CY7C1329_04 [CYPRESS]

64K x 32 Synchronous-Pipelined Cache RAM; 64K ×32的同步流水线高速缓存RAM
CY7C1329_04
型号: CY7C1329_04
厂家: CYPRESS    CYPRESS
描述:

64K x 32 Synchronous-Pipelined Cache RAM
64K ×32的同步流水线高速缓存RAM

文件: 总15页 (文件大小:353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1329  
64K x 32 Synchronous-Pipelined Cache RAM  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
Features  
• Supports 133-MHz bus for Pentiumand PowerPC  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise is 4.2 ns (133-MHz  
device).  
operations with zero wait states  
• Fully registered inputs and outputs for pipelined  
operation  
• 64K x 32 common I/O architecture  
• Single 3.3V power supply  
The CY7C1329 supports either the interleaved burst  
sequence used by the Intel Pentium processor or a linear burst  
sequence used by processors such as the PowerPC. The  
burst sequence is selected through the MODE pin. Accesses  
can be initiated by asserting either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC) at  
clock rise. Address advancement through the burst sequence  
is controlled by the ADV input. A 2-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Byte Write operations are qualified with the four Byte Write  
Select (BW[3:0]) inputs. A Global Write Enable (GW) overrides  
all Byte Write inputs and writes data to all four bytes. All writes  
are conducted with on-chip synchronous self-timed Write  
circuitry.  
• Fast clock-to-output times  
— 4.2 ns (for 133-MHz device)  
— 5.5 ns (for 100-MHz device)  
• User-selectable burst counter supporting Intel®  
Pentium interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
• Asynchronous output enable  
• JEDEC-standard 100-lead TQFP pinout  
• “ZZ” Sleep Mode option and Stop Clock option  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. In order to provide  
proper data during depth expansion, OE is masked during the  
first clock of a Read cycle when emerging from a deselected  
state.  
Functional Description  
The CY7C1329 is a 3.3V, 64K by 32 synchronous-pipelined  
cache SRAM designed to support zero wait state secondary  
cache with minimal glue logic.  
MODE  
Logic Block Diagram  
2
(A  
)
[1:0]  
Q
Q
CLK  
ADV  
0
BURST  
COUNTER  
CE  
ADSC  
1
CLR  
ADSP  
Q
14  
16  
ADDRESS  
REGISTER  
CE  
D
64K × 32  
Memory  
Array  
A
[15:0]  
GW  
16  
14  
Q
Q
Q
Q
DQ[31:24]  
D
BYTEWRITE  
REGISTERS  
BWE  
BW  
3
D
D
D
DQ[23:16]  
BYTEWRITE  
REGISTERS  
BW  
2
DQ[15:8]  
BYTEWRITE  
REGISTERS  
BW  
1
DQ[7:0]  
BYTEWRITE  
REGISTERS  
BW  
0
32  
32  
CE  
1
CE  
D
ENABLE  
2
Q
CE  
REGISTER  
CE  
3
CLK  
D
Q
OUTPUT  
INPUT  
ENABLE DELAY  
REGISTER  
CLK  
REGISTERS  
CLK  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ  
[31:0]  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05279 Rev. *B  
Revised March 31, 2004  
CY7C1329  
Pin Configuration  
100-pin TQFP  
NC  
DQ16  
DQ17  
VDDQ  
VSSQ  
DQ18  
DQ19  
DQ20  
DQ21  
VSSQ  
VDDQ  
DQ22  
DQ23  
NC  
NC  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQ15  
DQ14  
VDDQ  
VSSQ  
DQ13  
DQ12  
DQ11  
DQ10  
VSSQ  
VDDQ  
DQ9  
DQ8  
VSS  
2
3
4
5
6
7
BYTE2  
BYTE1  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
NC  
NC  
VDD  
VSS  
CY7C1329  
ZZ  
DQ24  
DQ25  
VDDQ  
VSSQ  
DQ26  
DQ27  
DQ28  
DQ29  
VSSQ  
VDDQ  
DQ30  
DQ31  
NC  
DQ7  
DQ6  
VDDQ  
VSSQ  
DQ5  
DQ4  
DQ3  
DQ2  
VSSQ  
VDDQ  
DQ1  
DQ0  
NC  
BYTE3  
BYTE0  
Selection Guide  
7C1329-133  
7C1329-100  
Unit  
ns  
mA  
mA  
Maximum Access Time  
4.2  
325  
5
5.5  
310  
5
Maximum Operating Current  
Maximum CMOS Standby Current  
Commercial  
Commercial  
Document #: 38-05279 Rev. *B  
Page 2 of 15  
CY7C1329  
Pin Definitions  
Pin Number  
Name  
I/O  
Description  
49–44, 81,82, A[15:0]  
Input-  
Address Inputs used to select one of the 64K address locations. Sampled at  
99, 100, 32–37  
Synchronous the rising edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3  
are sampled active. A[1:0] feed the 2-bit counter.  
