CY7C1340G-166AXC [CYPRESS]

4-Mbit (128K x 32) Pipelined DCD Sync SRAM; 4兆位( 128K ×32)流水线DCD同步SRAM
CY7C1340G-166AXC
型号: CY7C1340G-166AXC
厂家: CYPRESS    CYPRESS
描述:

4-Mbit (128K x 32) Pipelined DCD Sync SRAM
4兆位( 128K ×32)流水线DCD同步SRAM

存储 内存集成电路 静态存储器 CD 时钟
文件: 总16页 (文件大小:349K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1340G  
4-Mbit (128K x 32) Pipelined DCD Sync SRAM  
Features  
Functional Description[1]  
• Registered inputs and outputs for pipelined operation  
• Optimal for performance (Double-Cycle deselect)  
— Depth expansion without wait state  
The CY7C1340G SRAM integrates 128K x 32 SRAM cells with  
advanced synchronous peripheral circuitry and a two-bit  
counter for internal burst operation. All synchronous inputs are  
gated by registers controlled by a positive-edge-triggered  
Clock Input (CLK). The synchronous inputs include all  
addresses, all data inputs, address-pipelining Chip Enable  
(CE1), depth-expansion Chip Enables (CE2 and CE3), Burst  
Control inputs (ADSC, ADSP, and ADV), Write Enables  
(BW[A:D], and BWE), and Global Write (GW). Asynchronous  
inputs include the Output Enable (OE) and the ZZ pin.  
• 128K × 32 common I/O architecture  
• 3.3V core power supply (VDD  
)
• 3.3V / 2.5V I/O power supply (VDDQ  
)
• Fast clock-to-output times  
— 2.6 ns (for 250-MHz device)  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or  
Address Strobe Controller (ADSC) are active. Subsequent  
burst addresses can be internally generated as controlled by  
the Advance pin (ADV).  
• Provide high-performance 3-1-1-1 access rate  
• User-selectable burst counter supporting Intel®  
Pentium® interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to four bytes wide as  
controlled by the byte write control inputs. GW active LOW  
causes all bytes to be written. This device incorporates an  
additional pipelined enable register which delays turning off  
the output buffers an additional cycle when a deselect is  
executed.This feature allows depth expansion without penal-  
izing system performance.  
• Asynchronous Output Enable  
• Available in lead-free 100-Pin TQFP package  
• “ZZ” Sleep Mode option  
The CY7C1340G operates from a +3.3V core power supply  
while all outputs operate with a +3.3V or a +2.5V supply. All  
inputs and outputs are JEDEC-standard JESD8-5-compatible.  
Selection Guide  
250 MHz  
200 MHz  
2.8  
166 MHz  
3.5  
133 MHz  
4.0  
Unit  
ns  
Maximum Access Time  
2.6  
325  
40  
Maximum Operating Current  
Maximum CMOS Standby Current  
265  
240  
225  
mA  
mA  
40  
40  
40  
Note:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
Document #: 38-05522 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised July 5, 2006  
CY7C1340G  
Functional Block Diagram  
ADDRESS  
REGISTER  
A0,A1,A  
MODE  
2
A[1:0]  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D
DQD  
BYTE  
WRITE DRIVER  
BW  
D
DQ  
BYTE  
WRITE DRIVER  
C
DQ  
BYTE  
WRITE REGISTER  
c
MEMORY  
ARRAY  
BW  
C
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
DQs  
DQ  
BYTE  
WRITE DRIVER  
B
E
DQ  
BYTE  
WRITE REGISTER  
B
BW  
BW  
B
A
DQ  
BYTE  
WRITE DRIVER  
A
DQ  
BYTE  
WRITE REGISTER  
A
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
ZZ  
CONTROL  
Document #: 38-05522 Rev. *D  
Page 2 of 16  
CY7C1340G  
Pin Configurations  
100-Pin TQFP Pinout  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
NC  
DQc  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
DQc  
VDDQ  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VSSQ  
DQc  
BYTE B  
BYTE C  
DQc  
DQc  
DQc  
VSSQ  
VDDQ  
DQc  
DQc  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
CY7C1340G  
NC  
NC  
VDD  
VSS  
ZZ  
DQD  
DQD  
VDDQ  
VSSQ  
DQD  
DQD  
DQD  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
NC  
BYTE A  
BYTE D  
DQD  
VSSQ  
VDDQ  
DQD  
DQD  
NC  
Pin Definitions  
Pin  
Type  
Description  
Address Inputs used to select one of the 128K address locations. Sampled at the rising edge  
A0, A1, A  
Input-  
Synchronous of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A[1:0] are  
fed to the two-bit counter.  
BWA, BWB,  
BW  
C, BWD  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM.  
Synchronous Sampled on the rising edge of CLK.  
GW  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a global  
Synchronous write is conducted (ALL bytes are written, regardless of the values on BW[A:D] and BWE).  
BWE  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be  
Synchronous asserted LOW to conduct a byte write.  
Document #: 38-05522 Rev. *D  
Page 3 of 16  
CY7C1340G  
Pin Definitions (continued)  
Pin  
Type  
Description  
CLK  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the burst  
counter when ADV is asserted LOW, during a burst operation.  
CE1  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous CE2 and CE3 to select/deselect the device. ADSP is ignored if CE1 is HIGH. CE1 is sampled only  
when a new external address is loaded.  
CE2  
CE3  
OE  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous CE1 and CE3 to select/deselect the device. CE2 is sampled only when a new external address is  
loaded.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous CE1 and CE2 to select/deselect the device. CE3 is sampled only when a new external address is  
loaded.  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the DQ pins. When  
Asynchronous LOW, the DQ pins behave as outputs. When deasserted HIGH, DQ pins are tri-stated, and act as  
input data pins. OE is masked during the first clock of a read cycle when emerging from a deselected  
state.  
ADV  
Input-  
Advance Input signal, sampled on the rising edge of CLK, active LOW. When asserted, it  
Synchronous automatically increments the address in a burst cycle.  
ADSP  
Input- Address Strobe from Processor, sampled on the rising edge of CLK, active LOW. When  
Synchronous asserted LOW, addresses presented to the device are captured in the address registers. A[1:0] are  
also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recog-  
nized. ASDP is ignored when CE1 is deasserted HIGH.  
ADSC  
Input-  
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW. When  
Synchronous asserted LOW, addresses presented to the device are captured in the address registers. A[1:0] are  
also loaded into the burst counter. When ADSP and ADSC are both asserted,  
only ADSP is recognized.  
ZZ  
Input-  
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a non-time-critical  
Asynchronous “sleep” condition with data integrity preserved.During normal operation, this pin has to be low or left  
floating. ZZ pin has an internal pull-down.  
DQs  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered by  
Synchronous the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified  
by the addresses presented during the previous clock rise of the read cycle. The direction of the  
pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs  
are placed in a tri-state condition.  
VDD  
VSS  
Power Supply Power supply inputs to the core of the device.  
Ground  
Ground for the core of the device.  
VDDQ  
I/O Power Power supply for the I/O circuitry.  
Supply  
VSSQ  
I/O Ground Ground for the I/O circuitry.  
MODE  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD or left  
floating selects interleaved burst sequence. This is a strap pin and should remain static during  
device operation. Mode Pin has an internal pull-up.  
NC,NC/9M,  
NC/18M,  
NC/36M,  
NC/72M  
No Connects. Not internally connected to the die.NC/9M,NC/18M,NC/36M,NC/72M are address  
expansion pins are not internally connected to the die.  
