CY7C135-20JC [CYPRESS]

4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port SRAM with Semaphores; 4K ×8双端口静态RAM和4K ×8双端口SRAM与信号灯
CY7C135-20JC
型号: CY7C135-20JC
厂家: CYPRESS    CYPRESS
描述:

4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port SRAM with Semaphores
4K ×8双端口静态RAM和4K ×8双端口SRAM与信号灯

静态存储器
文件: 总12页 (文件大小:554K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C135  
CY7C1342  
4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port  
SRAM with Semaphores  
Features  
Functional Description  
True Dual-Ported memory cells which allow simulta-  
The CY7C135 and CY7C1342 are high-speed CMOS 4K x 8  
dual-port static RAMs. The CY7C1342 includes semaphores  
that provide a means to allocate portions of the dual-port RAM  
or any shared resource. Two ports are provided permitting in-  
dependent, asynchronous access for reads and writes to any  
location in memory. Application areas include interproces-  
sor/multiprocessor designs, communications status buffering,  
and dual-port video/graphics memory.  
neous reads of the same memory location  
4K x 8 organization  
0.65-micron CMOS for optimum speed/power  
High-speed access: 15 ns  
Low operating power: ICC = 160 mA (max.)  
• Fully asynchronous operation  
Automatic power-down  
Semaphoresincludedonthe7C1342topermitsoftware  
handshaking between ports  
Available in 52-pin PLCC  
Each port has independent control pins: chip enable (CE),  
read or write enable (R/W), and output enable (OE). The  
CY7C135 is suited for those systems that do not require  
on-chip arbitration or are intolerant of wait states. Therefore,  
the user must be aware that simultaneous access to a location  
is possible. Semaphores are offered on the CY7C1342 to as-  
sist in arbitrating between ports. The semaphore logic is com-  
prised of eight shared latches. Only one side can control the  
latch (semaphore) at any time. Control of a semaphore indi-  
cates that a shared resource is in use. An automatic pow-  
er-down feature is controlled independently on each port by a  
chip enable (CE) pin or SEM pin (CY7C1342 only).  
The CY7C135 and CY7C1342 are available in 52-pin PLCC.  
Logic Block Diagram  
R/W  
L
R/W  
R
CE  
L
CE  
R
OE  
R
OE  
L
I/O  
7L  
I/O  
I/O  
7R  
I/O  
CONTROL  
I/O  
CONTROL  
I/O  
0L  
0R  
A
A
11L  
0L  
11R  
ADDRESS  
DECODER  
ADDRESS  
DECODER  
MEMORY  
ARRAY  
A
A
0R  
SEMAPHORE  
ARBITRATION  
(7C1342 only)  
CE  
L
CE  
R
OE  
L
OE  
R
R/W  
R/W  
R
L
(7C1342 only)  
(7C1342 only)  
1342–1  
SEM  
R
SEM  
L
Cypress Semiconductor Corporation  
Document #: 38-06038 Rev. *B  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Revised June 22, 2004  
CY7C135  
CY7C1342  
Selection Guide  
7C135–15  
7C1342–15  
7C135–20  
7C1342–20  
7C135–25  
7C1342–25  
7C135–35  
7C1342–35  
7C135–55  
7C1342–55  
Maximum Access Time (ns)  
15  
20  
25  
35  
55  
Maximum Operating  
Current (mA)  
Commercial  
220  
190  
180  
160  
160  
Maximum Standby  
Current for ISB1(mA)  
Commercial  
60  
50  
40  
30  
30  
Pin Configurations  
PLCC  
Top View  
7
6 5 4 3 2 1 52 51 50 49 48 47  
A
OE  
1L  
8
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
R
A
A
2L  
3L  
4L  
5L  
6L  
7L  
8L  
9L  
0L  
1L  
A
A
A
A
A
A
9
0R  
1R  
2R  
3R  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A
A
A
7C135  
4R  
5R  
A
A
A
6R  
A
7R  
A
8R  
A
9R  
A
I/O  
I/O  
I/O  
I/O  
2L  
NC  
I/O  
3L  
7R  
21 22 23 24 25 26 27 28 29 30 31 32 33  
1342–3  
PLCC  
Top View  
7
6 5 4 3 2 1 52 51 50 49 48 47  
A
OE  
1L  
2L  
3L  
4L  
5L  
6L  
7L  
8L  
9L  
0L  
1L  
2L  
3L  
8
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
R
A
A
A
A
A
A
A
A
A
A
9
0R  
1R  
2R  
3R  
4R  
5R  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A
A
A
7C1342  
A
A
6R  
7R  
A
I/O  
I/O  
I/O  
I/O  
A
A
8R  
9R  
NC  
I/O  
7R  
21 22 23 24 25 26 27 28 29 30 31 32 33  
1342–4  
Pin Definitions  
Left Port  
A0L–11L  
Right Port  
Description  
A0R–11R  
CER  
Address Lines  
Chip Enable  
CEL  
OEL  
OER  
Output Enable  
Read/Write Enable  
R/WL  
SEML  
R/WR  
SEMR  
Semaphore Enable. When asserted LOW, allows access to eight semaphores. The  
(CY7C1342 only) (CY7C1342 only) three least significant bits of the address lines will determine which semaphore to write  
or read. The I/O0 pin is used when writing to a semaphore. Semaphores are requested  
by writing a 0 into the respective location.  
Document #: 38-06038 Rev. *B  
Page 2 of 12  
CY7C135  
CY7C1342  
Maximum Ratings[1]  
Static Discharge Voltage........................................... > 2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature ..................................–65°C to+150°C  
Latch-Up Current.................................................... > 200 mA  
Ambient Temperature with  
Power Applied..............................................–55°C to+125°C  
Operating Range  
Supply Voltage to Ground Potential  
(Pin 48 to Pin 24)............................................0.5V to+7.0V  
Ambient  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
–40°C to +85°C  
VCC  
5V ± 10%  
5V ± 10%  
DC Voltage Applied to Outputs  
in High Z State ................................................0.5V to+7.0V  
DC Input Voltage[2]......................................... –3.0V to +7.0V  
Electrical Characteristics Over the Operating Range[4]  
7C135–15 7C135–20  
7C1342–1 7C1342–2 7C135–25  
5
0
7C1342–25  
Max Min Max  
Max Uni  
Parameter  
VOH  
VOL  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
Output Leakage Current  
Test Conditions  
Min.  
.
.
.
Min.  
.
t
VCC = Min., IOH = –4.0 mA  
VCC = Min., IOL = 4.0 mA  
2.4  
2.4  
2.4  
V
V
V
V
0.4  
0.4  
0.4  
VIH  
2.2  
2.2  
2.2  
VIL  
0.8  
0.8  
0.8  
IIX  
GND VI VCC  
–10 +10 –10 +10 –10 +10 µA  
–10 +10 –10 +10 –10 +10 µA  
IOZ  
Outputs Disabled,  
GND VO VCC  
ICC  
Operating Current  
VCC = Max.,  
IOUT = 0 mA  
Com’l  
Ind.  
220  
60  
190  
50  
180 mA  
190  
ISB1  
ISB2  
ISB3  
Standby Current  
(Both Ports TTL Levels)  
CEL and CER VIH,  
Com’l  
Ind.  
40  
50  
mA  
[5]  
f = fMAX  
Standby Current  
(One Port TTL Level)  
CEL and CER VIH,  
Com’l  
Ind.  
130  
15  
120  
15  
110 mA  
120  
[5]  
f = fMAX  
Standby Current  
(Both Ports CMOS Levels)  
Both Ports CE and CER ≥  
VCC – 0.2V,  
Com’l  
15  
mA  
VIN VCC – 0.2V  
Ind.  
30  
or VIN 0.2V, f = 0[5]  
ISB4  
Standby Current  
(One Port CMOS Level)  
One Port CEL or  
CER VCC – 0.2V,  
Com’l  
Ind.  
125  
115  
100 mA  
115  
VIN VCC 0.2VorVIN 0.2V,  
Active Port Outputs, f =  
[5]  
fMAX  
Notes:  
1. The Voltage on any input or I/O pin cannot exceed the power pin during power-up.  
2. Pulse width < 20 ns.  
3.  
4. See the last page of this specification for Group A subgroup testing information.  
5. = 1/t = All inputs cycling at f = 1/t (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level standby I .  
SB3  
T is the “instant on” case temperature.  
A
f
MAX  
RC  
RC  
Document #: 38-06038 Rev. *B  
Page 3 of 12  
CY7C135  
CY7C1342  
Electrical Characteristics Over the Operating Range[4](continued)  
7C135–35  
7C135–55  
7C1342–35 7C1342–55  
Parameter  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Test Conditions  
VCC = Min., IOH = –4.0 mA  
Min. Max. Min. Max. Unit  
VOH  
VOL  
VIH  
VIL  
2.4  
2.4  
V
V
VCC = Min., IOL = 4.0 mA  
0.4  
0.4  
2.2  
2.2  
V
Input LOW Voltage  
Input Load Current  
Output Leakage Current  
Operating Current  
0.8  
0.8  
V
IIX  
GND VI VCC  
–10 +10 –10 +10  
–10 +10 –10 +10  
µA  
µA  
mA  
IOZ  
ICC  
Outputs Disabled, GND VO VCC  
VCC = Max., IOUT = 0 mA  
VCC = Max., IOUT = 0 mA  
Com’l  
Ind.  
160  
180  
30  
160  
180  
30  
[5]  
ISB1  
ISB2  
ISB3  
Standby Current  
(Both Ports TTL Levels)  
CEL and CER VIH, f = fMAX  
Com’l  
Ind.  
mA  
mA  
mA  
40  
40  
[5]  
Standby Current  
(One Port TTL Level)  
CEL and CER VIH, f = fMAX  
Com’l  
Ind.  
100  
110  
15  
100  
110  
15  
Standby Current  
(Both Ports CMOS Levels) VIN VCC – 0.2V  
Both Ports CE and CER VCC – 0.2V,  
Com’l  
Ind.  
30  
30  
or VIN 0.2V, f = 0[5]  
ISB4  
Standby Current  
(One Port CMOS Level)  
One Port CEL or CER VCC – 0.2V,  
Com’l  
Ind.  
90  
90  
mA  
VIN VCC – 0.2V or VIN 0.2V,  
100  
100  
[5]  
Active Port Outputs, f = fMAX  
Capacitance[6]  
Parameter  
Description  
Test Conditions  
TA = 25°C, f = 1 MHz,  
VCC = 5.0V  
Max.  
Unit  
CIN  
Input Capacitance  
Output Capacitance  
10  
10  
pF  
pF  
COUT  
AC Test Loads and Waveforms  
5V  
R1= 893Ω  
R
TH  
= 250Ω  
R
TH  
= 250Ω  
OUTPUT  
OUTPUT  
C= 30pF  
OUTPUT  
C= 30pF  
C = 5 pF  
R1= 347Ω  
V
X
V
TH  
= 1.4V  
(a) Normal Load (Load 1)  
(b) Thévenin Equivalent (Load 1)  
(c) Three-State Delay (Load 3)  
1342–5  
1342–6  
1342–7  
ALL INPUT PULSES  
90%  
3.0V  
GND  
90%  
10%  
10%  
3 ns  
1342–8  
3 ns  
Note:  
6. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 38-06038 Rev. *B  
Page 4 of 12  
CY7C135  
CY7C1342  
Switching Characteristics Over the Operating Range[7, 8]  
7C135–15  
7C135–20  
7C135–25  
7C135–35  
7C135–55  
7C1342–15 7C1342–20 7C1342–25 7C1342–35 7C1342–55  
Parameter  
Description  
Read Cycle Time  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit  
READ CYCLE  
tRC  
15  
3
20  
3
25  
3
35  
3
55  
3
ns  
ns  
ns  
tAA  
Address to Data Valid  
15  
20  
25  
35  
55  
tOHA  
Output Hold From  
Address Change  
tACE  
tDOE  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
15  
10  
20  
13  
25  
15  
35  
20  
55  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[9,10,11]  
tLZOE  
3
3
0
3
3
0
3
3
0
3
3
0
3
3
0
[9,10,11]  
tHZOE  
OE HIGH to High Z  
CE LOW to Low Z  
10  
10  
15  
13  
13  
20  
15  
15  
25  
20  
20  
35  
25  
25  
55  
[9,10,11]  
tLZCE  
[9,10,11]  
tHZCE  
CE HIGH to High Z  
CE LOW to Power Up  
CE HIGH to Power Down  
[11]  
tPU  
[11]  
tPD  
WRITE CYCLE  
tWC  
tSCE  
tAW  
Write Cycle Time  
15  
12  
12  
2
20  
15  
15  
2
25  
20  
20  
2
35  
30  
30  
2
55  
50  
50  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CE LOW to Write End  
Address Set-Up to Write End  
Address Hold from Write End  
Address Set-Up to Write Start  
Write Pulse Width  
tHA  
tSA  
0
0
0
0
0
tPWE  
tSD  
12  
10  
0
15  
13  
0
20  
15  
0
25  
15  
0
50  
25  
0
Data Set-Up to Write End  
Data Hold from Write End  
R/W LOW to High Z  
tHD  
[10,11]  
tHZWE  
10  
13  
15  
20  
25  
[10,11]  
tLZWE  
R/W HIGH to Low Z  
3
3
3
3
3
[12]  
tWDD  
Write Pulse to Data Delay  
30  
25  
40  
30  
50  
30  
60  
35  
70  
40  
[12]  
tDDD  
Write Data Valid to Read  
Data Valid  
SEMAPHORE TIMING[13]  
tSOP  
SEM Flag Update Pulse  
(OE or SEM)  
10  
10  
10  
15  
15  
ns  
tSWRD  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
5
5
5
5
5
5
5
5
5
5
ns  
ns  
tSPS  
Notes:  
7. See the last page of this specification for Group A subgroup testing information.  
8. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  
/I and 30-pF load capacitance.  
I
OL OH  
9. At any given temperature and voltage condition for any given device, t  
is less than t  
and t  
is less than t  
.
HZCE  
LZCE  
HZOE  
LZOE  
10. Test conditions used are Load 3.  
11. This parameter is guaranteed but not tested.  
12. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Port-to-Port Delay waveform.  
13. Semaphore timing applies only to CY7C1342.  
Document #: 38-06038 Rev. *B  
Page 5 of 12  
CY7C135  
CY7C1342  
Switching Waveforms  
Read Cycle No. 1[14,15]  
Either Port Address Access  
t
RC  
ADDRESS  
t
AA  
t
OHA  
DATA OUT  
PREVIOUS DATA VALID  
DATA VALID  
1342–9  
Read Cycle No. 2[14,16]  
Either Port CE/OE Access  
[13]  
or CE  
OE  
SEM  
t
HZCE  
t
ACE  
t
HZOE  
t
DOE  
t
LZOE  
t
LZCE  
DATA VALID  
DATA OUT  
t
PU  
t
PD  
I
CC  
ISB  
1342–10  
Read Timing with Port-to-Port[17]  
t
wc  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
SD  
HD  
DATA  
VALID  
INR  
ADDRESS  
MATCH  
L
t
DDD  
DATA  
VALID  
OUTL  
t
WDD  
1342–11  
Notes:  
14. R/W is HIGH for read cycle.  
15. Device is continuously selected, CE = V and OE = V .  
IL  
IL  
16. Address valid prior to or coincident with CE transition LOW.  
17. CE = CE =LOW; R/W = HIGH  
L
R
L
Document #: 38-06038 Rev. *B  
Page 6 of 12  
CY7C135  
CY7C1342  
Switching Waveforms (continued)  
Write Cycle No. 1: OE Three-States Data I/Os (Either Port)[18,19,20]  
t
WC  
ADDRESS  
[13]  
t
SCE  
SEM  
OR CE  
t
t
HA  
AW  
t
PWE  
R/W  
t
SA  
t
t
HD  
SD  
DATA  
IN  
DATA VALID  
OE  
t
t
HZOE  
LZOE  
HIGH IMPEDANCE  
DATA  
OUT  
1342–12  
Write Cycle No. 2:R/W Three-States Data I/Os (Either Port)[19, 21]  
t
WC  
ADDRESS  
t
t
HA  
SCE  
[13]  
SEM  
OR  
CE  
t
AW  
t
SA  
t
PWE  
R/W  
t
t
HD  
SD  
DATA VALID  
DATA  
IN  
t
t
LZWE  
HZWE  
HIGH IMPEDANCE  
DATA  
OUT  
1342–13  
Notes:  
18. The internal write time of the memory is defined by the overlap of CE or SEM LOW and R/W LOW. Both signals must be LOW to initiate a write and either signal can  
terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.  
19. R/W must be HIGH during all address transactions.  
20. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t  
or (t  
+ t ) to allow the I/O drivers to turn off and data to be placed on the  
PWE  
HZWE SD  
bus for the required t . If OE is HIGH during a R/Wcontrolled write cycle (as in this example), this requirement does not apply and the write pulse can be as short as the specified  
SD  
t
.
PWE  
21. Data I/O pins enter high-impedance when OE is held LOW during write.  
Document #: 38-06038 Rev. *B  
Page 7 of 12  
CY7C135  
CY7C1342  
Switching Waveforms (continued)  
Semaphore Read After Write Timing, Either Side (CY7C1342 only)[22]  
t
AA  
t
OHA  
A –A  
0
2
VALID ADDRESS  
VALID ADDRESS  
t
AW  
t
ACE  
t
SEM  
HA  
t
SCE  
t
SOP  
t
SD  
I/O  
0
DATA VALID  
DATA  
VALID  
IN  
OUT  
t
HD  
t
SA  
t
PWE  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
READ CYCLE  
1342–14  
Timing Diagram of Semaphore Contention (CY7C1342 only)[23,24,25]  
A
–A  
0L 2L  
MATCH  
R/W  
L
SEM  
L
t
SPS  
A
–A  
MATCH  
0R 2R  
R/W  
R
R
SEM  
1342–15  
Notes:  
22. CE = HIGH for the duration of the above timing (both write and read cycle).  
23. I/O = I/O = LOW (request semaphore); CE = CE = HIGH.  
0R  
0L  
R
L
24. Semaphores are reset (available to both ports) at cycle start.  
25. If t is violated, it is guaranteed that only one side will gain access to the semaphore.  
SPS  
Document #: 38-06038 Rev. *B  
Page 8 of 12  
CY7C135  
CY7C1342  
zero (the left port in this case). If the left port now relinquishes  
control by writing a one to the semaphore, the semaphore will  
be set to one for both sides. However, if the right port had  
requested the semaphore (written a zero) while the left port  
had control, the right port would immediately own the sema-  
phore. Table 2 shows sample semaphore operations.  
Architecture  
The CY7C135 consists of an array of 4K words of 8 bits each  
of dual-port RAM cells, I/O and address lines, and control sig-  
nals (CE, OE, R/W). Two semaphore control pins exist for the  
CY7C1342 (SEML/R).  
When reading a semaphore, all eight data lines output the  
semaphore value. The read value is latched in an output reg-  
ister to prevent the semaphore from changing state during a  
write from the other port. If both ports request a semaphore  
control by writing a 0 to a semaphore within tSPS of each other,  
it is guaranteed that only one side will gain access to the sema-  
phore.  
Functional Description  
Write Operation  
Data must be set up for a duration of tSD before the rising edge  
of R/W in order to guarantee a valid write. Since there is no  
on-chip arbitration, the user must be sure that a specific loca-  
tion will not be accessed simultaneously by both ports or erro-  
neous data could result. A write operation is controlled by ei-  
ther the OE pin (see Write Cycle No. 1 timing diagram) or the  
R/W pin (see Write Cycle No. 2 timing diagram). Data can be  
written tHZOE after the OE is deasserted or tHZWE after the  
falling edge of R/W. Required inputs for write operations are  
summarized in Table 1.  
Initialization of the semaphore is not automatic and must be  
reset during initialization program at power-up. All sema-  
phores on both sides should have a one written into them at  
initialization from both sides to assure that they will be free  
when needed.  
Table 1. Non-Contending Read/Write  
If a location is being written to by one port and the opposite  
port attempts to read the same location, a port-to-port  
flowthrough delay is met before the data is valid on the output.  
Data will be valid on the port wishing to read the location tDDD  
after the data is presented on the writing port.  
Inputs  
Outputs  
I/O0 – I/O7  
High Z  
Operation  
Power-Down  
CE R/W OE  
SEM  
H
H
X
H
X
L
H
L
Data Out  
Read  
Semaphore  
Read Operation  
X
H
L
X
L
H
X
L
X
L
High Z  
I/O Lines Disabled  
Write to Semaphore  
Read  
When reading the device, the user must assert both the OE  
and CE pins. Data will be available tACE after CE or tDOE after  
OE are asserted. If the user of the CY7C1342 wishes to ac-  
cess a semaphore, the SEM pin must be asserted instead of  
the CE pin. Required inputs for read operations are summa-  
rized in Table 1.  
Data In  
Data Out  
Data In  
H
L
H
H
L
L
X
X
Write  
L
X
Illegal Condition  
Table 2. Semaphore Operation Example  
Semaphore Operation  
I/O0-7 I/O0-7  
The CY7C1342 provides eight semaphore latches which are  
separate from the dual port memory locations. Semaphores  
are used to reserve resources which are shared between the  
two ports. The state of the semaphore indicates that a re-  
source is in use. For example, if the left port wants to request  
a given resource, it sets a latch by writing a zero to a sema-  
phore location. The left port then verifies its success in setting  
the latch by reading it. After writing to the semaphore, SEM or  
OE must be deasserted for tSOP before attempting to read the  
Function  
No Action  
Left Right  
Status  
1
0
1
1
Semaphore free  
Left port writes  
semaphore  
Left port obtains  
semaphore  
Right port writes 0 to  
semaphore  
0
1
1
0
Right side is denied  
access  
Left port writes 1 to  
semaphore  
Right port is granted  
access to Sema-  
phore  
semaphore. The semaphore value will be available tSWRD  
+
tDOE after the rising edge of the semaphore write. If the left port  
was successful (reads a zero), it assumes control over the  
shared resource, otherwise (reads a one) it assumes the right  
port has control and continues to poll the semaphore. When  
the right side has relinquished control of the semaphore (by  
writing a one), the left side will succeed in gaining control of  
the semaphore. If the left side no longer requires the sema-  
phore, a one is written to cancel its request.  
Left port writes 0 to  
semaphore  
1
0
1
1
1
0
1
0
1
1
0
1
1
1
No change. Left port  
is denied access  
Right port writes 1 to  
semaphore  
Left port obtains  
semaphore  
Left port writes 1 to  
semaphore  
No port accessing  
semaphore address  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip enable for the semaphore latches. CE  
must remain HIGH during SEM LOW. A0–2 represents the  
semaphore address. OE and R/W are used in the same man-  
ner as a normal memory access. When writing or reading a  
semaphore, the other address pins have no effect.  
Right port writes 0 to  
semaphore  
Right port obtains  
semaphore  
Right port writes 1 to  
semaphore  
No port accessing  
semaphore  
Left port writes 0 to  
semaphore  
Left port obtains  
semaphore  
When writing to the semaphore, only I/O0 is used. If a 0 is  
written to the left port of an unused semaphore, a one will  
appear at the same semaphore address on the right port. That  
semaphore can now only be modified by the side showing a  
Left port writes 1 to  
semaphore  
No port accessing  
semaphore  
Document #: 38-06038 Rev. *B  
Page 9 of 12  
CY7C135  
CY7C1342  
Typical DC and AC Characteristics  
NORMALIZED SUPPLY CURRENT  
vs. AMBIENT TEMPERATURE  
OUTPUT SOURCE CURRENT  
vs. OUTPUT VOLTAGE  
NORMALIZED SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
140  
120  
100  
80  
1.4  
1.2  
1.0  
I
SB  
I
CC  
1.2  
1.0  
I
SB3  
0.8  
0.6  
0.4  
0.8  
0.6  
0.4  
V
CC  
= 5.0V  
V
V
= 5.0V  
= 5.0V  
CC  
60  
T = 25°C  
A
IN  
40  
0.2  
0.6  
0.2  
20  
0
I
CC  
0.0  
4.0  
4.5  
5.0  
5.5  
6.0  
–55  
25  
125  
0
1.0  
2.0  
3.0  
4.0 5.0  
AMBIENT TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
NORMALIZED ACCESS TIME  
vs. AMBIENT TEMPERATURE  
OUTPUT SINK CURRENT  
vs. OUTPUT VOLTAGE  
NORMALIZED ACCESS TIME  
vs. SUPPLY VOLTAGE  
1.2  
1.1  
100  
90  
1.10  
1.05  
T = 25°C  
A
80  
70  
1.0  
0.9  
V
CC  
= 5.0V  
1.00  
0.95  
V
= 5.0V  
CC  
60  
50  
T = 25°C  
A
0.8  
–55  
0.0  
1.0  
2.0  
3.0  
4.0 5.0  
25  
125  
4.0  
4.5  
5.0  
5.5  
6.0  
AMBIENT TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TYPICAL POWER-ON CURRENT  
vs. SUPPLY VOLTAGE  
TYPICAL ACCESS TIME CHANGE  
vs. OUTPUT LOADING  
NORMALIZED I  
vs.CYCLE TIME  
CC  
1.25  
20.0  
1.0  
V
CC  
= 5.0V  
T = 25°C  
A
V
IN  
= 0.5V  
15.0  
10.0  
0.75  
0.50  
1.0  
0.75  
V
= 4.5V  
CC  
5.0  
0
0.25  
0.0  
T = 25°C  
A
0.50  
10  
20  
30  
40  
50  
0
200 400 600 800 1000  
CAPACITANCE (pF)  
0
1.0  
2.0  
3.0  
4.0 5.0  
CYCLE FREQUENCY (MHz)  
SUPPLY VOLTAGE (V)  
Document #: 38-06038 Rev. *B  
Page 10 of 12  
CY7C135  
CY7C1342  
Ordering Information  
4K x8 Dual-Port SRAM  
Speed  
(ns)  
15  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
CY7C135–15JC  
CY7C135–20JC  
CY7C135–25JC  
CY7C135–25JI  
CY7C135–35JC  
CY7C135–35JI  
CY7C135–55JC  
CY7C135–55JI  
J69  
J69  
J69  
J69  
J69  
J69  
J69  
J69  
52-Lead Plastic Leaded Chip Carrier  
52-Lead Plastic Leaded Chip Carrier  
52-Lead Plastic Leaded Chip Carrier  
52-Lead Plastic Leaded Chip Carrier  
52-Lead Plastic Leaded Chip Carrier  
52-Lead Plastic Leaded Chip Carrier  
52-Lead Plastic Leaded Chip Carrier  
52-Lead Plastic Leaded Chip Carrier  
Commercial  
Commercial  
Commercial  
Industrial  
20  
25  
35  
55  
Commercial  
Industrial  
Commercial  
Industrial  
4K x8 Dual-Port SRAM with Semaphores  
Speed  
Package  
Type  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
15  
CY7C1342–15JC  
J69  
J69  
J69  
J69  
J69  
J69  
J69  
J69  
52-Lead Plastic Leaded Chip Carrier  
52-Lead Plastic Leaded Chip Carrier  
52-Lead Plastic Leaded Chip Carrier  
52-Lead Plastic Leaded Chip Carrier  
52-Lead Plastic Leaded Chip Carrier  
52-Lead Plastic Leaded Chip Carrier  
52-Lead Plastic Leaded Chip Carrier  
52-Lead Plastic Leaded Chip Carrier  
Commercial  
Commercial  
Commercial  
Industrial  
20  
CY7C1342–20JC  
CY7C1342–25JC  
CY7C1342–25JI  
CY7C1342–35JC  
CY7C1342–35JI  
CY7C1342–55JC  
CY7C1342–55JI  
25  
35  
55  
Commercial  
Industrial  
Commercial  
Industrial  
Package Diagrams  
52-Lead Plastic Leaded Chip Carrier J69  
51-85004-*A  
Document #: 38-06038 Rev. *B  
Page 11 of 12  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C135  
CY7C1342  
Document History Page  
Document Title: CY7C135/CY7C1342 4K x 8 Dual Port Static RAM and 4K x 8 Dual Port Static RAM w/Semaphores  
Document Number: 38-06038  
Issue  
Orig. of  
Change  
REV.  
**  
ECN NO. Date  
Description of Change  
110181  
122288  
236763  
10/21/01  
SZV  
RBI  
Change from Spec number: 38-00541 to 38-06038  
Power up requirements added to Maximum Ratings Information  
Removed cross information from features section  
*A  
*B  
12/27/02  
SEE ECN  
YDT  
Document #: 38-06038 Rev. *B  
Page 12 of 12  

相关型号:

CY7C135-20JCT

Dual-Port SRAM, 4KX8, 20ns, CMOS, PQCC52, PLASTIC, LCC-52
CYPRESS

CY7C135-25JC

4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port SRAM with Semaphores
CYPRESS

CY7C135-25JCT

Dual-Port SRAM, 4KX8, 25ns, CMOS, PQCC52, PLASTIC, LCC-52
CYPRESS

CY7C135-25JI

4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port SRAM with Semaphores
CYPRESS

CY7C135-25JXC

4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port SRAM with Semaphores
CYPRESS

CY7C135-35JC

4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port SRAM with Semaphores
CYPRESS

CY7C135-35JCR

Dual-Port SRAM, 4KX8, 35ns, CMOS, PQCC52, PLASTIC, LCC-52
CYPRESS

CY7C135-35JCT

Dual-Port SRAM, 4KX8, 35ns, CMOS, PQCC52, PLASTIC, LCC-52
CYPRESS

CY7C135-35JI

4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port SRAM with Semaphores
CYPRESS

CY7C135-35JIR

Dual-Port SRAM, 4KX8, 35ns, CMOS, PQCC52, PLASTIC, LCC-52
CYPRESS

CY7C135-35JIT

Dual-Port SRAM, 4KX8, 35ns, CMOS, PQCC52, PLASTIC, LCC-52
CYPRESS

CY7C135-55JC

4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port SRAM with Semaphores
CYPRESS