96–93  
88  
BW[3:0]  
GW  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct Byte Writes  
Synchronous to the SRAM. Sampled on the rising edge of CLK.  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge  
Synchronous of CLK, a global Write is conducted (ALL bytes are written, regardless of the values  
on BW[3:0] and BWE).  
87  
89  
98  
97  
92  
86  
BWE  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This  
Synchronous signal must be asserted LOW to conduct a Byte Write.  
Input-Clock Clock input. Used to capture all synchronous inputs to the device. Also used  
to increment the burst counter when ADV is asserted LOW, during a burst operation.  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunc-  
Input-  
Synchronous tion with CE2 and CE3 to select/deselect the device. ADSP is ignored if CE1 is HIGH.  
Input- Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE1 and CE3 to select/deselect the device.  
Input- Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE1 and CE2 to select/deselect the device.  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the  
Asynchronous I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O  
pins are three-stated, and act as input data pins. OE is masked during the first clock  
of a Read cycle when emerging from a deselected state.  
83  
84  
ADV  
Input-  
Advance Input signal, sampled on the rising edge of CLK. When asserted, it  
Synchronous automatically increments the address in a burst cycle.  
ADSP  
Input-  
Address Strobe from Processor, sampled on the rising edge of CLK. When  
Synchronous asserted LOW, A[15:0] is captured in the address registers. A[1:0] are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is  
recognized. ASDP is ignored when CE1 is deasserted HIGH.  
85  
64  
ADSC  
ZZ  
Input-  
Address Strobe from Controller, sampled on the rising edge of CLK. When  
Synchronous asserted LOW, A[15:0] is captured in the address registers. A[1:0] are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is  
recognized.  
Input-  
ZZ “sleep” Input. This active HIGH input places the device in a non-time-critical  
Asynchronous “sleep” condition with data integrity preserved.  
29, 28, 25–22, DQ[31:0]  
19, 18,13,12,  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that  
Synchronous is triggered by the rising edge of CLK. As outputs, they deliver the data contained  
in the memory location specified by A[15:0] during the previous clock rise of the Read  
cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the  
pins behave as outputs. When HIGH, DQ[31:0] are placed in a three-state condition.  
9–6, 3, 2, 79,  
78, 75–72, 69,  
68, 63, 62  
59–56, 53, 52  
15, 41, 65, 91 VDD  
Power Supply Power supply inputs to the core of the device. Should be connected to 3.3V  
power supply.  
17, 40, 67, 90 VSS  
4, 11, 20, 27, VDDQ  
54, 61, 70, 77  
Ground  
Ground for the core of the device. Should be connected to ground of the system.  
Power supply for the I/O circuitry. Should be connected to a 3.3V power supply.  
I/O Power  
Supply  
5, 10, 21, 26, VSSQ  
I/O Ground Ground for the I/O circuitry. Should be connected to ground of the system.  
55, 60, 71, 76  
31  
MODE  
Input-  
Static  
Selects burst order. When tied to GND selects linear burst sequence. When tied  
to VDDQ or left floating selects interleaved burst sequence. This is a strap pin and  
should remain static during device operation.  
1, 14, 16, 30, NC  
38, 39, 42, 43,  
50, 51, 66, 80  
No Connects.  
Document #: 38-05279 Rev. *B  
Page 3 of 15  
CY7C1329  
Write signals (GW, BWE, and BW0–BW3) and ADV inputs are  
Introduction  
Functional Overview  
ignored during this first cycle.  
ADSP triggered Write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQ[31:0] inputs is written into the corre-  
sponding address location in the RAM core. If GW is HIGH,  
then the Write operation is controlled by BWE and BW[3:0]  
signals. The CY7C1329 provides Byte Write capability that is  
described in the Write Cycle Description table. Asserting the  
Byte Write Enable input (BWE) with the selected Byte Write  
(BW[3:0]) input will selectively write to only the desired bytes.  
Bytes not selected during a Byte Write operation will remain  
unaltered. A synchronous self-timed Write mechanism has  
been provided to simplify the Write operations.  
Because the CY7C1329 is a common I/O device, the Output  
Enable (OE) must be deasserted HIGH before presenting data  
to the DQ[31:0] inputs. Doing so will three-state the output  
drivers. As a safety precaution, DQ[31:0] are automatically  
three-stated whenever a Write cycle is detected, regardless of  
the state of OE.  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise (tCO) is 4.2 ns  
(133-MHz device).  
The CY7C1329 supports secondary cache in systems utilizing  
either a linear or interleaved burst sequence. The interleaved  
burst order supports Pentium and i486processors. The  
linear burst sequence is suited for processors that utilize a  
linear burst sequence. The burst order is user selectable, and  
is determined by sampling the MODE input. Accesses can be  
initiated with either the Processor Address Strobe (ADSP) or  
the Controller Address Strobe (ADSC). Address advancement  
through the burst sequence is controlled by the ADV input. A  
two-bit on-chip wraparound burst counter captures the first  
address in a burst sequence and automatically increments the  
address for the rest of the burst access.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BW[3:0]) inputs. A Global Write  
Enable (GW) overrides all Byte Write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed Write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. ADSP is ignored if  
CE1 is HIGH.  
Single Write Accesses Initiated by ADSC  
ADSC Write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) CE1, CE2, CE3 are all asserted active,  
and (4) the appropriate combination of the Write inputs (GW,  
BWE, and BW[3:0]) are asserted active to conduct a Write to  
the desired byte(s). ADSC triggered Write accesses require a  
single clock cycle to complete. The address presented to  
A[15:0] is loaded into the address register and the address  
advancement logic while being delivered to the RAM core. The  
ADV input is ignored during this cycle. If a global Write is  
conducted, the data presented to the DQ[31:0] is written into the  
corresponding address location in the RAM core. If a Byte  
Write is conducted, only the selected bytes are written. Bytes  
not selected during a Byte Write operation will remain  
unaltered. A Synchronous self-timed Write mechanism has  
been provided to simplify the Write operations.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
CE1, CE2, CE3 are all asserted active, and (3) the Write  
signals (GW, BWE) are all deasserted HIGH. ADSP is ignored  
if CE1 is HIGH. The address presented to the address inputs  
(A[15:0]) is stored into the address advancement logic and the  
Address Register while being presented to the memory core.  
The corresponding data is allowed to propagate to the input of  
the Output Registers. At the rising edge of the next clock the  
data is allowed to propagate through the output register and  
onto the data bus within 4.2 ns (133-MHz device) if OE is  
active LOW. The only exception occurs when the SRAM is  
emerging from a deselected state to a selected state, its  
outputs are always three-stated during the first cycle of the  
access. After the first cycle of the access, the outputs are  
controlled by the OE signal. Consecutive single Read cycles  
are supported. Once the SRAM is deselected at clock rise by  
the chip select and either ADSP or ADSC signals, its output  
will three-state immediately.  
Because the CY7C1329 is a common I/O device, the Output  
Enable (OE) must be deasserted HIGH before presenting data  
to the DQ[31:0] inputs. Doing so will three-state the output  
drivers. As a safety precaution, DQ[31:0] are automatically  
three-stated whenever a Write cycle is detected, regardless of  
the state of OE.  
Burst Sequences  
The CY7C1329 provides a two-bit wraparound counter, fed by  
A
[1:0], that implements either an interleaved or linear burst  
sequence. The interleaved burst sequence is designed specif-  
ically to support Intel Pentium applications. The linear burst  
sequence is designed to support processors that follow a  
linear burst sequence. The burst sequence is user selectable  
through the MODE input.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and (2)  
CE1, CE2, CE3 are all asserted active. The address presented  
to A[15:0] is loaded into the address register and the address  
advancement logic while being delivered to the RAM core. The  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both Read and Write burst operations are supported.  
Document #: 38-05279 Rev. *B  
Page 4 of 15  
CY7C1329  
Sleep Mode  
Interleaved Burst Sequence  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, CE3, ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
A[1:0]  
00  
01  
10  
A[1:0]  
01  
00  
11  
A[1:0]  
10  
11  
00  
A[1:0]  
11  
10  
01  
11  
10  
01  
00  
Linear Burst Sequence  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
A[1:0]  
A[1:0]  
A[1:0]  
A[1:0]  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
IDDZZ  
Snooze mode standby cur- ZZ > VDD 0.2V  
3
mA  
rent  
tZZS  
tZZREC  
Device operation to ZZ  
ZZ recovery time  
ZZ > VDD 0.2V  
2tCYC  
ns  
ns  
ZZ < 0.2V  
2tCYC  
Cycle Descriptions [1,2,3]  
Next Cycle  
Unselected  
Unselected  
Unselected  
Unselected  
Unselected  
Begin Read  
Begin Read  
Continue Read  
Continue Read  
Continue Read  
Continue Read  
Suspend Read  
Suspend Read  
Suspend Read  
Suspend Read  
Add. Used  
None  
None  
None  
None  
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
CE3  
X
1
X
1
X
0
0
X
X
X
X
X
X
X
X
X
CE2  
X
X
0
X
0
CE1  
1
0
0
0
0
0
0
ADSP  
ADSC  
ADV  
X
X
X
X
X
X
X
0
0
0
0
1
OE  
X
X
X
X
X
X
X
1
0
1
0
1
DQ  
Hi-Z  
Write  
X
X
X
X
X
X
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Write  
X
0
0
1
1
0
1
1
1
X
X
1
1
X
X
1
0
X
X
0
0
X
0
1
1
1
1
1
1
1
1
1
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
Hi-Z  
DQ  
Hi-Z  
DQ  
None  
External  
External  
Next  
Next  
Next  
1
1
X
X
X
X
X
X
X
X
X
X
X
1
Next  
1
Current  
Current  
Current  
Current  
Current  
X
X
1
1
X
1
1
1
1
0
1
0
X
Hi-Z  
DQ  
Hi-Z  
Begin Write  
Notes:  
1. X = “Don't Care,” 1 = HIGH, 0 = LOW.  
2. Write is defined by BWE, BW  
, and GW. See Write Cycle Descriptions table.  
[3:0]  
3. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
Document #: 38-05279 Rev. *B  
Page 5 of 15  
CY7C1329  
Cycle Descriptions (continued)[1,2,3]  
Next Cycle  
Begin Write  
Begin Write  
Continue Write  
Continue Write  
Suspend Write  
Suspend Write  
ZZ “sleep”  
Add. Used  
Current  
External  
Next  
ZZ  
L
L
L
L
L
L
H
CE3  
X
0
X
X
X
X
X
CE2  
X
1
X
X
X
X
X
CE1  
1
0
X
1
X
1
X
ADSP  
X
1
1
X
1
ADSC  
ADV  
1
X
0
0
1
1
X
OE  
X
X
X
X
X
X
X
DQ  
Hi-Z  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
X
1
0
1
1
1
1
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Next  
Current  
Current  
None  
X
X
Write Cycle Descriptions[4,5,6]  
Function  
Read  
Read  
GW  
BWE  
BW3  
BW2  
X
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
BW1  
BW0  
X
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
X
1
1
1
1
11  
1
1
1
0
0
0
0
0
0
0
0
X
X
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
X
Write Byte 0 – DQ[7:0]  
Write Byte 1 – DQ[15:8]  
Write Bytes 1, 0  
Write Byte 2 – DQ[23:16]  
Write Bytes 2, 0  
Write Bytes 2, 1  
Write Bytes 2, 1, 0  
Write Byte 3 - DQ[31:24]  
Write Bytes 3, 0  
Write Bytes 3, 1  
Write Bytes 3, 1, 0  
Write Bytes 3, 2  
Write Bytes 3, 2, 0  
Write Bytes 3, 2, 1  
Write All Bytes  
0
X
0
X
Write All Bytes  
Document #: 38-05279 Rev. *B  
Page 6 of 15  
CY7C1329  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Storage Temperature ..................................... −65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.................................................. −55°C to +125°C  
Range Ambient Temperature[8]  
VDD  
VDDQ  
Supply Voltage on VDD Relative to GND.........−0.5V to +4.6V  
Commercial  
Industrial  
0°C to +70°C  
-40°C to +85°C  
3.3V  
3.3V  
DC Voltage Applied to Outputs  
5%/+10% 5%/+10%  
in High-Z State[7] .....................................−0.5V to VDDQ + 0.5V  
DC Input Voltage[7]..................................−0.5V to VDDQ + 0.5V  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
VDDQ  
VOH  
VOL  
VIH  
VIL  
IX  
Description  
Power Supply Voltage 3.3V 5%/+10%  
Test Conditions  
Min.  
3.135  
3.135  
2.4  
Max.  
3.6  
3.6  
Unit  
V
V
V
V
V
V
µA  
I/O Supply Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage[7]  
3.3V 5%/+10%  
VDD = Min., IOH = 4.0 mA  
VDD = Min., IOL = 8.0 mA  
0.4  
DDQ + 0.3V  
2.0  
–0.3  
5  
V
0.8  
5
Input Load Current  
GND VI VDDQ  
Except ZZ and MODE  
Input Current of MODE Input = VSS  
Input = VDDQ  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDDQ  
30  
5
IOZ  
IDD  
Output Leakage  
Current  
GND VI VDDQ, Output Disabled  
5  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
325  
260  
60  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
ISB2  
ISB3  
Automatic CS  
Max. VDD, Device Deselected,  
Power-down  
VIN VIH or VIN VIL  
50  
Current—TTL Inputs  
f = fMAX = 1/tCYC  
Automatic CS  
Power-down  
Max. VDD, Device Deselected,  
All speeds  
5
mA  
V
IN 0.3V or VIN > VDDQ – 0.3V,  
Current—CMOS Inputs f = 0  
Automatic CS  
Power-down  
Max. VDD, Device Deselected, or 7.5-ns cycle, 133 MHz  
IN 0.3V or VIN > VDDQ – 0.3V  
40  
30  
mA  
mA  
V
10-ns cycle, 100 MHz  
Current—CMOS Inputs f = fMAX = 1/tCYC  
ISB4  
Automatic CS  
Max. VDD, Device Deselected,  
VIN VIH or VIN VIL, f = 0  
25  
mA  
Power-down  
Current—TTL Inputs  
Notes:  
4. X = “Don't Care,” 1 = Logic HIGH, 0 = Logic LOW.  
5. The SRAM always initiates a Read cycle when ADSP asserted, regardless of the state of GW, BWE, or BW  
. Writes may occur only on subsequent clocks  
[3:0]  
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the Write cycle to allow the outputs to three-state. OE  
is a “don't care” for the remainder of the Write cycle.  
6. OE is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a Read cycle DQ = High-Z when OE is inactive  
or when the device is deselected, and DQ = data when OE is active.  
7. Minimum voltage equals –2.0V for pulse durations of less than 20 ns.  
8. T is the case temperature.  
A
Document #: 38-05279 Rev. *B  
Page 7 of 15  
CY7C1329  
Capacitance[9]  
Parameter  
Description  
Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
Test Conditions  
TA = 25°C, f = 1 MHz,  
Max.  
Unit  
pF  
pF  
CIN  
CCLK  
CI/O  
4
4
4
VDD = 3.3V,  
VDDQ = 3.3V  
pF  
AC Test Loads and Waveforms  
R = 317Ω  
3.3V  
[10]  
OUTPUT  
ALL INPUT PULSES  
90%  
OUTPUT  
3.3V  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
R = 50Ω  
L
5 pF  
R = 351Ω  
< 3.3 ns  
< 3.3 ns  
INCLUDING  
V = 1.5V  
L
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
Switching Characteristics Over the Operating Range[11,12,13]  
-133  
-100  
Parameter  
tCYC  
tCH  
tCL  
tAS  
Description  
Min.  
7.5  
1.9  
1.9  
1.5  
0.5  
Max.  
Min.  
10  
3.2  
3.2  
2.5  
0.5  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Cycle Time  
Clock HIGH  
Clock LOW  
Address Set-up Before CLK Rise  
Address Hold After CLK Rise  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
ADSP, ADSC Set-up Before CLK Rise  
ADSP, ADSC Hold After CLK Rise  
BWE, GW, BW[3:0] Set-up Before CLK Rise  
BWE, GW, BW[3:0] Hold After CLK Rise  
ADV Set-up Before CLK Rise  
ADV Hold After CLK Rise  
tAH  
tCO  
4.2  
5.0  
tDOH  
tADS  
tADH  
tWES  
tWEH  
tADVS  
tADVH  
tDS  
1.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0
2.0  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
1.5  
0
Data Input Set-up Before CLK Rise  
Data Input Hold After CLK Rise  
Chip Select Set-up  
tDH  
tCES  
tCEH  
tCHZ  
tCLZ  
tEOHZ  
tEOLZ  
Chip Select Hold After CLK Rise  
Clock to High-Z[12]  
3.5  
3.5  
4.2  
5
Clock to Low-Z[12]  
OE HIGH to Output High-Z[12, 13]  
OE LOW to Output Low-Z[12, 13]  
OE LOW to Output Valid[12]  
5.5  
5.0  
0
0
tEOV  
Notes:  
9. Tested initially and after any design or process changes that may affect these parameters.  
10. Input waveform should have a slew rate of 1V/ns.  
11. Unless otherwise noted, test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output  
loading of the specified I /I and load capacitance. Shown in (a) and (b) of AC Test Loads.  
OL OH  
EOHZ  
12. t  
, t  
, t  
, t  
, and t  
are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state  
CHZ CLZ EOV EOLZ  
voltage.  
13. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
.
CLZ  
EOHZ  
EOLZ  
CHZ  
Document #: 38-05279 Rev. *B  
Page 8 of 15  
CY7C1329  
Switching Waveforms  
Write Cycle Timing[14, 15]  
Single Write  
tCYC  
tADH  
Burst Write  
Pipelined Write  
tCH  
Unselected  
CLK  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
ADSC  
ADV  
tADH  
tADS  
ADSC initiated Write  
tADVH  
tADVS  
tAS  
ADV Must Be Inactive for ADSP Write  
WD3  
ADD  
GW  
WE  
CE1  
WD1  
WD2  
tAH  
tWH  
tWH  
tWS  
tWS  
tCES  
tCEH  
CE1 masks ADSP  
tCEH  
tCES  
Unselected with CE2  
CE2  
CE3  
OE  
tCES  
tCEH  
tDH  
tDS  
High-Z  
High-Z  
Data-  
In  
3a  
2a  
= UNDEFINED  
1a  
2b  
2c  
2d  
= DON’T CARE  
Notes:  
14. WE is the combination of BWE, BW  
and GW to define a Write cycle (see Write Cycle Descriptions table).  
[3:0]  
15. WDx stands for Write Data to Address X.  
Document #: 38-05279 Rev. *B  
Page 9 of 15  
CY7C1329  
Switching Waveforms (continued)  
Read Cycle Timing[14, 16]  
Burst Read  
Single Read  
tCYC  
Unselected  
tCH  
Pipelined Read  
CLK  
tADH  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
tADS  
ADSC initiated Read  
ADSC  
ADV  
tADVS  
tADH  
Suspend Burst  
tADVH  
tAS  
ADD  
GW  
WE  
RD3  
RD1  
RD2  
tAH  
tWS  
tWS  
tWH  
tCES  
tCEH  
tWH  
CE1 masks ADSP  
CE  
1
2
Unselected with CE2  
CE  
tCES  
tCEH  
CE  
3
tCES  
tDOE  
tCEH  
OE  
tOEHZ  
tDOH  
tCO  
Data-  
Out  
2c  
1a  
2d  
3a  
tCHZ  
2a  
2b  
tCLZ  
= DON’T CARE  
= UNDEFINED  
Note:  
16. RDx stands for Read Data from Address X.  
Document #: 38-05279 Rev. *B  
Page 10 of 15  
CY7C1329  
Switching Waveforms (continued)  
Read/Write Cycle Timing[14,15,16, 17]  
Single Read  
tCYC  
Single Write  
tCH  
Unselected  
Burst Read  
Pipelined Read  
CLK  
tADH  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
ADSC  
ADV  
tADS  
tADVS  
tADH  
tAS  
tADVH  
WD2  
ADD  
RD1  
RD3  
tWS  
tAH  
GW  
WE  
tWS  
tWH  
tCES  
tCEH  
tWH  
CE1 masks ADSP  
CE  
1
CE  
2
3
tCES  
tCEH  
CE  
tDOE  
tCES  
tCEH  
OE  
tOEHZ  
tDS  
3a  
tDH  
tDOH  
See Note 17  
tOELZ  
tCO  
2a  
3b  
3c  
3d  
Out  
Data-  
1a  
2a  
In  
Out  
Out  
Out  
Out  
Out  
In/Out  
TCHZ  
= UNDEFINED  
= DON’T CARE  
Note:  
17. Data bus is driven by SRAM, but data is not guaranteed.  
Document #: 38-05279 Rev. *B  
Page 11 of 15  
CY7C1329  
Switching Waveforms (continued)  
Pipeline Timing[18,19]  
tCYC  
tCL  
tCH  
CLK  
tAS  
WD1  
WD2  
WD3  
WD4  
RD1  
RD2  
RD3  
RD4  
ADD  
tADS  
tADH  
ADSC initiated Reads  
ADSC  
ADSP initiated Reads  
ADSP  
ADV  
tCEH  
tCES  
CE  
1
CE  
tWES  
tWEH  
WE  
ADSP ignored  
with CE1 HIGH  
OE  
tCLZ  
Data In/Out  
1a  
In  
1a  
2a  
3a  
4a  
2a  
In  
3a  
In  
4a  
Out Out Out Out  
In  
tCO  
tDOH  
Back to Back Reads  
tCHZ  
= UNDEFINED  
= DON’T CARE  
Notes:  
18. Device originally deselected.  
19. CE is the combination of CE and CE . All chip selects need to be active in order to select the device.  
2
3
Document #: 38-05279 Rev. *B  
Page 12 of 15  
CY7C1329  
Switching Waveforms (continued)  
ZZ Mode Timing[20, 21]  
CLK  
ADSP  
HIGH  
ADSC  
CE  
1
LOW  
HIGH  
CE  
2
CE  
ZZ  
3
t
ZZS  
I
DD  
I
(active)  
DD  
t
ZZREC  
I
DDZZ  
I/Os  
Three-state  
Ordering Information  
Speed  
Package  
Operating  
Range  
Commercial  
(MHz)  
133  
Ordering Code  
CY7C1329-133AC  
CY7C1329-100AC  
CY7C1329-100AI  
Name  
A101  
A101  
A101  
Package Type  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack  
100-lead Thin Quad Flat Pack  
100  
Industrial  
Notes:  
20. Device must be deselected when entering ZZ mode. See Cycle Description table for all possible signal conditions to deselect the device.  
21. I/Os are in three-state when exiting ZZ sleep mode.  
Document #: 38-05279 Rev. *B  
Page 13 of 15  
CY7C1329  
Package Diagram  
100-lead Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-*A  
i486 is a trademark, and Intel and Pentium are registered trademarks, of Intel Corporation. PowerPC is a registered trademark  
of IBM Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05279 Rev. *B  
Page 14 of 15  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1329  
Document History Page  
Document Title: CY7C1329 64K x 32 Synchronous-Pipelined Cache RAM  
Document Number:38-05279  
REV.  
ECN NO Issue Date Orig. of  
Description of changes  
Change  
**  
*A  
*B  
114388  
114499  
212291  
03/25/02  
04/11/02  
See ECN  
DSG  
GLC  
VBL  
Changed from Spec number: 38-00561 to 38-05279  
Changed to 1.5 set-up  
Updated ordering info: added -100AI  
Added Industrial to Operating Range section,  
delete -75 from AC characteristics table  
Document #: 38-05279 Rev. *B  
Page 15 of 15  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY