CY7C1324-100AC [CYPRESS]

Cache SRAM, 128KX18, 8ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100;
CY7C1324-100AC
型号: CY7C1324-100AC
厂家: CYPRESS    CYPRESS
描述:

Cache SRAM, 128KX18, 8ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100

静态存储器 内存集成电路
文件: 总15页 (文件大小:263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1324  
3.3V 128K x 18 Synchronous  
Cache RAM  
Features  
Functional Description  
• Supports117-MHzmicroprocessorcachesystems with  
zero wait states  
• 128K by 18 common I/O  
• Fast clock-to-output times  
— 7.5 ns (117 MHz)  
The CY7C1324 is a 3.3V, 128K by 18 synchronous cache  
RAM designed to interface with high-speed microprocessors  
with minimum glue logic. Maximum access delay from clock  
rise is 7.5 ns (117-MHz version). A 2-bit on-chip counter cap-  
tures the first address in a burst and increments the address  
automatically for the rest of the burst access.  
• Two-bit wrap-around counter supporting either inter-  
leaved or linear burst sequence  
• Separate processorand controller address strobes pro-  
vides direct interface with the processor and external  
cache controller  
• Synchronous self-timed write  
• Asynchronous output enable  
• I/Os capable of 2.5–3.3V operation  
• JEDEC-standard pinout  
• 100-pin TQFP packaging  
• ZZ “sleep” mode  
The CY7C1324 allows both interleaved or linear burst se-  
quences, selected by the MODE input pin. A HIGH input on  
MODE selects an interleaved burst sequence, while a LOW  
selects a linear burst sequence. Burst accesses can be initiat-  
ed with the Processor Address Strobe (ADSP) or the cache  
Controller Address Strobe (ADSC) inputs. Address advance-  
ment is controlled by the Address Advancement (ADV) input.  
A synchronous self-timed write mechanism is provided to sim-  
plify the write interface. A synchronous chip enable input and  
an asynchronous output enable input provide easy control for  
bank selection and output three-state control.  
Logic Block Diagram  
MODE  
2
(A ,A )  
0
1
Q
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
CLR  
1
ADSP  
Q
15  
17  
ADDRESS  
REGISTER  
CE  
D
128K X 18  
MEMORY  
ARRAY  
A
[16:0]  
GW  
17  
15  
BWE  
BW  
D
Q
Q
DQ[15:8]  
BYTEWRITE  
REGISTERS  
1
D
DQ[7:0]  
BYTEWRITE  
REGISTERS  
BW  
0
CE  
1
2
CE  
D
CE  
ENABLE  
REGISTER  
CLK  
Q
CE  
3
18  
18  
INPUT  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ  
DP  
[15:0]  
[1:0]  
Pin  
Selection Guide  
7C1324–117  
7C1324–100  
7C1324–80  
7C1324–50  
11.0  
Maximum Access Time (ns)  
7.5  
350  
1.0  
8.0  
325  
1.0  
8.5  
300  
1.0  
Maximum Operating Current (mA)  
Maximum Standby Current (mA)  
250  
1.0  
Pentium is a registered trademark of Intel Corporation.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
August 4, 1999  
CY7C1324  
Pin Configuration  
100-Lead TQFP  
NC  
NC  
NC  
1
A10  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
NC  
3
NC  
VDDQ  
VSS  
4
VDDQ  
VSS  
NC  
5
NC  
6
NC  
7
DP0  
DQ7  
DQ6  
VSS  
VDDQ  
DQ5  
DQ4  
VSS  
NC  
DQ8  
DQ9  
VSS  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
DQ10  
DQ11  
NC  
CY7C1324  
BYTE0  
VDD  
NC  
VDD  
ZZ  
BYTE1  
VSS  
DQ12  
DQ13  
VDDQ  
VSS  
DQ3  
DQ2  
VDDQ  
VSS  
DQ1  
DQ0  
NC  
DQ14  
DQ15  
DP1  
NC  
NC  
VSS  
VSS  
VDDQ  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
2
CY7C1324  
input is asserted LOW, the requested data will be available at  
Functional Description (continued)  
the data outputs a maximum to t  
after clock rise. ADSP is  
CDV  
Single Write Accesses Initiated by ADSP  
ignored if CE is HIGH.  
1
This access is initiated when the following conditions are sat-  
Burst Sequences  
isfied at clock rise: (1) CE , CE , and CE are all asserted  
1
2
3
active, and (2) ADSP is asserted LOW. The addresses pre-  
sented are loaded into the address register and the burst  
counter/control logic and delivered to the RAM core. The write  
This family of devices provide a 2-bit wrap around burst  
counter inside the SRAM. The burst counter is fed by A  
,
[1:0]  
and can follow either a linear or interleaved burst order. The  
burst order is determined by the state of the MODE input. A  
LOW on MODE will select a linear burst sequence. A HIGH on  
MODE will select an interleaved burst order. Leaving MODE  
unconnected will cause the device to default to a interleaved  
burst sequence.  
inputs (GW, BWE, and BWS  
) are ignored during this first  
[1:0]  
clock cycle. If the write inputs are asserted active (see Write  
Cycle Descriptions table for appropriate states that indicate a  
write) on the next clock rise, the appropriate data will be  
latched and written into the device. Byte writes are allowed.  
During byte writes, BWS controls DQ  
and DP while  
0
[7:0]  
0
BWS controls DQ  
and DP . All I/Os are three-stated dur-  
1
[15:8]  
1
Table 1. Counter Implementation for the Intel  
Pentium®/80486 Processors Sequence  
ing a byte write. Since these are common I/O devices, the  
asynchronous OE input signal must be deasserted and the  
I/Os must be three-stated prior to the presentation of data to  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
DQ  
and DP  
. As a safety precaution, the data lines are  
[15:0]  
[1:0]  
three-stated once a write cycle is detected, regardless of the  
state of OE.  
A
,A  
A
, A  
A
, A  
A
, A  
X + 1 x  
X + 1  
x
X + 1  
x
X + 1  
x
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Single Write Accesses Initiated by ADSC  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE , CE , and CE are all asserted  
1
2
3
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
HIGH, and (4) the write input signals (GW, BWE, and BWS  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
)
Table 2. Counter Implementation for a Linear Sequence  
[1:0]  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
The addresses presented are loaded into the address register,  
burst counter/control logic and delivered to the RAM core. The  
A
, A  
A
, A  
A
, A  
A
, A  
X + 1 x  
X + 1  
x
X + 1  
x
X + 1  
x
information presented to DQ  
and DP  
will be written  
[15:0]  
[1:0]  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
into the specified address location. Byte writes are allowed,  
with BWS controlling DQ and DP while BWS controlling  
0
[7:0]  
0
1
DQ  
and DP . All I/Os are three-stated when a write is  
[15:8]  
1
detected, even a byte write. Since these are common I/O de-  
vices, the asynchronous OE input signal must be deasserted  
and the I/Os must be three-stated prior to the presentation of  
data to DQ  
and DP  
. As a safety precaution, the data  
[15:0]  
[1:0]  
Sleep Mode  
lines are three-stated once a write cycle is detected, regard-  
less of the state of OE.  
The ZZ input pin is an asynchronous input. Asserting a HIGH  
input on ZZ places the SRAM in a power conservation sleep”  
mode. Two clock cycles are required to enter into or exit from  
this sleepmode. While in this mode, data integrity is guaran-  
teed. Accesses pending when entering the sleepmode are  
not considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
Single Read Accesses  
A single read access is initiated when the following conditions  
are satisfied at clock rise: (1) CE , CE , and CE are all as-  
serted active, and (2) ADSP or ADSC is asserted LOW (if the  
access is initiated by ADSC, the write inputs must be deassert-  
ed during this first cycle). The address presented to the ad-  
dress inputs is latched into the Address Register, burst counter  
/control logic and presented to the memory core. If the OE  
1
2
3
the sleepmode. CE , CE , CE , ADSP, and ADSC must re-  
1
2
3
main inactive for the duration of t  
after the ZZ input re-  
ZZREC  
turns low  
3
CY7C1324  
Cycle Description Table[1, 2, 3]  
ADD  
Cycle Description  
Used  
CE  
H
L
CE  
X
X
H
X
X
X
L
CE  
X
L
ZZ ADSP ADSP ADV WE OE  
CLK  
DQ  
1
3
2
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
SNOOZE MODE, Power-down  
READ Cycle, Begin Burst  
None  
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
None  
None  
L
X
L
L
None  
L
H
H
X
L
None  
X
X
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
X
X
L
X
HIGH-Z  
Q
External  
External  
External  
External  
External  
Next  
L-H  
READ Cycle, Begin Burst  
L
L
L
H
X
L
L-H High-Z  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
L
L
L
H
H
H
H
H
H
L
READ Cycle, Begin Burst  
L
L
L
H
L
L-H High-Z  
L-H  
L-H High-Z  
L-H  
L-H High-Z  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H High-Z  
L-H  
L-H High-Z  
Q
H
X
X
L-H  
L-H  
D
D
WRITE Cycle, Suspend Burst  
L
Notes:  
1. X=Don't Care, 1=Logic HIGH, 0=Logic LOW.  
2. The SRAM always initiates a read cycle when ADSP asserted, regardless of the state of GW, BWE, or BWS[1:0]. Writes may occur only on subsequent clocks  
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to three-state. OE  
is a Don't Carefor the remainder of the write cycle.  
3. OE is asynchronous and is not sampled with the clock rise. During a read cycle DQ=High-Z when OE is inactive, and DQ=data when OE is active.  
4
CY7C1324  
Pin Descriptions  
TQFP Pin  
Number  
Name  
I/O  
Description  
Address Strobe from Controller, sampled on the rising edge of CLK. When asserted  
is captured in the address registers. A are also loaded into the burst  
85  
ADSC  
Input-  
Synchronous LOW, A  
[16:0]  
[1:0]  
counter. When ADSP and ADSC are both asserted, only ADSP is recognized.  
84  
ADSP  
Input-  
Synchronous LOW, A  
Address Strobe from Processor, sampled on the rising edge of CLK. When asserted  
is captured in the address registers. A  
are also loaded into the burst  
[1:0]  
[16:0]  
counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP  
is ignored when CE is deasserted HIGH.  
1
36, 37  
A
A
Input-  
Synchronous well as being used to access a particular memory location in the memory array.  
Input- Address Inputs used in conjunction with A to select one of the 128K address  
Synchronous locations. Sampled at the rising edge of the CLK, if CE , CE , and CE are sampled  
A , A Address Inputs, These inputs feed the on-chip burst counter as the LSBs as  
[1:0]  
1 0  
4944,  
8082, 99,  
100,  
[16:2]  
[1:0]  
1
2
3
active, and ADSP or ADSC is active LOW.  
3235  
94, 93  
BWS  
ADV  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes.  
and DP , BWS controls DQ  
[15:8]  
[1:0]  
Synchronous Sampled on the rising edge. BWS controls DQ  
0
[7:0]  
0
1
and DP . See Write Cycle Descriptions table for further details.  
1
83  
Input-  
Advance Input used to advance the on-chip address counter. When LOW the internal  
Synchronous burst counter is advanced in a burst sequence. The burst sequence is selected using  
the MODE input.  
87  
88  
BWE  
GW  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal  
Synchronous must be asserted LOW to conduct a byte write.  
Input-  
Global Write Input, active LOW. Sampled on the rising edge of CLK. This signal is used  
Synchronous to conduct a global write, independent of the state of BWE and BWS  
override byte writes.  
. Global writes  
[1:0]  
89  
98  
CLK  
Input-Clock  
Input-  
Clock Input. Used to capture all synchronous inputs to the device.  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in con-  
CE  
CE  
CE  
1
2
3
Synchronous junction with CE and CE , to select/deselect the device. CE gates ADSP.  
2
3
1
97  
92  
86  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in con-  
Synchronous junction with CE and CE to select/deselect the device.  
1
3
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in con-  
Synchronous junction with CE and CE to select/deselect the device.  
1
2
OE  
ZZ  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins.  
Asynchronous When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are  
three-stated, and act as input data pins.  
64  
31  
Input-  
Snooze Input. Active HIGH asynchronous. When HIGH, the device enters a low-power  
Asynchronous standby mode in which all other inputs are ignored, but the data in the memory array  
is maintained. Leaving ZZ floating or NC will default the device into an active state.  
MODE  
-
Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved  
burst order. Pulled LOWselects the linearburst order. When left floating orNC, defaults  
to interleaved burst order.  
23, 22, 19, DQ  
18, 13, 12,  
9, 8, 73,  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is  
[15:0]  
Synchronous triggered by the rising edge of CLK. As outputs, they deliver the data contained in the  
memory location specified by A during the previous clock rise of the read cycle.  
[17:0]  
72, 69, 68,  
63, 62, 59,  
58  
The direction of the pins is controlled by OE in conjunction with the internal control  
logic. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQ  
[15:0]  
and DP  
are placed in a three-state condition. The outputs are automatically  
[1:0]  
three-stated when a WRITE cycle is detected.  
74, 24  
DP  
I/O-  
Bidirectional Data Parity lines. These behave identical to DQ  
described above.  
[15:0]  
[1:0]  
Synchronous These signals can be used as parity bits for bytes 0 and 1 respectively.  
15, 41, 65,  
91  
V
Power Supply Power supply inputs to the core of the device. Should be connected to 3.3V power  
supply.  
DD  
5
CY7C1324  
Pin Descriptions  
TQFP Pin  
Number  
Name  
I/O  
Description  
5, 10, 17,  
21, 26, 40,  
55, 60, 67,  
71, 76, 90  
V
Ground  
Ground for the device. Should be connected to ground of the system.  
SS  
4, 11, 20,  
27, 54, 61,  
70, 77  
V
I/O Power  
Supply  
Power supply for the I/O circuitry. Should be connected to a 2.5 or 3.3V power supply.  
No connects.  
DDQ  
13, 6, 7,  
14, 16, 25,  
2830,  
NC  
-
5053, 56,  
57, 66, 75,  
78, 79,  
9596  
38, 39, 42, DNU  
43  
-
Do not use pins. Should be left unconnected or tied LOW.  
Write Cycle Descriptions[1, 2, 3, 4]  
Function  
GW  
1
BWE  
BWS  
BWS  
1
0
Read  
Read  
1
0
0
0
0
X
X
1
1
0
0
X
X
1
0
1
0
X
1
Write Byte 0 - DQ  
Write Byte 1 - DQ  
Write All Bytes  
and DP  
1
[7:0]  
0
and DP  
1
[15:8]  
1
1
Write All Bytes  
0
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Test Conditions  
ZZ > V 0.2V  
Min  
Max  
Unit  
I
Snooze mode standby current  
Device operation to ZZ  
ZZ recovery time  
10  
mA  
ns  
DDZZ  
DD  
t
ZZ > V 0.2V  
2t  
CYC  
ZZS  
DD  
t
ZZ < 0.2V  
2t  
ns  
ZZREC  
CYC  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage .......................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current.................................................... >200 mA  
Storage Temperature ...................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied...............................................55°C to +125°C  
Ambient  
Range Temperature  
[6]  
V
V
DDQ  
DD  
Supply Voltage on V Relative to GND................ 0.5V to +4.6V  
DD  
DC Voltage Applied to Outputs  
in High Z State ...............................................0.5V to V + 0.5V  
Coml  
0°C to +70°C  
3.135V to 3.6V 2.375V to V  
DD  
[5]  
DD  
[5]  
DC Input Voltage ...........................................0.5V to V + 0.5V  
DD  
Notes:  
4. When a write cycle is detected, all I/Os are three-stated, even during byte writes.  
5. Minimum voltage equals 2.0V for pulse durations of less than 20 ns.  
6. TA is the case temperature.  
6
CY7C1324  
Electrical Characteristics Over the Operating Range  
7C1324  
Parameter  
Description  
Test Conditions  
= 3.3V, V = Min., I = 4.0 mA  
Min.  
Max.  
Unit  
V
V
Output HIGH Voltage  
V
V
V
V
2.4  
1.7  
OH  
DDQ  
DDQ  
DDQ  
DDQ  
DD  
OH  
= 2.5V, V = Min., I = 2.0 mA  
V
DD  
OH  
V
Output LOW Voltage  
Input HIGH Voltage  
= 3.3V, V = Min., I = 8.0 mA  
0.4  
0.7  
V
OL  
DD  
OL  
= 2.5V, V = Min., I = 2.0 mA  
V
DD  
OL  
V
V
1.7  
V
+
DD  
V
IH  
IL  
0.3V  
0.8  
1
[5]  
Input LOW Voltage  
0.3  
1  
V
I
Input Load Current  
GND V V  
µA  
X
I
DDQ  
(except ZZ and MODE)  
Input Current of MODE  
Input = V  
Input = V  
Input = V  
Input = V  
30  
5  
µA  
µA  
SS  
5
DDQ  
SS  
Input Current of ZZ  
µA  
30  
5
µA  
DDQ  
I
I
I
Output Leakage Current  
GND V V Output Disabled  
5  
µA  
OZ  
OS  
DD  
I
DD,  
[7]  
Output Short Circuit Current  
V
V
f=f  
=Max., V  
=GND  
300  
325  
300  
275  
225  
35  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD  
OUT  
V
Operating Supply Current  
=Max., Iout=0mA,  
=1/t  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
11-ns cycle, 90 MHz  
20-ns cycle, 50 MHz  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
11-ns cycle, 90 MHz  
20-ns cycle, 50 MHz  
All speeds  
DD  
DD  
MAX  
.
CYC  
I
Automatic CE Power-Down  
CurrentTTL Inputs  
Max. V , Device Deselected,  
DD  
SB1  
V V or V V ,  
IN IH IN IL  
30  
f=f  
inputs switching  
MAX,  
25  
20  
I
I
Automatic CE Power-Down  
Current CMOS Inputs  
Max. V , Device Deselected,  
10  
SB2  
SB3  
DD  
V V 0.3V or V 0.3V, f=0,  
IN DD IN  
inputs static  
Max. V , Device Deselected,  
Automatic CE Power-Down  
CurrentCMOS Inputs  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
11-ns cycle, 90 MHz  
20-ns cycle, 50 MHz  
All speeds  
10  
10  
10  
10  
18  
mA  
mA  
mA  
mA  
mA  
DD  
V
V  
- 0.3V or V 0.3V,  
IN  
DDQ IN  
f=f  
inputs switching  
MAX,  
I
Automatic CE  
Max. V , Device Deselected,  
DD  
SB4  
Power-Down Current TTL In- V V or V V ,  
IN  
IH  
IN  
IL  
puts static, F=0  
f=0, inputs static  
Capacitance[8]  
Parameter  
Description  
Input Capacitance  
I/O Capacitance  
Test Conditions  
T = 25°C, f = 1 MHz,  
Max.  
Unit  
C
4
4
pF  
pF  
IN  
A
V
= 5.0V  
DD  
C
I/O  
Notes:  
7. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.  
8. Tested initially and after any design or process changes that may affect these parameters.  
7
CY7C1324  
AC Test Loads and Waveforms[10]  
R1  
2.5V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
Z =50  
0
2.5V  
90%  
10%  
R =50  
L
90%  
10%  
2.5 ns  
R2  
5 pF  
GND  
V =1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
2.5 ns  
[9]  
13243  
(a)  
(b)  
13244  
[10]  
Switching Characteristics Over the Operating Range  
-117  
-100  
-90  
-50  
Parameter  
Description  
Clock Cycle Time  
Min. Max. Min. Max. Min. Max. Min. Max. Unit  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
8.5  
3.0  
3.0  
2.0  
0.5  
10  
4.0  
4.0  
2.0  
0.5  
11  
4.5  
4.5  
2.0  
0.5  
20  
4.5  
4.5  
2.0  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CYC  
CH  
Clock HIGH  
Clock LOW  
CL  
Address Set-Up Before CLK Rise  
Address Hold After CLK Rise  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
ADSP, ADSC Set-Up Before CLK Rise  
ADSP, ADSC Hold After CLK Rise  
AS  
AH  
7.5  
8.0  
8.5  
11.0  
CDV  
DOH  
ADS  
ADH  
WES  
WEH  
ADVS  
ADVH  
DS  
2.0  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
BWS  
BWS  
, GW,BWE Set-Up Before CLK Rise  
[1:0]  
[1:0]  
, GW,BWE Hold After CLK Rise  
ADV Set-Up Before CLK Rise  
ADV Hold After CLK Rise  
Data Input Set-Up Before CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Set-Up  
DH  
CES  
CEH  
CHZ  
CLZ  
EOHZ  
EOLZ  
EOV  
Chip Enable Hold After CLK Rise  
[11,12]  
Clock to High-Z  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
[11,12]  
Clock to Low-Z  
0
0
0
0
0
0
0
0
[11,13]  
OE HIGH to Output High-Z  
[11,13]  
OE LOW to Output Low-Z  
OE LOW to Output Valid  
Notes:  
9. R1=1667and R2=1538for IOH/IOL= 4/8mA, R1=521and R2=481for IOH/IOL= 2/2mA.  
10. Unless otherwise noted, test conditions assume signal transition time of 2.5ns or less, timing reference levels of 1.25V, input pulse levels of 0 to 2.5V, and  
output loading of the specified IOL/IOH and load capacitance. Shown in (a) and (b) of AC test loads.  
11. tCHZ, tCLZ, tEOHZ, and tEOLZ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
12. At any given voltage and temperature, tCHZ (max) is less than tCLZ (min).  
13. This parameter is sampled and not 100% tested.  
8
CY7C1324  
Timing Diagrams  
[14, 15]  
Write Cycle Timing  
Single W rite  
Burst Write  
Pipelined Write  
t
Unselected  
CH  
t
CYC  
CLK  
t
ADH  
t
ADS  
t
ADSP ignored with CE inactive  
CL  
1
ADSP  
t
ADH  
t
ADSC initiated write  
ADS  
ADSC  
ADV  
t
t
ADVH  
ADVS  
t
ADV Must Be Inactive for ADSP Write  
WD2  
AS  
WD3  
WD1  
ADD  
GW  
WE  
t
AH  
t
WH  
t
WH  
t
WS  
t
WS  
t
t
CES  
CE masks ADSP  
CEH  
1
CE  
1
t
t
CEH  
CES  
Unselected with CE  
2
CE  
CE  
2
3
t
CES  
t
CEH  
OE  
t
DH  
t
DS  
High-Z  
High-Z  
Data-  
In  
3a  
2a  
= UNDEFINED  
2c  
2d  
1a  
2b  
= DONT CARE  
Note:  
14. WE is the combination of BWE, BW[3:0] and GW to define a write cycle (see Write Cycle Descriptions table).  
15. WDx stands for Write Data to Address X.  
9
CY7C1324  
Timing Diagrams (continued)  
[14, 16]  
Read Cycle Timing  
Burst Read  
Single Read  
Unselected  
t
t
CYC  
CH  
Pipelined Read  
CLK  
t
t
ADH  
ADS  
t
ADSP ignored with CE inactive  
CL  
1
ADSP  
t
ADS  
ADSC initiated read  
ADSC  
ADV  
t
ADVS  
t
ADH  
Suspend Burst  
t
t
ADVH  
AS  
ADD  
GW  
WE  
RD3  
RD1  
RD2  
t
AH  
t
WS  
t
WS  
t
WH  
t
t
CES  
CEH  
t
WH  
CE masks ADSP  
1
CE  
CE  
1
2
Unselected with CE  
2
t
t
CES  
t
CEH  
CE  
OE  
3
t
CEH  
CES  
t
EOV  
t
OEHZ  
t
DOH  
t
CDV  
3a  
Data Out  
2d  
2a  
2b  
2c  
1a  
t
CLZ  
t
CHZ  
= DONT CARE  
= UNDEFINED  
Note:  
16. RDx stands for Read Data from Address X.  
10  
CY7C1324  
Timing Diagrams (continued)  
READ/WRITE Timing  
t
t
t
CYC  
CL  
CH  
CLK  
t
AH  
t
t
AS  
A
D
B
C
ADD  
t
ADH  
ADS  
ADSP  
t
t
ADH  
ADS  
ADSC  
ADV  
t
t
ADVH  
ADVS  
t
CEH  
t
CES  
CE1  
CE  
t
t
CEH  
CES  
t
t
WES  
WEH  
WE  
OE  
ADSP ignored  
with CE1 HIGH  
t
EOHZ  
t
t
CLZ  
Data  
Q
(B+3)  
D
(C+1)  
D
(C+2)  
D
(C+3)  
Q
(B+2)  
Q
(B+1)  
Q(B)  
Q(B)  
D(C)  
Q(D)  
Q(A)  
In/Out  
CDV  
t
DOH  
t
CHZ  
Device originally  
deselected  
WE is the combination of BWE, BWS  
and GW to define a write cycle (see Write Cycle Definitions table).  
[1:0]  
CE is the combination of CE and CE . All chip selects need to be active in order to select  
2
3
the device. RAx stands for Read Address X, WA stands for Write Address X, Dx stands for Data-in X,  
Qx stands for Data-out X.  
= UNDEFINED  
= DONT CARE  
11  
CY7C1324  
Timing Diagrams (continued)  
Pipeline Timing  
t
t
t
CYC  
CL  
CH  
CLK  
t
t
AS  
C
E
F
G
H
B
D
A
ADD  
t
ADH  
ADS  
ADSP  
ADSC  
ADV  
t
t
CEH  
CES  
CE  
CE  
1
t
t
WES  
WEH  
WE  
OE  
ADSP ignored  
with CE HIGH  
1
t
t
CLZ  
Data  
D (E)  
D (F)  
D (H)  
Q(A)  
D (G)  
Q(B)  
Q(C)  
Q(D)  
CDV  
t
DOH  
t
CHZ  
Device originally  
deselected  
CE is the combination of CE and CE . All chip selects need to be active in order to select  
2
3
the device. RAx stands for Read Address X, WAx stands for Write Address X, Dx stands for Data-in X,  
Qx stands for Data-out X.  
= UNDEFINED  
= DONT CARE  
12  
CY7C1324  
Timing Diagrams (continued)  
OE Switching Waveforms  
OE  
t
EOV  
t
EOHZ  
three-state  
I/Os  
t
EOLZ  
13  
CY7C1324  
Timing Diagrams (continued)  
[17 ,18  
ZZ Mode Timing  
CLK  
ADSP  
HIGH  
ADSC  
CE  
1
2
LOW  
HIGH  
CE  
CE  
3
ZZ  
t
ZZS  
I
CC  
I
(active)  
CC  
t
ZZREC  
I
CCZZ  
I/Os  
Three-state  
Notes:  
17. Device must be deselected when entering ZZ mode. See Cycle Description table for all possible signal conditions to deselect the device.  
18. I/Os are in three-state when exiting ZZ sleep mode.  
14  
CY7C1324  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
117  
100  
80  
Ordering Code  
Package Type  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
CY7C1324117AC  
CY7C1324100AC  
CY7C132480AC  
CY7C132450AC  
A101  
A101  
A101  
A101  
Commercial  
Commercial  
Commercial  
Commercial  
50  
Document #: 3800651A  
Package Diagram  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C1324-100ACT

Cache SRAM, 128KX18, 8ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1324-117AC

Cache SRAM, 128KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1324-117ACT

Cache SRAM, 128KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1324-50AC

x18 Fast Synchronous SRAM
ETC

CY7C1324-80AC

x18 Fast Synchronous SRAM
ETC

CY7C1324A-117AC

IC,SYNC SRAM,128KX18,CMOS,QFP,100PIN,PLASTIC
ROCHESTER

CY7C1324F

2-Mb (128K x 18) Flow-Through Sync SRAM
CYPRESS

CY7C1324F-117AC

2-Mb (128K x 18) Flow-Through Sync SRAM
CYPRESS

CY7C1324F-117ACT

Cache SRAM, 128KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1324F-117AI

2-Mb (128K x 18) Flow-Through Sync SRAM
CYPRESS

CY7C1324F-117AIT

Cache SRAM, 128KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1324F-117AXC

Cache SRAM, 128KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS