CY7C1347D-225BGC [CYPRESS]

128K x 36 Synchronous-Pipelined Cache SRAM; 128K ×36的同步流水线高速缓存SRAM
CY7C1347D-225BGC
型号: CY7C1347D-225BGC
厂家: CYPRESS    CYPRESS
描述:

128K x 36 Synchronous-Pipelined Cache SRAM
128K ×36的同步流水线高速缓存SRAM

存储 静态存储器
文件: 总21页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1347D  
128K x 36 Synchronous-Pipelined Cache SRAM  
Features  
Functional Description  
• Fast access times: 2.5 and 3.5 ns  
This Cypress Synchronous Burst SRAM employs high-speed,  
low-power CMOS designs using advanced triple-layer  
polysilicon, double-layer metal technology. Each memory cell  
consists of four transistors and two high-valued resistors.  
• Fast clock speed: 250, 225, 200, and 166 MHz  
• 1.5-ns set-up time and 0.5-ns hold time  
• Fast OE access times: 2.5 ns and 3.5 ns  
The CY7C1347D SRAM integrate 131,072 x 36 SRAM cells  
with advanced synchronous peripheral circuitry and a 2-bit  
counter for internal burst operation. All synchronous inputs are  
gated by registers controlled by a positive-edge-triggered  
clock input (CLK). The synchronous inputs include all  
addresses, all data inputs, address-pipelining Chip Enable  
(CE), depth-expansion Chip Enables (CE2 and CE2), Burst  
Control Inputs (ADSC, ADSP, and ADV), Write Enables (BWa,  
BWb, BWc, BWd, and BWE), and Global Write (GW).  
• Optimal for depth expansion (one cycle chip deselect  
to eliminate bus contention)  
• 3.3V –5% and +10% power supply  
• 3.3V or 2.5V I/O supply  
• 5V tolerant inputs except I/Os  
• Clamp diodes to VSS at all inputs and outputs  
• Common data inputs and data outputs  
• Byte Write Enable and Global Write control  
Asynchronous inputs include the Output Enable (OE) and  
Burst Mode Control (MODE). The data outputs (Q), enabled  
by OE, are also asynchronous.  
• Three chip enables for depth expansion and address  
pipeline  
Addresses and chip enables are registered with either  
Address Status Processor (ADSP) or Address Status  
Controller (ADSC) input pins. Subsequent burst addresses  
can be internally generated as controlled by the Burst Advance  
pin (ADV).  
• Address, data, and control registers  
• Internally self-timed Write Cycle  
• Burst control pins (interleaved or linear burst  
sequence)  
Address, data inputs, and write controls are registered on-chip  
to initiate self-timed Write cycle. Write cycles can be one to  
four bytes wide as controlled by the write control inputs.  
Individual byte write allows individual byte to be written. BWa  
controls DQa. BWb controls DQb. BWc controls DQc. BWd  
controls DQd. BWa, BWb, BWc, and BWd can be active only  
with BWE being LOW. GW being LOW causes all bytes to be  
written.  
• Automatic power-down for portable applications  
• JTAG boundary scan  
• JEDEC standard pinout  
• Low profile 119-lead, 14-mm x 22-mm BGA (Ball Grid  
Array) and 100-pin TQFP packages  
Four pins are used to implement JTAG test capabilities: Test  
Mode Select (TMS), Test Data-in (TDI), Test Clock (TCK), and  
Test Data-out (TDO). The JTAG circuitry is used to serially shift  
data to and from the device. JTAG inputs use LVTTL/LVCMOS  
levels to shift data during this testing mode of operation.  
The CY7C1347D operates from a +3.3V power supply. All  
inputs and outputs are LVTTL-compatible  
Selection Guide  
CY7C1347D-250 CY7C1347D-225 CY7C1347D-200  
CY7C1347D-166  
Maximum Access Time (ns)  
2.5  
450  
10  
2.5  
400  
10  
2.5  
360  
10  
3.5  
300  
10  
Maximum Operating Current (mA)  
Maximum CMOS Standby Current (mA)  
Cypress Semiconductor Corporation  
Document #: 38-05022 Rev. *D  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised March 30, 2004  
CY7C1347D  
Functional Block Diagram—CY7C1347D[1]  
BYTE a WRITE  
BWa#  
BWE#  
D
Q
CLK  
BYTE b WRITE  
BWb#  
D
Q
GW#  
BYTE c WRITE  
BWc#  
D
Q
BYTE d WRITE  
BWd#  
D
Q
ENABLE  
CE#  
CE2  
D
Q
D
Q
CE2#  
OE#  
ZZ  
Power Down Logic  
Input  
Register  
ADSP#  
15  
A
Address  
Register  
OUTPUT  
REGISTER  
ADSC#  
DQa,DQb  
DQc,DQd  
CLR  
D
Q
ADV#  
A1-A0  
MODE  
Binary  
Counter  
& Logic  
Note:  
1. The functional block diagram illustrates simplified device operation. See Truth Table, pin descriptions and timing diagrams for detailed information.  
Document #: 38-05022 Rev. *D  
Page 2 of 21  
 
CY7C1347D  
Pin Configurations  
100-Pin TQFP  
Top View  
DQc  
DQc  
DQc  
VCCQ  
VSS  
DQc  
DQc  
DQc  
DQc  
VSS  
1
2
3
4
5
6
7
8
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQb  
DQb  
VCCQ  
VSS  
DQb  
DQb  
DQb  
DQb  
VSS  
VCCQ  
DQb  
DQb  
VSS  
NC  
VCC  
ZZ  
DQa  
DQa  
VCCQ  
VSS  
DQa  
DQa  
DQa  
DQa  
VSS  
VCCQ  
DQa  
DQa  
DQa  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VCCQ  
DQc  
DQc  
NC  
VCC  
NC  
VSS  
DQd  
DQd  
VCCQ  
VSS  
DQd  
DQd  
DQd  
DQd  
VSS  
VCCQ  
DQd  
DQd  
DQd  
CY7C1347D  
Document #: 38-05022 Rev. *D  
Page 3 of 21  
CY7C1347D  
Pin Configurations (continued)  
119-Ball BGA  
Top View  
1
2
3
A
4
ADSP  
ADSC  
VCC  
NC  
5
6
7
A
B
C
D
E
F
VCCQ  
NC  
A
A
A
VCCQ  
NC  
CE2  
A
A
A
CE2  
A
NC  
A
A
NC  
DQc  
DQc  
VCCQ  
DQc  
DQc  
VCCQ  
DQd  
DQd  
VCCQ  
DQd  
DQd  
NC  
DQc  
DQc  
DQc  
DQc  
DQc  
VCC  
DQd  
DQd  
DQd  
DQd  
DQd  
A
VSS  
VSS  
VSS  
BWc  
VSS  
NC  
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
NC  
A
DQb  
DQb  
DQb  
DQb  
DQb  
VCC  
DQa  
DQa  
DQa  
DQa  
DQa  
A
DQb  
DQb  
VCCQ  
DQb  
DQb  
VCCQ  
DQa  
DQa  
VCCQ  
DQa  
DQa  
NC  
CE  
OE  
G
H
J
ADV  
GW  
VCC  
CLK  
NC  
K
L
VSS  
BWd  
VSS  
VSS  
VSS  
MODE  
A
M
N
P
R
T
BWE  
A1  
A0  
VCC  
A
NC  
NC  
NC  
ZZ  
U
VCCQ  
TMS  
TDI  
TCK  
TDO  
NC  
VCCQ  
CY7C1347D Pin Descriptions  
BGA Pins  
QFP Pins  
Name  
Type  
Input-  
Description  
Addresses: These inputs are registered and must meet the  
4P  
4N  
37  
36  
A0  
A1  
A
Synchronous set-up and hold times around the rising edge of CLK. The burst  
counter generates internal addresses associated with A0 and  
A1, during burst cycle and wait cycle.  
2A, 3A, 5A, 6A,  
3B, 5B, 2C, 3C, 100, 99, 82, 81,  
35, 34, 33, 32,  
5C, 6C, 2R, 6R,  
3T, 4T, 5T  
44, 45, 46, 47,  
48, 49, 50  
5L  
5G  
3G  
3L  
93  
94  
95  
96  
BWa  
BWb  
BWc  
BWd  
Input-  
Byte Write: A byte write is LOW for a Write cycle and HIGH for  
Synchronous a Read cycle. BWa controls DQa. BWb controls DQb. BWc  
controls DQc. BWd controls DQd. Data I/O are high impedance  
if either of these inputs are LOW, conditioned by BWE being  
LOW.  
4M  
4H  
4K  
87  
88  
89  
BWE  
GW  
Input-  
Write Enable: This active LOW input gates byte write operations  
Synchronous and must meet the set-up and hold times around the rising edge  
of CLK.  
Input-  
Global Write: This active LOW input allows a full 36-bit Write to  
Synchronous occur independent of the BWE and BWn lines and must meet  
the set-up and hold times around the rising edge of CLK.  
CLK  
Input-  
Clock: This signal registers the addresses, data, chip enables,  
Synchronous write control and burst control inputs on its rising edge. All  
synchronous inputs must meet set-up and hold times around  
the clock’s rising edge.  
4E  
6B  
2U  
98  
92  
38  
CE  
Input-  
Chip Enable: This active LOW input is used to enable the device  
Synchronous and to gate ADSP.  
CE2  
TMS  
Input-  
Synchronous device.  
Chip Enable: This active LOW input is used to enable the  
Input  
IEEE 1149.1 test inputs. LVTTL-level inputs. If JTAG feature is  
not utilized, this pin can be disconnected or connected to VSS.  
Page 4 of 21  
Document #: 38-05022 Rev. *D  
CY7C1347D  
CY7C1347D Pin Descriptions (continued)  
BGA Pins  
QFP Pins  
Name  
Type  
Description  
2U  
39  
TDI  
Input  
IEEE 1149.1 test inputs. LVTTL-level inputs. If JTAG feature is  
not utilized, this pin can be disconnected or connected to VCC.  
3U  
5U  
43  
TCK  
Input  
IEEE 1149.1 test inputs. LVTTL-level inputs. If JTAG feature is  
not utilized, this pin can be disconnected or connected to VSS  
or VCC.  
42  
TDO  
NC  
Output  
IEEE 1149.1 test output. LVTTL-level output. If JTAG feature is  
not utilized, this pin should be disconnected.  
1B,7B,1C,7C,4D,  
3J, 5J, 4L, 1R, 5R,  
7R, 1T, 2T, 6T, 6U  
14, 16, 66  
No Connect: These signals are not internally connected.  
Burst Address Table (MODE = NC/VCC  
)
Burst Address Table (MODE = GND)  
First  
Address  
(external)  
Second  
Address  
(internal)  
Third  
Address  
(internal)  
Fourth  
Address  
(internal)  
First  
Address  
(external)  
Second  
Address  
(internal)  
Third  
Address  
(internal)  
Fourth  
Address  
(internal)  
A...A00  
A...A01  
A...A10  
A...A11  
A...A01  
A...A00  
A...A11  
A...A10  
A...A10  
A...A11  
A...A00  
A...A01  
A...A11  
A...A10  
A...A01  
A...A00  
A...A00  
A...A01  
A...A10  
A...A11  
A...A01  
A...A10  
A...A11  
A...A00  
A...A10  
A...A11  
A...A00  
A...A01  
A...A11  
A...A00  
A...A01  
A...A10  
Truth Table [2, 3, 4, 5, 6, 7]  
Address  
Used  
Operation  
CE CE2 CE2 ADSP ADSC  
ADV  
X
X
X
X
X
X
X
X
X
X
L
Write  
OE  
X
X
X
X
X
L
CLK  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
DQ  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Q
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Read Cycle, Begin Burst  
None  
None  
H
L
X
X
H
X
H
L
X
L
X
L
L
X
X
L
X
X
X
X
X
X
X
L
None  
L
X
L
L
None  
L
H
H
L
None  
L
X
H
H
H
H
H
X
X
X
X
X
X
X
X
L
External  
External  
External  
External  
External  
Next  
L
X
X
L
Read Cycle, Begin Burst  
L
L
L
H
X
L
High-Z  
D
Write Cycle, Begin Burst  
L
L
H
H
H
H
H
X
X
H
X
H
H
Read Cycle, Begin Burst  
L
L
L
H
H
H
H
H
H
L
Q
Read Cycle, Begin Burst  
L
L
L
H
L
High-Z  
Q
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
Next  
L
H
L
High-Z  
Q
Next  
L
Next  
L
H
X
X
L
High-Z  
D
Next  
L
Next  
L
L
D
Current  
Current  
H
H
H
H
Q
Read Cycle, Suspend Burst  
H
High-Z  
Notes:  
2. X means “Don’t Care.” H means logic HIGH. L means logic LOW.  
Write = L means [BWE + BWa*BWb*BWc*BWd]*GW equals LOW. Write = H means [BWE + BWa*BWb*BWc*BWd]*GW equals HIGH. BWa enables write to  
DQa. BWb enables write to DQb. BWc enables write to DQc. BWd enables write to DQd.  
3. All inputs except OE must meet set-up and hold times around the rising edge (LOW to HIGH) of CLK.  
4. Suspending burst generates wait cycle.  
5. For a write operation following a read operation, OE must be HIGH before the input data required set-up time plus High-Z time for OE and staying HIGH throughout  
the input data hold time.  
6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.  
7. ADSP LOW along with chip being selected always initiates a Read cycle at the L-H edge of CLK. A Write cycle can be performed by setting Write LOW for the  
CLK L-H edge of the subsequent wait cycle. Refer to Write timing diagram for clarification.  
Document #: 38-05022 Rev. *D  
Page 5 of 21  
 
 
 
 
CY7C1347D  
Truth Table (continued)[2, 3, 4, 5, 6, 7]  
Address  
Operation  
Used  
CE CE2 CE2 ADSP ADSC  
ADV  
H
Write  
OE  
L
CLK  
L-H  
L-H  
L-H  
L-H  
DQ  
Q
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Current  
Current  
Current  
Current  
H
H
X
H
X
X
X
X
X
X
X
X
X
X
H
X
H
H
H
H
H
H
L
H
H
High-Z  
D
H
X
H
L
X
D
Partial Truth Table for Read/Write  
FUNCTION  
GW  
BWE  
BWa  
BWb  
BWc  
X
BWd  
Read  
Read  
H
H
H
H
L
H
L
L
L
X
X
H
L
X
H
H
L
X
H
H
L
H
Write one byte  
Write all bytes  
Write all bytes  
H
L
L
X
X
X
X
TDI –Test Data In (INPUT)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TDI input is sampled on the rising edge of TCK. This is the  
input side of the serial registers placed between TDI and TDO.  
The register placed between TDI and TDO is determined by  
the state of the TAP controller state machine and the  
instruction that is currently loaded in the TAP instruction  
register (refer to Figure 1). It is allowable to leave this pin  
unconnected if it is not used in an application. The pin is pulled  
up internally, resulting in a logic HIGH level. TDI is connected  
to the most significant bit (MSB) of any register (see Figure 2).  
Overview  
This device incorporates a serial boundary scan access port  
(TAP). This port is designed to operate in a manner consistent  
with IEEE Standard 1149.1-1990 (commonly referred to as  
JTAG), but does not implement all of the functions required for  
IEEE 1149.1 compliance. Certain functions have been  
modified or eliminated because their implementation places  
extra delays in the critical speed path of the device. Never-  
theless, the device supports the standard TAP controller archi-  
tecture (the TAP controller is the state machine that controls  
the TAPs operation) and can be expected to function in a  
manner that does not conflict with the operation of devices with  
IEEE Standard 1149.1-compliant TAPs. The TAP operates  
using LVTTL/LVCMOS logic level signaling.  
TDO – Test Data Out (OUTPUT)  
The TDO output pin is used to serially clock data-out from the  
registers. The output that is active depending on the state of  
the TAP state machine (refer to Figure 1). Output changes in  
response to the falling edge of TCK. This is the output side of  
the serial registers placed between TDI and TDO. TDO is  
connected to the least significant bit (LSB) of any register (see  
Figure 2).  
Disabling the JTAG Feature  
It is possible to use this device without using the JTAG feature.  
To disable the TAP controller without interfering with normal  
operation of the device, TCK should be tied LOW (VSS) to  
prevent clocking the device. TDI and TMS are internally pulled  
up and may be unconnected. They may alternately be pulled  
up to VCC through a resistor. TDO should be left unconnected.  
Upon power-up the device will come up in a reset state which  
will not interfere with the operation of the device.  
Performing a TAP Reset  
The TAP circuitry does not have a reset pin (TRST, which is  
optional in the IEEE 1149.1 specification). A RESET can be  
performed for the TAP controller by forcing TMS HIGH (VCC  
)
for five rising edges of TCK and pre-loads the instruction  
register with the IDCODE command. This type of reset does  
not affect the operation of the system logic. The reset affects  
test logic only.  
Test Access Port (TAP)  
At power-up, the TAP is reset internally to ensure that TDO is  
in a High-Z state.  
TCK –Test Clock (INPUT)  
Clocks all TAP events. All inputs are captured on the rising  
edge of TCK and all outputs propagate from the falling edge  
of TCK.  
Test Access Port (TAP) Registers  
Overview  
TMS – Test Mode Select (INPUT)  
The various TAP registers are selected (one at a time) via the  
sequences of ones and zeros input to the TMS pin as the TCK  
is strobed. Each of the TAPs registers are serial shift registers  
that capture serial input data on the rising edge of TCK and  
push serial data out on subsequent falling edge of TCK. When  
a register is selected, it is connected between the TDI and  
TDO pins.  
The TMS input is sampled on the rising edge of TCK. This is  
the command input for the TAP controller state machine. It is  
allowable to leave this pin unconnected if the TAP is not used.  
The pin is pulled up internally, resulting in a logic HIGH level.  
Document #: 38-05022 Rev. *D  
Page 6 of 21  
CY7C1347D  
Instruction Register  
The TAP on this device may be used to monitor all input and  
I/O pads, but can not be used to load address, data, or control  
signals into the device or to preload the I/O buffers. In other  
words, the device will not perform IEEE 1149.1 EXTEST,  
INTEST, or the preload portion of the SAMPLE/PRELOAD  
command.  
The instruction register holds the instructions that are  
executed by the TAP controller when it is moved into the run  
test/idle or the various data register states. The instructions  
are three bits long. The register can be loaded when it is  
placed between the TDI and TDO pins. The parallel outputs of  
the instruction register are automatically preloaded with the  
IDCODE instruction upon power-up or whenever the controller  
is placed in the test-logic reset state. When the TAP controller  
is in the Capture-IR state, the two least significant bits of the  
serial instruction register are loaded with a binary “01” pattern  
to allow for fault isolation of the board-level serial test data  
path.  
When the TAP controller is placed in Capture-IR state, the two  
least significant bits of the instruction register are loaded with  
01. When the controller is moved to the Shift-IR state the  
instruction is serially loaded through the TDI input (while the  
previous contents are shifted out at TDO). For all instructions,  
the TAP executes newly loaded instructions only when the  