Document #: 38-05522 Rev. *D  
Page 4 of 16  
CY7C1340G  
then the write operation is controlled by BWE and  
BW[A:D]  
signals. The CY7C1340G provides byte write capability that is  
described in the Write Cycle Description table. Asserting the  
Byte Write Enable input (BWE) with the selected Byte Write  
input will selectively write to only the desired bytes. Bytes not  
selected during a byte write operation will remain unaltered. A  
synchronous self-timed write mechanism has been provided  
to simplify the write operations.  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
The CY7C1340G supports secondary cache in systems  
utilizing either a linear or interleaved burst sequence. The  
interleaved burst order supports Pentium and i486™  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
Because the CY7C1340G is a common I/O device, the Output  
Enable (OE) must be deasserted HIGH before presenting data  
to the DQ inputs. Doing so will tri-state the output drivers. As  
a safety precaution, DQ are automatically tri-stated whenever  
a write cycle is detected, regardless of the state of OE.  
Accesses can  
be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC).  
Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Single Write Accesses Initiated by ADSC  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) chip select is asserted active, and  
(4) the appropriate combination of the write inputs (GW, BWE,  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BW[A:D]) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed write circuitry.  
and  
) are asserted active to conduct a write to the  
BW[A:D]  
desired byte(s). ADSC triggered write accesses require a  
single clock cycle to complete. The address presented is  
loaded into the address register and the address  
advancement logic while being delivered to the memory core.  
The ADV input is ignored during this cycle. If a global write is  
conducted, the data presented to the DQX is written into the  
corresponding address location in the memory core. If a byte  
write is conducted, only the selected bytes are written. Bytes  
not selected during a byte write operation will remain  
unaltered. A synchronous self-timed write mechanism has  
been provided to simplify the write operations.  
Synchronous Chip Selects CE1, CE2, CE3 and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if CE1  
is HIGH.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
chip selects are all asserted active, and (3) the write signals  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1  
is HIGH. The address presented to the address inputs is  
stored into the address advancement logic and the Address  
Register while being presented to the memory core. The corre-  
sponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within tCO if OE is active LOW. The only exception  
occurs when the SRAM is emerging from a deselected state  
to a selected state, its outputs are always tri-stated during the  
first cycle of the access. After the first cycle of the access, the  
outputs are controlled by the OE signal. Consecutive single  
read cycles are supported.  
Because the CY7C1340G is a common I/O device, the Output  
Enable (OE) must be deasserted HIGH before presenting data  
to the DQX inputs. Doing so will tri-state the output drivers. As  
a
safety precaution, DQX are automatically tri-stated  
whenever a write cycle is detected, regardless of the state of  
OE.  
Burst Sequences  
The CY7C1340G provides a two-bit wraparound counter, fed  
by A[1:0], that implements either an interleaved or linear burst  
sequence. The interleaved burst sequence is designed specif-  
ically to support Intel Pentium applications. The linear burst  
sequence is designed to support processors that follow a  
linear burst sequence. The burst sequence is user selectable  
through the MODE input. Both read and write burst operations  
are supported.  
The CY7C1340G is a double-cycle deselect part. Once the  
SRAM is deselected at clock rise by the chip select and either  
ADSP or ADSC signals, its output will tri-state immediately  
after the next clock rise.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
Single Write Accesses Initiated by ADSP  
Sleep Mode  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) chip select is asserted active. The address presented is  
loaded into the address register and the address  
advancement logic while being delivered to the memory core.  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CEs, ADSP, and ADSC must remain  
inactive for the duration of tZZREC after the ZZ input returns  
LOW.  
The write signals (GW, BWE, and  
ignored during this first cycle.  
) and ADV inputs are  
BW[A:D]  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQx inputs is written into the corre-  
sponding address location in the memory core. If GW is HIGH,  
Document #: 38-05522 Rev. *D  
Page 5 of 16  
CY7C1340G  
Linear Burst Address Table (MODE = GND)  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1, A0  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
First  
Address  
A1, A0  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Snooze mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD 0.2V  
ZZ > VDD 0.2V  
Min.  
Max.  
40  
Unit  
mA  
tZZ  
2tCYC  
2tCYC  
ns  
ns  
ns  
ns  
tZZREC  
tZZI  
ZZ < 0.2V  
2tCYC  
0
ZZ active to snooze current  
This parameter is sampled  
This parameter is sampled  
tRZZI  
ZZ inactive to exit snooze current  
Truth Table[2, 3, 4, 5, 6]  
Address  
Used CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
Operation  
DQ  
Deselected Cycle, Power Down None  
Deselected Cycle, Power Down None  
Deselected Cycle, Power Down None  
Deselected Cycle, Power Down None  
Deselected Cycle, Power Down None  
H
L
X
L
X
X
H
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L-H  
L-H  
L-H  
L-H  
L-H  
X
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Q
L
X
L
L
L
H
H
X
L
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
ZZ Mode, Power-Down  
None  
External  
External  
External  
External  
External  
Next  
X
L
X
X
X
L
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L
L
L
H
X
L
Tri-State  
D
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L
L
L
H
H
H
H
H
H
L
Q
L
L
L
H
L
Tri-State  
Q
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Next  
L
H
L
Tri-State  
Q
Next  
L
Next  
L
H
X
X
L
Tri-State  
D
Next  
L
Next  
L
L
D
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
Q
H
L
Tri-State  
Q
H
X
X
Tri-State  
D
Write Cycle, Suspend Burst  
L
D
Notes:  
2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
3. WRITE = L when any one or more Byte Write enable signals (BW , BW , BW , BW ) and BWE = L or GW = L. WRITE = H when all Byte write enable signals  
A
B
C
D
(BW , BW , BW , BW ), BWE, GW = H.  
A
B
C
D
4. The DQ pins are controlled by the current cycle and the  
signal.  
is asynchronous and is not sampled with the clock.  
OE  
OE  
5. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after  
the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't  
care for the remainder of the write cycle.  
X
6. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is  
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document #: 38-05522 Rev. *D  
Page 6 of 16  
CY7C1340G  
Partial Truth Table for Read/Write[2, 7]  
Function  
GW  
BWE  
BWA  
X
BWB  
X
BWC  
BWD  
X
Read  
Read  
H
H
H
H
H
H
H
L
H
L
L
L
L
L
L
X
X
H
H
H
L
H
H
H
Write byte A - DQA  
Write byte B - DQB  
Write byte C - DQC  
Write byte D - DQD  
Write all bytes  
L
H
H
H
L
H
H
H
H
H
H
H
L
L
L
L
L
Write all bytes  
X
X
X
X
Note:  
7. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05522 Rev. *D  
Page 7 of 16  
CY7C1340G  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW)......................................... 20 mA  
Static Discharge Voltage............................................>2001V  
(per MIL-STD-883,Method 3015)  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature .................................... –65°C to +150°  
Latch -up Current.....................................................>200 mA  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Supply Voltage on VDD Relative to GND........ –0.5V to +4.6V  
Supply Voltage on VDDQ Relative to GND ......0.5V to +VDD  
Ambient  
Range  
Commercial  
Industrial  
Temperature (TA)  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
in tri-state ............................................ –0.5V to VDDQ + 0.5V  
0°C to +70°C  
3.3V 5%/+10% 2.5V5%  
to VDD  
–40°C to +85°C  
[8, 9]  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
Test Conditions  
Min.  
3.135  
2.375  
2.4  
Max.  
3.6  
Unit  
V
VDDQ  
VDD  
V
VOH  
for 3.3V I/O, IOH = –4.0 mA  
V
for 2.5V I/O, IOH = –1.0 mA  
for 3.3V I/O, IOL = 8.0 mA  
for 2.5V I/O, IOL = 1.0 mA  
for 3.3V I/O  
2.0  
V
VOL  
VIH  
VIL  
IX  
Output LOW Voltage  
Input HIGH Voltage[8]  
Input LOW Voltage[8]  
0.4  
0.4  
V
V
2.0  
1.7  
VDD + 0.3V  
V
for 2.5V I/O  
V
DD + 0.3V  
V
for 3.3V I/O  
–0.3  
–0.3  
–5  
0.8  
0.7  
5
V
for 2.5V I/O  
V
Input Leakage Current  
except ZZ and MODE  
GND VI VDDQ  
µA  
Input Current of MODE  
Input = VSS  
–30  
–5  
µA  
µA  
Input = VDD  
5
Input Current of ZZ  
Input = VSS  
µA  
Input = VDD  
30  
5
µA  
IOZ  
IDD  
Output Leakage Current  
GND VI VDDQ, Output Disabled  
–5  
µA  
VDD Operating Supply  
Current  
VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
4-ns cycle, 250 MHz  
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
7.5-ns cycle, 133 MHz  
325  
265  
240  
225  
120  
110  
100  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ISB1  
Automatic CE  
Power-down  
Current—TTL Inputs  
VDD=Max., DeviceDeselected, 4-ns cycle, 250 MHz  
VIN VIH or VIN VIL, f = fMAX =  
1/tCYC  
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
7.5-ns cycle, 133 MHz  
ISB2  
Automatic CE  
VDD=Max., DeviceDeselected, All speeds  
40  
Power-down  
Current—CMOS Inputs  
VIN 0.3V or VIN > VDDQ – 0.3V,  
f = 0  
ISB3  
Automatic CE  
Power-down  
Current—CMOS Inputs  
VDD=Max., DeviceDeselected, 4-ns cycle, 250 MHz  
105  
95  
85  
75  
mA  
mA  
mA  
mA  
mA  
or VIN 0.3V or VIN > VDDQ –  
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
7.5-ns cycle, 133 MHz  
0.3V, f = fMAX = 1/tCYC  
ISB4  
Automatic CE Power-down VDD=Max., DeviceDeselected, All speeds  
Current—TTL Inputs VIN VIH or VIN VIL, f = 0  
45  
Notes: .  
8. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC)> –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
< V  
DDQ DD.  
9. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
Power-up  
DD  
IH  
DD  
Document #: 38-05522 Rev. *D  
Page 8 of 16  
CY7C1340G  
Capacitance[10]  
100 TQFP  
Parameter  
Description  
Input Capacitance  
Test Conditions  
TA = 25°C, f = 1 MHz,  
DD = 3.3V  
VDDQ = 3.3V  
Max.  
Unit  
pF  
CIN  
5
5
5
V
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
Thermal Characteristics[10]  
100 TQFP  
Package  
Parameter  
Description  
Test Conditions  
Unit  
°C/W  
°C/W  
ΘJA  
ΘJC  
Thermal Resistance (Junction to Ambient)  
Thermal Resistance (Junction to case)  
Test conditions follow standard test  
methodsandproceduresformeasuring  
thermal impedance, per EIA/JESD51.  
30.32  
6.85  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
R = 351Ω  
1ns  
1ns  
V = 1.5V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R =1538Ω  
1ns  
1ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
10. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05522 Rev. *D  
Page 9 of 16  
CY7C1340G  
[12, 13, 14, 15, 16]  
Switching Characteristics Over the Operating Range  
–250  
–200  
–166  
–133  
Parameter  
tPOWER  
Description  
VDD(Typical) to the first Access[11]  
Min. Max. Min. Max. Min. Max. Min. Max. Unit  
1.0  
1.0  
1.0  
1.0  
ms  
Clock  
tCYC  
Clock Cycle Time  
Clock HIGH  
4.0  
1.7  
1.7  
5.0  
2.0  
2.0  
6.0  
2.5  
2.5  
7.5  
3.0  
3.0  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCO  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[12, 13, 14]  
2.6  
2.8  
3.5  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
1.0  
0
1.0  
0
1.5  
0
1.5  
0
tCLZ  
tCHZ  
Clock to High-Z[12, 13, 14]  
2.6  
2.6  
2.8  
2.8  
3.5  
3.5  
4.0  
4.0  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
OE LOW to Output Low-Z[12, 13, 14]  
OE HIGH to Output High-Z[12, 13, 14]  
0
0
0
0
2.6  
2.8  
3.5  
4.0  
Address Set-up Before CLK Rise  
ADSC, ADSP Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX Set-up Before CLK Rise 1.2  
tDS  
Data Input Set-up Before CLK Rise  
Chip Enable Set-up Before CLK Rise  
1.2  
1.2  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
ADV Hold After CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tADVH  
tWEH  
GW, BWE, BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tDH  
tCEH  
Notes:  
11. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V minimum initially before a read or write operation  
DD  
POWER  
can be initiated.  
12. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
13. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
OEHZ  
OELZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
14. This parameter is sampled and not 100% tested.  
15. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
16. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05522 Rev. *D  
Page 10 of 16  
CY7C1340G  
Switching Waveforms  
Read Timing[17]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,BW[A:D]  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
OEV  
CO  
t
t
CHZ  
t
t
t
OELZ  
OEHZ  
DOH  
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A3)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Note:  
17. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05522 Rev. *D  
Page 11 of 16  
CY7C1340G  
Switching Waveforms (continued)  
Write Timing[17, 18]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW[A:D]  
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
Data in (D)  
t
OEHZ  
Data Out (Q)  
BURST READ  
Single WRITE  
BURST WRITE  
DON’T CARE  
Extended BURST WRITE  
UNDEFINED  
Note:  
18. Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW  
LOW.  
[A:D]  
Document #: 38-05522 Rev. *D  
Page 12 of 16  
CY7C1340G  
Switching Waveforms (continued)  
Read/Write Timing[17, 19, 20]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW[A:D]  
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
D(A3)  
D(A5)  
D(A6)  
High-Z  
High-Z  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Back-to-Back READs  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
UNDEFINED  
DON’T CARE  
Notes:  
19. The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.  
20. is HIGH.  
GW  
Document #: 38-05522 Rev. *D  
Page 13 of 16  
CY7C1340G  
Switching Waveforms (continued)  
ZZ Mode Timing [21, 22]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
21. Device must be deselected when entering ZZ mode. See truth table for all possible signal conditions to deselect the device.  
22. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05522 Rev. *D  
Page 14 of 16  
CY7C1340G  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Package Type  
133 CY7C1340G-133AXC  
CY7C1340G-133AXI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Commercial  
Industrial  
166 CY7C1340G-166AXC  
CY7C1340G-166AXI  
Commercial  
Industrial  
200 CY7C1340G-200AXC  
CY7C1340G-200AXI  
Commercial  
Industrial  
250 CY7C1340G-250AXC  
CY7C1340G-250AXI  
Commercial  
Industrial  
Package Diagram  
100-Pin TQFP (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
Intel and Pentium are registered trademarks, and i486 is a trademark, of Intel Corporation. PowerPC is a registered trademark  
of IBM. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05522 Rev. *D  
Page 15 of 16  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1340G  
Document History Page  
Document Title: CY7C1340G 4-Mb (128K x 32) Pipelined DCD Sync SRAM  
Document Number: 38-05522  
Orig. of  
REV. ECN NO. Issue Date Change  
Description of Change  
**  
*A  
*B  
224370  
288909  
332895  
See ECN  
See ECN  
See ECN  
RKF  
VBL  
SYT  
New Data Sheet  
In Ordering Info Section, change TQFP to PB-Free TQFP  
Modified Address Expansion balls in the pinouts for 100 TQFP Package as per  
JEDEC standards and updated the Pin Definitions accordingly  
Modified VOL, VOH test conditions  
Removed 200Mhz Speed Bin  
Replaced TBD’s for ΘJA and ΘJC to their respective values on the Thermal Resis-  
tance table  
Updated the Ordering Information by shading and unshading MPNs as per  
availability  
*C  
419256  
See ECN  
RXU  
Converted from Preliminary to Final  
Changed address of Cypress Semiconductor Corporation on Page# 1 from “3901  
North First Street” to “198 Champion Court”  
Modified test condition from VIH < VDD to VIH < VDD  
Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the  
Electrical Characteristics Table  
Replaced Package Name column with Package Diagram in the Ordering Infor-  
mation table  
Replaced Package Diagram of 51-85050 from *A to *B  
Updated the Ordering Information  
*D  
480368  
See ECN  
VKN  
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND.  
Updated the Ordering Information table.  
Document #: 38-05522 Rev. *D  
Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY