CY7C1360 [CYPRESS]

9-Mbit (256K x 36/512K x 18) Pipelined SRAM; 9兆位( 256K ×36 / 512K ×18 )流水线式SRAM
CY7C1360
型号: CY7C1360
厂家: CYPRESS    CYPRESS
描述:

9-Mbit (256K x 36/512K x 18) Pipelined SRAM
9兆位( 256K ×36 / 512K ×18 )流水线式SRAM

静态存储器
文件: 总34页 (文件大小:859K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1360B  
CY7C1362B  
9-Mbit(256Kx36/512Kx18)PipelinedSRAM  
Features  
Functional Description[1]  
• Supports bus operation up to 225 MHz  
• Available speed grades are 225, 200 and 166 MHz  
• Registered inputs and outputs for pipelined operation  
• 3.3V core power supply  
• 2.5V/3.3V I/O operation  
• Fast clock-to-output times  
— 2.8 ns (for 225-MHz device)  
— 3.0 ns (for 200-MHz device)  
— 3.5 ns (for 166-MHz device)  
The CY7C1360B/CY7C1362B SRAM integrates 262,144 x 36  
and 524,288 x 18 SRAM cells with advanced synchronous  
peripheral circuitry and a two-bit counter for internal burst  
operation. All synchronous inputs are gated by registers  
controlled by a positive-edge-triggered Clock Input (CLK). The  
synchronous inputs include all addresses, all data inputs,  
address-pipelining Chip Enable (  
), depth-expansion Chip  
CE1  
[2]  
Enables (CE and  
), Burst Control inputs (  
,
,
CE3  
2
ADSC ADSP  
), Write Enables (  
ADV  
, and  
BWX  
), and Global Write  
and  
BWE  
(
). Asynchronous inputs include the Output Enable (  
)
OE  
GW  
and the ZZ pin.  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor ( ) or  
• Provide high-performance 3-1-1-1 access rate  
ADSP  
) are active. Subsequent  
Address Strobe Controller (  
ADSC  
burst addresses can be internally generated as controlled by  
the Advance pin ( ).  
User-selectable burst counter supporting Intel  
Pentium® interleaved or linear burst sequences  
ADV  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
• Asynchronous output enable  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to two or four bytes wide as  
• Single Cycle Chip Deselect  
controlled by the Byte Write control inputs.  
when active  
GW  
causes all bytes to be written.  
LOW  
• Offered in JEDEC-standard 100-pin TQFP, 119-ball BGA  
and 165-Ball fBGA packages  
The CY7C1360B/CY7C1362B operates from a +3.3V core  
power supply while all outputs may operate with either a +2.5  
or +3.3V supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
• TQFP Available with 3-Chip Enable and 2-Chip Enable  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• “ZZ” Sleep Mode Option  
Selection Guide  
225 MHz  
200 MHz  
3.0  
166 MHz  
3.5  
Unit  
ns  
mA  
mA  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
2.8  
250  
30  
220  
30  
180  
30  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.  
Notes:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE is for A version of TQFP (3 Chip Enable option) and 165 fBGA package only. 119 BGA is offered only in 2 Chip Enable.  
3
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05291 Rev. *C  
Revised April 9, 2004  
CY7C1360B  
CY7C1362B  
1
Logic Block DiagrC1360B (256K x 36)  
A0, A1, A  
ADDRESS  
REGISTER  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER  
AND  
CLR  
Q0  
LOGIC  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D ,DQPD  
DQ  
BYTE  
WRITE DRIVER  
D ,DQPD  
BW  
D
DQC ,DQP  
BYTE  
WRITE DRIVER  
C
DQC ,DQP  
BYTE  
WRITE REGISTER  
C
BW  
C
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
MEMORY  
ARRAY  
DQ s  
SENSE  
AMPS  
DQPA  
DQB ,DQP  
BYTE  
WRITE DRIVER  
B
E
DQB ,DQP  
BYTE  
WRITE REGISTER  
B
DQP  
DQP  
B
C
BW  
BW  
B
A
DQPD  
DQ  
BYTE  
WRITE DRIVER  
A ,DQPA  
DQ  
A ,DQPA  
BYTE  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
2
Logic Block Diagram – CY7C1362B (512K x 18)  
ADDRESS  
A0, A1, A  
REGISTER  
A[1:0]  
2
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQB,DQP  
B
DQB,DQP  
WRITE REGISTER  
B
WRITE DRIVER  
OUTPUT  
BUFFERS  
BW  
B
A
DQs  
DQP  
DQP  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
B
DQA,DQP  
A
E
DQA,DQP  
WRITE REGISTER  
A
WRITE DRIVER  
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE1  
CE2  
PIPELINED  
ENABLE  
CE3  
OE  
ZZ  
SLEEP  
CONTROL  
Document #: 38-05291 Rev. *C  
Page 2 of 34  
CY7C1360B  
CY7C1362B  
Pin Configurations  
100-pin TQFP Pinout (3 Chip Enables) (A version)  
DQPC  
1
DQP  
B
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
A
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
DQB  
B
2
NC  
2
DQc  
VDDQ  
VSSQ  
DQ  
3
NC  
NC  
3
VDDQ  
4
VDDQ  
VSSQ  
NC  
VDDQ  
VSSQ  
NC  
4
VSSQ  
5
5
DQ  
DQ  
DQ  
C
DQ  
DQ  
DQ  
DQ  
B
B
B
B
6
6
C
C
7
NC  
DQP  
A
7
8
DQ  
B
B
DQ  
A
A
8
DQ  
C
9
DQ  
DQ  
9
VSSQ  
VDDQ  
VSSQ  
VDDBQ  
DQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VSSQ  
VSSQ  
VDDAQ  
DQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
DQ  
C
DQ  
B
B
DQ  
C
DQ  
B
DQ  
DQ  
A
NC  
VDD  
NC  
VSS  
NC  
VDD  
ZZ  
NC  
VDD  
NC  
VSS  
NC  
VDD  
ZZ  
CY7C1362B  
(512K x 18)  
CY7C1360B  
(256K X 36)  
VSDS  
VSBS  
DQ  
DQ  
A
DQ  
DQ  
A
A
DQ  
D
DQA  
DQ  
B
DQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
DQ  
D
DQ  
DQ  
DQ  
DQ  
A
A
A
A
DQ  
B
B
B
DQ  
DQ  
NC  
NC  
A
A
DQ  
D
DQ  
DQ  
D
DQP  
DQ  
D
NC  
VSSQ  
VDDQ  
NC  
VSSQ  
VDDQ  
VSSQ  
VDDAQ  
DQ  
VSSQ  
VDDQ  
NC  
DQ  
D
DQ  
D
DQA  
NC  
NC  
DQPD  
DQP  
A
NC  
NC  
100-pin TQFP (2 Chip Enables) (AJ Version)  
DQP  
C
DQP  
B
1
2
3
4
5
6
7
8
9
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
A
1
80  
DQC  
C
DQB  
B
NC  
2
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQ  
DQ  
NC  
NC  
3
VDDQ  
VDDQ  
VDDQ  
VSSQ  
NC  
VDDQ  
VSSQ  
NC  
4
VSSQ  
VSSQ  
5
DQ  
DQ  
DQ  
DQ  
C
C
C
C
DQ  
DQ  
DQ  
DQ  
B
B
B
B
6
NC  
DQP  
A
7
DQ  
B
B
DQ  
A
A
8
DQ  
DQ  
9
VSSQ  
VDDQ  
VSSQ  
VDDBQ  
DQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VSSQ  
VSSQ  
VDDAQ  
DQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
DQ  
C
C
DQ  
B
B
DQ  
DQ  
B
DQ  
DQ  
A
NC  
VDD  
NC  
VSS  
NC  
VDD  
ZZ  
NC  
VDD  
NC  
VSS  
NC  
VDD  
ZZ  
CY7C1362B  
(512K x 18)  
CY7C1360B  
(256K X 36)  
VSDS  
VSBS  
DQ  
DQ  
A
DQ  
DQ  
A
A
DQ  
D
DQA  
DQ  
B
DQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
DQ  
DQ  
DQ  
DQ  
D
D
D
D
DQ  
DQ  
DQ  
DQ  
A
A
A
A
DQ  
B
B
DQ  
DQ  
NC  
NC  
A
A
DQ  
DQP  
B
NC  
VSSQ  
VDDQ  
NC  
VSSQ  
VDDQ  
VSSQ  
VDDAQ  
DQ  
VSSQ  
VDDQ  
NC  
DQD  
D
DQ  
DQA  
NC  
NC  
DQP  
D
DQP  
A
NC  
NC  
Document #: 38-05291 Rev. *C  
Page 3 of 34  
CY7C1360B  
CY7C1362B  
Pin Configurations (continued)  
119-ball BGA (2 Chip Enables with JTAG)  
CY7C1360B (256K x 36)  
1
2
3
4
5
6
7
A
B
C
VDDQ  
A
A
A
A
VDDQ  
ADSP  
ADSC  
VDD  
NC  
NC  
CE2  
A
A
A
A
A
A
A
NC  
NC  
D
E
F
DQC  
DQC  
VDDQ  
DQPC  
DQC  
DQC  
VSS  
VSS  
VSS  
NC  
CE1  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
DQB  
VDDQ  
OE  
G
H
J
DQC  
DQC  
VDDQ  
DQD  
DQD  
VDDQ  
DQD  
DQC  
DQC  
VDD  
BWC  
VSS  
NC  
BWB  
VSS  
NC  
DQB  
DQB  
VDD  
DQA  
DQA  
DQA  
DQA  
DQB  
DQB  
VDDQ  
DQA  
DQA  
VDDQ  
DQA  
ADV  
GW  
VDD  
CLK  
NC  
BWE  
A1  
K
DQD  
VSS  
VSS  
DQD  
DQD  
DQD  
L
M
N
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
P
R
DQD  
NC  
DQPD  
A
VSS  
MODE  
A0  
VDD  
VSS  
NC  
DQPA  
A
DQA  
NC  
NC  
VDDQ  
NC  
TMS  
A
TDI  
A
TCK  
A
TDO  
NC  
NC  
ZZ  
VDDQ  
T
U
CY7C1362B (512K x 18)  
2
A
CE2  
A
NC  
DQB  
NC  
1
3
A
A
4
5
A
A
6
A
A
7
A
B
C
D
E
F
VDDQ  
NC  
NC  
DQB  
NC  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
VDDQ  
ADSP  
ADSC  
VDD  
NC  
CE1  
A
A
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQPA  
NC  
DQA  
OE  
G
H
J
NC  
DQB  
VDDQ  
DQB  
NC  
VDD  
VSS  
VSS  
NC  
NC  
DQA  
VDD  
DQA  
NC  
VDDQ  
BWB  
VSS  
NC  
ADV  
GW  
VDD  
K
NC  
DQB  
VDDQ  
DQB  
NC  
DQB  
NC  
DQB  
NC  
DQPB  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
NC  
BWE  
A1  
VSS  
NC  
DQA  
NC  
DQA  
NC  
DQA  
NC  
VDDQ  
NC  
DQA  
L
M
N
P
BWA  
VSS  
VSS  
VSS  
A0  
NC  
NC  
A
A
MODE  
A
VDD  
NC  
NC  
A
A
A
NC  
ZZ  
R
T
U
VDDQ  
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
Document #: 38-05291 Rev. *C  
Page 4 of 34  
CY7C1360B  
CY7C1362B  
Pin Configurations (continued)  
165-ball fBGA (3 Chip Enable with JTAG)  
CY7C1360B (256K x 36)  
1
NC / 288M  
NC  
DQPC  
DQC  
2
3
4
5
6
7
8
9
10  
11  
NC  
NC / 144M  
DQPB  
DQB  
A
A
B
C
D
E
F
G
H
J
K
L
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
ADSC  
A
BWE  
GW  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
A
NC  
DQC  
DQC  
DQC  
DQC  
VSS  
DQD  
DQD  
DQD  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
DQB  
DQB  
DQB  
DQB  
NC  
DQA  
DQA  
DQA  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DQC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQC  
DQC  
NC  
DQD  
DQD  
DQD  
DQB  
DQB  
ZZ  
DQA  
DQA  
DQA  
VDDQ  
VDDQ  
VDDQ  
DQD  
DQPD  
NC  
DQD  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
NC / 18M  
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
A0  
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1362B (512K x 18)  
1
NC / 288M  
NC  
2
3
CE1  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
4
BWB  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
5
6
7
8
9
10  
11  
A
A
NC  
A
A
CE  
BWE  
GW  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ADSC  
OE  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
3
A
NC  
DQB  
DQB  
DQB  
DQB  
VSS  
NC  
NC  
NC  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
NC  
NC  
NC  
NC  
NC  
NC / 144M  
DQPA  
DQA  
B
C
D
E
F
G
H
J
K
L
NC  
NC  
NC  
NC  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DQA  
DQA  
DQA  
ZZ  
NC  
NC  
NC  
NC  
DQB  
DQB  
DQB  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
DQB  
DQPB  
NC  
NC  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
NC / 18M  
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
MODE NC / 36M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05291 Rev. *C  
Page 5 of 34  
CY7C1360B  
CY7C1362B  
CY7C1360B–Pin Definitions  
TQFP  
3-Chip  
Enable  
TQFP  
2-Chip  
Enable  
Name  
BGA  
fBGA  
I/O  
Description  
Address Inputs used to select one of the 256K  
A0, A1, A  
37,36,32, 37,36,32,  
33,34,35, 33,34,35,  
43,44,45, 44,45,46,  
46,47,48, 47,48,49,  
P4,N4, R6,P6,A2,  
Input-  
A2,C2,  
A10,B2, Synchronous address locations. Sampled at the rising edge of  
R2,3A, B10,P3,P4,  
B3,C3, P8,P9,P10,  
the CLK if  
or  
is active LOW, and CE ,  
ADSP ADSC  
CE2, and CE3[2]are sampled active. A1, A0 are fe1d  
49,50,81, 50,81,82, T3,T4,A5, P11,R3,R4,  
82,99,100 92,99,100 B5,C5, R8,R9,R10,  
to the two-bit counter.  
.
T5,A6,B6,  
C6,R6  
R11  
93,94,95, 93,94,95,  
L5,G5,  
G3,L3  
B5,A5,A4,  
B4  
Input-  
Byte Write Select Inputs, active LOW. Qualified  
with BWE to conduct Byte Writes to the SRAM.  
Sampled on the rising edge of CLK.  
BWA,BWB  
BWC,BWD  
96  
96  
Synchronous  
H4  
B7  
Input-  
Global Write Enable Input, active LOW. When  
88  
88  
GW  
Synchronous asserted LOW on the rising edge of CLK, a global  
Write is conducted (ALL bytes are written,  
regardless of the values on BWX and BWE).  
87  
89  
87  
89  
M4  
K4  
A7  
B6  
Input-  
Byte Write Enable Input, active LOW. Sampled  
BWE  
CLK  
Synchronous on the rising edge of CLK. This signal must be as-  
serted LOW to conduct a Byte Write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous  
inputs to the device. Also used to increment the  
burst counter when ADV is asserted LOW, during a  
burst operation.  
98  
98  
E4  
A3  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the  
CE1  
CE2  
Synchronous rising edge of CLK. Used in conjunction with CE2  
and CE3[2] to select/deselect the device. ADSP is  
ignored if CE1 is HIGH.  
97  
92  
97  
-
B2  
-
B3  
A6  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on  
Synchronous the rising edge of CLK. Used in conjunction with  
CE1 and CE3[2] to select/deselect the device.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the  
[2]  
CE3  
Synchronous rising edge of CLK. Used in conjunction with CE1  
andCE2 toselect/deselectthedevice. Notavailable  
for AJ package version.  
Not connected for BGA.  
Where referenced, CE3[2] is assumed active  
throughout this document for BGA.  
86  
83  
86  
83  
F4  
B8  
A9  
Input-  
Output Enable, asynchronous input, active  
OE  
Asynchro- LOW. Controls the direction of the I/O pins. When  
nous  
LOW, the I/O pins behave as outputs. When  
deassertedHIGH, I/Opinsarethree-stated, andact  
as input data pins. OE is masked during the first  
clock of a read cycle when emerging from a  
deselected state.  
G4  
Input-  
Advance Input signal, sampled on the rising  
ADV  
Synchronous edge of CLK, active LOW. When asserted, it  
automatically increments the address in a burst  
cycle.  
Document #: 38-05291 Rev. *C  
Page 6 of 34  
CY7C1360B  
CY7C1362B  
CY7C1360B–Pin Definitions (continued)  
TQFP  
3-Chip  
Enable  
TQFP  
2-Chip  
Enable  
Name  
ADSP  
BGA  
fBGA  
I/O  
Description  
Address Strobe from Processor, sampled on  
84  
84  
A4  
B9  
Input-  
Synchronous the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the device  
are captured in the address registers. A1, A0 are  
also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized.  
ASDP is ignored when CE1 is deasserted HIGH.  
85  
64  
B4  
T7  
A8  
Input-  
AddressStrobefromController, sampledonthe  
85  
64  
ADSC  
ZZ  
Synchronous rising edge of CLK, active LOW. When asserted  
LOW, addresses presented to the device are  
captured in the address registers. A1, A0 are also  
loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized.  
H11  
Input-  
ZZ “Sleep” Input, active HIGH. When asserted  
Asynchro- HIGH places the device in a non-time-critical  
nous  
“sleep” condition with data integrity preserved. For  
normal operation, this pin has to be LOW or left  
floating. ZZ pin has an internal pull-down.  
52,53,56, 52,53,56,  
57,58,59, 57,58,59,  
62,63,68, 62,63,68,  
69,72,73, 69,72,73,  
74,75,78, 74,75,78,  
K6,L6,  
M6,N6,  
K7,L7,  
N7,P7,  
E6,F6,  
M11,L11,  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed  
DQs,  
K11,J11, Synchronous into an on-chip data register that is triggered by the  
DQPs  
J10,K10,  
L10,M10,  
D10,E10,  
F10,G10,  
D11,E11,  
F11,G11,  
D1,E1,F1,  
risingedge of CLK. As outputs, they deliver the data  
contained in the memory location specified by the  
addresses presented during the previous  
clock rise  
79,2,3,6,7, 79,2,3,6,7, G6,H6,  
8,9,12,13,1 8,9,12,13,1 D7,E7,  
of the read cycle. The direction of the pins is  
controlled by OE. When OE is asserted LOW, the  
pins behave as outputs. When HIGH, DQs and  
DQPX are placed in a three-state condition.  
8,19,22,  
8,19,22,  
G7,H7,  
D1,E1,  
23,24,25, 23,24,25,  
28,29,51, 28,29,51,  
G1,H1, G1,D2,E2,  
80,1,30  
80,1,30  
E2,F2,  
F2,G2,J1,  
G2,H2, K1,L1,M1,  
K1,L1,  
N1,P1,  
J2,K2,L2,  
M2,N11,  
K2,L2, C11,C1,N1  
M2,N2,  
P6,D6,  
D2,P2  
VDD  
15,41,65, 15,41,65, J2,C4,J4, D4,D8,E4, PowerSupply Power supply inputs to the core of the device.  
91  
91  
R4,J6  
E8,F4,F8,  
G4,G8,H4,  
H8,J4,J8,  
K4,K8,L4,  
L8,M4,M8  
VSS  
17,40,67, 17,40,67,  
90 90  
D3,E3, C4,C5,C6,  
F3,H3, C7,C8,D5,  
K3,M3, D6,D7,E5,  
Ground  
Ground for the core of the device.  
N3,P3,  
D5,E5,  
E6,E7,F5,  
F6,F7,G5,  
F5,H5, G6,G7,H2,  
K5,M5, H5,H6,H7,J  
N5,P5  
5,J6,J7,  
K5,K6,K7,  
L5,L6,L7,  
M5,M6,M7,  
N4,N8  
Document #: 38-05291 Rev. *C  
Page 7 of 34  
CY7C1360B  
CY7C1362B  
CY7C1360B–Pin Definitions (continued)  
TQFP  
3-Chip  
Enable  
TQFP  
2-Chip  
Enable  
Name  
VSSQ  
BGA  
fBGA  
I/O  
Description  
5,10,21,26, 5,10,21,26,  
55,60,71, 55,60,71,  
-
-
I/O Ground Ground for the I/O circuitry.  
76  
76  
VDDQ  
4,11,20,27, 4,11,20,27, A1,F1,J1, C3,C9,D3,  
I/O Power Power supply for the I/O circuitry.  
54,61,70, 54,61,70,  
M1,U1, D9,E3,E9,F  
A7,F7,J7, 3,F9,G3,  
Supply  
77  
77  
M7,U7  
G9,J3,J9,  
K3,K9,L3,  
L9,M3,M9,  
N3,N9  
MODE  
31  
31  
R3  
R1  
Input-  
Static  
Selects Burst Order. When tied to GND selects  
linear burst sequence. When tied to VDD or left  
floating selects interleaved burst sequence. This is  
a strap pin and should remain static during device  
operation. Mode pin has an internal pull-up.  
TDO  
TDI  
-
-
-
-
-
-
-
-
U5  
U3  
U2  
U4  
P7  
P5  
R5  
R7  
JTAG serial Serial data-out to the JTAG circuit. Delivers data  
output  
on the negative edge of TCK. If the JTAG feature is  
Synchronous not being utilized, this pin should be disconnected.  
This pin is not available on TQFP packages.  
JTAG serial Serial data-In to the JTAG circuit. Sampledonthe  
input  
rising edge of TCK. If the JTAG feature is not being  
Synchronous utilized, this pin can be disconnected or connected  
to VDD. This pin is not available on TQFP packages.  
TMS  
TCK  
NC  
JTAG serial Serial data-In to the JTAG circuit. Sampledonthe  
input  
rising edge of TCK. If the JTAG feature is not being  
Synchronous utilized, this pin can be disconnected or connected  
to VDD. This pin is not available on TQFP packages.  
JTAG-Clock Clock input to the JTAG circuitry. If the JTAG  
feature is not being utilized, this pin must be  
connected to VSS. This pin is not available on TQFP  
packages.  
14,16,66, 14,16,38,  
B1,C1, A11,B1,C2,  
-
No Connects. Not internally connected to the die  
42,39,38 39,42,43, R1,T1,T2, C10,H1,H3,  
66,  
J3,D4,  
H9,H10,  
L4,5J,5R, N2,N5,N7,  
6T,6U, N10,P1,A1,  
B7,C7, B11,P2,R2,  
R7  
N6  
Document #: 38-05291 Rev. *C  
Page 8 of 34  
CY7C1360B  
CY7C1362B  
CY7C1362B–Pin Definitions  
TQFP  
3-Chip  
Enable  
TQFP  
2-Chip  
Enable  
Name  
BGA  
fBGA  
I/O  
Description  
Address Inputs used to select one of the 512K  
A0, A1, A 37,36,32, 37,36,32,  
33,34,35, 33,34,35,  
43,44,45, 44,45,46,  
46,47,48, 47,48,49,  
49,50,80, 50,80,81,  
81,82,99, 82,92,99,  
P4,N4,  
A2,C2,  
R6,P6,A2,  
Input-  
A10,A11, Synchronous address locations. Sampled at the rising edge of  
R2,T2, B2,B10,P3,  
the CLK if  
or  
is active LOW, and CE ,  
ADSP ADSC  
A3,B3,  
C3,T3,  
A5,B5,  
C5,T5,  
A6,B6,  
C6,R6,  
T6  
P4,P8,P9,  
P10,P11,  
R3,R4,R8,  
R9,R10,  
R11  
CE2, andCE3[2] are sampled active. A1, A0 are fe1d  
to the two-bit counter.  
.
100  
100  
93,94  
88  
93,94  
88  
G3,L5  
B5,A4  
B7  
Input-  
Byte Write Select Inputs, active LOW. Qualified  
BWA,BWB  
GW  
Synchronous  
with BWE to conduct Byte Writes to the SRAM.  
.
Sampled on the rising edge of CLK  
H4  
Input-  
Global Write Enable Input, active LOW. When  
Synchronous asserted LOW on the rising edge of CLK, a global  
Write is conducted (ALL bytes are written,  
regardless of the values on BWX and BWE).  
87  
89  
87  
89  
M4  
K4  
A7  
B6  
Input-  
Byte Write Enable Input, active LOW. Sampled  
BWE  
CLK  
Synchronous on the rising edge of CLK. This signal must be  
asserted LOW to conduct a Byte Write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous  
inputs to the device. Also used to increment the  
burst counter when ADV is asserted LOW, during  
a burst operation.  
98  
98  
E4  
A3  
Input-  
Chip Enable 1 Input, active LOW. Sampled on  
CE1  
CE2  
Synchronous the rising edge of CLK. Used in conjunction with  
CE2 and CE3[2] to select/deselect the device.  
ADSP is ignored if CE1 is HIGH.  
97  
92  
97  
-
B2  
-
B3  
A6  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on  
Synchronous the rising edge of CLK. Used in conjunction with  
CE1 and CE3[2] to select/deselect the device.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on  
[2]  
CE3  
Synchronous the rising edge of CLK. Used in conjunction with  
CE1 and CE2 to select/deselect the device. Not  
available for AJ package version.  
Not connected  
for BGA. Where referenced, CE3[2] is assumed  
active throughout this document for BGA.  
86  
83  
86  
83  
F4  
B8  
A9  
Input-  
Output Enable, asynchronous input, active  
OE  
Asynchronous LOW. Controls the direction of the I/O pins. When  
LOW, the I/O pins behave as outputs. When  
deasserted HIGH, I/O pins are three-stated, and  
act as input data pins. OE is masked during the first  
clock of a Read cycle when emerging from a  
deselected state.  
G4  
Input-  
Advance Input signal, sampled on the rising  
ADV  
Synchronous edge of CLK, active LOW. When asserted, it  
automatically increments the address in a burst  
cycle.  
Document #: 38-05291 Rev. *C  
Page 9 of 34  
CY7C1360B  
CY7C1362B  
CY7C1362B–Pin Definitions (continued)  
TQFP  
3-Chip  
Enable  
TQFP  
2-Chip  
Enable  
Name  
ADSP  
BGA  
fBGA  
I/O  
Description  
Address Strobe from Processor, sampled on  
84  
84  
A4  
B9  
Input-  
Synchronous the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the device  
are captured in the address registers. A1, A0 are  
also loaded into the burst counter. When ADSP  
and ADSC are both asserted, only ADSP is recog-  
nized. ASDP is ignored when CE1 is deasserted  
HIGH.  
85  
64  
P4  
T7  
A8  
Input-  
Address Strobe from Controller, sampled on  
85  
64  
ADSC  
ZZ  
Synchronous the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the device  
are captured in the address registers. A1, A0 are  
also loaded into the burst counter. When ADSP  
and ADSC are both asserted, only ADSP is recog-  
nized.  
H11  
Input-  
ZZ “Sleep” Input, active HIGH. When asserted  
Asynchronous HIGH places the device in a non-time-critical  
“sleep” condition with data integrity preserved. For  
normal operation, this pin has to be LOW or left  
floating. ZZ pin has an internal pull-down.  
58,59,62, 58,59,62,  
63,68,69, 63,68,69,  
P7,K7,  
G7,E7,  
J10,K10,  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed  
DQs,  
L10,M10, Synchronous into an on-chip data register that is triggered by the  
DQPs  
72,73,8,9, 72,73,8,9, F6,H6,L6, D11,E11,  
rising edge of CLK. As outputs, they deliver the  
data contained in the memory location specified by  
12,13,18, 12,13,18,  
19,22,23, 19,22,23,  
N6,D1, F11,G11,J1,  
H1,L1, K1,L1,M1,D  
the addresses presented during the previous  
clock  
74,24  
74,24  
N1,E2,  
2,E2,F2,  
rise of the a Read cycle. The direction of the pins  
is controlled by OE. When OE is asserted LOW,  
the pins behave as outputs. When HIGH, DQs and  
DQPX are placed in a three-state condition.  
G2,K2, G2,C11,N1  
M2,D6,  
P2  
VDD  
15,41,65, 15,41,65, C4,J2,J4, D4,D8,E4,E Power Supply Power supply inputs to the core of the device.  
91  
91  
J6,R4  
8,F4,F8,  
G4,G8,H4,  
H8,J4,J8,  
K4,K8,L4,  
L8,M4,M8  
VSS  
17,40,67, 17,40,67,  
90 90  
D3,D5,  
H2,C4,C5,  
Ground  
Ground for the core of the device.  
E5,E3,F3, C6,C7,C8,  
F5,G5, D5,D6,D7,E  
H3,H5,  
5,E6,E7,  
K3,K5,L3, F5,F6,F7,  
M3,M5, G5,G6,G7,  
N3,N5, H5,H6,H7,J  
P3,P5  
-
5,J6,J7,  
K5,K6,K7,  
L5,L6,L7,  
M5,M6,M7,  
N4,N8  
VSSQ  
5,10,21,26, 5,10,21,26,  
55,60,71, 55,60,71,  
-
I/O Ground Ground for the I/O circuitry.  
76  
76  
Document #: 38-05291 Rev. *C  
Page 10 of 34  
CY7C1360B  
CY7C1362B  
CY7C1362B–Pin Definitions (continued)  
TQFP  
3-Chip  
Enable  
TQFP  
2-Chip  
Enable  
Name  
VDDQ  
BGA  
fBGA  
I/O  
Description  
4,11,20,27, 4,11,20,27, A1,A7,F1, C3,C9,D3,  
54,61,70, 54,61,70, F7,J1,J7, D9,E3,E9,  
I/O Power Power supply for the I/O circuitry.  
Supply  
77  
31  
-
77  
31  
-
M1,M7,  
U1,U7  
F3,F9,G3,  
G9,J3,J9,  
K3,K9,L3,  
L9,M3,M9,  
N3,N9  
MODE  
TDO  
TDI  
R3  
U5  
U3  
U2  
R1  
P7  
P5  
R5  
Input-  
Static  
Selects Burst Order. When tied to GND selects  
linear burst sequence. When tied to VDD or left  
floating selects interleaved burst sequence. This is  
a strap pin and should remain static during device  
operation. Mode pin has an internal pull-up.  
JTAG serial Serial data-out to the JTAG circuit. Delivers data  
output  
on the negative edge of TCK. If the JTAG feature  
Synchronous is not being utilized, this pin should be left uncon-  
nected. This pin is not available on TQFP  
packages.  
-
-
JTAG serial Serial data-In to the JTAG circuit. Sampled on  
input  
the rising edge of TCK. If the JTAG feature is not  
Synchronous being utilized, this pin can be left floating or con-  
nected to VDD through a pull-up resistor. This pin  
is not available on TQFP packages.  
TMS  
-
-
JTAG serial Serial data-In to the JTAG circuit. Sampled on  
input  
the rising edge of TCK. If the JTAG feature is not  
Synchronous being utilized, this pin can be disconnected or con-  
nected to VDD. This pin is not available on TQFP  
packages.  
TCK  
NC  
-
-
U4  
R7  
JTAG-Clock Clock input to the JTAG circuitry. If the JTAG  
feature is not being utilized, this pin must be  
connected to VSS. This pin is not available on  
TQFP packages.  
1,2,3,6,7, 1,2,3,6,7,  
14,16,25, 14,16,25,  
28,29,30, 28,29,30,  
38,39,42, 38,39,42,  
51,52,53, 43,51,52,  
56,57,66, 53,56,57,  
75,78,79, 66,75,78,  
B1,B7,  
A5,B1,B4,  
-
No Connects. Not internally connected to the die.  
C1,C7, C1,C2,C10,  
D2,D4,  
D1,D10,  
D7,E1, E1,E10,F1,  
E6,H2,  
F10,G1,  
F2,G1, G10,H1,H3,  
G6,H7, H9,H10,J2,  
79,95,96 J3,J5,K1, J11,K2,  
95,96  
K6,L4,L2, K11,L2,L1,  
L7,M6,  
M2,M11,  
N2,L7,P1, N2,N7,N10,  
P6,R1, N5,N11,P1,  
R5,R7, A1,B11,P2,  
T1,T4,U6  
R2,N6  
Document #: 38-05291 Rev. *C  
Page 11 of 34  
CY7C1360B  
CY7C1362B  
then the Write operation is controlled by BWE and BWX  
signals. The CY7C1360B/CY7C1362B provides Byte Write  
capability that is described in the Write Cycle Descriptions  
table. Asserting the Byte Write Enable input (BWE) with the  
selected Byte Write (BWX) input, will selectively write to only  
the desired bytes. Bytes not selected during a Byte Write  
operation will remain unaltered. A synchronous self-timed  
Write mechanism has been provided to simplify the Write  
operations.  
Because the CY7C1360B/CY7C1362B is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQs inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQs are  
automatically three-stated whenever a Write cycle is detected,  
regardless of the state of OE.  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise (tCO) is 3.0 ns  
(200-MHz device).  
The CY7C1360B/CY7C1362B supports secondary cache in  
systems utilizing either a linear or interleaved burst sequence.  
The interleaved burst order supports Pentium and i486  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
Accesses can be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC).  
Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Single Write Accesses Initiated by ADSC  
ADSC Write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) CE1, CE2, CE3[2] are all asserted active,  
and (4) the appropriate combination of the Write inputs (GW,  
BWE, and BWX) are asserted active to conduct a Write to the  
desired byte(s). ADSC-triggered Write accesses require a  
single clock cycle to complete. The address presented to A is  
loaded into the address register and the address  
advancement logic while being delivered to the memory array.  
The ADV input is ignored during this cycle. If a global Write is  
conducted, the data presented to the DQs is written into the  
corresponding address location in the memory core. If a Byte  
Write is conducted, only the selected bytes are written. Bytes  
not selected during a Byte Write operation will remain  
unaltered. A synchronous self-timed Write mechanism has  
been provided to simplify the Write operations.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all Byte Write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed Write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3[2]) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. ADSP is ignored if  
CE1 is HIGH.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
Because the CY7C1360B/CY7C1362B is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQs inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQs are  
automatically three-stated whenever a Write cycle is detected,  
regardless of the state of OE.  
[2]  
CE1, CE2, CE3 are all asserted active, and (3) the Write  
signals (GW, BWE) are all deasserted HIGH. ADSP is ignored  
if  
CE1 is HIGH. The address presented to the address inputs  
(A) is stored into the address advancement logic and the  
address register while being presented to the memory array.  
The corresponding data is allowed to propagate to the input of  
the output registers. At the rising edge of the next clock the  
data is allowed to propagate through the output register and  
onto the data bus within 3.0 ns (200-MHz device) if OE is  
active LOW. The only exception occurs when the SRAM is  
emerging from a deselected state to a selected state, its  
outputs are always three-stated during the first cycle of the  
access. After the first cycle of the access, the outputs are  
controlled by the OE signal. Consecutive single Read cycles  
are supported. Once the SRAM is deselected at clock rise by  
the chip select and either ADSP or ADSC signals, its output  
will three-state immediately.  
Burst Sequences  
The CY7C1360B/CY7C1362B provides a two-bit wraparound  
counter, fed by A1, A0, that implements either an interleaved  
or linear burst sequence. The interleaved burst sequence is  
designed specifically to support Intel Pentium applications.  
The linear burst sequence is designed to support processors  
that follow a linear burst sequence. The burst sequence is user  
selectable through the MODE input.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both Read and Write burst operations are supported.  
Single Write Accesses Initiated by ADSP  
Sleep Mode  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
[2]  
(2) CE1, CE2, CE3 are all asserted active. The address  
presented to A is loaded into the address register and the  
address advancement logic while being delivered to the  
memory array. The Write signals (GW, BWE, and BWX) and  
ADV inputs are ignored during this first cycle.  
ADSP-triggered Write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQs inputs is written into the corre-  
sponding address location in the memory array. If GW is HIGH,  
“sleep” mode. CE1, CE2, CE3[2], ADSP, and ADSC must  
the  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
Document #: 38-05291 Rev. *C  
Page 12 of 34  
CY7C1360B  
CY7C1362B  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
Linear Burst Address Table  
(MODE = GND)  
)
First  
Address  
A1, A0  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
First  
Address  
A1, A0  
Second  
Address  
A1, A0  
Third  
Fourth  
Address  
A1, A0  
Address  
A1, A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
.
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
tZZS  
tZZREC  
tZZI  
Description  
Snooze mode standby current  
Device operation to ZZ  
ZZ recovery time  
ZZ Active to snooze current  
ZZ Inactive to exit snooze current  
Test Conditions  
ZZ > VDD – 0.2V  
ZZ > VDD – 0.2V  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
Min.  
Max.  
35  
2tCYC  
Unit  
mA  
ns  
ns  
ns  
2tCYC  
0
2tCYC  
tRZZI  
ns  
Document #: 38-05291 Rev. *C  
Page 13 of 34  
CY7C1360B  
CY7C1362B  
Truth Table[3, 4, 5, 6, 7, 8]  
Operation  
Add. Used  
None  
CE2  
X
L
X
L
CE3  
X
X
H
X
H
X
L
L
L
L
L
X
X
X
X
X
X
X
X
X
X
X
X
WRITE  
CLK  
DQ  
CE1  
H
L
L
L
L
X
L
L
L
L
L
X
X
H
H
X
H
X
X
H
H
X
H
ZZ ADSP ADSC ADV  
OE  
X
X
X
X
X
X
L
H
X
L
H
L
H
L
H
X
X
L
H
L
H
X
X
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Snooze Mode, Power Down  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
H
H
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
H
H
H
H
H
H
L
L
H
H
H
H
L
L-H Three-State  
L-H Three-State  
L-H Three-State  
L-H Three-State  
L-H Three-State  
None  
None  
None  
None  
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
X
X
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
X
L-H  
Three-State  
Q
External  
External  
External  
External  
External  
Next  
Next  
Next  
Next  
Next  
L
L-H Three-State  
L-H  
L-H  
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
D
Q
L-H Three-State  
L-H  
L-H Three-State  
L-H  
L-H Three-State  
L-H  
L-H  
L-H  
L-H Three-State  
L-H  
L-H Three-State  
L-H  
L-H  
Q
L
L
L
L
Q
D
D
Q
Next  
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
Q
D
D
WRITE Cycle, Suspend Burst  
L
Notes:  
3. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write Enable signals and BWE = L or GW = L. WRITE = H when all Byte Write Enable signals, BWE, GW = H.  
5. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.  
OE  
OE  
7. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks  
6. CE , CE , and CE are available only in the TQFP package. BGA package has only 2 chip selects CE and CE .  
1
2
3
1
2
X
after the  
or with the assertion of  
. As a result,  
must be driven HIGH prior to the start of the Write cycle to allow the outputs to three-state.  
is  
OE  
ADSC  
OE  
ADSP  
a don't care for the remainder of the Write cycle  
8.  
is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a Read cycle all data bits are Three-State when  
OE  
OE  
is  
.
is active (LOW)  
inactive or when the device is deselected, and all data bits behave as output when  
OE  
9. Table only lists a partial listing of the byte write combinations. Any combination of BW  
is valid. Appropriate write will be done based on which byte write is active.  
[A:D]  
Document #: 38-05291 Rev. *C  
Page 14 of 34  
CY7C1360B  
CY7C1362B  
Partial Truth Table for Read/Write[5, 9]  
Function (CY7C1360B)  
BWD  
X
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
X
BWC  
X
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
BWB  
X
H
H
L
BWA  
X
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
GW  
BWE  
Read  
Read  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
Write Byte C – (DQC and DQPC)  
Write Bytes C, A  
L
H
H
L
Write Bytes C, B  
Write Bytes C, B, A  
Write Byte D – (DQD and DQPD)  
Write Bytes D, A  
Write Bytes D, B  
Write Bytes D, B, A  
Write Bytes D, C  
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
H
H
L
L
H
H
L
L
X
L
X
Write All Bytes  
X
Truth Table for Read/Write[5]  
Function (CY7C1362B)  
BWB  
X
H
H
L
L
L
X
BWA  
GW  
BWE  
Read  
Read  
H
H
L
L
L
L
L
X
X
H
L
H
L
L
X
H
H
H
H
H
L
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
Write All Bytes  
Write All Bytes  
Document #: 38-05291 Rev. *C  
Page 15 of 34  
CY7C1360B  
CY7C1362B  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1360B/CY7C1362B incorporates a serial boundary  
scan test access port (TAP). This port operates in accordance  
with IEEE Standard 1149.1-1990 but does not have the set of  
functions required for full 1149.1 compliance. These functions  
from the IEEE specification are excluded because their  
inclusion places an added delay in the critical speed path of  
the SRAM. Note that the TAP controller functions in a manner  
that does not conflict with the operation of other devices using  
1149.1 fully compliant TAPs. The TAP operates using  
JEDEC-standard 3.3V or 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see Figure .  
TDI is internally pulled up and can be unconnected if the TAP  
is unused in an application. TDI is connected to the most  
significant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
The CY7C1360B/CY7C1362B contains a TAP controller,  
instruction register, boundary scan register, bypass register,  
and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
TAP Controller State Diagram  
0
Bypass Register  
TEST-LOGIC  
1
RESET  
0
2
1
0
0
0
1
1
1
Selection  
Circuitry  
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
Instruction Register  
31 30 29  
Identification Register  
0
Selection  
TDI  
TDO  
Circuitr  
y
0
0
.
.
. 2 1  
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
0
0
TAP CONTROLLER  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Test Access Port (TAP)  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Document #: 38-05291 Rev. *C  
Page 16 of 34  
CY7C1360B  
CY7C1362B  
Instruction Register  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The SRAM has a 71-bit-long  
register.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
SAMPLE/PRELOAD  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the device TAP controller is not fully 1149.1 compliant.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls  
is captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture set-up plus  
hold time (tCS plus tCH).  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
The SRAM clock input might not be captured correctly if there  
is no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
Document #: 38-05291 Rev. *C  
Page 17 of 34  
CY7C1360B  
CY7C1362B  
possible to capture all other signals and simply ignore the  
value of the CLK captured in the boundary scan register.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO balls.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction will have the  
same effect as the Pause-DR command.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[10, 11]  
Parameter  
Clock  
tTCYC  
tTF  
tTH  
tTL  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
25  
25  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-up to TCK Clock Rise  
tTDIS  
5
ns  
ns  
0
5
5
5
ns  
ns  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
Capture Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Notes:  
10. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1ns.  
R
F
Document #: 38-05291 Rev. *C  
Page 18 of 34  
CY7C1360B  
CY7C1362B  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ........ ........................................VSS to 3.3V  
Input rise and fall times..................... ..............................1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels................... ......................1.25V  
Output reference levels .................. ..............................1.25V  
Test load termination supply voltage .................... ........1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.3V ±0.165V unless otherwise noted)[12]  
Parameter  
VOH1  
Description  
Output HIGH Voltage IOH = –4.0 mA  
Conditions  
VDDQ = 3.3V  
Min.  
2.4  
2.0  
2.9  
2.1  
Max.  
Unit  
V
V
V
V
V
V
V
V
V
V
V
V
I
OH = –1.0 mA  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = –100 µA  
Output LOW Voltage IOL = 8.0 mA  
0.4  
0.4  
0.2  
I
OL = 8.0 mA  
Output LOW Voltage IOL = 100 µA  
VDDQ = 2.5V  
0.2  
Input HIGH Voltage  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
2.0  
1.7  
–0.5  
–0.3  
–5  
VDD + 0.3  
VDD + 0.3  
0.7  
VIL  
Input LOW Voltage  
VDDQ = 2.5V  
0.7  
5
IX  
Input Load Current  
GND < VIN < VDDQ  
µA  
Note:  
12. All voltages referenced to V (GND).  
SS  
Document #: 38-05291 Rev. *C  
Page 19 of 34  
CY7C1360B  
CY7C1362B  
Identification Register Definitions  
CY7C1360B  
CY7C1362B  
(512KX18)  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)  
(256KX36)  
001  
Description  
Describes the version number  
Reserved for Internal Use  
Defines memory type and architecture  
Defines width and density  
001  
01010  
01010  
000000  
010110  
Device Width (23:18)  
000000  
100110  
00000110100  
1
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
00000110100 Allows unique identification of SRAM vendor  
1
Indicates the presence of an ID register  
Scan Register Sizes  
Bit Size(x36)  
Register Name  
Bit Size(x18)  
Instruction  
Bypass  
3
1
3
1
ID  
32  
71  
32  
71  
Boundary Scan Order  
Identification Codes  
Instruction  
EXTEST  
Code  
000  
Description  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1 compliant.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
SAMPLE Z  
RESERVED  
SAMPLE/PRELOAD  
011  
100  
Do Not Use: This instruction is reserved for future use.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1 compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document #: 38-05291 Rev. *C  
Page 20 of 34  
CY7C1360B  
CY7C1362B  
119-Ball BGA Boundary Scan Order  
CY7C1360B (256K x 36)  
CY7C1362B (512K x 18)  
BIT  
#
BALL  
ID  
Signal  
Name  
BIT  
#
BALL  
ID  
Signal  
Name  
BIT# BALL ID  
Signal  
Name  
BIT# BALL ID  
Signal  
Name  
1
CLK  
GW  
BWE  
OE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
P4  
N4  
R6  
T5  
A0  
A1  
1
CLK  
GW  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
P4  
N4  
A0  
A1  
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C3  
B3  
D6  
H7  
G6  
E6  
D7  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
K4  
H4  
2
2
3
A
3
M4  
BWE  
OE  
R6  
A
4
A
4
F4  
T5  
A
5
ADSC  
ADSP  
ADV  
A
T3  
A
5
B4  
ADSC  
ADSP  
ADV  
A
T3  
A
6
R2  
R3  
P2  
A
6
A4  
R2  
A
7
MODE  
DQPD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
Internal  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQPC  
A
7
G4  
R3  
MODE  
Internal  
Internal  
Internal  
Internal  
DQPB  
DQB  
8
8
C3  
Internal  
Internal  
Internal  
Internal  
P2  
9
A
P1  
9
B3  
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQPB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
ZZ  
L2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
T2  
A
K1  
Internal  
Internal  
Internal  
D6  
Internal  
Internal  
Internal  
DQPA  
DQA  
DQA  
DQA  
DQA  
ZZ  
N2  
N1  
M2  
L1  
N1  
M2  
DQB  
E7  
L1  
DQB  
K2  
F6  
K2  
DQB  
Internal  
H1  
G2  
E2  
G7  
Internal  
H1  
Internal  
DQB  
H6  
T7  
G2  
DQB  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQPA  
A
K7  
DQA  
DQA  
DQA  
DQA  
Internal  
Internal  
Internal  
Internal  
Internal  
A
E2  
DQB  
D1  
H2  
G1  
F2  
L6  
D1  
DQB  
N6  
P7  
N7  
M6  
L7  
N6  
Internal  
Internal  
Internal  
Internal  
Internal  
C2  
Internal  
Internal  
Internal  
Internal  
Internal  
A
P7  
Internal  
Internal  
Internal  
Internal  
Internal  
T6  
E1  
D2  
C2  
A2  
K6  
P6  
T4  
A3  
C5  
B5  
A5  
C6  
A6  
B6  
A
A2  
A
E4  
CE1  
CE2  
BWD  
BWC  
BWB  
BWA  
Internal  
E4  
CE1  
A
B2  
A3  
A
B2  
CE2  
A
L3  
C5  
A
Internal  
Internal  
G3  
Internal  
Internal  
BWB  
BWA  
Internal  
A
G3  
G5  
L5  
B5  
A
A
A5  
A
A
C6  
A
L5  
A
Internal  
A6  
A
Internal  
A
B6  
A
Document #: 38-05291 Rev. *C  
Page 21 of 34  
CY7C1360B  
CY7C1362B  
165-Ball fBGA Boundary Scan Order  
CY7C1360B (256K x 36)  
CY7C1362B (512K x 18)  
BIT#  
BALL  
ID  
Signal  
Name  
BIT#  
BALL  
ID  
Signal  
Name  
BIT#  
BALL  
ID  
Signal  
Name  
BIT# BALL ID  
Signal  
Name  
1
B6  
B7  
CLK  
GW  
BWE  
OE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
R6  
P6  
R4  
P4  
R3  
P3  
R1  
N1  
L2  
A0  
A1  
1
B6  
B7  
CLK  
GW  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
R6  
P6  
A0  
A1  
2
2
3
A7  
A
3
A7  
BWE  
OE  
R4  
A
4
B8  
A
4
B8  
P4  
A
5
A8  
ADSC  
ADSP  
ADV  
A
A
5
A8  
ADSC  
ADSP  
ADV  
A
R3  
A
6
B9  
A
6
B9  
P3  
A
7
A9  
MODE  
DQPD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
Internal  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQPC  
A
7
A9  
R1  
MODE  
Internal  
Internal  
Internal  
Internal  
DQPB  
DQB  
8
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
P10  
R9  
8
B10  
Internal  
Internal  
Internal  
Internal  
N1  
9
A
9
A10  
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQPB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
ZZ  
K2  
J2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
A11  
A
Internal  
Internal  
Internal  
C11  
Internal  
Internal  
Internal  
DQPA  
DQA  
DQA  
DQA  
DQA  
ZZ  
M2  
M1  
L1  
M1  
L1  
DQB  
K1  
J1  
D11  
K1  
DQB  
E11  
J1  
DQB  
Internal  
G2  
F2  
F11  
Internal  
G2  
Internal  
DQB  
G11  
H11  
F2  
DQB  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQPA  
A
E2  
D2  
G1  
F1  
J10  
DQA  
DQA  
DQA  
DQA  
Internal  
Internal  
Internal  
Internal  
Internal  
A
E2  
DQB  
K10  
D2  
DQB  
L10  
Internal  
Internal  
Internal  
Internal  
Internal  
B2  
Internal  
Internal  
Internal  
Internal  
Internal  
A
M10  
Internal  
Internal  
Internal  
Internal  
Internal  
R11  
E1  
D1  
C1  
B2  
A2  
A3  
B3  
B4  
A4  
A5  
B5  
A6  
A
A2  
A
CE1  
CE2  
BWD  
BWC  
BWB  
BWA  
CE3  
A3  
CE1  
A
R10  
P10  
A
B3  
CE2  
A
A
Internal  
Internal  
A4  
Internal  
Internal  
BWB  
BWA  
CE3  
A
R9  
A
P9  
A
P9  
A
R8  
A
R8  
A
B5  
P8  
A
P8  
A
A6  
P11  
A
P11  
A
Document #: 38-05291 Rev. *C  
Page 22 of 34  
CY7C1360B  
CY7C1362B  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Storage Temperature .................................65°C to +150°C  
Ambient Temperature with  
Operating Range  
Power Applied.............................................55°C to +125°C  
Ambient  
Supply Voltage on VDD Relative to GND........ –0.5V to +4.6V  
Range  
Temperature  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
in Three-State ..................................... –0.5V to VDDQ + 0.5V  
to VDD  
Industrial  
–40°C to +85°C  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Electrical Characteristics Over the Operating Range[13, 14]  
Parameter  
VDD  
VDDQ  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
VDD  
Unit  
V
V
VDDQ = 3.3V  
VDDQ = 2.5V  
2.625  
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
VDDQ = 3.3V, VDD = Min., IOH = –4.0 mA  
VDDQ = 2.5V, VDD = Min., IOH = –1.0 mA  
VDDQ = 3.3V, VDD = Min., IOL = 8.0 mA  
V
V
V
V
V
V
V
V
µA  
2.0  
Output LOW Voltage  
0.4  
0.4  
VDD + 0.3V  
VDD + 0.3V  
0.8  
V
DDQ = 2.5V, VDD = Min., IOL = 1.0 mA  
Input HIGH Voltage[13] VDDQ = 3.3V  
2.0  
1.7  
–0.3  
–0.3  
–5  
VDDQ = 2.5V  
Input LOW Voltage[13]  
VDDQ = 3.3V  
VDDQ = 2.5V  
GND VI VDDQ  
0.7  
5
Input Load Current  
except ZZ and MODE  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
30  
5
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
4.4-ns cycle, 225 MHz  
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
All speeds  
250  
220  
180  
50  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
ISB2  
ISB3  
ISB4  
Automatic CE  
VDD = Max, Device Deselected,  
Power-down  
VIN VIH or VIN VIL  
Current—TTL Inputs  
f = fMAX = 1/tCYC  
Automatic CE  
VDD = Max, Device Deselected,  
All speeds  
30  
50  
40  
mA  
mA  
mA  
Power-down  
V
IN 0.3V or VIN > VDDQ – 0.3V,  
Current—CMOS Inputs f = 0  
Automatic CE  
VDD = Max, Device Deselected, or All speeds  
Power-down  
V
IN 0.3V or VIN > VDDQ – 0.3V  
Current—CMOS Inputs f = fMAX = 1/tCYC  
Automatic CE  
VDD = Max, Device Deselected,  
All Speeds  
Power-down  
VIN VIH or VIN VIL, f = 0  
Current—TTL Inputs  
Shaded areas contain advance information.  
Notes:  
13. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
14. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
.
DD  
Power-up  
DD  
IH  
DD  
DDQ  
Document #: 38-05291 Rev. *C  
Page 23 of 34  
CY7C1360B  
CY7C1362B  
Thermal Resistance[15]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Package  
Unit  
ΘJA  
Thermal Resistance  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
25  
25  
27  
°C/W  
(Junction to Ambient)  
ΘJC  
Thermal Resistance  
(Junction to Case)  
9
6
6
°C/W  
impedance, per EIA / JESD51.  
Capacitance[15]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Package  
Unit  
pF  
CIN  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
5
5
5
5
5
7
5
5
7
VDD = 3.3V.  
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
V
DDQ = 2.5V  
pF  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
90%  
10%  
Z = 50Ω  
0
10%  
R = 50Ω  
L
GND  
5 pF  
R = 351Ω  
1 ns  
1 ns  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
1 ns  
5 pF  
R =1538Ω  
1 ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
15. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05291 Rev. *C  
Page 24 of 34  
CY7C1360B  
CY7C1362B  
Switching Characteristics Over the Operating Range[16, 17]  
225 MHz  
200 MHz  
166 MHz  
Parameter  
tPOWER  
Clock  
tCYC  
tCH  
tCL  
Description  
Min.  
1
Max  
Min.  
1
Max  
Min.  
1
Max  
Unit  
ms  
VDD(Typical) to the First Access[18]  
Clock Cycle Time  
Clock HIGH  
4.4  
1.8  
1.8  
5.0  
2.0  
2.0  
6.0  
2.4  
2.4  
ns  
ns  
ns  
Clock LOW  
Output Times  
tCO  
tDOH  
tCLZ  
tCHZ  
Data Output Valid after CLK Rise  
Data Output Hold after CLK Rise  
Clock to Low-Z[19, 20, 21]  
2.8  
3.0  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
Clock to High-Z[19, 20, 21]  
2.8  
2.8  
3.0  
3.0  
3.5  
3.5  
tOEV  
OE LOW to Output Valid  
LOW to Output Low-Z[19, 20, 21]  
OE  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
tADS  
tADVS  
tWES  
0
0
0
OE HIGH to Output High-Z[19, 20, 21]  
2.8  
3.0  
3.5  
Address Set-up before CLK Rise  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
,
ADSC ADSP Set-up before CLK Rise  
ADV Set-up before CLK Rise  
Set-up before CLK Rise  
GW, BWE, BWX  
tDS  
tCES  
Data Input Set-up before CLK Rise  
Chip Enable Set-Up before CLK Rise  
Hold Times  
tAH  
tADH  
tADVH  
tWEH  
tDH  
Address Hold after CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
,
Hold after CLK Rise  
ADSP ADSC  
ADV Hold after CLK Rise  
,
,
GW BWE BWX Hold after CLK Rise  
Data Input Hold after CLK Rise  
tCEH  
Chip Enable Hold after CLK Rise  
Shaded areas contain advance information.  
Notes:  
16. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
17. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
18. This part has a voltage regulator internally; t  
can be initiated.  
is the time that the power needs to be supplied above V (minimum) initially before a Read or Write operation  
DD  
POWER  
19. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
20. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions  
21. This parameter is sampled and not 100% tested.  
Document #: 38-05291 Rev. *C  
Page 25 of 34  
CY7C1360B  
CY7C1362B  
Switching Waveforms  
Read Cycle Timing[22]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,  
BWx  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV  
suspends  
burst.  
t
t
OEV  
CO  
t
t
OEHZ  
t
OELZ  
t
CHZ  
DOH  
t
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Note:  
22. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05291 Rev. *C  
Page 26 of 34  
CY7C1360B  
CY7C1362B  
Switching Waveforms(continued)  
Write Cycle Timing[22, 23]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
ADDRESS  
BWE,  
t
t
AH  
AS  
A1  
A2  
A3  
Byte write signals are  
ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
Data In (D)  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
Data Out (Q)  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Note:  
23.  
Full width Write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05291 Rev. *C  
Page 27 of 34  
CY7C1360B  
CY7C1362B  
Switching Waveforms(continued)  
Read/Write Cycle Timing[22, 24, 25]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
BWE,  
t
t
WEH  
WES  
BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back READs  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
DON’T CARE  
UNDEFINED  
Notes:  
24.  
.
The data bus (Q) remains in high-Z following a Write cycle, unless a new Read access is initiated by  
ADSP or ADSC  
25. GW is HIGH.  
Document #: 38-05291 Rev. *C  
Page 28 of 34  
CY7C1360B  
CY7C1362B  
Switching Waveforms(continued)  
ZZ Mode Timing [26, 27]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
26. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
27. DQs are in High-Z when exiting ZZ sleep mode.  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
Part and Package Type  
225  
CY7C1360B-225AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
Commercial  
CY7C1362B-225AC  
3 Chip Enables  
CY7C1360B-225AI  
CY7C1362B-225AI  
Industrial  
CY7C1360B-225AJC  
CY7C1362B-225AJC  
CY7C1360B-225AJI  
CY7C1362B-225AJI  
CY7C1360B-225BGC  
CY7C1362B-225BGC  
CY7C1360B-225BGI  
CY7C1362B-225BGI  
CY7C1360B-225BZC  
CY7C1362B-225BZC  
CY7C1360B-225BZI  
CY7C1362B-225BZI  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
2 Chip Enables  
Commercial  
Industrial  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables and Commercial  
JTAG  
Industrial  
BB165A 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.2mm) Commercial  
3 Chip Enables and JTAG  
Industrial  
Shaded areas contain advance information. Please contact your local sales representative for availability of these parts.  
Document #: 38-05291 Rev. *C  
Page 29 of 34  
CY7C1360B  
CY7C1362B  
Ordering Information (continued)  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
Part and Package Type  
200  
CY7C1360B-200AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
Commercial  
CY7C1362B-200AC  
3 Chip Enables  
CY7C1360B-200AI  
CY7C1362B-200AI  
Industrial  
CY7C1360B-200AJC  
CY7C1362B-200AJC  
CY7C1360B-200AJI  
CY7C1362B-200AJI  
CY7C1360B-200BGC  
CY7C1362B-200BGC  
CY7C1360B-200BGI  
CY7C1362B-200BGI  
CY7C1360B-200BZC  
CY7C1362B-200BZC  
CY7C1360B-200BZI  
CY7C1362B-200BZI  
CY7C1360B-166AC  
CY7C1362B-166AC  
CY7C1360B-166AI  
CY7C1362B-166AI  
CY7C1360B-166AJC  
CY7C1362B-166AJC  
CY7C1360B-166AJI  
CY7C1362B-166AJI  
CY7C1360B-166BGC  
CY7C1362B-166BGC  
CY7C1360B-166BGI  
ICY7C1362B-166BGI  
CY7C1360B-166BZC  
CY7C1362B-166BZC  
CY7C1360B-166BZI  
CY7C1362B-166BZI  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
2 Chip Enables  
Commercial  
Industrial  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables and Commercial  
JTAG  
Industrial  
BB165A 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.2mm) Commercial  
3 Chip Enables and JTAG  
Industrial  
166  
A101  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Commercial  
Industrial  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
2 Chip Enables  
Commercial  
Industrial  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables and Commercial  
JTAG  
Industrial  
BB165A 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.2mm) Commercial  
3 Chip Enables and JTAG  
Industrial  
Shaded areas contain advance information. Please contact your local sales representative for availability of these parts.  
Document #: 38-05291 Rev. *C  
Page 30 of 34  
CY7C1360B  
CY7C1362B  
Package Diagrams  
100-pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
Document #: 38-05291 Rev. *C  
Page 31 of 34  
CY7C1360B  
CY7C1362B  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Document #: 38-05291 Rev. *C  
Page 32 of 34  
CY7C1360B  
CY7C1362B  
Package Diagrams (continued)  
165-Ball FBGA (13 x 15 x 1.2 mm) BB165A  
51-85122-*C  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05291 Rev. *C  
Page 33 of 34  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
Cypressproductsarenotwarrantednorintendedtobeusedformedical, life-support, life-saving, criticalcontrolorsafetyapplications, unlesspursuanttoanexpresswrittenagreementwithCypress.  
CY7C1360B  
CY7C1362B  
Document History Page  
Document Title: CY7C1360B/CY7C1362B 9-Mbit (256K x 36/512K x 18) Pipelined SRAM  
Document #: 38-05291 Rev. *C  
Orig. of  
REV.  
**  
*A  
*B  
*C  
ECN NO. Issue Date Change  
Description of Change  
114766  
117939  
205060  
225181  
08/08/02  
08/20/02  
See ECN  
See ECN  
RCS  
RCS  
NJY  
VBL  
New Data Sheet  
Added A0 and A1 to 165 fBGA pinout  
Final Data Sheet  
Update Ordering Info section: shade S,E part numbers  
Document #: 38-05291 Rev. *C  
Page 34 of 34  

相关型号:

CY7C1360A

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1360A-150AC

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1360A-150ACT

Cache SRAM, 256KX36, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1360A-150ACT

Cache SRAM, 256KX36, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
ROCHESTER

CY7C1360A-150AI

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1360A-150AJC

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1360A-150AJI

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1360A-150BGC

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1360A-150BGCT

Cache SRAM, 256KX36, 3.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
ROCHESTER

CY7C1360A-150BGCT

Cache SRAM, 256KX36, 3.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1360A-150BGI

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1360A-150BGI

Cache SRAM, 256KX36, 4.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, BGA-119
ROCHESTER