controller is moved to Update-IR state. The TAP instruction  
sets for this device are listed in the following tables.  
Bypass Register  
EXTEST  
The bypass register is a single-bit register that can be placed  
between TDI and TDO. It allows serial test data to be passed  
through the device TAP to another device in the scan chain  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is  
to be executed whenever the instruction register is loaded with  
all 0s. EXTEST is not implemented in this device.  
with minimum delay. The bypass register is set LOW (VSS  
)
when the BYPASS instruction is executed.  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the device responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between two instruc-  
tions. Unlike SAMPLE/PRELOAD instruction, EXTEST places  
the device outputs in a High-Z state.  
Boundary Scan Register  
The Boundary scan register is connected to all the input and  
bidirectional I/O pins (not counting the TAP pins) on the device.  
This also includes a number of NC pins that are reserved for  
future needs. There are a total of 70 bits for x36 device and 51  
bits for x18 device. The boundary scan register, under the  
control of the TAP controller, is loaded with the contents of the  
device I/O ring when the controller is in Capture-DR state and  
then is placed between the TDI and TDO pins when the  
controller is moved to Shift-DR state. The EXTEST, SAMPLE/  
PRELOAD and SAMPLE-Z instructions can be used to  
capture the contents of the I/O ring.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the ID register when the controller is in  
Capture-DR mode and places the ID register between the TDI  
and TDO pins in Shift-DR mode. The IDCODE instruction is  
the default instruction loaded in the instruction upon power-up  
and at any time the TAP controller is placed in the test-logic  
reset state.  
The Boundary Scan Order table describes the order in which  
the bits are connected. The first column defines the bit’s  
position in the boundary scan register. The MSB of the register  
is connected to TDI, and LSB is connected to TDO. The  
second column is the signal name and the third column is the  
bump number. The third column is the TQFP pin number and  
the fourth column is the BGA bump number.  
SAMPLE-Z  
If the High-Z instruction is loaded in the instruction register, all  
output pins are forced to a High-Z state and the boundary scan  
register is connected between TDI and TDO pins when the  
TAP controller is in a Shift-DR state.  
Identification (ID) Register  
SAMPLE/PRELOAD  
The ID Register is a 32-bit register that is loaded with a device  
and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the  
instruction register. The register is then placed between the  
TDI and TDO pins when the controller is moved into Shift-DR  
state. Bit 0 in the register is the LSB and the first to reach TDO  
when shifting begins. The code is loaded from a 32-bit on-chip  
ROM. It describes various attributes of the device as described  
in the Identification Register Definitions table.  
SAMPLE/PRELOAD is an IEEE 1149.1 mandatory instruction.  
The PRELOAD portion of the command is not implemented in  
this device, so the device TAP controller is not fully IEEE  
1149.1-compliant.  
When the SAMPLE/PRELOAD instruction is loaded in the  
instruction register and the TAP controller is in the Capture-DR  
state, a snap shot of the data in the device’s input and I/O  
buffers is loaded into the boundary scan register. Because the  
device system clock(s) are independent from the TAP clock  
(TCK), it is possible for the TAP to attempt to capture the input  
and I/O ring contents while the buffers are in transition (i.e., in  
a metastable state). Although allowing the TAP to sample  
metastable inputs will not harm the device, repeatable results  
can not be expected. To guarantee that the boundary scan  
register will capture the correct value of a signal, the device  
input signals must be stabilized long enough to meet the TAP  
controller’s capture setup plus hold time (tCS plus tCH). The  
device clock input(s) need not be paused for any other TAP  
operation except capturing the input and I/O ring contents into  
the boundary scan register.  
TAP Controller Instruction Set  
Overview  
There are two classes of instructions defined in the IEEE  
Standard 1149.1-1990; the standard (public) instructions and  
device specific (private) instructions. Some public instructions  
are mandatory for IEEE 1149.1 compliance. Optional public  
instructions must be implemented in prescribed ways.  
Although the TAP controller in this device follows the IEEE  
1149.1 conventions, it is not IEEE 1149.1 compliant because  
some of the mandatory instructions are not fully implemented.  
Document #: 38-05022 Rev. *D  
Page 7 of 21  
CY7C1347D  
Moving the controller to Shift-DR state then places the  
boundary scan register between the TDI and TDO pins.  
Because the PRELOAD portion of the command is not imple-  
mented in this device, moving the controller to the Update-DR  
state with the SAMPLE/PRELOAD instruction loaded in the  
instruction register has the same effect as the Pause-DR  
command.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP controller is in the Shift-DR state, the  
bypass register is placed between TDI and TDO. This allows  
the board level scan path to be shortened to facilitate testing  
of other devices in the scan path.  
Reserved  
Do not use these instructions. They are reserved for future  
use.  
TEST-LOGIC  
1
RESET  
0
1
1
1
REUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
1
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Figure 1. TAP Controller State Diagram[8]  
Note:  
8. The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05022 Rev. *D  
Page 8 of 21  
 
CY7C1347D  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
0
TDO  
TDI  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
1
1
0
0
.
x
.
.
.
2
Boundary Scan Register [9]  
TDI  
TDI  
TAP Controller  
Figure 2. TAP Controller Block Diagram  
TAP DC Electrical Characteristics (20°C < Tj < 110°C; VCC = 3.3V –0.2V and +0.3V unless otherwise noted)  
Parameter  
Description  
Test Conditions  
VCCQ = 3.3 V  
CCQ = 2.5V  
VCCQ = 3.3 V  
CCQ = 2.5V  
Min.  
2.0  
Max.  
Unit  
V
VIH  
Input High (Logic 1)  
4.6  
4.6  
Voltage: Inputs[10, 11]  
V
1.7  
V
Input High (Logic 1)  
Voltage: Data[10, 11]  
2.0  
VCCQ + 0.3  
VCCQ + 0.3  
0.8  
V
V
1.7  
VIL  
Input Low (Logic 0) Voltage: Inputs and VCCQ = 3.3 V  
Data[10, 11]  
–0.5  
–0.3  
–5.0  
–30  
–5.0  
V
VCCQ = 2.5V  
0.7  
V
ILI  
Input Leakage Current  
0V < VIN < VCC  
5.0  
µA  
µA  
µA  
ILI  
TMS and TDI Input Leakage Current 0V < VIN < VCC  
30  
ILO  
Output Leakage Current  
Output disabled,  
0V < VIN < VCCQ  
5.0  
VOLC  
VOHC  
LVCMOS Output Low Voltage[10, 12] IOLC = 100 µA  
LVCMOS Output High Voltage[10, 12] IOHC = 100 µA  
0.2  
V
V
VCCQ – 0.2  
Notes:  
9. X = 69.  
10. All Voltage referenced to V (GND).  
SS  
11. Overshoot: V (AC)<V +1.5V for t<t  
/2, Undershoot: V (AC)<–0.5V for t<t  
/2, Power-up: V <3.6V and V <3.135V and V <1.4V for t<200 ms.  
CCQ  
IH  
CC  
KHKH  
IL  
KHKH  
IH  
CC  
During normal operation, V  
must not exceed 3.6V. Control input signals (such as R/W, ADV/LD, etc.) may not have pulse widths less than t  
(min.).  
KHKL  
CCQ  
12. This parameter is sampled.  
Document #: 38-05022 Rev. *D  
Page 9 of 21  
 
 
 
 
CY7C1347D  
TAP DC Electrical Characteristics (20°C < Tj < 110°C; VCC = 3.3V –0.2V and +0.3V unless otherwise noted) (continued)  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
VOLT  
LVTTL Output Low Voltage[10]  
VCC = Min. VCCQ =3.3 V, IOLT  
= 8.0 mA  
0.4  
V
VCC = Min. VCCQ = 2.5V, IOLT  
= 2.0 mA  
0.7  
0.4  
V
V
V
V
VCC = Min. VCCQ = 2.5V, IOLT  
= 1.0 mA  
VOHT  
LVTTL Output High Voltage[10]  
VCC = Min. VCCQ = 3.3 V, IOH  
= –4.0 mA  
2.4  
2.0  
VCC = Min, VCCQ = 2.5V,  
IOH = –2.0 mA  
TAP AC Switching Characteristics Over the Operating Range[13, 14]  
Parameter  
Clock  
Description  
Min.  
Max  
Unit  
tTHTH  
Clock Cycle Time  
Clock Frequency  
Clock HIGH Time  
Clock LOW Time  
20  
ns  
MHz  
ns  
fTF  
50  
tTHTL  
8
8
tTLTH  
ns  
Output Times  
tTLQX  
TCK LOW to TDO Unknown  
TCK LOW to TDO Valid  
TDI Valid to TCK HIGH  
TCK HIGH to TDI Invalid  
0
ns  
ns  
ns  
ns  
tTLQV  
10  
tDVTH  
5
5
tTHDX  
Set-up Times  
tMVTH  
TMS Set-up  
5
5
ns  
ns  
tCS  
Capture Set-up  
Hold Times  
tTHMX  
TMS Hold  
5
5
ns  
ns  
tCH  
Capture Hold  
Notes:  
13. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
14. Test conditions are specified using the load in TAP AC Test Conditions.  
Document #: 38-05022 Rev. *D  
Page 10 of 21  
 
CY7C1347D  
TAP Timing and Test Conditions  
ALL INPUT PULSES  
3.3V / 2.5V  
TDO  
Z0 = 50 Ω  
50 Ω  
for 3.3V VCCQ or  
20 pF  
1.5V  
VSS  
1.5 ns  
Vt = 1.5V  
1.5 ns  
(a)  
V
/2 for 2.5V V  
CCQ  
CCQ  
t
t
THTL  
TLTH  
t
THTH  
TEST CLOCK  
(TCK)  
t
t
MVTH  
THMX  
TEST MODE SELECT  
(TMS)  
t
t
DVTH  
THDX  
TEST DATA IN  
(TDI)  
t
TLQV  
t
TLQX  
TEST DATA OUT  
(TDO)  
Identification Register Definitions  
Instruction Field  
Revision Number (31:28)  
Device Depth (27:23)  
128K x 36  
XXXX  
Description  
Reserved for revision number.  
Defines depth of words.  
Defines width of bits.  
00111  
Device Width (22:18)  
00011  
Reserved (17:12)  
XXXXXX  
00011100100  
1
Reserved for future use.  
Cypress Jedec Id Code (11:1)  
ID Register Presence Indicator (0)  
Allows unique identification of DEVICE vendor.  
Indicates the presence of an ID register.  
Scan Register Sizes  
Register Name  
Instruction  
Bit Size (x36)  
3
1
Bypass  
ID  
32  
51  
Boundary Scan  
Document #: 38-05022 Rev. *D  
Page 11 of 21  
CY7C1347D  
Instruction Codes  
Instruction  
Code  
Description  
EXTEST  
000 Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
device outputs to High-Z state. This instruction is not IEEE 1149.1-compliant.  
IDCODE  
001 Preloads ID register with vendor ID code and places it between TDI and TDO. This instruction  
does not affect device operations.  
SAMPLE-Z  
010 Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
device outputs to High-Z state.  
RESERVED  
011 Do not use these instructions; they are reserved for future use.  
SAMPLE/PRELOAD  
100 Captures I/O ring contents. Places the boundary scan register between TDI and TDO. This  
instruction does not affect device operations. This instruction does not implement IEEE 1149.1  
PRELOAD function and is therefore not 1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101 Do not use these instructions; they are reserved for future use.  
110 Do not use these instructions; they are reserved for future use.  
111 Places the bypass register between TDI and TDO. This instruction does not affect device opera-  
tions.  
Boundary Scan Order  
Boundary Scan Order (continued)  
Bit#  
1
Signal Name  
A
TQFP  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
56  
57  
58  
59  
62  
63  
64  
68  
69  
72  
73  
74  
75  
78  
79  
80  
81  
82  
83  
Bump ID  
2R  
3T  
Bit#  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
Signal Name  
ADSP  
ADSC  
OE  
TQFP  
84  
85  
86  
87  
88  
89  
92  
93  
94  
95  
96  
97  
98  
99  
100  
1
Bump ID  
4A  
2
A
4B  
3
A
4T  
64F  
4M  
4H  
4K  
4
A
5T  
BWE  
GW  
5
A
6R  
3B  
5B  
6P  
7N  
6M  
7L  
6
A
CLK  
CE2  
7
A
6B  
8
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
BWa  
BWb  
BWc  
BWd  
CE2  
5L  
9
5G  
3G  
3L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
6K  
7P  
6N  
6L  
2B  
CE  
4E  
A
3A  
A
2A  
7K  
7T  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
NC  
2D  
1E  
2
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
6H  
7G  
6F  
3
2F  
6
1G  
2H  
1D  
2E  
7
7E  
6D  
7H  
6G  
6E  
7D  
6A  
5A  
4G  
8
9
12  
13  
14  
18  
19  
22  
23  
2G  
1H  
5R  
2K  
DQd  
DQd  
DQd  
DQd  
1L  
A
2M  
1N  
ADV  
Document #: 38-05022 Rev. *D  
Page 12 of 21  
CY7C1347D  
Boundary Scan Order (continued)  
Bit#  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Signal Name  
TQFP  
24  
Bump ID  
2P  
DQd  
DQd  
DQd  
DQd  
DQd  
MODE  
A
25  
1K  
28  
2L  
29  
2N  
30  
1P  
31  
3R  
32  
2C  
A
33  
3C  
A
34  
5C  
A
35  
6C  
A1  
36  
4N  
A0  
37  
4P  
Document #: 38-05022 Rev. *D  
Page 13 of 21  
CY7C1347D  
Power Dissipation.......................................................... 1.0W  
Short Circuit Output Current........................................ 50 mA  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Operating Range  
Voltage on VCC Supply Relative to VSS ......... –0.5V to +4.6V  
Ambient  
VIN ...........................................................–0.5V to VCC+0.5V  
Range  
Com’l  
Temperature[15]  
VCC  
Storage Temperature (plastic) ...................... –55°C to +150°  
Junction Temperature ..................................................+150°  
0°C to +70°C  
3.3V 5%/+10%  
Electrical Characteristics Over the Operating Range  
Parameter  
VIH  
Description  
Test Conditions  
VCCQ = 3.3 V  
CCQ = 2.5V  
VCCQ = 3.3 V  
CCQ = 2.5V  
Min.  
2.0  
Max.  
Unit  
V
Input High (Logic 1)  
4.6  
Voltage: Inputs[10, 11]  
V
1.7  
4.6  
V
Input High (Logic 1)  
Voltage: Data[10, 11]  
2.0  
VCCQ + 0.3  
V
V
1.7  
VCCQ + 0.3  
VIL  
Input Low (Logic 0) Voltage: Inputs VCCQ = 3.3 V  
and Data[10, 11]  
–0.5  
–0.3  
–5  
0.8  
0.7  
5
V
V
VCCQ = 2.5V  
ILI  
ILI  
Input Leakage Current  
0V < VIN < VCC  
0V < VIN < VCC  
µA  
µA  
MODE and ZZ Input Leakage  
Current[17]  
–30  
30  
ILO  
Output Leakage Current  
Output High Voltage[10]  
Output(s) disabled, 0V < VOUT < VCC  
VCC = Min, VCCQ = 3.3 V, IOH = –4.0 mA  
–5  
2.4  
2.0  
5
µA  
V
V
V
V
V
V
V
V
VOH  
VCC = Min, VCCQ = 2.5V, IOH = –2.0 mA  
VOL  
Output Low Voltage[10]  
VCC = Min, VCCQ = 3.3V, IOL = 8.0 mA  
VCC = Min, VCCQ = 2.5V, IOH = 2.0 mA  
0.4  
0.7  
0.4  
3.6  
3.6  
2.9  
VCC = Min, VCCQ = 2.5V, IOH = 1.0 mA  
VCC  
Supply Voltage[10]  
I/O Supply Voltage[10]  
3.135  
3.135  
2.375  
VCCQ  
3.3 V Range  
2.5 V Range  
Parameter  
Description  
Conditions  
Typ.  
-4  
-4.4  
-5  
-6  
Unit  
ICC  
PowerSupplyCurrent: Device selected; all inputs < VILor > VIH;  
150  
450  
400  
360  
300  
mA  
Operating[18, 19, 20]  
cycle time > tKC min.; VCC = Max.;  
outputs open  
ISB2  
CMOS Standby[19, 20] Device deselected; VCC = Max.;  
all inputs < VSS + 0.2 or >VCC – 0.2;  
5
10  
10  
20  
10  
20  
10  
mA  
mA  
mA  
all inputs static; CLK frequency = 0  
ISB3  
TTL Standby[19, 20]  
Device deselected; all inputs < VIL  
or > VIH; all inputs static;  
10  
40  
20  
20  
V
CC = Max.; CLK frequency = 0  
Clock Running[19, 20] Device deselected; all inputs < VIL or > VIH;  
CC = Max.; CLK cycle time > tKC min.  
ISB4  
140  
125  
110  
90  
V
Notes:  
15. T is the case temperature.  
A
16. Overshoot: V +6.0V for t t /2.  
IH  
IL  
KC  
KC  
Undershoot:V –2.0V for t t /2.  
17. Output loading is specified with C = 5 pF as in AC Test Loads.  
L
18. I is given with no output current. I increases with greater output loading and faster cycle times.  
CC  
CC  
19. “Device Deselected” means the device is in Power-Down mode as defined in the truth table. “Device Selected” means the device is active.  
20. Typical values are measured at 3.3V, 25°C, and 20-ns cycle time.  
Document #: 38-05022 Rev. *D  
Page 14 of 21  
 
 
 
 
 
CY7C1347D  
Capacitance[12]  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Typ.  
Max.  
Unit  
pF  
CI  
TA = 25°C, f = 1 MHz,  
CC = 3.3V  
5
7
7
8
V
CO  
Input/Output Capacitance (DQ)  
pF  
Thermal Resistance  
Parameter  
Description  
Test Conditions  
TQFP Typ.  
BGA Typ.  
Unit  
ΘJA  
ΘJC  
Thermal Resistance (Junction to Ambient) Still Air, soldered on a 4.25 x  
25  
9
50  
8
°C/W  
°C/W  
1.125 inch, 4-layer PCB  
Thermal Resistance (Junction to Case)  
AC Test Loads and Waveforms[21]  
317Ω / 225Ω  
3.3V / 2.5V  
3.3V / 2.5V  
DQ  
DQ  
ALL INPUT PULSES  
90%  
90%  
Z =50Ω  
0
50Ω  
10%  
10%  
5 pF  
0V  
351Ω  
1.5 ns  
1.5 ns  
V
/ 225Ω  
= 1.5Vfor 3.3V VCCQ  
t
or VCCQ/2 for 2.5V VCCQ  
(c)  
(a)  
(b)  
Switching Characteristics Over the Operating Range[22]  
250 MHz  
225 MHz  
200 MHz  
166 MHz  
Parameter  
Clock  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
tKC  
Clock Cycle Time  
4.0  
1.6  
1.6  
4.4  
1.7  
1.7  
5.0  
2.0  
2.0  
6.0  
2.4  
2.4  
ns  
ns  
ns  
tKH  
Clock HIGH Time  
Clock LOW Time  
tKL  
Output Times  
tKQ  
Clock to Output Valid  
2.4  
2.5  
3.0  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKQX  
Clock to Output Invalid  
1.25  
0
1.25  
0
1.25  
0
1.25  
0
tKQLZ  
tKQHZ  
tOEQ  
Clock to Output in Low-Z[12, 17, 23]  
Clock to Output in High-Z[12, 17, 23]  
OE to Output Valid[24]  
1.25  
3.0  
2.5  
1.25  
3.0  
2.5  
1.25  
3.0  
2.5  
1.25  
4.0  
3.5  
tOELZ  
tOEHZ  
Set-up Times  
tS  
OE to Output in Low-Z[12, 17, 23]  
OE to Output in High-Z[12, 17, 23]  
0
0
0
0
2.5  
2.5  
2.5  
3.5  
Address, Controls, and Data In[25]  
Address, Controls, and Data In[25]  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
ns  
ns  
Hold Times  
tH  
Notes:  
21. Overshoot: VIH(AC) < VDD + 1.5V for t < tTCYC/2; undershoot: VIL(AC) < 0.5V for t < tTCYC/2; power-up: VIH <  
2.6V and VDD < 2.4V and VDDQ < 1.4V for t < 200 ms.  
22. Test conditions as specified with the output loading as shown in part (a) of AC Test Loads unless otherwise noted.  
23. At any given temperature and voltage condition, t  
is less than t  
and t  
is less than t  
.
KQHZ  
KQLZ  
OEHZ  
OELZ  
24. OE is a “Don’t Care” when a byte write enable is sampled LOW.  
25. This is a synchronous device. All synchronous inputs must meet specified set-up and hold time, except for “don’t care”  
as defined in the truth table.  
Document #: 38-05022 Rev. *D  
Page 15 of 21  
 
 
 
 
 
CY7C1347D  
Typical Output Buffer Characteristics  
Output High Voltage  
Pull-Up Current  
Output Low Voltage  
Pull-Down Current  
V
OH (V)  
–0.5  
0
IOH (mA) Min. IOH (mA) Max.  
VOL (V)  
–0.5  
0
IOL (mA) Min. IOL(mA) Max.  
–38  
–38  
–38  
–26  
–20  
0
–105  
–105  
–105  
–83  
–70  
–30  
–10  
0
0
0
0
0
0.8  
0.4  
10  
20  
31  
40  
40  
40  
40  
20  
40  
63  
80  
80  
80  
80  
1.25  
1.5  
0.8  
1.25  
1.6  
2.3  
2.7  
0
2.8  
2.9  
0
3.2  
3.4  
0
0
3.4  
Switching Waveforms  
Read Timing[26, 27]  
tKC  
tKL  
CLK  
tKH  
tS  
ADSP#  
tH  
ADSC#  
tS  
ADDRESS  
A1  
A2  
tH  
BWa#, BWb#,  
BWc#, BWd#,  
BWE#, GW#  
tS  
CE#  
ADV#  
OE#  
DQ  
tS  
tH  
tKQ  
tKQ  
tOEQ  
tOELZ  
tKQLZ  
Q(A1)  
Q(A2)  
Q(A2+1)  
Q(A2+2)  
Q(A2+3)  
Q(A2)  
Q(A2+1)  
SINGLE READ  
BURST READ  
Notes:  
26. CE active in this timing diagram means that all chip enables CE, CE2, and CE2 are active.  
27. For X18 product, there are only BWa and BWb for byte write control.  
Document #: 38-05022 Rev. *D  
Page 16 of 21  
 
 
CY7C1347D  
Switching Waveforms (continued)  
Write Timing[26, 27]  
CLK  
tS  
ADSP#  
tH  
ADSC#  
tS  
ADDRESS  
A1  
A2  
A3  
tH  
BWa#, BWb#,  
BWc#, BWd#,  
BWE#, GW#  
GW#  
CE#  
tS  
ADV#  
OE#  
DQ  
tH  
tOEHZ  
tKQX  
Q
D(A1)  
D(A2) D(A2+1) D(A2+1)  
D(A2+2)  
D(A2+3)  
D(A3)  
D(A3+1) D(A3+2)  
SINGLE WRITE  
BURST WRITE  
BURST WRITE  
Document #: 38-05022 Rev. *D  
Page 17 of 21  
CY7C1347D  
Switching Waveforms (continued)  
Read/Write Timing[26, 27]  
CLK  
tS  
ADSP#  
tH  
ADSC#  
tS  
ADDRESS  
A2  
A3  
A4  
A5  
A1  
tH  
BWa#, BWb#,  
BWc#, BWd#,  
BWE#, GW#  
CE#  
ADV#  
OE#  
DQ  
Q(A1)  
Q(A2)  
D(A3)  
Single Write  
Q(A4)  
Q(A4+1) Q(A4+2)  
D(A5)  
D(A5+1)  
Single Reads  
Burst Read  
Burst Write  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
CY7C1347D-250AC  
Package Type  
250  
A101  
BG119  
BG119  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack Commercial  
119-Lead FBGA (14 x 22 x 2.4 mm)  
CY7C1347D-250BGC  
CY7C1347D-225BGC  
CY7C1347D-200AC  
CY7C1347D-166AC  
225  
200  
166  
119-Lead FBGA (14 x 22 x 2.4 mm)  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
A101  
Document #: 38-05022 Rev. *D  
Page 18 of 21  
CY7C1347D  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-*A  
Document #: 38-05022 Rev. *D  
Page 19 of 21  
CY7C1347D  
Package Diagrams (continued)  
119-Lead FBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
All product and company names mentioned in this document may be the trademarks of their respective holders.  
Document #: 38-05022 Rev. *D  
Page 20 of 21  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1347D  
Document History Page  
Document Title: CY7C1347D: 128K x 36 Synchronous-Pipelined Cache SRAM  
Document Number: 38-05022  
Orig. of  
Rev.  
**  
ECN No. Issue Date Change  
Description of Change  
106740  
107485  
05/07/01  
06/06/01  
RCS  
RCS  
New Data Sheet  
*A  
Added Minimum and Maximum values for 2.5V VCCQ  
and all other subsequent parameters.  
Defined alternate options for non-utilized JTAG pins.  
*B  
*C  
*D  
121064  
122474  
212291  
11/13/02  
01/18/03  
See ECN  
DSG  
RBI  
Updated package drawing 51-85115 (BG119) to rev. *B  
Added power up requirements to AC test loads and waveforms information  
Corrected Ordering Info section : delete 166BGA, 200BGA, 225AC  
VBL  
Document #: 38-05022 Rev. *D  
Page 21 of 21  

相关型号:

CY7C1347D-250AC

128K x 36 Synchronous-Pipelined Cache SRAM
CYPRESS

CY7C1347D-250BGC

128K x 36 Synchronous-Pipelined Cache SRAM
CYPRESS

CY7C1347F

4-Mbit (128K x 36) Pipelined Sync SRAM
CYPRESS

CY7C1347F-133AC

4-Mbit (128K x 36) Pipelined Sync SRAM
CYPRESS

CY7C1347F-133ACT

Cache SRAM, 128KX36, 4ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1347F-133AI

4-Mbit (128K x 36) Pipelined Sync SRAM
CYPRESS

CY7C1347F-133BGC

4-Mbit (128K x 36) Pipelined Sync SRAM
CYPRESS

CY7C1347F-133BGI

4-Mbit (128K x 36) Pipelined Sync SRAM
CYPRESS

CY7C1347F-133BZC

4-Mbit (128K x 36) Pipelined Sync SRAM
CYPRESS

CY7C1347F-166AC

4-Mbit (128K x 36) Pipelined Sync SRAM
CYPRESS

CY7C1347F-166AI

4-Mbit (128K x 36) Pipelined Sync SRAM
CYPRESS

CY7C1347F-166BGC

4-Mbit (128K x 36) Pipelined Sync SRAM
CYPRESS