CY7C1327F [CYPRESS]

4-Mb (256K x 18) Pipelined Sync SRAM; 4 -MB ( 256K ×18 )流水线同步SRAM
CY7C1327F
型号: CY7C1327F
厂家: CYPRESS    CYPRESS
描述:

4-Mb (256K x 18) Pipelined Sync SRAM
4 -MB ( 256K ×18 )流水线同步SRAM

静态存储器
文件: 总17页 (文件大小:573K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1327F  
4-Mb (256K x 18) Pipelined Sync SRAM  
Features  
Functional Description[1]  
• Registered inputs and outputs for pipelined operation  
• 256K ×18 common I/O architecture  
• 3.3V core power supply  
• 3.3V / 2.5V I/O operation  
• Fast clock-to-output times  
— 2.6 ns (for 250-MHz device)  
— 2.6 ns (for 225-MHz device)  
— 2.8 ns (for 200-MHz device)  
— 3.5 ns (for 166-MHz device)  
The CY7C1327F SRAM integrates 262,144 x 18 SRAM cells  
with advanced synchronous peripheral circuitry and a two-bit  
counter for internal burst operation. All synchronous inputs are  
gated by registers controlled by a positive-edge-triggered  
Clock Input (CLK). The synchronous inputs include all  
addresses, all data inputs, address-pipelining Chip Enable  
(
), depth-expansion Chip Enables (CE and  
), Burst  
CE3  
CE1  
2
Control inputs (  
,
,
and  
ADSC ADSP  
), Write Enables  
ADV  
(
, and  
), and Global Write (  
BWE  
). Asynchronous  
GW  
BW[A:B]  
inputs include the Output Enable ( ) and the ZZ pin.  
OE  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (  
) or  
ADSP  
Address Strobe Controller (  
) are active. Subsequent  
ADSC  
— 4.0 ns (for 133-MHz device)  
— 4.5 ns (for 100-MHz device)  
burst addresses can be internally generated as controlled by  
the Advance pin ( ).  
ADV  
• Provide high-performance 3-1-1-1 access rate  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to two bytes wide as  
• User-selectable burst counter supporting Intel  
Pentium interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
• Asynchronous output enable  
controlled by the byte write control inputs.  
when active  
GW  
causes all bytes to be written.  
LOW  
The CY7C1327F operates from a +3.3V core power supply  
while all outputs also operate with a +3.3V or a +2.5V supply.  
• Offered in JEDEC-standard 100-pin TQFP and 119 Ball  
All  
inputs  
and  
outputs  
are  
JEDEC-standard  
BGA packages.  
JESD8-5-compatible.  
• “ZZ” Sleep Mode Option  
Logic Block Diagram  
ADDRESS  
A0, A1, A  
REGISTER  
A[1:0]  
2
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQB,DQP  
B
DQB,DQP  
WRITE REGISTER  
B
WRITE DRIVER  
OUTPUT  
BUFFERS  
BW  
B
A
DQs  
DQP  
DQP  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
B
DQA,DQP  
A
E
DQA,DQP  
WRITE REGISTER  
A
WRITE DRIVER  
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE1  
CE2  
PIPELINED  
ENABLE  
CE3  
OE  
ZZ  
SLEEP  
CONTROL  
1
Note:  
1. For best–practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05216 Rev. *B  
Revised December 12, 2003  
CY7C1327F  
Selection Guide  
250 MHz  
2.6  
225 MHz  
2.6  
200 MHz  
2.8  
166 MHz  
3.5  
133 MHz  
4.0  
100 MHz  
Unit  
ns  
mA  
mA  
Maximum Access Time  
Maximum Operating Current  
4.5  
205  
40  
325  
40  
290  
40  
265  
40  
240  
40  
225  
40  
Maximum CMOS Standby  
Current  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.  
Pin Configurations  
NC  
NC  
A
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
2
NC  
NC  
3
VDDQ  
VSS  
NC  
VDDQ  
VSS  
NC  
4
5
6
NC  
DQPA  
DQA  
DQA  
VSS  
VDDQ  
DQA  
DQA  
VSS  
NC  
7
DQB  
DQB  
VSS  
VDDQ  
DQB  
DQB  
8
9
10  
11  
12  
13  
14  
15  
16  
NC  
BYTE B  
BYTE A  
VDD  
100-pin TQFP  
CY7C1327F  
NC  
VDD  
ZZ  
VSS  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
DQB  
DQA  
DQA  
VDDQ  
VSS  
DQA  
DQA  
NC  
DQB  
VDDQ  
VSS  
DQB  
DQB  
DQPB  
NC  
NC  
VSS  
VSS  
VDDQ  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
Document #: 38-05216 Rev. *B  
Page 2 of 17  
CY7C1327F  
Pin Configurations  
119-ball BGA  
2
A
CE2  
A
1
3
A
A
4
5
A
A
A
6
A
CE3  
A
7
VDDQ  
NC  
NC  
ADSP  
ADSC  
VDD  
VDDQ  
NC  
NC  
A
B
C
D
E
F
G
H
J
A
DQB  
NC  
VDDQ  
NC  
DQB  
NC  
DQB  
NC  
VDD  
VSS  
VSS  
VSS  
BWB  
VSS  
NC  
VSS  
NC  
CE1  
OE  
VSS  
VSS  
VSS  
Vss  
VSS  
NC  
VSS  
DQPA  
NC  
DQA  
NC  
DQA  
VDD  
NC  
NC  
DQA  
VDDQ  
DQA  
NC  
VDDQ  
DQA  
NC  
ADV  
DQB  
VDDQ  
NC  
GW  
VDD  
CLK  
K
DQB  
L
M
N
DQB  
VDDQ  
DQB  
NC  
DQB  
NC  
Vss  
VSS  
VSS  
NC  
BWE  
A1  
BWA  
VSS  
VSS  
DQA  
NC  
DQA  
NC  
VDDQ  
NC  
P
R
T
NC  
NC  
NC  
DQPB  
A
A
VSS  
MODE  
A
A0  
VDD  
NC  
NC  
VSS  
NC  
A
NC  
A
A
DQA  
NC  
ZZ  
VDDQ  
NC  
NC  
NC  
NC  
VDDQ  
U
Document #: 38-05216 Rev. *B  
Page 3 of 17  
CY7C1327F  
Pin Definitions  
Name  
TQFP  
BGA  
I/O  
Description  
A0, A1, A  
37,36,  
P4,N4,A2,  
Input-  
Address Inputs usedto select one of the 256K address locations. Sampled  
32,33,34, C2,R2,T2, Synchronous at the rising edge of the CLK if ADSP or  
ADSC is active LOW, and CE1,  
35,44,45, A3,B3,C3,  
46,47,48, T3,A5,B5,  
49,50,80, C5,T5,A6,  
81,82,99, C6,R6,T6  
100  
CE2, and CE3 are sampled active. A1, A0 feed the 2-bit counter.  
93,94  
L5,G3  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct  
BWA,BWB  
GW  
Synchronous byte writes to the SRAM. Sampled on the rising edge of CLK.  
88  
H4  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the  
Synchronous rising edge of CLK, a global write is conducted (ALL bytes are written,  
regardless of the values on BW[A:B] and BWE).  
87  
89  
M4  
K4  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of  
BWE  
CLK  
Synchronous CLK. This signal must be asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also  
used to increment the burst counter when ADV is asserted LOW, during  
a burst operation.  
98  
E4  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK.  
CE1  
CE  
Synchronous Usedinconjunctionwith  
and  
to select/deselect the device.  
CE3 ADSP  
2
is ignored if CE1 is HIGH.  
CE2  
CE3  
97  
92  
B2  
B6  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK.  
Synchronous Used in conjunction with  
and to select/deselect the device.  
CE1  
CE3  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK.  
Synchronous Used in conjunction with CE and CE to select/deselect the device.  
Not  
1
2
connected for BGA. Where referenced, CE3 is assumed active throughout  
this document for BGA.  
86  
F4  
Input-  
Output Enable, asynchronous input, active LOW. Controls the  
OE  
Asynchronous direction of the I/O pins. WhenLOW, the I/O pins behave as outputs. When  
deasserted HIGH, I/O pins are three-stated, and act as input data pins.  
OE is masked during the first clock of a read cycle when emerging from a  
deselected state.  
83  
84  
G4  
A4  
Input-  
Advance Input signal, sampled on the rising edge of CLK, active  
ADV  
Synchronous LOW. When asserted, it automatically increments the address in a burst  
cycle.  
Input-  
Address Strobe from Processor, sampled on the rising edge of CLK,  
ADSP  
Synchronous active LOW. When asserted LOW, A is captured in the address registers.  
A1, A0 are also loaded into the burst counter. When  
and  
are  
is  
ADSP  
ADSC  
both asserted, only  
deasserted HIGH.  
is recognized.  
ASDP  
is ignored when  
ADSP  
CE1  
ZZ  
64  
85  
T7  
B4  
Input-  
ZZ “sleep” Input, active HIGH. This input, when High places the device  
Asynchronous in a non-time-critical “sleep” condition with data integrity preserved. For  
normal operation, this pin has to be LOW or left floating. ZZ pin has an  
internal pull-down.  
Input-  
Synchronous active LOW. When asserted LOW, A is captured in the address registers.  
A1, A0 are also loaded into the burst counter. When and are  
Address Strobe from Controller, sampled on the rising edge of CLK,  
ADSC  
ADSP  
ADSC  
both asserted, only  
is recognized.  
ADSP  
DQA,  
DQB  
58,59,62, F6,H6,L6,  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data  
63,68,69, N6,E7,G7, Synchronous register that is triggered by the rising edge of CLK. As outputs, they deliver  
72,73  
K7,P7  
the data contained in the memory location specified by “A” during the  
previous clock rise of the read cycle. The direction of the pins is controlled  
8,9,12,13, D1,H1,L1,  
18,19,22, N1,E2,G2,  
by  
. When  
OE  
is asserted LOW, the pins behave as outputs. When  
OE  
23  
K2,M2,  
D6,P2  
HIGH, DQs and DQP[A:B] are placed in a three-state condition.  
DQPA,  
DQPB  
74,24  
Document #: 38-05216 Rev. *B  
Page 4 of 17  
CY7C1327F  
Pin Definitions (continued)  
Name  
VDD  
TQFP  
15,41,65, J2,C4,J4, Power Supply Power supply inputs to the core of the device.  
91 R4,J6  
BGA  
I/O  
Description  
VSS  
5,10,17, D3,E3,F3,  
21,26,40, H3,K3,L3,  
55,60,67, M3,N3,P3,  
71,76,90 D5,E5,F5,  
G5,H5,K5,  
Ground  
Ground for the device.  
M5,N5,P5  
VDDQ  
MODE  
NC  
4,11,20, A1,F1,J1,  
I/O Ground Ground for the I/O circuitry.  
27,54,61, M1,U1,A7,  
70,77  
31  
F7,J7,M7,  
U7  
R3  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence.  
When tied to VDD or left floating selects interleaved burst sequence. This  
is a strap pin and should remain static during device operation. Mode Pin  
has an internal pull-up.  
1,2,3,6,7, B1,C1,E1,  
14,16,25, G1,K1,P1,  
28,29,30, R1,T1,D2,  
38,39,42, F2,H2,L2,  
43,51,52, N2,U2,J3,  
53,56,57, U3,D4,L4,  
66,75,78, T4,U4,J5,  
79,95,96 U5,E6,G6,  
K6,M6,P6,  
No Connects. Not internally connected to the die  
U6,B7,C7,  
D7,H7,L7,  
N7,R5,R7  
Single Read Accesses  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
CE1, CE2, CE3 are all asserted active, and (3) the Write  
signals (GW, BWE) are all deserted HIGH. ADSP is ignored if  
The CY7C1327F supports secondary cache in systems  
utilizing either a linear or interleaved burst sequence. The  
interleaved burst order supports Pentium and i486  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
Accesses can be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC).  
Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BW[A:B]) inputs. A Global Write  
Enable (GW) overrides all Byte Write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed Write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. ADSP is ignored if  
CE1 is HIGH.  
CE1 is HIGH. The address presented to the address inputs (A)  
is stored into the address advancement logic and the Address  
Register while being presented to the memory array. The  
corresponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within tco if OE is active LOW. The only exception  
occurs when the SRAM is emerging from a deselected state  
to a selected state, its outputs are always three-stated during  
the first cycle of the access. After the first cycle of the access,  
the outputs are controlled by the OE signal. Consecutive  
single Read cycles are supported. Once the SRAM is  
deselected at clock rise by the chip select and either ADSP or  
ADSC signals, its output will three-state immediately.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) CE1, CE2, CE3 are all asserted active. The address  
presented to A is loaded into the address register and the  
address advancement logic while being delivered to the  
memory array. The Write signals (GW, BWE, and BW[A:B]) and  
ADV inputs are ignored during this first cycle.  
ADSP-triggered Write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
Document #: 38-05216 Rev. *B  
Page 5 of 17  
CY7C1327F  
data presented to the DQ inputs is written into the corre-  
sponding address location in the memory array. If GW is HIGH,  
then the Write operation is controlled by BWE and BW[A:B]  
signals. The CY7C1327F provides Byte Write capability that is  
described in the Write Cycle Descriptions table. Asserting the  
Byte Write Enable input (BWE) with the selected Byte Write  
(BW[A:B]) input, will selectively write to only the desired bytes.  
Bytes not selected during a Byte Write operation will remain  
unaltered. A synchronous self-timed Write mechanism has  
been provided to simplify the Write operations.  
sequence. The interleaved burst sequence is designed specif-  
ically to support Intel Pentium applications. The linear burst  
sequence is designed to support processors that follow a  
linear burst sequence. The burst sequence is user selectable  
through the MODE input.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both Read and Write burst operations are supported.  
Sleep Mode  
Because the CY7C1327F is a common I/O device, the Output  
Enable (OE) must be deserted HIGH before presenting data  
to the DQ inputs. Doing so will three-state the output drivers.  
As a safety precaution, DQs are automatically three-stated  
whenever a Write cycle is detected, regardless of the state of  
OE.  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
Single Write Accesses Initiated by ADSC  
t
he “sleep” mode. CE1, CE2, CE3, ADSP, and ADSC must  
ADSC Write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deserted HIGH, (3) CE1, CE2, CE3 are all asserted active, and  
(4) the appropriate combination of the Write inputs (GW, BWE,  
and BW[A:B]) are asserted active to conduct a Write to the  
desired byte(s). ADSC-triggered Write accesses require a  
single clock cycle to complete. The address presented to A is  
loaded into the address register and the address  
advancement logic while being delivered to the memory array.  
The ADV input is ignored during this cycle. If a global Write is  
conducted, the data presented to DQ is written into the corre-  
sponding address location in the memory core. If a Byte Write  
is conducted, only the selected bytes are written. Bytes not  
selected during a Byte Write operation will remain unaltered.  
A synchronous self-timed Write mechanism has been  
provided to simplify the Write operations.  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
Interleaved Burst Address Table (MODE =  
Floating or VDD  
)
First  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
Address  
A1, A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table (MODE = GND)  
Because the CY7C1327F is a common I/O device, the Output  
Enable (OE) must be deserted HIGH before presenting data  
to the DQ inputs. Doing so will three-state the output drivers.  
As a safety precaution, DQs are automatically three-stated  
whenever a Write cycle is detected, regardless of the state of  
OE.  
First  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
Address  
A1, A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Burst Sequences  
The CY7C1327F provides a two-bit wraparound counter, fed  
by A1, A0, that implements either an interleaved or linear burst  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
tZZS  
Description  
Snooze mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
ZZ > VDD – 0.2V  
Min.  
Max.  
40  
2tCYC  
Unit  
mA  
ns  
tZZREC  
tZZI  
tRZZI  
ZZ recovery time  
ZZ active to snooze current  
ZZ Inactive to exit snooze current  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
2tCYC  
0
ns  
ns  
ns  
2tCYC  
Document #: 38-05216 Rev. *B  
Page 6 of 17  
CY7C1327F  
Truth Table[ 2, 3, 4, 5, 6]  
Next Cycle  
Unselected  
Unselected  
Unselected  
Unselected  
Unselected  
Begin Read  
Begin Read  
Continue Read Next  
Continue Read Next  
Continue Read Next  
Continue Read Next  
Suspend Read Current  
Suspend Read Current  
Suspend Read Current  
Suspend Read Current  
Begin Write  
Begin Write  
Begin Write  
Continue Write Next  
Continue Write Next  
Suspend Write Current  
Suspend Write Current  
Add. Used  
None  
None  
None  
None  
None  
External  
External  
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
CE2  
X
X
L
X
L
DQ  
CE3  
X
CE1  
H
L
L
L
L
L
L
X
X
H
H
X
X
H
H
X
H
L
X
H
X
H
X
ADSP  
X
ADSC  
ADV  
X
OE  
X
WRITE  
L
three-state X  
three-state X  
three-state X  
three-state X  
three-state X  
three-state X  
three-state Read  
three-state Read  
DQ  
three-state Read  
DQ Read  
three-state Read  
DQ Read  
three-state Read  
DQ Read  
three-state Write  
three-state Write  
three-state Write  
three-state Write  
three-state Write  
three-state Write  
three-state Write  
three-state X  
H
X
H
X
L
L
L
H
H
L
X
X
L
L
X
L
X
X
X
X
X
X
L
L
L
L
H
H
H
H
H
H
X
H
H
H
H
X
X
X
X
X
X
X
H
L
H
L
H
L
H
H
X
X
X
X
X
X
X
X
X
X
H
X
X
X
X
X
L
H
H
H
X
X
H
H
X
X
H
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
Read  
H
L
Current  
Current  
External  
X
X
X
X
X
X
X
X
ZZ “Sleep”  
None  
Truth Table for Read/Write[2]  
Function  
BWB  
BWA  
GW  
BWE  
Read  
Read  
H
H
H
H
H
H
L
H
L
L
L
L
L
X
X
X
H
H
L
L
L
H
L
H
L
L
X
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
Write All Bytes  
Write All Bytes  
X
Notes:  
2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
3. WRITE = L when any one or more Byte Write enable signals (BW , BW ) and BWE = L or GW = L. WRITE = H when all Byte write enable signals (BW , BW ),  
A
B
A
B
BWE, GW = H.  
4. The DQ pins are controlled by the current cycle and the  
signal.  
is asynchronous and is not sampled with the clock.  
OE  
OE  
5. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW  
. Writes may occur only on subsequent clocks  
[A: B]  
after the  
or with the assertion of  
. As a result,  
must be driven HIGH prior to the start of the write cycle to allow the outputs to three-state.  
OE  
is  
ADSC  
OE  
ADSP  
a don't care for the remainder of the write cycle.  
6.  
is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are three-state when  
OE  
is  
OE  
.
is active (LOW)  
inactive or when the device is deselected, and all data bits behave as output when  
OE  
Document #: 38-05216 Rev. *B  
Page 7 of 17  
CY7C1327F  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Latch-up Current.................................................... > 200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
Range  
Temperature  
VDD  
VDDQ  
Supply Voltage on VDD Relative to GND........ –0.5V to +4.6V  
Commercial 0°C to +70°C 3.3V –5%/+10% 2.5V –5%  
DC Voltage Applied to Outputs  
to VDD  
in three-state....................................... –0.5V to VDDQ + 0.5V  
Industrial  
–40°C to +85°C  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Electrical Characteristics Over the Operating Range [7, 8]  
Parameter  
VDD  
VDDQ  
VOH  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
Test Conditions  
Min.  
3.135  
2.375  
2.4  
Max.  
3.6  
VDD  
Unit  
V
V
V
V
V
V
V
V
VDDQ = 3.3V, VDD = Min., IOH = –4.0 mA  
VDDQ = 2.5V, VDD = Min., IOH = –2.0 mA  
VDDQ = 3.3V, VDD = Min., IOL = 8.0 mA  
DDQ = 2.5V, VDD = Min., IOL = 2.0 mA  
VDDQ = 3.3V  
DDQ = 2.5V  
2.0  
VOL  
VIH  
VIL  
IX  
Output LOW Voltage  
Input HIGH Voltage[7]  
Input LOW Voltage[7]  
0.4  
0.4  
VDD + 0.3V  
VDD + 0.3V  
0.8  
V
2.0  
1.7  
–0.3  
–0.3  
–5  
V
VDDQ = 3.3V  
VDDQ = 2.5V  
GND VI VDDQ  
V
V
µA  
0.7  
5
Input Load Current  
except ZZ and MODE  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
30  
5
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
VDD Operating Supply VDD = Max.,  
4-ns cycle,250MHz  
325  
290  
265  
240  
225  
205  
120  
115  
110  
100  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Current  
IOUT = 0 mA,  
4.4-ns cycle,225MHz  
5-ns cycle,200MHz  
6-ns cycle,166MHz  
7.5-ns cycle,133MHz  
10-ns cycle,100MHz  
4-ns cycle,250MHz  
4.4-ns cycle,225MHz  
5-ns cycle,200MHz  
6-ns cycle,166MHz  
7.5-ns cycle,133MHz  
10-ns cycle,100MHz  
All speeds  
f = fMAX  
1/tCYC  
=
ISB1  
Automatic CE  
VDD = Max, Device  
Power-down  
Deselected, VIN VIH or  
Current—TTL Inputs  
VIN VIL  
f = fMAX = 1/tCYC  
80  
40  
ISB2  
Automatic CE  
Power-down  
VDD = Max, Device  
Deselected, VIN 0.3V or  
Current—CMOS Inputs VIN > VDDQ – 0.3V, f = 0  
Shaded areas contain advance information.  
Notes:  
7. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > -2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
8. T  
: Assumes a linear ramp from 0v to V (min.) within 200ms. During this time V < V and V  
< V  
.
DD  
Power-up  
DD  
IH  
DD  
DDQ  
Document #: 38-05216 Rev. *B  
Page 8 of 17  
CY7C1327F  
Electrical Characteristics Over the Operating Range (continued)[7, 8]  
Parameter  
ISB3  
Description  
Automatic CE  
Power-down  
Test Conditions  
Min.  
Max.  
105  
100  
95  
85  
75  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD = Max, Device  
4-ns cycle,250MHz  
4.4-ns cycle,225MHz  
5-ns cycle,200MHz  
6-ns cycle,166MHz  
7.5-ns cycle,133MHz  
10-ns cycle,100MHz  
All speeds  
Deselected, or VIN 0.3V  
Current—CMOS Inputs or VIN > VDDQ – 0.3V  
f = fMAX = 1/tCYC  
65  
45  
ISB4  
Automatic CE  
VDD = Max, Device  
Power-down  
Deselected, VIN VIH or  
Current—TTL Inputs  
VIN VIL, f = 0  
Thermal Resistance[9]  
TQFP  
BGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Unit  
ΘJA  
Thermal Resistance  
Test conditions follow standard test  
methods and procedures for measuring  
thermal impedance, per EIA / JESD51.  
41.83  
47.63  
°C/W  
(Junction to Ambient)  
ΘJC  
Thermal Resistance  
(Junction to Case)  
9.99  
11.71  
°C/W  
Capacitance[9]  
TQFP  
BGA  
Parameter  
Description  
Test Conditions  
Package Package  
Unit  
CIN  
CCLK  
CI/O  
Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
TA = 25°C, f = 1 MHz,  
5
5
5
5
5
7
pF  
pF  
pF  
V
DD = 3.3V.  
DDQ = 3.3V  
V
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
10%  
R = 50Ω  
L
GND  
5 pF  
R = 351Ω  
1ns  
1ns  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
1ns  
5 pF  
R =1538Ω  
1ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Notes:  
9. Tested initially and after any design or process change that may affect these parameters  
Document #: 38-05216 Rev. *B  
Page 9 of 17  
CY7C1327F  
Switching Characteristics Over the Operating Range[14, 15]  
250 MHz  
225 MHz  
200 MHz  
166 MHz  
133 MHz  
100 MHz  
Parameter  
tPOWER  
Description  
Min. Max Min. Max Min. Max Min. Max Min. Max Min. Max Unit  
VDD(Typical) to the first[10]  
1
1
1
1
1
1
ms  
Clock  
tCYC  
tCH  
Clock Cycle Time  
Clock HIGH  
Clock LOW  
4.0  
1.7  
1.7  
4.4  
2.0  
2.0  
5.0  
2.0  
2.0  
6.0  
2.5  
2.5  
7.5  
3.0  
3.0  
10  
3.5  
3.5  
ns  
ns  
ns  
tCL  
Output Times  
tCO  
Data Output Valid After CLK  
2.6  
2.6  
2.8  
3.5  
4.0  
4.5 ns  
ns  
Rise  
tDOH  
Data Output Hold After CLK  
1.0  
0
1.0  
0
1.0  
0
2.0  
0
2.0  
0
2.0  
0
Rise  
tCLZ  
Clock to Low-Z[11, 12, 13]  
Clock to High-Z[11, 12, 13]  
ns  
4.5 ns  
4.5 ns  
ns  
tCHZ  
tOEV  
tOELZ  
2.6  
2.6  
2.6  
2.6  
2.8  
2.8  
3.5  
3.5  
4.0  
4.5  
OE LOW to Output Valid  
LOW to Output Low-Z[11,  
OE  
0
0
0
0
0
0
12, 13]  
OE HIGH to Output High-Z[11,  
tOEHZ  
2.6  
2.6  
2.8  
3.5  
4.0  
4.5 ns  
12, 13]  
Set-up Times  
tAS  
Address Set-up Before CLK  
0.8  
0.8  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
Rise  
tADS  
,
ADSC ADSP Set-up Before  
CLK Rise  
tADVS  
tWES  
0.8  
0.8  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ADV Set-up Before CLK Rise  
Set-up  
GW, BWE, BW[A:B]  
Before CLK Rise  
tDS  
Data Input Set-up Before CLK 0.8  
Rise  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
tCES  
Chip Enable Set-Up Before  
0.8  
CLK Rise  
Hold Times  
tAH  
tADH  
Address Hold After CLK Rise 0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
0.4  
,
Hold After CLK  
ADSP ADSC  
Rise  
tADVH  
tWEH  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ADV Hold After CLK Rise  
,
,
GW BWE BW[A:B] Hold After  
CLK Rise  
tDH  
Data Input Hold After CLK  
Rise  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
tCEH  
Chip Enable Hold After CLK  
Rise  
Shaded areas contain advance information.  
Notes:  
10. This part has a voltage regulator internally; t  
can be initiated.  
is the time that the power needs to be supplied above V (minimum) initially before a read or write operation  
DD  
POWER  
11. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
12. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
13. This parameter is sampled and not 100% tested.  
14. Timing references level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V on all data sheets.  
DDQ  
DDQ  
15. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05216 Rev. *B  
Page 10 of 17  
CY7C1327F  
Switching Waveforms  
Read Cycle Timing[16]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,  
BW[A:B]  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV  
suspends  
burst.  
t
t
OEV  
CO  
t
t
OEHZ  
t
OELZ  
t
CHZ  
DOH  
t
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes:  
16. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
17.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW  
LOW.  
[A:B]  
Document #: 38-05216 Rev. *B  
Page 11 of 17  
CY7C1327F  
Switching Waveforms (continued)  
Write Cycle Timing[16, 17]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are  
ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW[A :B]  
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
Data In (D)  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
Data Out (Q)  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Document #: 38-05216 Rev. *B  
Page 12 of 17  
CY7C1327F  
Switching Waveforms (continued)  
Read/Write Cycle Timing[16, 18, 19]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE,  
BW[A:B]  
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back READs  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
DON’T CARE  
UNDEFINED  
Notes:  
18.  
19.  
.
The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by  
ADSP or ADSC  
GW is HIGH.  
Document #: 38-05216 Rev. *B  
Page 13 of 17  
CY7C1327F  
Switching Waveforms (continued)  
ZZ Mode Timing [20, 21]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
Package Type  
250  
CY7C1327F-250AC  
CY7C1327F-250BGC  
CY7C1327F-250AI  
CY7C1327F-250BGI  
CY7C1327F-225AC  
CY7C1327F-225BGC  
CY7C1327F-225AI  
CY7C1327F-225BGI  
CY7C1327F-200AC  
CY7C1327F-200BGC  
CY7C1327F-200AI  
CY7C1327F-200BGI  
CY7C1327F-166AC  
CY7C1327F-166BGC  
CY7C1327F-166AI  
CY7C1327F-166BGI  
CY7C1327F-133AC  
CY7C1327F-133BGC  
CY7C1327F-133AI  
CY7C1327F-133BGI  
A101  
BG119  
A101  
BG119  
A101  
BG119  
A101  
BG119  
A101  
BG119  
A101  
BG119  
A101  
BG119  
A101  
BG119  
A101  
100-Lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
119-Ball BGA (14 x 22 x 2.4mm)  
100-Lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
119-Ball BGA (14 x 22 x 2.4mm)  
100-Lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
119-Ball BGA (14 x 22 x 2.4mm)  
100-Lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
119-Ball BGA (14 x 22 x 2.4mm)  
100-Lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
119-Ball BGA (14 x 22 x 2.4mm)  
100-Lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
119-Ball BGA (14 x 22 x 2.4mm)  
100-Lead Thin Quad Flat Pact (14 x 20 x 1.4mm)  
119-Ball BGA (14 x 22 x 2.4mm)  
100-Lead Thin Quad Flat Pact (14 x 20 x 1.4mm)  
119-Ball BGA (14 x 22 x 2.4mm)  
100-Lead Thin Quad Flat Pack(14 x 20 x 1.4mm)  
119-Ball BGA(14 x 22 x 2.4mm)  
100-Lead Thin Quad Flat Pack(14 x 20 x 1.4mm)  
119-Ball BGA(14 x 22 x 2.4mm)  
Commercial  
Industrial  
225  
200  
166  
133  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
BG119  
A101  
BG119  
Notes:  
20. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
21. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05216 Rev. *B  
Page 14 of 17  
CY7C1327F  
Ordering Information (continued)  
Speed  
Package  
Name  
A101  
BG119  
A101  
Operating  
Range  
Commercial  
(MHz)  
Ordering Code  
CY7C1327F-100AC  
CY7C1327F-100BGC  
CY7C1327F-100AI  
CY7C1327F-100BGI  
Package Type  
100-Lead Thin Quad Flat Pack(14 x 20 x 1.4mm)  
119-Ball BGA(14 x 22 x 2.4mm)  
100-Lead Thin Quad Flat Pack(14 x 20 x 1.4mm)  
119-Ball BGA(14 x 22 x 2.4mm)  
100  
Industrial  
BG119  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.  
Package Diagrams  
100-pin Thin Plastic Quad Flat Pack (14 x 20 x 1.4mm) A101  
51-85050*A  
Document #: 38-05216 Rev. *B  
Page 15 of 17  
CY7C1327F  
Package Diagrams (continued)  
119-lead BGA (14 x 22 x 2.4 mm) BG119  
51-85115-*A  
i486 is a trademark, and Intel and Pentium are registered trademarks, of Intel Corporation. PowerPC is a registered trademark  
of IBM Corporation. All product and company names mentioned in this document may be trademarks of their respective holders.  
Document #: 38-05216 Rev. *B  
Page 16 of 17  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1327F  
Document History Page  
Document Title: CY7C1327F 4-Mb (256K x 18) Pipelined Sync SRAM  
Document Number: 38-05216  
Orig. of  
REV.  
**  
*A  
ECN NO. Issue Date Change  
Description of Change  
119823  
123849  
200660  
01/06/03  
01/18/03  
See ECN  
HGK  
AJH  
SWI  
New Data Sheet  
Added power up requirements to AC test loads and waveforms information  
Final Data Sheet  
*B  
Document #: 38-05216 Rev. *B  
Page 17 of 17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY