CY7C1356DV25-250BGC [CYPRESS]

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL Architecture; 9兆位( 256K ×36 / 512K ×18 )流水线SRAM与NOBL架构
CY7C1356DV25-250BGC
型号: CY7C1356DV25-250BGC
厂家: CYPRESS    CYPRESS
描述:

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL Architecture
9兆位( 256K ×36 / 512K ×18 )流水线SRAM与NOBL架构

静态存储器
文件: 总29页 (文件大小:847K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1354DV25, CY7C1356DV25  
9-Mbit (256K x 36/512K x 18)  
Pipelined SRAM with NoBL™ Architecture  
Features  
Functional Description  
The CY7C1354DV25 and CY7C1356DV25 are 2.5V, 256K x 36  
and 512K x 18 Synchronous pipelined burst SRAMs with No Bus  
Latency™ (NoBL™) logic, respectively. They are designed to  
support unlimited true back to back read and write operations  
with no wait states. The CY7C1354DV25 and CY7C1356DV25  
are equipped with the advanced (NoBL) logic required to enable  
consecutive read and write operations with data being trans-  
ferred on every clock cycle. This feature dramatically improves  
the throughput of data in systems that require frequent write and  
read transitions. The CY7C1354DV25 and CY7C1356DV25 are  
pin compatible with and functionally equivalent to ZBT devices.  
Pin compatible with and functionally equivalent to ZBT™  
Supports 250 MHz bus operations with zero wait states  
Available speed grades are 250, 200, and 166 MHz  
Internally self timed output buffer control to eliminate the need  
to use asynchronous OE  
Fully registered (inputs and outputs) for pipelined operation  
Byte Write capability  
Single 2.5V power supply (VDD  
Fast clock-to-output times  
)
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. All data outputs pass through output  
registers controlled by the rising edge of the clock. The clock  
input is qualified by the Clock Enable (CEN) signal, which when  
deasserted suspends operation and extends the previous clock  
cycle.  
2.8 ns (for 250 MHz device)  
Clock Enable (CEN) pin to suspend operation  
Synchronous self timed writes  
Write operations are controlled by the Byte Write Selects  
(BWa–BWd for CY7C1354DV25 and BWa–BWb for  
CY7C1356DV25) and a Write Enable (WE) input. All writes are  
conducted with on-chip synchronous self timed write circuitry.  
Available in Pb-free 100-pin TQFP package, Pb-free and non  
Pb-free 119-ball BGA package, and 165-ball FBGA package  
IEEE 1149.1 JTAG compatible boundary scan  
Burst capability–linear or interleaved burst order  
“ZZ” Sleep mode and Stop Clock options  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide easy bank selection  
and output tri-state control. To avoid bus contention, the output  
drivers are synchronously tri-stated during the data portion of a  
write sequence. For best practices recommendations, please  
refer to the Cypress application note System Design Guidelines  
on www.cypress.com.  
Selection Guide  
Description  
250 MHz  
2.8  
200 MHz  
3.2  
166 MHz  
3.5  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
250  
220  
180  
mA  
mA  
Maximum CMOS Standby Current  
40  
40  
40  
Cypress Semiconductor Corporation  
Document #: 001-48974 Rev. *A  
198 Champion Court  
San Jose  
,
CA 95134-1709  
408-943-2600  
Revised July 31, 2009  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Logic Block Diagram  
CY7C1354DV25 (256K x 36)  
ADDRESS  
REGISTER  
A0, A1,  
A
0
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
ADV/LD  
CLK  
CEN  
C
C
WRITE ADDRESS  
REGISTER  
WRITE ADDRESS  
REGISTER 2  
1
O
U
T
O
U
T
S
E
D
A
T
P
U
T
N
S
P
U
T
ADV/LD  
A
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
R
E
G
I
MEMORY  
ARRAY  
B
U
F
F
E
R
S
S
T
E
E
R
I
DQ s  
WRITE  
DRIVERS  
BW  
a
DQ P  
DQ P  
DQ P  
DQ P  
a
b
c
A
M
P
BW  
BW  
BW  
b
c
S
T
E
R
S
d
d
S
WE  
E
E
N
G
INPUT  
REGISTER  
INPUT  
REGISTER 0  
E
E
1
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
Logic Block Diagram  
CY7C1356DV25 (512K x 18)  
ADDRESS  
REGISTER  
A0, A1,  
A
0
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
ADV/LD  
CLK  
CEN  
C
C
WRITE ADDRESS  
REGISTER  
WRITE ADDRESS  
REGISTER 2  
1
O
U
T
O
U
T
P
U
T
S
E
P
U
T
D
A
T
ADV/LD  
N
S
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
R
E
G
I
MEMORY  
ARRAY  
E
B
U
F
F
E
R
S
DQ s  
DQ P  
DQ P  
WRITE  
DRIVERS  
BW  
BW  
a
S
T
E
E
R
I
A
M
P
a
b
S
T
E
R
S
b
S
N
G
WE  
E
E
INPUT  
REGISTER  
INPUT  
REGISTER 0  
E
E
1
OE  
CE1  
CE2  
CE3  
READ LOGIC  
Sleep  
Control  
ZZ  
Document #: 001-48974 Rev. *A  
Page 2 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Pin Configuration  
The pin configuration for CY7C1354DV25 and CY7C1356DV25 follow.  
100-Pin TQFP Pinout  
DQPc  
DQc  
DQc  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
DDQ  
1
2
3
4
5
6
7
8
A
NC  
NC  
78  
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
79  
V
V
DDQ  
V
V
V
NC  
DQPa  
DQa  
DQa  
DDQ  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DDQ  
SS  
V
V
V
SS  
SS  
SS  
DQc  
DQc  
NC  
NC  
DQb  
DQb  
DQb  
DQb  
DQc  
DQc  
DQb  
DQb  
9
9
V
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
SS  
V
V
DDQ  
DDQ  
V
V
DQa  
DQa  
V
NC  
V
ZZ  
DDQ  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
DQb  
DQb  
NC  
V
SS  
CY7C1354DV25  
(256K × 36)  
SS  
V
V
DD  
NC  
DD  
CY7C1356DV25  
(512K × 18)  
NC  
V
NC  
DD  
DD  
V
V
SS  
SS  
ZZ  
DQa  
DQa  
DQd  
DQb  
DQb  
DQa  
DQa  
DQd  
V
V
DDQ  
DDQ  
V
V
V
DQa  
DQa  
NC  
NC  
V
V
DDQ  
DDQ  
V
V
SS  
V
SS  
SS  
SS  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
DQa  
DQa  
DQb  
DQb  
DQPb  
NC  
V
SS  
V
V
SS  
SS  
SS  
V
V
DDQ  
DDQ  
V
DDQ  
DDQ  
DQd  
DQd  
DQPd  
DQa  
DQa  
DQPa  
NC  
NC  
NC  
NC  
NC  
NC  
Document #: 001-48974 Rev. *A  
Page 3 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Pin Configuration (continued)  
The pin configuration for CY7C1354DV25 and CY7C1356DV25 follow.  
119-Ball BGA Pinout CY7C1354DV25 (256K x 36)  
1
VDDQ  
NC/576M  
NC/1G  
DQc  
2
A
3
A
4
NC/18M  
ADV/LD  
VDD  
NC  
5
6
A
7
A
B
C
D
E
F
A
VDDQ  
NC  
CE2  
A
A
A
CE3  
A
A
A
NC  
DQPc  
DQc  
DQc  
DQc  
DQc  
VDD  
DQd  
DQd  
DQd  
DQd  
DQPd  
A
VSS  
VSS  
VSS  
BWc  
VSS  
NC  
VSS  
BWd  
VSS  
VSS  
VSS  
MODE  
A
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
NC  
A
DQPb  
DQb  
DQb  
DQb  
DQb  
VDD  
DQa  
DQa  
DQa  
DQa  
DQPa  
A
DQb  
DQc  
CE1  
OE  
DQb  
VDDQ  
DQc  
VDDQ  
DQb  
G
H
J
A
DQc  
WE  
DQb  
VDDQ  
DQd  
VDD  
CLK  
NC  
VDDQ  
DQa  
K
L
DQd  
DQa  
M
N
P
R
T
VDDQ  
DQd  
CEN  
A1  
VDDQ  
DQa  
DQd  
A0  
DQa  
NC/144M  
NC  
VDD  
A
NC/288M  
ZZ  
NC/72M  
TMS  
NC/36M  
NC  
U
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
119-Ball BGA Pinout CY7C1356DV25 (512K x 18)  
1
VDDQ  
NC/576M  
NC/1G  
DQb  
2
A
3
A
4
NC/18M  
ADV/LD  
VDD  
NC  
5
6
A
7
VDDQ  
NC  
A
B
C
D
E
F
A
CE2  
A
A
A
CE3  
A
A
A
NC  
NC  
DQb  
NC  
DQb  
NC  
VDD  
DQb  
NC  
DQb  
NC  
DQPb  
A
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
MODE  
A
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
NC  
A
DQPa  
NC  
DQa  
NC  
DQa  
VDD  
NC  
DQa  
NC  
DQa  
NC  
A
NC  
NC  
CE1  
OE  
DQa  
VDDQ  
DQa  
NC  
VDDQ  
NC  
G
H
J
A
DQb  
WE  
VDDQ  
NC  
VDD  
CLK  
NC  
VDDQ  
DQa  
NC  
K
L
DQb  
M
N
P
R
T
VDDQ  
DQb  
CEN  
A1  
VDDQ  
NC  
NC  
A0  
DQa  
NC/288M  
ZZ  
NC/144M  
NC/72M  
VDDQ  
VDD  
NC/36M  
TCK  
A
A
U
TMS  
TDI  
TDO  
NC  
VDDQ  
Document #: 001-48974 Rev. *A  
Page 4 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Pin Configuration (continued)  
The pin configuration for CY7C1354DV25 and CY7C1356DV25 follow.  
165-Ball FBGA Pinout CY7C1354DV25 (256K x 36)  
1
NC/576M  
NC/1G  
DQPc  
DQc  
2
3
4
5
6
7
8
ADV/LD  
OE  
9
A
10  
A
11  
NC  
A
B
C
D
E
F
A
CE1  
BWc  
BWd  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
A
BWb  
BWa  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
CE3  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
CEN  
WE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
A
CE2  
NC/18M  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
A
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
A
NC  
DQb  
DQb  
DQb  
DQb  
NC  
DQa  
DQa  
DQa  
DQa  
NC  
A
DQPb  
DQb  
DQb  
DQb  
DQb  
ZZ  
DQc  
DQc  
DQc  
DQc  
NC  
DQc  
DQc  
G
H
J
DQc  
NC  
DQd  
DQd  
DQd  
DQd  
DQd  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
DQa  
DQa  
DQa  
DQa  
DQPa  
NC/288M  
A
K
L
DQd  
DQd  
M
N
P
R
DQd  
DQPd  
NC/144M NC/72M  
TDI  
TMS  
A1  
TDO  
TCK  
MODE  
NC/36M  
A
A
A0  
A
A
A
165-Ball FBGA Pinout CY7C1356DV25 (512K x 18)  
1
NC/576M  
NC/1G  
NC  
2
3
4
5
6
7
8
ADV/LD  
OE  
9
A
10  
A
11  
A
A
B
C
D
E
F
A
CE1  
BWb  
NC  
NC  
CE3  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
CEN  
WE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
A
CE2  
BWa  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC/18M  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
A
NC  
NC  
DQb  
DQb  
DQb  
DQb  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
A
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
A
NC  
NC  
NC  
NC  
NC  
NC  
DQa  
DQa  
DQa  
DQa  
NC  
A
DQPa  
DQa  
DQa  
DQa  
DQa  
ZZ  
NC  
NC  
NC  
G
H
J
NC  
NC  
DQb  
DQb  
DQb  
DQb  
DQPb  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
NC  
K
L
NC  
NC  
M
N
P
R
NC  
NC  
NC/144M NC/72M  
MODE NC/36M  
TDI  
TMS  
A1  
TDO  
TCK  
NC/288M  
A
A
A
A0  
A
A
A
Document #: 001-48974 Rev. *A  
Page 5 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Pin Definitions  
Pin Name  
IO  
Pin Description  
A0  
A1  
A
Input-  
Synchronous  
Address Inputs used to Select One of the Address Locations. Sampled at the rising edge of the CLK.  
BWa,BWb,  
Input-  
Byte Write Select Inputs, Active LOW. Qualified with WE to conduct writes to the SRAM. Sampled on  
BWc,BWd, Synchronous the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb, BWc controls DQc  
and DQPc, BWd controls DQd and DQPd.  
WE  
Input-  
Write Enable Input, Active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This signal  
Synchronous must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input- Advance or Load Input used to Advance the On-Chip Address Counter or Load a New Address.  
Synchronous When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a new  
address can be loaded into the device for an access. After being deselected, ADV/LD should be driven  
LOW in order to load a new address.  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN. CLK is  
only recognized if CEN is active LOW.  
Input-  
Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE2  
Synchronous and CE3 to select and deselect the device.  
Input-  
Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1  
Synchronous and CE3 to select and deselect the device.  
Input-  
Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1  
Synchronous and CE2 to select and deselect the device.  
Input-  
Output Enable, Active LOW. Combined with the synchronous logic block inside the device to control  
Asynchronous the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted  
HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during the data portion of a Write  
sequence, during the first clock when emerging from a deselected state and when the device is  
deselected.  
CEN  
DQS  
Input-  
Clock Enable Input, Active LOW. When asserted LOW the clock signal is recognized by the SRAM.  
Synchronous When deasserted HIGH the clock signal is masked. Because deasserting CEN does not deselect the  
device, CEN can be used to extend the previous cycle when required.  
I/O-  
Bidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that is triggered by the  
Synchronous rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by  
addresses during the previous clock rise of the read cycle. The direction of the pins is controlled by OE  
and the internal control logic. When OE is asserted LOW, the pins can behave as outputs. When HIGH,  
DQa–DQd are placed in a tri-state condition. The outputs are automatically tri-stated during the data  
portion of a write sequence, during the first clock when emerging from a deselected state, and when the  
device is deselected, regardless of the state of OE.  
DQPX  
MODE  
TDO  
I/O-  
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQ[a:d]. During write  
Synchronous sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled by BWc, and  
DQPd is controlled by BWd.  
Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order. Pulled  
LOW selects the linear burst order. MODE should not change states during operation. When left floating  
MODE is default HIGH, to an interleaved burst order.  
JTAG Serial Serial Data-Out to the JTAG Circuit. Delivers data on the negative edge of TCK.  
Output  
Synchronous  
TDI  
JTAG Serial Serial Data-In to the JTAG Circuit. Sampled on the rising edge of TCK.  
Input  
Synchronous  
Document #: 001-48974 Rev. *A  
Page 6 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Pin Definitions (continued)  
Pin Name  
IO  
Pin Description  
TMS  
Test Mode Controls the Test Access Port State Machine. Sampled on the rising edge of TCK.  
Select  
Synchronous  
TCK  
VDD  
JTAG-Clock Clock Input to the JTAG Circuitry.  
Power Supply Power Supply Inputs to the Core of the Device.  
VDDQ  
I/O Power  
Supply  
Power Supply for the I/O Circuitry.  
VSS  
NC  
Ground  
Ground for the Device. Should be connected to ground of the system.  
No Connects. This pin is not connected to the die.  
NC (18,  
36, 72,  
These Pins are not Connected. They will be used for expansion to the 18M, 36M, 72M, 144M 288M,  
576M, and 1G densities.  
144, 288,  
576, 1G  
ZZ  
Input-  
ZZ “sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition with  
Asynchronous data integrity preserved. For normal operation, this pin has to be LOW or left floating.  
ZZ pin has an internal pull-down.  
signal WE is deasserted HIGH, and (4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the address register and presented to the memory core and  
control logic. The control logic determines that a read access is  
in progress and allows the requested data to propagate to the  
input of the output register. At the rising edge of the next clock  
the requested data is allowed to propagate through the output  
register and onto the data bus within 2.8 ns (250 MHz device)  
provided OE is active LOW. After the first clock of the read  
access the output buffers are controlled by OE and the internal  
control logic. OE must be driven LOW for the device to drive out  
the requested data. During the second clock, a subsequent  
operation (read, write, and deselect) is initiated. Deselecting the  
device is also pipelined. Therefore, when the SRAM is  
deselected at clock rise by one of the chip enable signals, its  
output tri-states following the next clock rise.  
Functional Overview  
The CY7C1354DV25 and CY7C1356DV25 are synchronous  
pipelined Burst NoBL SRAMs designed specifically to eliminate  
wait states during Write/Read transitions. All synchronous inputs  
pass through input registers controlled by the rising edge of the  
clock. The clock signal is qualified with the Clock Enable input  
signal (CEN). If CEN is HIGH, the clock signal is not recognized  
and all internal states are maintained. All synchronous opera-  
tions are qualified with CEN. All data outputs pass through output  
registers controlled by the rising edge of the clock. Maximum  
access delay from the clock rise (tCO) is 2.8 ns (250 MHz device).  
Accesses are initiated by asserting all three Chip Enables (CE1,  
CE2, CE3) active at the rising edge of the clock. If Clock Enable  
(CEN) is active LOW and ADV/LD is asserted LOW, the address  
presented to the device is latched. The access can either be a  
read or write operation, depending on the status of the Write  
Enable (WE). BW[d:a] can be used to conduct Byte Write opera-  
tions.  
Burst Read Accesses  
The CY7C1354DV25 and CY7C1356DV25 have an on-chip  
burst counter that provides the ability to supply a single address  
and conduct up to four reads without reasserting the address  
inputs. ADV/LD must be driven LOW to load a new address into  
the SRAM, as described in the Single Read Accesses section.  
The sequence of the burst counter is determined by the MODE  
input signal. A LOW input on MODE selects a linear burst mode,  
a HIGH selects an interleaved burst sequence. Both burst  
counters use A0 and A1 in the burst sequence, and wraps  
around when incremented sufficiently. A HIGH input on ADV/LD  
increments the internal burst counter regardless of the state of  
chip enables inputs or WE. WE is latched at the beginning of a  
burst cycle. Therefore, the type of access (read or write) is  
maintained throughout the burst sequence.  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self timed write  
circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion. All  
operations (reads, writes, and deselects) are pipelined. ADV/LD  
must be driven LOW when the device is deselected to load a new  
address for the next operation.  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the Write Enable input  
Document #: 001-48974 Rev. *A  
Page 7 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Single Write Accesses  
Burst Write Accesses  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the write signal WE is  
asserted LOW. The address presented to A0A16 is loaded into  
the Address Register. The write signals are latched into the  
Control Logic block.  
The CY7C1354DV25 and CY7C1356DV25 has an on-chip burst  
counter that provides the ability to supply a single address and  
conduct up to four WRITE operations without reasserting the  
address inputs. ADV/LD must be driven LOW to load the initial  
address, as described in the Single Write Access section above.  
When ADV/LD is driven HIGH on the subsequent clock rise, the  
chip enables (CE1, CE2, and CE3) and WE inputs are ignored  
and the burst counter is incremented. The correct BW (BWa,b,c,d  
for CY7C1354DV25 and BWa,b for CY7C1356DV25) inputs must  
be driven in each cycle of the burst write to write the correct bytes  
of data.  
On the subsequent clock rise the data lines are automatically  
tri-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354DV25 and DQa,b/DQPa,b for  
CY7C1356DV25). In addition, the address for the subsequent  
access (read, write, and deselect) is latched into the address  
register (provided the appropriate control signals are asserted).  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
When in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
must be deselected prior to entering the “sleep” mode. CE1, CE2,  
and CE3, must remain inactive for the duration of tZZREC after the  
ZZ input returns LOW.  
On the next clock rise the data presented to DQ  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354DV25 and DQa,b/DQaPnda,bDfQoPr  
CY7C1356DV25) (or a subset for byte write operations, see  
Write Cycle Description tables for details) inputs is latched into  
the device and the write is complete.  
The data written during the write operation is controlled by BW  
(BWa,b,c,d for CY7C1354DV25 and BWa,b for CY7C1356DV25)  
signals. The CY7C1354DV25/CY7C1356DV25 provides Byte  
Write capability that is described in the Write Cycle Description  
tables. Asserting the Write Enable input (WE) with the selected  
Byte Write Select (BW) input selectively writes to only the desired  
bytes. Bytes not selected during a Byte Write operation remains  
unaltered. A synchronous self timed write mechanism is  
provided to simplify the write operations. Byte Write capability is  
included to greatly simplify read, modify, and write sequences,  
which can be reduced to simple Byte Write operations.  
Interleaved Burst Address Table  
(MODE = Floating or VDD)  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A1,A0  
00  
A1,A0  
01  
A1,A0  
10  
A1,A0  
11  
01  
10  
11  
00  
11  
10  
11  
00  
01  
10  
01  
00  
Because the CY7C1354DV25 and CY7C1356DV25 are  
common I/O devices, data should not be driven into the device  
while the outputs are active. The Output Enable (OE) can be  
deasserted HIGH before presenting data to the DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354DV25 and DQa,b/DQPa,b for  
CY7C1356DV25) inputs. Doing so tri-states the output drivers.  
Linear Burst Address Table (MODE = GND)  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
As a safety precaution, DQ  
CY7C1354DV25 and DQa,b/DQPa,b  
(DQa,b,c,d/DQPa,b,c,d for  
and DQPfor CY7C1356DV25) are  
A1,A0  
00  
A1,A0  
01  
A1,A0  
10  
A1,A0  
11  
automatically tri-stated during the data portion of a write cycle,  
regardless of the state of OE.  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD 0.2V  
ZZ > VDD 0.2V  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
Min  
Max  
Unit  
50  
mA  
tZZS  
2tCYC  
ns  
ns  
ns  
ns  
tZZREC  
tZZI  
2tCYC  
0
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
2tCYC  
tRZZI  
Document #: 001-48974 Rev. *A  
Page 8 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Truth Table  
The truth table for CY7C1354DV25 and CY7C1356DV25 follows.[1, 2, 3, 4, 5, 6, 7]  
Address  
Operation  
Deselect Cycle  
Used  
CE ZZ  
ADV/LD  
WE BWx  
OE  
X
X
L
CEN CLK  
DQ  
None  
H
X
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
X
X
H
X
H
X
L
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
H
X
L-H  
L-H  
Tri-State  
Tri-State  
Continue Deselect Cycle  
None  
Read Cycle (Begin Burst)  
External  
Next  
L-H Data Out (Q)  
L-H Data Out (Q)  
Read Cycle (Continue Burst)  
NOP/Dummy Read (Begin Burst)  
Dummy Read (Continue Burst)  
Write Cycle (Begin Burst)  
X
L
H
L
L
External  
Next  
H
H
X
X
X
X
X
X
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
X
Tri-State  
Tri-State  
Data In (D)  
Data In (D)  
Tri-State  
Tri-State  
X
L
H
L
External  
Next  
Write Cycle (Continue Burst)  
NOP/WRITE ABORT (Begin Burst)  
WRITE ABORT (Continue Burst)  
IGNORE CLOCK EDGE (Stall)  
SLEEP MODE  
X
L
H
L
X
L
L
None  
H
H
X
X
Next  
X
X
X
H
X
X
X
X
X
Current  
None  
Tri-State  
Write Cycle Description  
Write cycle description for CY7C1354DV25 follows.[1, 2, 3, 8]  
Function  
BWd  
BWc  
BWb  
BWa  
X
H
L
WE  
Read  
H
X
H
H
H
H
H
H
H
H
L
X
H
H
H
H
L
X
H
H
L
Write –No Bytes Written  
Write Byte a– (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Bytes b, a  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
Write Byte c – (DQc and DQPc)  
Write Bytes c, a  
H
H
L
H
L
L
Write Bytes c, b  
L
H
L
Write Bytes c, b, a  
L
L
Write Byte d – (DQd and DQPd)  
Write Bytes d, a  
H
H
H
H
L
H
H
L
H
L
L
Write Bytes d, b  
L
H
L
Write Bytes d, b, a  
L
L
Write Bytes d, c  
L
H
H
L
H
L
Write Bytes d, c, a  
L
L
Write Bytes d, c, b  
L
L
H
L
Write All Bytes  
L
L
L
Notes  
1. X = “Don’t Care”, H = Logic HIGH, L = Logic LOW, CE stands for ALL Chip Enables active. BWx = L signifies at least one Byte Write Select is active, BWx = Valid  
signifies that the desired Byte Write Selects are asserted, see Write Cycle Description tables for details.  
2. Write is defined by WE and BW . See Write Cycle Description tablse for details.  
X
3. When a write cycle is detected, all I/Os are tri-stated, even during Byte Writes.  
4. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
5. CEN = H inserts wait states.  
6. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and DQP = Tri-state when OE is inactive  
X
or when the device is deselected, and DQs = data when OE is active.  
Document #: 001-48974 Rev. *A  
Page 9 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Write cycle description for CY7C1356DV25 follows.[1, 2, 3, 8]  
Function  
WE  
H
L
BWb  
BWa  
x
Read  
x
H
H
L
Write – No Bytes Written  
Write Byte a (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Both Bytes  
H
L
L
L
H
L
L
L
IEEE 1149.1 Serial Boundary Scan (JTAG)  
Figure 1. TAP Controller State Diagram[9]  
The CY7C1354DV25 and CY7C1356DV25 incorporates a serial  
boundary scan test access port (TAP) in the BGA package only.  
The TQFP package does not offer this functionality. This part  
operates in accordance with IEEE Standard 1149.1-1900, but  
does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note the TAP controller  
functions in a manner that does not conflict with the operation of  
other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 2.5V I/O logic levels.  
TEST-LOGIC  
RESET  
1
0
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
The CY7C1354DV25 and CY7C1356DV25 contains a TAP  
controller, instruction register, boundary scan register, bypass  
register, and ID register.  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
Disabling the JTAG Feature  
PAUSE-DR  
1
0
PAUSE-IR  
1
0
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. During power up, the device comes up in a  
reset state which does not interfere with the operation of the  
device.  
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
Notes  
8. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
9. The 0/1 next to each state represents the value of TMS at the rising edge of the TCK.  
Document #: 001-48974 Rev. *A  
Page 10 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Test Access Port (TAP)  
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.Test MODE SELECT (TMS)  
During power up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to leave  
this ball unconnected if the TAP is not used.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test circuitry.  
Only one register can be selected at a time through the  
instruction register. Data is serially loaded into the TDI ball on the  
rising edge of TCK. Data is output on the TDO ball on the falling  
edge of TCK.  
The ball is pulled up internally, resulting in a logic HIGH level.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. For information on  
loading the instruction register, see Figure 1. TDI is internally  
pulled up and can be unconnected if the TAP is unused in an  
application. TDI is connected to the most significant bit (MSB) of  
any register. (See Figure 2.)  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in TAP Controller Block Diagram.  
During power up, the instruction register is loaded with the  
IDCODE instruction.  
Test Data-Out (TDO)  
It is also loaded with the IDCODE instruction if the controller is  
placed in a reset state as described in the previous section.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current state  
of the TAP state machine. The output changes on the falling edge  
of TCK. TDO is connected to the least significant bit (LSB) of any  
register. (See Figure 1.)  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary “01” pattern to allow for  
fault isolation of the board-level serial test data path.  
Bypass Register  
Figure 2. TAP Controller Block Diagram  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
0
Bypass Register  
SRAM with minimal delay. The bypass register is set LOW (VSS  
when the BYPASS instruction is executed.  
)
2
1
0
0
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
Selection  
Circuitry  
TDI  
TDO  
Boundary Scan Register  
.
.
. 2 1  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
x
.
.
.
.
. 2 1  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used to  
capture the contents of the I/O ring.  
Boundary Scan Register  
TCK  
TMS  
TAP CONTROLLER  
The Boundary Scan Order tables show the order in which the bits  
are connected. Each bit corresponds to one of the bumps on the  
SRAM package. The MSB of the register is connected to TDI,  
and the LSB is connected to TDO.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in the Identification Register Definitions  
table.  
Document #: 001-48974 Rev. *A  
Page 11 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output undergoes a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This does not harm the device, but  
there is no guarantee as to the value that is captured.  
Repeatable results may not be possible.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the Identifi-  
cation Codes table. Three of these instructions are listed as  
RESERVED and should not be used. The other five instructions  
are described in detail below.  
To guarantee that the boundary scan register captures the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture setup plus hold  
times (tCS and tCH). The SRAM clock input might not be captured  
correctly if there is no way in a design to stop (or slow) the clock  
during a SAMPLE/PRELOAD instruction. If this is an issue, it is  
still possible to capture all other signals and simply ignore the  
value of the CK and CK# captured in the boundary scan register.  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction after it is shifted in, the TAP controller must be  
moved into the Update-IR state.  
When the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO pins.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells prior  
to the selection of another boundary scan test operation.  
The shifting of data for the SAMPLE and PRELOAD phases can  
occur concurrently when required—that is, while data captured  
is shifted out, the preloaded data can be shifted in.  
The IDCODE instruction is loaded into the instruction register  
during power up or whenever the TAP controller is given a test  
logic reset state.  
BYPASS  
SAMPLE Z  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO pins. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
The SAMPLE Z instruction causes the boundary scan register to  
be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command puts  
the output bus into a High-Z state until the next command is given  
during the “Update IR” state.  
EXTEST  
SAMPLE/PRELOAD  
The EXTEST instruction enables the preloaded data to be driven  
out through the system output pins. This instruction also selects  
the boundary scan register to be connected for serial access  
between the TDI and TDO in the shift-DR controller state.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
Reserved  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document #: 001-48974 Rev. *A  
Page 12 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
TAP Timing  
Figure 3 shows the TAP timings.  
Figure 3. TAP Timing and Test Conditions  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics  
Over the Operating Range [10, 11]  
Parameter  
Clock  
Description  
Min  
Max  
Unit  
tTCYC  
tTF  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH Time  
TCK Clock LOW Time  
50  
ns  
MHz  
ns  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
10  
ns  
ns  
tTDOX  
TCK Clock LOW to TDO Invalid  
0
Setup Times  
tTMSS  
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
Notes  
10. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document #: 001-48974 Rev. *A  
Page 13 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Figure 4. 2.5V TAP AC Output Load Equivalent  
2.5V TAP AC Test Conditions  
Input pulse levels ................................................VSS to 2.5V  
Input rise and fall time ....................................................1 ns  
Input timing reference levels ........................................ 1.25V  
Output reference levels ............................................... 1.25V  
Test load termination supply voltage .................... ........1.25V  
1.25V  
50Ω  
TDO  
ZO = 50Ω  
20p F  
TAP DC Electrical Characteristics and Operating Conditions  
(0°C < TA < +70°C; VDD = 2.5V ±0.125V unless otherwise noted)[12]  
Parameter  
VOH1  
Description  
Test Conditions  
Min  
2.0  
2.1  
Max  
Unit  
V
Output HIGH Voltage IOH = –1.0 mA, VDDQ = 2.5V  
Output HIGH Voltage IOH = –100 µA,VDDQ = 2.5V  
VOH2  
VOL1  
VOL2  
VIH  
V
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
IOL = 8.0 mA, VDDQ = 2.5V  
0.4  
0.2  
V
IOL = 100 µA  
VDDQ = 2.5V  
V
VDDQ = 2.5V  
VDDQ = 2.5V  
1.7  
–0.3  
–5  
VDD + 0.3  
V
VIL  
0.7  
5
V
IX  
GND < VIN < VDDQ  
µA  
Identification Register Definitions  
Instruction Field  
Revision Number (31:29)  
Cypress Device ID (28:12)  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
CY7C1354DV25  
CY7C1356DV25  
000  
01011001000010110 Reserved for future use.  
Description  
000  
01011001000100110  
00000110100  
1
Reserved for version number.  
00000110100  
1
Allows unique identification of SRAM vendor.  
Indicate the presence of an ID register.  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Instruction  
Bypass  
ID  
3
1
3
1
32  
69  
32  
69  
Boundary Scan Order (119-Ball BGA  
Package)  
Boundary Scan Order (165-Ball FBGA  
Package)  
69  
69  
Note:  
12. All voltages referenced to V (GND).  
SS  
Document #: 001-48974 Rev. *A  
Page 14 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
001  
010  
011  
Captures the Input/Output ring contents. Places the boundary scan register between the TDI and  
TDO. Forces all SRAM outputs to High-Z state.  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and TDO. This  
operation does not affect SRAM operation.  
SAMPLE Z  
RESERVED  
Captures the Input/Output contents. Places the boundary scan register between TDI and TDO. Forces  
all SRAM output drivers to a High-Z state.  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD 100  
Captures the Input/Output ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect the SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM operation.  
Document #: 001-48974 Rev. *A  
Page 15 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Boundary Scan Exit Order (256K × 36)  
Boundary Scan Exit Order (256K × 36) (continued)  
Bit #  
1
119-Ball ID  
K4  
H4  
M4  
F4  
165-Ball ID  
B6  
Bit #  
47  
119-Ball ID  
165-Ball ID  
N1  
M2  
L1  
M1  
L1  
K1  
J1  
2
B7  
48  
3
A7  
49  
4
B8  
50  
K2  
5
B4  
G4  
C3  
B3  
D6  
H7  
G6  
E6  
D7  
E7  
F6  
A8  
51  
Not Bonded  
(Preset to 1)  
Not Bonded  
(Preset to 1)  
6
A9  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
H1  
G2  
E2  
D1  
H2  
G1  
F2  
E1  
D2  
C2  
A2  
E4  
B2  
L3  
G2  
F2  
E2  
D2  
G1  
F1  
E1  
D1  
C1  
B2  
A2  
A3  
B3  
B4  
A4  
A5  
B5  
A6  
7
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
P10  
R9  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
G7  
H6  
T7  
K7  
L6  
G3  
G5  
L5  
N6  
P7  
N7  
M6  
L7  
B6  
K6  
P6  
T4  
A3  
C5  
B5  
A5  
C6  
A6  
P4  
N4  
R6  
T5  
P9  
R8  
P8  
R6  
P6  
R4  
P4  
T3  
R3  
R2  
R3  
P2  
P1  
L2  
P3  
R1  
N1  
L2  
K2  
K1  
N2  
J2  
M2  
Document #: 001-48974 Rev. *A  
Page 16 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Boundary Scan Exit Order (512K × 18)  
Boundary Scan Exit Order (512K × 18) (continued)  
Bit #  
1
2
3
4
5
6
7
8
119-Ball ID  
165-Ball ID  
B6  
Bit #  
43  
119-Ball ID  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
165-Ball ID  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
K4  
H4  
M4  
F4  
B4  
G4  
C3  
B3  
T2  
B7  
A7  
B8  
A8  
44  
45  
A9  
46  
47  
48  
49  
50  
51  
P2  
N1  
M2  
L1  
N1  
M1  
L1  
K1  
J1  
B10  
A10  
A11  
9
10  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
K2  
Not Bonded  
(Preset to 1)  
Not Bonded  
(Preset to 1)  
11  
12  
52  
53  
54  
55  
56  
H1  
G2  
E2  
D1  
G2  
F2  
E2  
D2  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
D6  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
C11  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
57  
58  
59  
60  
N6  
P7  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
61  
62  
63  
64  
65  
C2  
A2  
E4  
B2  
B2  
A2  
A3  
B3  
24  
25  
26  
27  
Not Bonded  
(Preset to 0  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
66  
67  
G3  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0  
A4  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
T6  
A3  
C5  
B5  
A5  
C6  
A6  
P4  
N4  
R6  
T5  
T3  
R2  
R3  
R11  
R10  
P10  
R9  
P9  
R8  
P8  
R6  
P6  
R4  
P4  
R3  
P3  
68  
69  
69  
69  
68  
69  
66  
L5  
B6  
B6  
B6  
L5  
B5  
A6  
A6  
A6  
B5  
A6  
B6  
G3  
Not Bonded  
(Preset to 0)  
67  
Not Bonded  
(Preset to 0  
A4  
68  
69  
L5  
B6  
B5  
A6  
R1  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Document #: 001-48974 Rev. *A  
Page 17 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Maximum Ratings  
Current into Outputs (LOW) ........................................ 20 mA  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Static Discharge Voltage.......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature ................................. –65°C to +150°C  
Latch Up Current................................................... > 200 mA  
Ambient Temperature with  
Power Applied ............................................ –55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND........–0.5V to +3.6V  
Supply Voltage on VDDQ Relative to GND.......–0.5V to +VDD  
DC to Outputs in Tri-State....................0.5V to VDDQ + 0.5V  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
VDD/VDDQ  
2.5V ±5%  
–40°C to +85°C  
Electrical Characteristics  
Over the Operating Range[13, 14]  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage[13]  
Test Conditions  
Min  
2.375  
2.375  
2.0  
Max  
2.625  
VDD  
Unit  
V
V
VDDQ  
VOH  
VOL  
VIH  
VIL  
for 2.5V I/O  
for 2.5V I/O, IOH = 1.0 mA  
for 2.5V I/O, IOL= 1.0 mA  
for 2.5V I/O  
V
0.4  
V
1.7  
–0.3  
–5  
VDD + 0.3V  
V
for 2.5V I/O  
0.7  
5
V
IX  
Input Leakage Current  
except ZZ and MODE  
GND VI VDDQ  
μA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
μA  
μA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
μA  
30  
5
μA  
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
μA  
VDD Operating Supply  
VDD = Max, IOUT = 0 mA,  
f = fMAX = 1/tCYC  
4 ns cycle, 250 MHz  
250  
220  
180  
130  
120  
110  
40  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
5 ns cycle, 200 MHz  
6 ns cycle, 166 MHz  
ISB1  
Automatic CE  
Power Down  
Current—TTL Inputs  
Max VDD, Device Deselected, VIN 4 ns cycle, 250 MHz  
VIH or VIN VIL, f = fMAX = 1/tCYC  
5 ns cycle, 200 MHz  
6 ns cycle, 166 MHz  
ISB2  
Automatic CE  
Max VDD, Device Deselected, VIN All speed grades  
Power Down  
Current—CMOS Inputs  
0.3V or VIN > VDDQ 0.3V, f = 0  
ISB3  
Automatic CE  
Power Down  
Current—CMOS Inputs fMAX = 1/tCYC  
Max VDD, Device Deselected, VIN 4 ns cycle, 250 MHz  
120  
110  
100  
40  
mA  
mA  
mA  
mA  
0.3V or VIN > VDDQ 0.3V, f =  
5 ns cycle, 200 MHz  
6 ns cycle, 166 MHz  
ISB4  
Automatic CE  
Max VDD, Device Deselected, VIN All speed grades  
Power Down  
Current—TTL Inputs  
VIH or VIN VIL, f = 0  
Notes  
13. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC)> –2V (Pulse width less than t  
/2).  
CYC  
IH  
DD  
CYC  
IL  
14. T  
: Assumes a linear ramp from 0V to V  
(minimum) within 200 ms. During this time V < V and V  
< V  
.
Power-up  
IH  
DD  
DDQ  
DD  
DD  
Document #: 001-48974 Rev. *A  
Page 18 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Capacitance[15]  
100 TQFP  
Max  
165 FBGA  
Parameter  
Description  
Test Conditions  
119 BGA Max  
Max  
Unit  
pF  
CIN  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
DD = 2.5V, VDDQ = 2.5V  
5
5
5
5
5
7
5
5
7
V
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
Thermal Resistance[15]  
100 TQFP  
Package  
119 BGA  
Package  
165 FBGA  
Package  
Parameters  
Description  
Test Conditions  
Unit  
ΘJA  
Thermal Resistance Test conditions follow standard  
(Junction to Ambient) test methods and procedures  
29.41  
34.1  
16.8  
°C/W  
for measuring thermal  
impedance, per EIA/JESD51.  
(Junction to Case)  
ΘJC  
Thermal Resistance  
6.13  
14  
3.0  
°C/W  
Figure 5. AC Test Loads and Waveforms  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
R = 1538Ω  
1 ns  
1 ns  
INCLUDING  
JIG AND  
SCOPE  
VT = 1.25V  
(a)  
(b)  
(c)  
Note  
15. Tested initially and after any design or process change that may affect these parameters.  
Document #: 001-48974 Rev. *A  
Page 19 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Switching Characteristics  
Over the Operating Range [17, 18]  
–250  
–200  
–166  
Parameter  
Description  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
[16]  
tPower  
VCC (Typical) to the First Access Read or Write  
1
1
1
ms  
Clock  
tCYC  
Clock Cycle Time  
Maximum Operating Frequency  
Clock HIGH  
4.0  
5
6
ns  
MHz  
ns  
FMAX  
tCH  
250  
200  
166  
1.8  
1.8  
2.0  
2.0  
2.4  
2.4  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
Data Output Valid after CLK Rise  
OE LOW to Output Valid  
2.8  
2.8  
3.2  
3.2  
3.5  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEOV  
tDOH  
Data Output Hold after CLK Rise  
Clock to High-Z[19, 20, 21]  
Clock to Low-Z[19, 20, 21]  
OE HIGH to Output High-Z[19, 20, 21]  
OE LOW to Output Low-Z[19, 20, 21]  
1.25  
1.25  
1.25  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
tCHZ  
2.8  
2.8  
3.2  
3.2  
3.5  
3.5  
tCLZ  
tEOHZ  
tEOLZ  
Setup Times  
tAS  
0
0
0
Address Setup before CLK Rise  
Data Input Setup before CLK Rise  
CEN Setup before CLK Rise  
WE, BWx Setup before CLK Rise  
ADV/LD Setup before CLK Rise  
Chip Select Setup  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
tCENS  
tWES  
tALS  
tCES  
Hold Times  
tAH  
Address Hold after CLK Rise  
Data Input Hold after CLK Rise  
CEN Hold after CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tCENH  
tWEH  
WE, BWx Hold after CLK Rise  
ADV/LD Hold after CLK Rise  
Chip Select Hold after CLK Rise  
tALH  
tCEH  
Notes  
16. This part has a voltage regulator internally; t  
is the time power needs to be supplied above V minimum initially, before a read or write operation can be initiated.  
DD  
power  
17. Timing reference level is when V  
= 2.5V.  
DDQ  
18. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
19. t , t , t , and t are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ EOLZ  
EOHZ  
20. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
CLZ  
EOHZ  
EOLZ  
CHZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
High-Z prior to Low-Z under the same system conditions.  
21. This parameter is sampled and not 100% tested.  
Document #: 001-48974 Rev. *A  
Page 20 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Switching Waveforms  
Figure 6. Read/Write Timing[22, 23, 24]  
1
2
3
4
5
6
7
8
9
10  
t
CYC  
t
CLK  
t
t
t
CENS  
CENH  
CL  
CH  
CEN  
t
t
CES  
CEH  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A4  
CO  
A3  
A5  
A6  
A7  
ADDRESS  
t
t
t
t
DS  
DH  
t
t
t
DOH  
OEV  
CLZ  
CHZ  
t
t
AS  
AH  
Data  
D(A1)  
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
In-Out (DQ)  
t
OEHZ  
t
DOH  
t
OELZ  
OE  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes  
22. For this waveform ZZ is tied LOW.  
23. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH,CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
24. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional.  
Document #: 001-48974 Rev. *A  
Page 21 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Switching Waveforms (continued)  
Figure 7. NOP, STALL and DESELECT CYCLES[22, 23, 25]  
1
2
3
4
5
6
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
CHZ  
D(A4)  
D(A1)  
Q(A2)  
Q(A3)  
Q(A5)  
Data  
In-Out (DQ)  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
Note  
25. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle.  
Document #: 001-48974 Rev. *A  
Page 22 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Switching Waveforms (continued)  
Figure 8. ZZ Mode Timing[26, 27]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
26. Device must be deselected when entering ZZ mode. See Write Cycle Description tables for all possible signal conditions to deselect the device.  
27. I/Os are in High-Z when exiting ZZ sleep mode.  
Document #: 001-48974 Rev. *A  
Page 23 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Ordering Information  
Not all of the speed, package, and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Part and Package Type  
166 CY7C1354DV25-166AXC  
CY7C1356DV25-166AXC  
CY7C1354DV25-166BGC  
CY7C1356DV25-166BGC  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Commercial  
51-85115 119-Ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1354DV25-166BGXC 51-85115 119-Ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
CY7C1356DV25-166BGXC  
CY7C1354DV25-166BZC  
CY7C1356DV25-166BZC  
51-85180 165-Ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1354DV25-166BZXC 51-85180 165-Ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
CY7C1356DV25-166BZXC  
CY7C1354DV25-166AXI  
CY7C1356DV25-166AXI  
CY7C1354DV25-166BGI  
CY7C1356DV25-166BGI  
CY7C1354DV25-166BGXI  
CY7C1356DV25-166BGXI  
CY7C1354DV25-166BZI  
CY7C1356DV25-166BZI  
CY7C1354DV25-166BZXI  
CY7C1356DV25-166BZXI  
200 CY7C1354DV25-200AXC  
CY7C1356DV25-200AXC  
CY7C1354DV25-200BGC  
CY7C1356DV25-200BGC  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Industrial  
51-85115 119-Ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-Ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
51-85180 165-Ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-Ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
51-85115 119-Ball Ball Grid Array (14 x 22 x 2.4 mm)  
Commercial  
CY7C1354DV25-200BGXC 51-85115 119-Ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
CY7C1356DV25-200BGXC  
CY7C1354DV25-200BZC  
CY7C1356DV25-200BZC  
51-85180 165-Ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1354DV25-200BZXC 51-85180 165-Ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
CY7C1356DV25-200BZXC  
CY7C1354DV25-200AXI  
CY7C1356DV25-200AXI  
CY7C1354DV25-200BGI  
CY7C1356DV25-200BGI  
CY7C1354DV25-200BGXI  
CY7C1356DV25-200BGXI  
CY7C1354DV25-200BZI  
CY7C1356DV25-200BZI  
CY7C1354DV25-200BZXI  
CY7C1356DV25-200BZXI  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Industrial  
51-85115 119-Ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-Ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
51-85180 165-Ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-Ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
Document #: 001-48974 Rev. *A  
Page 24 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Ordering Information (continued)  
Not all of the speed, package, and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Part and Package Type  
250 CY7C1354DV25-250AXC  
CY7C1356DV25-250AXC  
CY7C1354DV25-250BGC  
CY7C1356DV25-250BGC  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Commercial  
51-85115 119-Ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1354DV25-250BGXC 51-85115 119-Ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
CY7C1356DV25-250BGXC  
CY7C1354DV25-250BZC  
CY7C1356DV25-250BZC  
51-85180 165-Ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1354DV25-250BZXC 51-85180 165-Ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
CY7C1356DV25-250BZXC  
CY7C1354DV25-250AXI  
CY7C1356DV25-250AXI  
CY7C1354DV25-250BGI  
CY7C1356DV25-250BGI  
CY7C1354DV25-250BGXI  
CY7C1356DV25-250BGXI  
CY7C1354DV25-250BZI  
CY7C1356DV25-250BZI  
CY7C1354DV25-250BZXI  
CY7C1356DV25-250BZXI  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Industrial  
51-85115 119-Ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-Ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
51-85180 165-Ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-Ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
Document #: 001-48974 Rev. *A  
Page 25 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Package Diagrams  
Figure 9. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
1.00 REF.  
51-85050-*B  
DETAIL  
A
Document #: 001-48974 Rev. *A  
Page 26 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Package Diagrams (continued)  
Figure 10. 119-Ball BGA (14 x 22 x 2.4 mm) (51-85115)  
Ø0.05 M C  
Ø0.25 M C A B  
A1 CORNER  
Ø0.75 0.15(119X)  
Ø1.00(3X) REF.  
1
2
3
4
5
6
7
7
6
5
4
3 2 1  
A
B
C
D
E
A
B
C
D
E
F
F
G
H
G
H
J
K
L
J
K
L
M
N
P
R
T
M
N
P
R
T
U
U
1.27  
0.70 REF.  
A
3.81  
12.00  
7.62  
B
14.00 0.20  
0.15(4X)  
30° TYP.  
SEATING PLANE  
C
51-85115-*B  
Document #: 001-48974 Rev. *A  
Page 27 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Package Diagrams (continued)  
Figure 11. 165-Ball FBGA (13 x 15 x 1.4 mm) (51-85180)  
BOTTOM VIEW  
PIN 1 CORNER  
TOP VIEW  
Ø0.05 M C  
Ø0.25 M C A B  
PIN 1 CORNER  
-0.06  
Ø0.50  
(165X)  
+0.14  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
A
1.00  
5.00  
10.00  
B
13.00 0.10  
B
13.00 0.10  
0.15(4X)  
NOTES :  
SOLDER PAD TYPE : NON-SOLDER MASK DEFINED (NSMD)  
PACKAGE WEIGHT : 0.475g  
JEDEC REFERENCE : MO-216 / DESIGN 4.6C  
PACKAGE CODE : BB0AC  
SEATING PLANE  
C
51-85180-*A  
Document #: 001-48974 Rev. *A  
Page 28 of 29  
[+] Feedback  
CY7C1354DV25  
CY7C1356DV25  
Document History Page  
Document Title: CY7C1354DV25/CY7C1356DV25, 9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL™ Architecture  
Document Number: 001-48974  
Origin of Submission  
Rev. ECN No.  
Description of Change  
Change  
Date  
10/22/08  
NJY  
**  
2594961  
VKN  
NSO data sheet for Tellabs  
Post to external website  
*A  
2746930 07/31/09  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
Clocks & Buffers  
Wireless  
Memories  
Image Sensors  
© Cypress Semiconductor Corporation, 2008-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used  
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use  
as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support  
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 001-48974 Rev. *A  
Revised July 31, 2009  
Page 29 of 29  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device Technology, Inc. All product and company names mentioned in this document  
are the trademarks of their respective holders.  
[+] Feedback  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY