CY7C1354B-200BZI [CYPRESS]

9-Mb (256K x 36/512K x 18) Pipelined SRAM with NoBL Architecture; 9 -MB ( 256K ×36 / 512K ×18 )流水线SRAM与NOBL架构
CY7C1354B-200BZI
型号: CY7C1354B-200BZI
厂家: CYPRESS    CYPRESS
描述:

9-Mb (256K x 36/512K x 18) Pipelined SRAM with NoBL Architecture
9 -MB ( 256K ×36 / 512K ×18 )流水线SRAM与NOBL架构

存储 内存集成电路 静态存储器 时钟
文件: 总29页 (文件大小:475K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1354B  
CY7C1356B  
9-Mb (256K x 36/512K x 18) Pipelined SRAM  
with NoBL™ Architecture  
Features  
Functional Description  
• Pin-compatible and functionally equivalent to ZBT  
• Supports 225-MHz bus operations with zero wait states  
— Available speed grades are 225, 200, and 166 MHz  
The CY7C1354B and CY7C1356B are 3.3V, 256K x 36 and  
512K x 18 Synchronous pipelined burst SRAMs with No Bus  
Latency™ (NoBL) logic, respectively. They are designed to  
support unlimited true back-to-back Read/Write operations  
with no wait states. The CY7C1354B and CY7C1356B are  
equipped with the advanced (NoBL) logic required to enable  
consecutive Read/Write operations with data being trans-  
ferred on every clock cycle. This feature dramatically improves  
the throughput of data in systems that require frequent  
Write/Read transitions. The CY7C1354B and CY7C1356B are  
pin compatible and functionally equivalent to ZBT devices.  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock. The  
clock input is qualified by the Clock Enable (CEN) signal,  
which when deasserted suspends operation and extends the  
previous clock cycle.  
Write operations are controlled by the Byte Write Selects  
(BWa–BWd for CY7C1354B and BWa–BWb for CY7C1356B)  
and a Write Enable (WE) input. All writes are conducted with  
on-chip synchronous self-timed write circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. In order to avoid bus  
contention, the output drivers are synchronously three-stated  
during the data portion of a write sequence.  
• Internally self-timed output buffer control to eliminate  
the need to use asynchronous OE  
• Fully registered (inputs and outputs) for pipelined op-  
eration  
• Byte Write capability  
• Separate VDDQ for 3.3V or 2.5V I/O  
• Single 3.3V power supply  
• Fast clock-to-output times  
— 2.8 ns (for 225-MHz device)  
— 3.2ns (for 200-MHz device)  
— 3.5 ns (for 166-MHz device)  
• Clock Enable (CEN) pin to suspend operation  
• Synchronous self-timed writes  
• Available in 100 TQFP, 119 BGA, and 165 fBGA packag-  
es  
• IEEE 1149.1 JTAG Boundary Scan  
Burst capabilitylinear or interleaved burst order  
• “ZZ” Sleep Mode option and Stop Clock option  
Logic Block Diagram-CY7C1354B (256K x 36)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
O
S
U
D
A
T
U
T
P
T
P
E
N
S
U
T
U
T
ADV/LD  
A
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
R
E
G
I
MEMORY  
ARRAY  
B
U
F
S
T
E
E
R
I
DQs  
DQP  
DQP  
DQP  
DQP  
WRITE  
DRIVERS  
BW  
BW  
a
a
b
c
d
A
M
P
b
BW  
BW  
c
S
T
E
R
S
F
d
E
R
S
S
WE  
E
E
N
G
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05114 Rev. *C  
Revised June 16, 2004  
CY7C1354B  
CY7C1356B  
Logic Block Diagram-CY7C1356B (512K x 18)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
P
S
E
N
S
D
A
T
U
T
U
T
ADV/LD  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
R
E
G
I
MEMORY  
ARRAY  
E
B
U
F
DQs  
DQP  
DQP  
WRITE  
DRIVERS  
BW  
BW  
a
S
T
E
E
R
I
A
M
P
a
F
b
S
T
E
R
S
b
E
R
S
S
N
G
WE  
E
E
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
Sleep  
Control  
ZZ  
Selection Guide  
CY7C1354B-225  
CY7C1356B-225  
2.8  
CY7C1354B-200  
CY7C1356B-200  
3.2  
CY7C1354B-166  
CY7C1356B-166  
3.5  
Unit  
ns  
mA  
mA  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
Shaded areas contain advance information.  
250  
35  
220  
35  
180  
35  
Please contact your local Cypress sales representative for availability of these parts.  
Document #: 38-05114 Rev. *C  
Page 2 of 29  
CY7C1354B  
CY7C1356B  
Pin Configurations  
100-pin TQFP Packages  
DQPc  
DQc  
1
NC  
NC  
NC  
DDQ  
1
A
DQPb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
2
2
NC  
79  
DQc  
3
DQb  
3
NC  
78  
V
V
4
DDQ  
4
VDDQ  
V
V
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DDQ  
SS  
V
5
VSS  
V
5
SS  
SS  
DQc  
6
NC  
6
NC  
DQb  
DQb  
DQb  
DQb  
VSS  
VDDQ  
DQb  
DQb  
VSS  
NC  
DQc  
7
NC  
7
DQPa  
DQa  
DQa  
DQc  
DQc  
8
DQb  
DQb  
8
9
9
V
V
SS  
DDQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
V
V
V
DDQ  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
NC  
DQa  
DQa  
V
CY7C1354B  
(256K × 36)  
SS  
V
V
DD  
DD  
NC  
CY7C1356B  
(512K × 18)  
NC  
VDD  
ZZ  
DQa  
DQa  
NC  
V
DD  
V
V
SS  
SS  
ZZ  
DQd  
DQd  
DQb  
DQb  
DDQ  
DQa  
DQa  
V
V
DDQ  
VDDQ  
V
DDQ  
V
V
SS  
VSS  
SS  
V
SS  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
DQb  
DQb  
DQa  
DQa  
NC  
DQa DQPb  
DQa  
VSS  
NC  
NC  
V
SS  
V
V
DDQ  
SS  
SS  
V
V
DDQ  
DQd  
DDQ  
VDDQ  
V
DQa  
NC  
NC  
NC  
NC  
NC  
NC  
DQd  
DQa  
DQPd  
DQPa  
Document #: 38-05114 Rev. *C  
Page 3 of 29  
CY7C1354B  
CY7C1356B  
Pin Configurations (continued)  
119-ball BGA Pinout  
CY7C1354B (256K × 36) – 14 × 22 BGA  
1
VDDQ  
2
A
3
A
4
E(18)  
5
A
6
A
7
VDDQ  
A
NC  
NC  
DQc  
DQc  
VDDQ  
DQc  
CE2  
A
DQPc  
A
A
VSS  
VSS  
VSS  
BWc  
VSS  
NC  
VSS  
BWd  
VSS  
VSS  
VSS  
MODE  
A
ADV/LD  
VDD  
NC  
A
A
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
CE3  
A
DQPb  
NC  
NC  
DQb  
B
C
D
E
F
G
H
J
K
L
DQc  
DQc  
DQc  
DQc  
VDD  
DQd  
DQd  
DQd  
DQd  
DQPd  
CE1  
DQb  
DQb  
DQb  
DQb  
VDD  
DQa  
DQa  
DQa  
DQa  
DQPa  
DQb  
VDDQ  
DQb  
DQb  
VDDQ  
DQa  
DQa  
VDDQ  
DQa  
DQa  
OE  
A
WE  
VDD  
CLK  
NC  
DQc  
VDDQ  
DQd  
DQd  
VDDQ  
DQd  
DQd  
NC  
NC  
VDDQ  
M
N
P
CEN  
A1  
A0  
VDD  
A
TCK  
A
E(72)  
TMS  
A
E(36)  
NC  
NC  
ZZ  
VDDQ  
R
NC  
A
TDO  
T
TDI  
U
CY7C1356B (512K x 18)–14 x 22 BGA  
1
2
3
4
5
6
7
VDDQ  
A
A
E(18)  
A
A
VDDQ  
A
B
C
D
E
F
G
H
J
NC  
NC  
DQb  
NC  
VDDQ  
NC  
DQb  
VDDQ  
NC  
DQb  
VDDQ  
DQb  
NC  
CE2  
A
NC  
DQb  
NC  
DQb  
NC  
VDD  
DQb  
NC  
DQb  
NC  
DQPb  
A
A
A
VSS  
VSS  
VSS  
A
A
NC  
NC  
NC  
DQa  
VDDQ  
DQa  
NC  
VDDQ  
DQa  
NC  
VDDQ  
NC  
CE3  
A
DQPa  
NC  
DQa  
NC  
DQa  
VDD  
NC  
DQa  
NC  
DQa  
NC  
A
ADV/LD  
VDD  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
CE1  
OE  
A
BWb  
VSS  
NC  
WE  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
MODE  
A
CLK  
NC  
VSS  
K
L
BWa  
VSS  
VSS  
VSS  
NC  
A
M
N
P
R
T
CEN  
A1  
A0  
VDD  
E(36)  
TCK  
DQa  
NC  
ZZ  
VDDQ  
NC  
E(72)  
VDDQ  
A
TMS  
A
NC  
TDI  
TDO  
U
Document #: 38-05114 Rev. *C  
Page 4 of 29  
CY7C1354B  
CY7C1356B  
Pin Configurations (continued)  
165-Ball fBGA Pinout  
CY7C1354B (256K × 36) – 13 × 15 fBGA  
1
2
3
4
5
6
7
CEN  
WE  
VSS  
VSS  
8
9
10  
11  
NC  
E(144)  
DQPb  
DQb  
DQb  
DQb  
DQb  
ZZ  
DQa  
DQa  
DQa  
E(288)  
NC  
A
ADV/LD  
A
A
A
B
C
D
E
F
G
H
J
K
L
M
N
P
CE1  
BWc  
BWd  
VSS  
VDD  
BWb  
BWa  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
E(18)  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
NC  
DQc  
A
NC  
DQb  
DQPc  
DQc  
DQc  
DQc  
DQc  
NC  
DQd  
DQd  
DQd  
DQd  
DQPd  
NC  
DQc  
DQc  
DQc  
NC  
DQd  
DQd  
DQd  
DQd  
NC  
E(72)  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQb  
DQb  
DQb  
NC  
DQa  
DQa  
DQa  
DQa  
NC  
A
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
NC  
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
DQa  
DQPa  
NC  
MODE  
E(36)  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
CY7C1356B (512K × 18) – 13 × 15 fBGA  
1
E(288)  
NC  
NC  
NC  
NC  
NC  
NC  
2
3
4
BWb  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
A
5
6
7
CEN  
8
9
10  
11  
A
E(144)  
DQPa  
DQa  
DQa  
DQa  
DQa  
ZZ  
NC  
NC  
NC  
NC  
NC  
NC  
A
CE3  
A
A
A
B
C
D
E
F
G
H
J
K
L
M
N
P
CE1  
NC  
ADV/LD  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
BWa  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
E(18)  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
WE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
A
NC  
DQb  
DQb  
DQb  
DQb  
NC  
NC  
NC  
A
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
DQb  
DQb  
DQb  
DQb  
DQPb  
NC  
DQa  
DQa  
DQa  
DQa  
NC  
A
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
NC  
NC  
NC  
VSS  
NC  
TDI  
VSS  
NC  
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
E(72)  
MODE  
E(36)  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05114 Rev. *C  
Page 5 of 29  
CY7C1354B  
CY7C1356B  
Pin Definitions  
Pin Name  
I/O Type  
Pin Description  
A0  
A1  
A
Input-  
Address Inputs used to select one of the address locations. Sampled at the rising edge of  
Synchronous  
the CLK.  
BWa  
BWb  
BWc  
BWd  
Input-  
Byte Write Select Inputs, active LOW. Qualified with WE to conduct writes to the SRAM. Sam-  
pled on the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb, BWc  
controls DQc and DQPc, BWd controls DQd and DQPd.  
Synchronous  
Input-  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This  
WE  
Synchronous  
signal must be asserted LOW to initiate a write sequence.  
Input-  
Advance/Load Input used to advance the on-chip address counter or load a new address.  
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a  
new address can be loaded into the device for an access. After being deselected, ADV/LD should  
be driven LOW in order to load a new address.  
ADV/LD  
Synchronous  
CLK  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN.  
CLK is only recognized if CEN is active LOW.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE1  
CE2  
Synchronous  
CE2 and CE3 to select/deselect the device.  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous  
CE1 and CE3 to select/deselect the device.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE3  
OE  
Synchronous  
CE1 and CE2 to select/deselect the device.  
Input-  
Output Enable, active LOW. Combined with the synchronous logic block inside the device to  
Asynchronous control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs.  
When deasserted HIGH, I/O pins are three-stated, and act as input data pins. OE is masked  
during the data portion of a Write sequence, during the first clock when emerging from a dese-  
lected state and when the device has been deselected.  
Input-  
Clock Enable Input, active LOW. When asserted LOW the clock signal is recognized by the  
SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not  
deselect the device, CEN can be used to extend the previous cycle when required.  
CEN  
Synchronous  
DQa  
DQb  
DQc  
DQd  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by addresses during the previous clock rise of the Read cycle. The direction of the pins  
is controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave  
as outputs. When HIGH, DQa–DQd are placed in a three-state condition. The outputs are auto-  
matically three-stated during the data portion of a write sequence, during the first clock when  
emerging from a deselected state, and when the device is deselected, regardless of the state of  
OE.  
Synchronous  
DQPa  
DQPb  
DQPc  
DQPd  
I/O-  
Bidirectional Data Parity I/O lines. Functionally, these signals are identical to DQ[a:d]. During  
write sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled  
by BWc, and DQPd is controlled by BWd.  
Synchronous  
MODE  
Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.  
Pulled LOW selects the linear burst order. MODE should not change states during operation.  
When left floating MODE will default HIGH, to an interleaved burst order.  
TDO  
TDI  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.  
Synchronous  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK.  
Synchronous  
TMS  
Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK.  
Synchronous  
TCK  
VDD  
VDDQ  
VSS  
JTAG-Clock  
Clock input to the JTAG circuitry.  
Power Supply Power supply inputs to the core of the device.  
I/O Power Supply Power supply for the I/O circuitry.  
Ground  
Ground for the device. Should be connected to ground of the system.  
Document #: 38-05114 Rev. *C  
Page 6 of 29  
CY7C1354B  
CY7C1356B  
Pin Definitions (continued)  
Pin Name  
I/O Type  
Pin Description  
NC  
No connects. This pin is not connected to the die.  
E(18,36,  
72, 144,  
288)  
These pins are not connected. They will be used for expansion to the 18M, 36M, 72M, 144M  
and 288M densities.  
ZZ  
Input-  
ZZ “sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition  
Asynchronous with data integrity preserved. During normal operation, this pin can be connected to VSS or left  
floating.  
of the chip enable signals, its output will three-state following  
Introduction  
Functional Overview  
the next clock rise.  
Burst Read Accesses  
The CY7C1354B and CY7C1356B are synchronous-pipelined  
Burst NoBL SRAMs designed specifically to eliminate wait  
states during Write/Read transitions. All synchronous inputs  
pass through input registers controlled by the rising edge of  
the clock. The clock signal is qualified with the Clock Enable  
input signal (CEN). If CEN is HIGH, the clock signal is not  
recognized and all internal states are maintained. All  
synchronous operations are qualified with CEN. All data  
outputs pass through output registers controlled by the rising  
edge of the clock. Maximum access delay from the clock rise  
(tCO) is 2.8 ns (225-MHz device).  
Accesses can be initiated by asserting all three Chip Enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock  
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The  
access can either be a Read or Write operation, depending on  
the status of the Write Enable (WE). BW[d:a] can be used to  
conduct Byte Write operations.  
Write operations are qualified by the Write Enable (WE). All  
Writes are simplified with on-chip synchronous self-timed  
Write circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been  
deselected in order to load a new address for the next  
operation.  
The CY7C1354B and CY7C1356B have an on-chip burst  
counter that allows the user the ability to supply a single  
address and conduct up to four Reads without reasserting the  
address inputs. ADV/LD must be driven LOW in order to load  
a new address into the SRAM, as described in the Single Read  
Access section above. The sequence of the burst counter is  
determined by the MODE input signal. A LOW input on MODE  
selects a linear burst mode, a HIGH selects an interleaved  
burst sequence. Both burst counters use A0 and A1 in the  
burst sequence, and will wrap around when incremented suffi-  
ciently. A HIGH input on ADV/LD will increment the internal  
burst counter regardless of the state of chip enables inputs or  
WE. WE is latched at the beginning of a burst cycle. Therefore,  
the type of access (Read or Write) is maintained throughout  
the burst sequence.  
Single Write Accesses  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the Write signal WE  
is asserted LOW. The address presented to A0A16 is loaded  
into the Address Register. The write signals are latched into  
the Control Logic block.  
On the subsequent clock rise the data lines are automatically  
three-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354B and DQa,b/DQPa,b for  
CY7C1356B). In addition, the address for the subsequent  
access (Read/Write/Deselect) is latched into the address  
register (provided the appropriate control signals are  
asserted).  
On the next clock rise the data presented to DQ  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354B and DQa,b/DQaPnad,bDfQoPr  
CY7C1356B) (or a subset for byte write operations, see Write  
Cycle Description table for details) inputs is latched into the  
device and the Write is complete.  
The data written during the Write operation is controlled by BW  
(BWa,b,c,d for CY7C1354B and BWa,b for CY7C1356B)  
signals. The CY7C1354B/56B provides Byte Write capability  
that is described in the Write Cycle Description table. Asserting  
the Write Enable input (WE) with the selected Byte Write  
Select (BW) input will selectively write to only the desired  
bytes. Bytes not selected during a Byte Write operation will  
remain unaltered. A synchronous self-timed write mechanism  
has been provided to simplify the Write operations. Byte Write  
capability has been included in order to greatly simplify  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the Write Enable input  
signal WE is deasserted HIGH, and (4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the address register and presented to the memory core  
and control logic. The control logic determines that a read  
access is in progress and allows the requested data to  
propagate to the input of the output register. At the rising edge  
of the next clock the requested data is allowed to propagate  
through the output register and onto the data bus within 2.8 ns  
(225-MHz device) provided OE is active LOW. After the first  
clock of the read access the output buffers are controlled by  
OE and the internal control logic. OE must be driven LOW in  
order for the device to drive out the requested data. During the  
second clock, a subsequent operation (Read/Write/Deselect)  
can be initiated. Deselecting the device is also pipelined.  
Therefore, when the SRAM is deselected at clock rise by one  
Document #: 38-05114 Rev. *C  
Page 7 of 29  
CY7C1354B  
CY7C1356B  
Read/Modify/Write sequences, which can be reduced to  
simple Byte Write operations.  
Because the CY7C1354B and CY7C1356B are common I/O  
devices, data should not be driven into the device while the  
outputs are active. The Output Enable (OE) can be deasserted  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, and CE3, must remain inactive for  
the duration of tZZREC after the ZZ input returns LOW.  
HIGH before presenting data to the DQ  
and  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354B and DQa,b/DQPa,bDfQoPr  
Interleaved Burst Address Table  
CY7C1356B) inputs. Doing so will three-state the output  
(MODE = Floating or VDD  
)
drivers. As a safety precaution, DQ  
(DQa,b,c,d/  
and DQP  
DQPa,b,c,d for CY7C1354B and DQa,b/DQPa,b for  
CY7C1356B) are automatically three-stated during the data  
portion of a write cycle, regardless of the state of OE.  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
A1,A0  
A1,A0  
A1,A0  
A1,A0  
Burst Write Accesses  
00  
01  
10  
11  
01  
00  
11  
10  
The CY7C1354B/56B has an on-chip burst counter that allows  
the user the ability to supply a single address and conduct up  
to four WRITE operations without reasserting the address  
inputs. ADV/LD must be driven LOW in order to load the initial  
address, as described in the Single Write Access section  
above. When ADV/LD is driven HIGH on the subsequent clock  
rise, the chip enables (CE1, CE2, and CE3) and WE inputs are  
ignored and the burst counter is incremented. The correct BW  
(BWa,b,c,d for CY7C1354B and BWa,b for CY7C1356B) inputs  
must be driven in each cycle of the burst write in order to write  
the correct bytes of data.  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table  
(MODE = GND)  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
A1,A0  
A1,A0  
A1,A0  
A1,A0  
00  
01  
10  
11  
01  
10  
11  
00  
Sleep Mode  
10  
11  
00  
01  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
Test Conditions  
ZZ > VDD 0.2V  
ZZ > VDD 0.2V  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
Min.  
Max  
35  
2tCYC  
Unit  
mA  
ns  
ns  
ns  
ns  
tZZS  
tZZREC  
tZZI  
tRZZI  
2tCYC  
0
2tCYC  
Document #: 38-05114 Rev. *C  
Page 8 of 29  
CY7C1354B  
CY7C1356B  
Truth Table[1, 2, 3, 4, 5, 6, 7]  
Address  
Operation  
Used  
CE ZZ ADV/LD WE BWx OE CEN CLK  
DQ  
Deselect Cycle None  
H
L
L
X
X
X
L
L-H  
Three-State  
Continue  
None  
X
L
H
X
X
X
L
L-H  
Three-State  
Data Out (Q)  
Data Out (Q)  
Three-State  
Deselect Cycle  
Read Cycle  
External  
Next  
L
X
L
L
L
L
L
H
L
H
X
H
X
X
X
L
L
L
L
L
L-H  
L-H  
L-H  
(Begin Burst)  
Read Cycle  
(Continue Burst)  
NOP/Dummy  
External  
H
Read  
(Begin Burst)  
Dummy Read  
Next  
X
L
L
L
L
L
H
L
X
L
X
L
H
X
X
X
L
L
L
L
L-H  
L-H  
L-H  
L-H  
Three-State  
Data In (D)  
Data In (D)  
Three-State  
(Continue Burst)  
Write Cycle  
External  
Next  
(Begin Burst)  
Write Cycle  
X
L
H
L
X
L
L
(Continue Burst)  
NOP/WRITE  
None  
H
ABORT  
(Begin Burst)  
WRITE ABORT Next  
X
X
L
L
H
X
X
X
H
X
X
X
L
L-H  
L-H  
Three-State  
-
(Continue Burst)  
IGNORE  
Current  
H
CLOCK EDGE  
(Stall)  
Sleep MODE  
None  
X
H
X
X
X
X
X
X
Three-State  
Notes:  
1. X = “Don't Care”, 1 = Logic HIGH, 0 = Logic LOW, CE stands for ALL Chip Enables active. BWx = 0 signifies at least one Byte Write Select is active, BWx =  
Valid signifies that the desired Byte Write Selects are asserted, see Write Cycle Description table for details.  
2. Write is defined by WE and BW  
. See Write Cycle Description table for details.  
[a:d]  
3. When a write cycle is detected, all I/Os are three-stated, even during Byte Writes.  
4. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
5. CEN = H inserts wait states.  
6. Device will power-up deselected and the I/Os in a three-state condition, regardless of OE.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and DQP  
OE is inactive or when the device is deselected, and DQs = data when OE is active.  
= Three-state when  
[a:d]  
Document #: 38-05114 Rev. *C  
Page 9 of 29  
CY7C1354B  
CY7C1356B  
Partial Write Cycle Description[1, 2, 3, 8]  
Function (CY7C1354B)  
BWd  
X
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
BWc  
X
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
L
BWb  
BWa  
X
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
WE  
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Read  
X
H
H
L
Write –No bytes written  
Write Byte a– (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Bytes b, a  
Write Byte c – (DQc and DQPc)  
Write Bytes c, a  
Write Bytes c, b  
Write Bytes c, b, a  
Write Byte d – (DQd and DQPd)  
Write Bytes d, a  
Write Bytes d, b  
L
H
H
L
L
H
H
L
Write Bytes d, b, a  
Write Bytes d, c  
Write Bytes d, c, a  
Write Bytes d, c, b  
L
H
H
L
Write All Bytes  
L
L
Note:  
8. Table only lists a partial listing of the byte write combinations. Any combination of BW  
is valid. Appropriate write will be done based on which byte write is active.  
[a:d]  
Function (CY7C1356B)  
Read  
Write – No Bytes Written  
Write Byte a (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Both Bytes  
WE  
H
L
L
L
BWb  
BWa  
x
H
L
H
x
H
H
L
L
L
L
Test Access Port–Test Clock  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C1354B/CY7C1354B incorporates a serial boundary  
scan Test Access Port (TAP) in the BGA package only. The  
TQFP package does not offer this functionality. This port  
operates in accordance with IEEE Standard 1149.1-1900, but  
does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC standard 3.3V I/O logic levels.  
Test Mode Select  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this pin unconnected if the TAP is not used. The pin is  
pulled up internally, resulting in a logic HIGH level.  
Test Data-In (TDI)  
The TDI pin is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see the TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the Most Significant Bit (MSB) on any register.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should  
be left unconnected. Upon power-up, the device will come up  
in a reset state which will not interfere with the operation of the  
device.  
Test Data Out (TDO)  
The TDO output pin is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine (see TAP Controller State  
Document #: 38-05114 Rev. *C  
Page 10 of 29  
CY7C1354B  
CY7C1356B  
Diagram). The output changes on the falling edge of TCK.  
TDO is connected to the Least Significant Bit (LSB) of any  
register.  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
Performing a TAP Reset  
TAP Instruction Set  
A Reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of  
the SRAM and may be performed while the SRAM is  
operating. At power-up, the TAP is reset internally to ensure  
that TDO comes up in a High-Z state.  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Code table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented. The TAP controller  
cannot be used to load address, data, or control signals into  
the SRAM and cannot preload the Input or Output buffers. The  
SRAM does not implement the 1149.1 commands EXTEST or  
INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather it performs a capture of the Inputs and Output ring when  
these instructions are executed.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO pins.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
TAP Registers  
Registers are connected between the TDI and TDO pins and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction registers. Data is serially loaded into the TDI pin  
on the rising edge of TCK. Data is output on the TDO pin on  
the falling edge of TCK.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO pins as shown in the TAP Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
EXTEST  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board level serial test path.  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in the TAP controller, and  
therefore this device is not compliant to the 1149.1 standard.  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the SRAM responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between the two  
instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High-Z state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain states. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO pins and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state. The IDCODE instruction  
is loaded into the instruction register upon power-up or  
whenever the TAP controller is given a test logic reset state.  
The boundary scan register is connected to all the input and  
output pins on the SRAM. Several no connect (NC) pins are  
also included in the scan register to reserve pins for higher  
density devices. The ×36 configuration has a 69-bit-long  
register, and the ×18 configuration has a 69-bit-long register.  
The boundary scan register is loaded with the contents of the  
RAM Input and Output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO pins when the controller is moved to the Shift-DR state.  
The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instruc-  
tions can be used to capture the contents of the Input and  
Output ring.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the TAP controller is not fully 1149.1-compliant.  
When the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
Document #: 38-05114 Rev. *C  
Page 11 of 29  
CY7C1354B  
CY7C1356B  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP into the Update to the  
Update-DR state while performing a SAMPLE/PRELOAD  
instruction will have the same effect as the Pause-DR  
command.  
Bypass  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document #: 38-05114 Rev. *C  
Page 12 of 29  
CY7C1354B  
CY7C1356B  
TAP Controller State Diagram  
TEST-LOGIC  
RESET  
1
1
1
1
TEST-LOGIC/  
IDLE  
SELECT  
SELECT  
0
DR-SCAN  
IR-SCAN  
0
0
1
1
CAPTURE-DR  
CAPTURE-DR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Note:  
9. The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05114 Rev. *C  
Page 13 of 29  
CY7C1354B  
CY7C1356B  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
1
1
0
TDO  
Instruction Register  
TDI  
29  
Identification Register  
31 30  
.
.
2
0
0
.
68 .  
.
.
2
Boundary Scan Register  
TCK  
TMS  
TAP Controller  
TAP Electrical Characteristics Over the Operating Range[10, 11]  
Parameter  
VOH1  
Description  
Output HIGH Voltage  
Test Conditions  
IOH = 2.0 mA, VDDQ = 3.3V  
OH = 2.0 mA, VDDQ = 2.5V  
IOH = 100 µA, VDDQ = 3.3V  
IOH = 100 µA, VDDQ = 2.5V  
IOL = 2.0 mA  
Min.  
2.0  
1.7  
2.0  
2.0  
Max.  
Unit  
V
V
V
V
V
V
V
V
I
VOH2  
Output HIGH Voltage  
VOL1  
VOL2  
VIH  
VIL  
IX  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
0.7  
0.2  
VDD + 0.3  
0.7  
IOL = 100 µA  
1.7  
–0.3  
–30  
–30  
GND VI VDDQ  
30  
30  
µA  
µA  
IX  
Input Load Current TMS and TDI GND VI VDDQ  
[12, 13]  
TAP AC Switching Characteristics Over the Operating Range  
Parameter  
Description  
Min.  
Max.  
Unit  
tTCYC  
tTF  
tTH  
tTL  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH  
100  
ns  
MHz  
ns  
10  
40  
40  
TCK Clock LOW  
ns  
Set-up Times  
tTMSS  
tTDIS  
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
10  
10  
10  
ns  
ns  
ns  
tCS  
Notes:  
10. All voltage referenced to ground.  
11. Overshoot: V (AC) < V + 1.5V for t < t  
/2; undershoot: V (AC) > –0.5V for t < t  
/2.  
TCYC  
IH  
DD  
TCYC  
IL  
12. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
13. Test conditions are specified using the load in TAP AC test conditions. t /t = 1 ns.  
R
F
Document #: 38-05114 Rev. *C  
Page 14 of 29  
CY7C1354B  
CY7C1356B  
TAP AC Switching Characteristics Over the Operating Range (continued)[12, 13]  
Parameter  
Hold Times  
tTMSH  
tTDIH  
tCH  
Description  
Min.  
Max.  
Unit  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
Capture Hold after clock rise  
10  
10  
10  
ns  
ns  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
20  
ns  
ns  
0
TAP Timing and Test Conditions  
1.5V for 3.3V VDDQ  
1.25V for 2.5V VDDQ  
ALL INPUT PULSES  
1.5V  
3.0V  
1.5 ns  
50Ω  
VSS  
1.5 ns  
TDO  
Z = 50Ω  
0
C = 20 pF  
L
tTL  
tTH  
(a)  
GND  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOV  
tTDOX  
Identification Register Definitions  
Instruction Field  
Revision Number (31:29)  
Cypress Device ID (28:12)  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
CY7C1354B  
CY7C1356B  
Description  
Reserved for version number.  
001  
001  
01010001000100110 01010001000010110 Reserved for future use.  
00000110100  
1
00000110100  
1
Allows unique identification of SRAM vendor.  
Indicate the presence of an ID register.  
Document #: 38-05114 Rev. *C  
Page 15 of 29  
CY7C1354B  
CY7C1356B  
Scan Register Sizes  
Register Name  
Bit Size  
Instruction  
3
Bypass  
1
ID  
32  
69  
Boundary Scan  
Identification Codes  
Instruction  
Code  
Description  
EXTEST  
000 Captures the Input/Output ring contents. Places the boundary scan register between the TDI and  
TDO. Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.  
IDCODE  
001 Loads the ID register with the vendor ID code and places the register between TDI and TDO. This  
operation does not affect SRAM operation.  
SAMPLE Z  
010 Captures the Input/Output contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD 100 Captures the Input/Output ring contents. Places the boundary scanregister between TDI and TDO.  
Does not affect the SRAM operation. This instruction does not implement 1149.1 preload function  
and is therefore not 1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101 Do Not Use: This instruction is reserved for future use.  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM operation.  
Boundary Scan Exit Order (×36) (continued)  
Boundary Scan Exit Order (×36)  
Bit #  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
119-Ball ID  
M6  
L7  
165-Ball ID  
K11  
L11  
M11  
N11  
R11  
R10  
P10  
R9  
Bit #  
1
2
3
4
5
6
7
119-Ball ID  
165-Ball ID  
B6  
K4  
H4  
M4  
F4  
B4  
G4  
C3  
B3  
D6  
H7  
G6  
E6  
D7  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
B7  
A7  
B8  
A8  
K6  
P6  
T4  
A3  
C5  
B5  
A5  
C6  
A6  
P4  
A9  
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
8
9
P9  
R8  
P8  
R6  
P6  
R4  
P4  
R3  
P3  
R1  
N1  
L2  
K2  
J2  
M2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
N4  
R6  
T5  
T3  
R2  
R3  
P2  
P1  
L2  
N6  
P7  
N7  
K1  
N2  
Document #: 38-05114 Rev. *C  
Page 16 of 29  
CY7C1354B  
CY7C1356B  
Boundary Scan Exit Order (×36) (continued)  
Boundary Scan Exit Order (×18) (continued)  
Bit #  
119-Ball ID  
165-Ball ID  
Bit #  
119-Ball ID  
165-Ball ID  
47  
48  
49  
50  
N1  
M2  
L1  
M1  
L1  
K1  
J1  
16  
17  
18  
19  
20  
21  
22  
23  
G7  
H6  
T7  
K7  
L6  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
K2  
51  
Not Bonded  
Not Bonded  
(Preset to 1)  
(Preset to 1)  
N6  
P7  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
H1  
G2  
E2  
D1  
H2  
G1  
F2  
E1  
D2  
C2  
A2  
E4  
B2  
L3  
G2  
F2  
E2  
D2  
G1  
F1  
E1  
D1  
C1  
B2  
A2  
A3  
B3  
B4  
A4  
A5  
B5  
A6  
Not Bonded  
Not Bonded  
(Preset to 0)  
(Preset to 0)  
24  
25  
26  
27  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
Not Bonded  
(Preset to 0)  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
Not Bonded  
(Preset to 0)  
(Preset to 0)  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
T6  
A3  
C5  
B5  
A5  
C6  
A6  
P4  
N4  
R6  
T5  
T3  
R2  
R3  
R11  
R10  
P10  
R9  
P9  
R8  
P8  
R6  
P6  
R4  
P4  
R3  
P3  
G3  
G5  
L5  
B6  
Boundary Scan Exit Order (×18)  
Bit #  
1
2
3
4
5
6
7
119-Ball ID  
165-Ball ID  
B6  
K4  
H4  
M4  
F4  
B4  
G4  
C3  
B3  
T2  
B7  
A7  
B8  
A8  
R1  
Not Bonded  
Not Bonded  
(Preset to 0)  
(Preset to 0)  
43  
44  
45  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
A9  
B10  
A10  
A11  
Not Bonded  
Not Bonded  
8
9
10  
(Preset to 0)  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
Not Bonded  
(Preset to 0)  
(Preset to 0)  
46  
47  
48  
49  
50  
51  
P2  
N1  
M2  
L1  
N1  
M1  
L1  
K1  
J1  
11  
12  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
Not Bonded  
(Preset to 0)  
(Preset to 0)  
K2  
13  
14  
15  
D6  
E7  
F6  
C11  
D11  
E11  
Not Bonded  
Not Bonded  
(Preset to 1)  
(Preset to 1)  
52  
H1  
G2  
Document #: 38-05114 Rev. *C  
Page 17 of 29  
CY7C1354B  
CY7C1356B  
Boundary Scan Exit Order (×18) (continued)  
Bit #  
119-Ball ID  
165-Ball ID  
53  
54  
55  
G2  
E2  
D1  
F2  
E2  
D2  
56  
Not Bonded  
Not Bonded  
(Preset to 0)  
(Preset to 0)  
57  
58  
59  
60  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
Not Bonded  
(Preset to 0)  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
Not Bonded  
(Preset to 0)  
(Preset to 0)  
61  
62  
63  
64  
65  
C2  
A2  
E4  
B2  
B2  
A2  
A3  
B3  
Not Bonded  
Not Bonded  
(Preset to 0  
(Preset to 0)  
66  
67  
G3  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0  
A4  
68  
69  
L5  
B6  
B5  
A6  
Document #: 38-05114 Rev. *C  
Page 18 of 29  
CY7C1354B  
CY7C1356B  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Latch-up Current.................................................... > 200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
Supply Voltage on VDD Relative to GND........ –0.5V to +4.6V  
DC to Outputs in Three-State.............. –0.5V to VDDQ + 0.5V  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Range  
Temperature  
VDD  
VDDQ  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
to VDD  
Industrial  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range[14, 15]  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
VDD  
Unit  
V
V
V
V
V
V
V
V
V
V
V
µA  
µA  
µA  
mA  
mA  
mA  
mA  
VDDQ  
VOH  
VOL  
VIH  
VIL  
VDDQ = 3.3V  
DDQ = 2.5V  
VDD = Min., IOH = 4.0 mA, VDDQ = 3.3V  
DD = Min., IOH = 1.0 mA, VDDQ = 2.5V  
VDD = Min., IOL= 8.0 mA, VDDQ = 3.3V  
DD = Min., IOL= 1.0 mA, VDDQ = 2.5V  
V
2.625  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
V
2.0  
0.4  
0.4  
VDD + 0.3V  
VDD + 0.3V  
V
VDDQ = 3.3V  
VDDQ = 2.5V  
2.0  
1.7  
–0.3  
–0.3  
–5  
Input LOW Voltage[14] VDDQ = 3.3V  
0.8  
0.7  
5
30  
5
250  
220  
180  
50  
VDDQ = 2.5V  
IX  
Input Load Current  
Input Current of MODE  
Output Leakage Current GND VI VDDQ, Output Disabled  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
GND VI VDDQ  
–30  
–5  
IOZ  
IDD  
4.4-ns cycle, 225 MHz  
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
f = fMAX = 1/tCYC  
ISB1  
ISB2  
ISB3  
ISB4  
Automatic CE  
Max. VDD, Device Deselected, All speed grades  
IN VIH or VIN VIL, f = fMAX  
1/tCYC  
Power-down  
V
=
Current—TTL Inputs  
Automatic CE  
Max. VDD, Device Deselected, All speed grades  
35  
50  
40  
mA  
mA  
mA  
Power-down  
V
IN 0.3V or VIN > VDDQ 0.3V,  
Current—CMOS Inputs f = 0  
Automatic CE  
Max. VDD, Device Deselected, All speed grades  
Power-down  
V
IN 0.3V or VIN > VDDQ 0.3V,  
Current—CMOS Inputs f = fMAX = 1/tCYC  
Automatic CE  
Max. VDD, Device Deselected, All speed grades  
Power-down  
VIN VIH or VIN VIL, f = 0  
Current—TTL Inputs  
Shaded areas contain advance information.  
Notes:  
14. Overshoot: VIH(AC) < VDD +1.5V (Pulse width less than t  
/2), undershoot: V (AC)> –2V (Pulse width less than t  
/2).  
CYC  
IL  
CYC  
15. T  
: Assumes a linear ramp from 0V to V  
(min.) within 200 ms. During this time V < V and V  
< V  
.
DD  
Power-up  
IH  
DD  
DDQ  
DD  
Document #: 38-05114 Rev. *C  
Page 19 of 29  
CY7C1354B  
CY7C1356B  
Capacitance[16]  
Parameter  
CIN  
CCLK  
CI/O  
Description  
Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
Test Conditions  
BGA Max.  
fBGA Max.  
TQFP Max.  
Unit  
pF  
pF  
TA = 25°C, f = 1 MHz,  
5
5
7
5
5
7
5
5
5
V
DD = 3.3V VDDQ = 2.5V  
pF  
AC Test Loads and Waveforms  
R=1667/317Ω  
VDDQ  
DQ  
[16]  
OUTPUT  
ALL INPUT PULSES  
VDD  
0V  
90%  
10%  
90%  
10%  
Z = 50Ω  
0
1.5/1.25V  
R = 50Ω  
L
5 pF  
R = 1538/351Ω  
< 1.0 ns  
< 1.0 ns  
V = 1.5V/1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Thermal Resistance[16]  
Parameters  
Description  
Test Conditions  
BGA Typ. fBGA Typ. TQFP Typ.  
Unit Notes  
ΘJA  
Thermal Resistance  
Test conditions follow  
standard test methods and  
procedures for measuring  
thermal impedance, per EIA  
/ JESD51.  
25  
27  
25  
°C/W  
17  
(Junction to Ambient)  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6
6
9
°C/W  
17  
Switching Characteristics Over the Operating Range [21, 22]  
-225  
-200  
-166  
Max.  
Parameter  
tPower  
Description  
VCC (typical) to the First Access Read or  
Min.  
1
Max.  
Min.  
Max.  
Min.  
Unit  
ms  
[17]  
1
1
Write  
Clock  
tCYC  
FMAX  
tCH  
Clock Cycle Time  
Maximum Operating Frequency  
Clock HIGH  
4.4  
5
6
ns  
MHz  
ns  
225  
200  
166  
1.8  
1.8  
2.0  
2.0  
2.4  
2.4  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
tEOV  
tDOH  
tCHZ  
tCLZ  
tEOHZ  
tEOLZ  
Data Output Valid after CLK Rise  
OE LOW to Output Valid  
2.8  
2.8  
3.2  
3.2  
3.5  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Output Hold after CLK Rise  
1.25  
1.25  
1.25  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
Clock to High-Z[18, 19, 20]  
2.8  
2.8  
3.2  
3.2  
3.5  
3.5  
Clock to Low-Z[18, 19, 20]  
HIGH to Output High-Z[18, 19, 20]  
OE  
OE LOW to Output Low-Z[18, 19, 20]  
0
0
0
Shaded areas contain advance information.  
Notes:  
16. Tested initially and after any design or process changes that may affect these parameters.  
17. This part has a voltage regulator internally; t  
initiated.  
is the time power needs to be supplied above V minimum initially, before a Read or Write operation can be  
DD  
power  
18. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ EOLZ  
EOHZ  
19. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
EOHZ  
EOLZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
20. This parameter is sampled and not 100% tested.  
21. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
22. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05114 Rev. *C  
Page 20 of 29  
CY7C1354B  
CY7C1356B  
Switching Characteristics Over the Operating Range (continued)[21, 22]  
-225  
-200  
Max.  
-166  
Parameter  
Set-up Times  
tAS  
tDS  
tCENS  
tWES  
tALS  
tCES  
tAH  
Description  
Min.  
Max.  
Min.  
Min.  
Max.  
Unit  
Address Set-up before CLK Rise  
Data Input Set-up before CLK Rise  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
0.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
0.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CEN Set-up before CLK Rise  
WE, BWx Set-up before CLK Rise  
ADV/LD Set-up before CLK Rise  
Chip Select Set-up  
Address Hold after CLK Rise  
Hold Times  
tDH  
tCENH  
tWEH  
tALH  
tCEH  
Data Input Hold after CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
CEN Hold after CLK Rise  
WE, BWx Hold after CLK Rise  
ADV/LD Hold after CLK Rise  
Chip Select Hold after CLK Rise  
Document #: 38-05114 Rev. *C  
Page 21 of 29  
CY7C1354B  
CY7C1356B  
Switching Waveforms  
Read/WriteTiming[23,24,25]  
1
2
3
4
5
6
7
8
9
10  
t
CYC  
t
CLK  
t
t
t
CENS CENH  
CL  
CH  
CEN  
t
t
CES  
CEH  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A4  
CO  
A3  
A5  
A6  
A7  
ADDRESS  
t
t
t
t
DS  
DH  
t
t
t
DOH  
OEV  
CLZ  
CHZ  
t
t
AS  
AH  
Data  
D(A1)  
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6  
-Out (DQ)  
t
OEHZ  
t
DOH  
t
OELZ  
OE  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Document #: 38-05114 Rev. *C  
Page 22 of 29  
CY7C1354B  
CY7C1356B  
Switching Waveforms (continued)  
[23,24,26]  
NOP,STALL AND DESELECT CYCLES  
1
2
3
4
5
6
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
CHZ  
D(A4)  
D(A1)  
Q(A2)  
Q(A3)  
Q(A5)  
Data  
In-Out (DQ)  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
Document #: 38-05114 Rev. *C  
Page 23 of 29  
CY7C1354B  
CY7C1356B  
Switching Waveforms (continued)  
[27,28]  
ZZ Mode Timing  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Note:  
23. For this waveform ZZ is tied low.  
24. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH,CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
25. Order of the Burst sequence is determined by the status of the MODE (0=Linear, 1=Interleaved).Burst operations are optional.  
26. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle  
27. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device.  
28. I/Os are in High-Z when exiting ZZ sleep mode..  
Ordering Information  
Speed  
Package  
Name  
A101  
Operating  
Range  
Commercial  
(MHz)  
Ordering Code  
CY7C1354B-225AC  
CY7C1356B-225AC  
CY7C1354B-225AI  
CY7C1356B-225AI  
CY7C1354B-225BGC  
CY7C1356B-225BGC  
CY7C1354B-225BGI  
CY7C1356B-225BGI  
CY7C1354B-225BZC  
CY7C1356B-225BZC  
CY7C1354B-225BZI  
CY7C1356B-225BZI  
Package Type  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
225  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
Industrial  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
Commercial  
Industrial  
BB165A 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.2 mm) Commercial  
BB165A 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.2 mm)  
Industrial  
Document #: 38-05114 Rev. *C  
Page 24 of 29  
CY7C1354B  
CY7C1356B  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
Package Type  
200  
CY7C1354B-200AC  
CY7C1356B-200AC  
CY7C1354B-200AI  
CY7C1356B-200AI  
CY7C1354B-200BGC  
CY7C1356B-200BGC  
CY7C1354B-200BGI  
CY7C1356B-200BGI  
CY7C1354B-200BZC  
CY7C1356B-200BZC  
CY7C1354B-200BZI  
CY7C1356B-200BZI  
CY7C1354B-166AC  
CY7C1356B-166AC  
CY7C1354B-166AI  
CY7C1356B-166AI  
CY7C1354B-166BGC  
CY7C1356B-166BGC  
CY7C1354B-166BGI  
CY7C1356B-166BGI  
CY7C1354B-166BZC  
CY7C1356B-166BZC  
CY7C1354B-166BZI  
CY7C1356B-166BZI  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
Commercial  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
Industrial  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
Commercial  
Industrial  
BB165A 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.2 mm) Commercial  
BB165A 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.2 mm)  
Industrial  
Commercial  
Industrial  
166  
A101  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
Commercial  
Industrial  
BB165A 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.2 mm) Commercial  
BB165A 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.2 mm)  
Industrial  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.  
Document #: 38-05114 Rev. *C  
Page 25 of 29  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1354B  
CY7C1356B  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
DIMENSIONS ARE IN MILLIMETERS.  
ꢁ6.00 0.20  
ꢁ4.00 0.ꢁ0  
ꢁ.40 0.05  
ꢁ00  
ꢀꢁ  
ꢀ0  
0.30 0.0ꢀ  
0.65  
TYP.  
ꢁ2° ꢁ°  
SEE DETAIL  
A
(ꢀX)  
30  
5ꢁ  
3ꢁ  
50  
0.20 MAX.  
ꢁ.60 MAX.  
R 0.0ꢀ MIN.  
0.20 MAX.  
0° MIN.  
STAND-OFF  
0.05 MIN.  
0.ꢁ5 MAX.  
SEATING PLANE  
0.25  
GAUGE PLANE  
R 0.0ꢀ MIN.  
0.20 MAX.  
0°-7°  
0.60 0.ꢁ5  
0.20 MIN.  
ꢁ.00 REF.  
51-85050-*A  
DETAIL  
A
Document #: 38-05114 Rev. *C  
Page 26 of 29  
CY7C1354B  
CY7C1356B  
Package Diagrams (continued)  
119-Lead BGA (14 x 22 x 2.4mm) BG119  
51-85115-*B  
Document #: 38-05114 Rev. *C  
Page 27 of 29  
CY7C1354B  
CY7C1356B  
Package Diagrams (continued)  
165-Ball FBGA (13 x 15 x 1.2 mm) BB165A  
51-85122-*C  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device  
Technology. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05114 Rev. *C  
Page 28 of 29  
CY7C1354B  
CY7C1356B  
Document History Page  
Document Title: CY7C1354B/CY7C1356B 9-Mb (256K x 36/512K x 18) Pipelined SRAM  
NoBL™ Architecture  
with  
Document Number: 38-05114  
Orig. of  
REV.  
**  
ECN No. Issue Date Change  
Description of Change  
117904  
08/28/02  
RCS  
New Data Sheet  
*A  
126207  
08/27/03  
DPM  
Removed Preliminary status  
Removed 250-MHz Speed bin  
Added 225-MHz speed bin  
Increased TCO, TEOV, TCHZ, TEOHZ for 200 MHz to 3.2 ns from 3.0 ns  
Updated JTAG revision number and device depth  
Updated JTAG boundary scan orders  
Added tPower specification  
Changed footnotes ordering  
Added Industrial operating range  
Changed Capacitance table to have TQFP, BGA, and fBGA columns.  
*B  
205060  
See ECN  
NJY  
Removed footnote 13 “Minimum voltage equals –2.0V for pulse durations of less than 20 ns.”  
Removed footnote 14 “TA is the case temperature.”  
Changed footnote 15 from “Overshoot: V (AC) < V + 1.5V for t < t  
/2; undershoot:  
IH  
DD  
TCYC  
V
(AC) < 0.5V for t < tTCYC/2; power-up: VIH < 2.6V and VDD < 2.4V and VDDQ < 1.4V for t <  
IL  
200 ms. “to footnote 13“Overshoot: VIH(AC) < VDD +1.5V (Pulse width less than tCYC/2),  
undershoot: VIL(AC)> -2V (Pulse width less than tCYC/2). “  
Added footnote 14 “T  
: Assumes a linear ramp from 0V to VDD (min.) within 200ms.  
Power-up  
During this time VIH < VDD and VDDQ < VDD. “  
Added footnote 20 “Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when  
DDQ  
V
= 2.5V.”  
DDQ  
Changed footnote 21 from “Test conditions shown in (a), (b) and (c) of AC Test Loads. “to  
Test conditions shown in (a) of AC Test Loads unless otherwise noted. “  
Updated ZZ Mode Electrical Characteristics.  
Updated ISB1 and ISB3 currents in Electrical Characteristics table.  
Modified functional block diagram.  
Modified Truth Table and Write Cycle Descriptions.  
Updated Ordering Information.  
*C  
230388  
See ECN  
VBL  
Modified ID code  
Changed balls B4 and A5 from BWd and BWb to NC and ball A4 from BWc  
to BWb for 165-ball FBGA package for CY7C1356B  
Changed balls C11 from DQPb to DQPa and balls D11,E11,F11 and G11  
from DQb to DQa for CY7C1356B.  
Update Ordering Info section: changed BZC to BZI in Industrial part  
Document #: 38-05114 Rev. *C  
Page 29 of 29  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY