Removed speed bin -67  
Added Acronyms and Document Conventions.  
No technical updates.  
Updated package diagram spec 51-85047 to *D revision.  
Document Number: 38-06054 Rev. *F  
Page 31 of 32  
CY7C09569V  
CY7C09579V  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
PSoC Solutions  
Clocks & Buffers  
Interface  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2001-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 38-06054 Rev. *F  
Revised August 23, 2011  
Page 32 of 32  
FLEx36 is a registered trademark of Cypress Semiconductor Corporation. All other products and company names mentioned in this document may be the trademarks of their respective holders.  

相关型号:

CY7C09579V-83BAC

暂无描述
CYPRESS

CY7C09579V-83BAI

Dual-Port SRAM, 32KX36, 6ns, CMOS, PBGA172, 15 X 15 MM, 0.51 MM HEIGHT, 1 MM PITCH, BGA-172
CYPRESS

CY7C09579V-83BBC

3.3V 16K/32K x 36 FLE x 36-TM Synchronous Dual-Port Static RAM
CYPRESS

CY7C09579V-83BBI

3.3V 16K/32K x 36 FLE x 36-TM Synchronous Dual-Port Static RAM
CYPRESS

CY7C1001

256K x 4 Static RAM with Separate I/O
CYPRESS

CY7C1001-12

256K x 4 Static RAM with Separate I/O
CYPRESS

CY7C1001-12DC

Memory IC
CYPRESS

CY7C1001-12DMB

暂无描述
CYPRESS

CY7C1001-12PC

256K x 4 Static RAM with Separate I/O
CYPRESS

CY7C1001-12VC

256K x 4 Static RAM with Separate I/O
CYPRESS

CY7C1001-15

256K x 4 Static RAM with Separate I/O
CYPRESS
ETC