CY7C1361C-117BZI [CYPRESS]

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM; 9兆位( 256K ×36 / 512K ×18 )流通型SRAM
CY7C1361C-117BZI
型号: CY7C1361C-117BZI
厂家: CYPRESS    CYPRESS
描述:

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
9兆位( 256K ×36 / 512K ×18 )流通型SRAM

存储 内存集成电路 静态存储器 动态存储器 时钟
文件: 总30页 (文件大小:476K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1361C  
CY7C1363C  
PRELIMINARY  
9-Mbit (256K x 36/512K x 18) Flow-Through SRAM  
Features  
Functional Description[1]  
• Supports 133-MHz bus operations  
• 256K × 36/512K × 18 common I/O  
• 3.3V –5% and +10% core power supply (VDD  
The CY7C1361C/CY7C1363C is a 3.3V, 256K x 36 and 512K x  
18 Synchronous Flowthrough SRAMs, respectively designed  
to interface with high-speed microprocessors with minimum  
glue logic. Maximum access delay from clock rise is 6.5 ns  
(133-MHz version). A 2-bit on-chip counter captures the first  
address in a burst and increments the address automatically  
for the rest of the burst access. All synchronous inputs are  
gated by registers controlled by a positive-edge-triggered  
Clock Input (CLK). The synchronous inputs include all  
)
• 2.5V or 3.3V I/O supply (VDDQ  
• Fast clock-to-output times  
— 6.5 ns (133-MHz version)  
— 7.5 ns (117-MHz version)  
— 8.5 ns (100-MHz version)  
)
addresses, all data inputs, address-pipelining Chip Enable  
[2]  
(
), depth-expansion Chip Enables (CE and  
), Burst  
CE3  
CE1  
2
Control inputs (  
,
,
), Write Enables  
(
ADV  
BWx  
and  
,
• Provide high-performance 2-1-1-1 access rate  
ADSC ADSP  
), and Global Write (  
BWE  
). Asynchronous  
GW  
and  
inputs  
User-selectable burst counter supporting Intel  
(
)
and the ZZ pin  
OE  
.
include the Output Enable  
Pentiuminterleaved or linear burst sequences  
The CY7C1361C/CY7C1363C allows either interleaved or  
linear burst sequences, selected by the MODE input pin. A  
HIGH selects an interleaved burst sequence, while a LOW  
selects a linear burst sequence. Burst accesses can be  
initiated with the Processor Address Strobe (ADSP) or the  
cache Controller Address Strobe (ADSC) inputs. Address  
advancement is controlled by the Address Advancement  
(ADV) input.  
• Separate processor and controller address strobes  
• Synchronous self-timed write  
• Asynchronous output enable  
AvailableinLead-Free100TQFP,119BGAand165fBGA  
packages Both 2 and 3 Chip Enable Options for TQFP  
• IEEE 1149.1 compatible JTAG Boundary Scan for BGA  
and fBGA packages  
•“ZZ” Sleep Mode option  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (  
) or  
ADSP  
Address Strobe Controller (  
) are active. Subsequent  
ADSC  
burst addresses can be internally generated as controlled by  
the Advance pin ( ).  
ADV  
The CY7C1361C/CY7C1363C operates from a +3.3V core  
power supply while all outputs may operate with either a +2.5  
or +3.3V supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Selection Guide  
133 MHz  
117 MHz  
7.5  
100 MHz  
8.5  
Unit  
ns  
mA  
mA  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
6.5  
250  
30  
220  
30  
180  
30  
Notes:  
1. For best–practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE is for A version of TQFP ( 3 Chip Enable Option) and 165 fBGA package only. 119 BGA is offered only in 2 Chip Enable.  
3
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05541 Rev. *A  
Revised October 5, 2004  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Logic Block Diagram – CY7C1361C (256K x 36)  
ADDRESS  
REGISTER  
A0, A1, A  
A[1:0]  
MODE  
ADV  
CLK  
Q1  
BURST  
COUNTER  
AND LOGIC  
Q0  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
BW  
D
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
BW  
C
OUTPUT  
BUFFERS  
DQs  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE REGISTER  
B, DQPB  
B
C
DQ  
BYTE  
WRITE REGISTER  
B, DQPB  
BW  
B
DQPD  
DQ  
BYTE  
WRITE REGISTER  
A, DQPA  
DQ  
A, DQPA  
BW  
A
BYTE  
BWE  
WRITE REGISTER  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
1
Logic Block Diagram – CY7C1363C (512K x 18)  
ADDRESS  
REGISTER  
A0,A1,A  
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ  
B,DQPB  
DQ  
B,DQPB  
WRITE DRIVER  
WRITE REGISTER  
BW  
B
A
MEMORY  
ARRAY  
OUTPUT  
BUFFERS  
DQs  
DQP  
DQP  
SENSE  
AMPS  
A
B
DQ  
A,DQPA  
DQA,DQPA  
WRITE REGISTER  
WRITE DRIVER  
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
Document #: 38-05541 Rev. *A  
Page 2 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Pin Configurations  
100-pin TQFP Pinout (3 Chip Enables) (A version)  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
A
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
NC  
2
DQC  
3
NC  
NC  
3
VDDQ  
4
5
VDDQ  
VSSQ  
NC  
VDDQ  
VSSQ  
NC  
4
VSSQ  
5
DQC  
6
6
DQC  
7
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
7
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS/DNU  
VDD  
8
DQC  
9
9
VSSQ  
10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
11  
DQC  
12  
DQC  
13  
VSS/DNU  
14  
VDD  
15  
NC  
CY7C1363C  
(512K x 18)  
CY7C1361C  
(256K x 36)  
NC  
16  
VDD  
ZZ  
NC  
VDD  
ZZ  
VSS  
17  
VSS  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
VDDQ  
20  
VSSQ  
21  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
NC  
VSSQ  
26  
VSSQ  
VDDQ  
NC  
VSSQ  
VDDQ  
NC  
VDDQ  
27  
DQD  
28  
DQD  
29  
NC  
NC  
DQPD  
30  
NC  
NC  
Document #: 38-05541 Rev. *A  
Page 3 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Pin Configurations (continued)  
100-pin TQFP (2 Chip Enables) (AJ Version)  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
A
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
NC  
2
DQC  
3
NC  
NC  
3
VDDQ  
4
5
VDDQ  
VSSQ  
NC  
VDDQ  
VSSQ  
NC  
4
VSSQ  
5
DQC  
6
6
DQC  
7
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
7
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS/DNU  
VDD  
8
DQC  
9
9
VSSQ  
10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
11  
DQC  
12  
DQC  
13  
VSS/DNU  
14  
VDD  
15  
NC  
CY7C1363C  
(512K x 18)  
CY7C1361C  
NC  
16  
VDD  
ZZ  
NC  
VDD  
ZZ  
VSS  
17  
(256K x 36)  
VSS  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
VDDQ  
20  
VSSQ  
21  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
NC  
VSSQ  
26  
VSSQ  
VDDQ  
NC  
VSSQ  
VDDQ  
NC  
VDDQ  
27  
DQD  
28  
DQD  
29  
NC  
NC  
DQPD  
30  
NC  
NC  
Document #: 38-05541 Rev. *A  
Page 4 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Pin Configurations (continued)  
119-ball BGA (2 Chip Enables with JTAG)  
CY7C1361C (256K x 36)  
1
2
3
4
5
6
7
VDDQ  
A
A
A
A
VDDQ  
A
ADSP  
B
C
NC  
NC  
CE2  
A
A
A
A
A
A
A
NC  
NC  
ADSC  
VDD  
DQC  
DQC  
VDDQ  
DQPC  
DQC  
DQC  
VSS  
VSS  
VSS  
NC  
CE1  
OE  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
DQB  
VDDQ  
D
E
F
DQC  
DQC  
VDDQ  
DQD  
DQD  
VDDQ  
DQD  
DQC  
DQC  
VDD  
DQB  
DQB  
VDD  
DQA  
DQA  
DQA  
DQA  
DQB  
DQB  
VDDQ  
DQA  
DQA  
VDDQ  
DQA  
G
H
J
BWC  
VSS  
NC  
ADV  
GW  
VDD  
CLK  
NC  
BWE  
A1  
BWB  
VSS  
NC  
DQD  
VSS  
VSS  
K
L
M
N
DQD  
DQD  
DQD  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
P
R
DQD  
NC  
DQPD  
A
VSS  
MODE  
A0  
VDD  
VSS  
NC  
DQPA  
A
DQA  
NC  
T
U
NC  
VDDQ  
NC  
TMS  
A
TDI  
A
TCK  
A
TDO  
NC  
NC  
ZZ  
VDDQ  
CY7C1363C (512K x 18)  
2
A
CE2  
A
NC  
DQB  
NC  
1
3
A
A
4
5
A
A
A
VSS  
VSS  
VSS  
VSS  
VSS  
6
A
7
A
B
C
D
E
F
G
H
J
K
L
M
N
P
VDDQ  
NC  
NC  
DQB  
NC  
VDDQ  
NC  
DQB  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
VDDQ  
DQA  
NC  
VDDQ  
ADSP  
ADSC  
VDD  
A
A
DQPA  
NC  
A
VSS  
VSS  
VSS  
BWB  
VSS  
NC  
NC  
CE1  
OE  
ADV  
DQA  
DQB  
NC  
VDD  
NC  
DQA  
VDD  
NC  
DQA  
NC  
GW  
VDD  
NC  
VSS  
NC  
DQB  
VSS  
CLK  
NC  
BWE  
A1  
DQA  
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
VSS  
VSS  
VSS  
VSS  
NC  
VDDQ  
NC  
BWA  
VSS  
VSS  
VSS  
DQA  
NC  
DQPB  
A0  
DQA  
R
T
NC  
NC  
A
A
MODE  
A
VDD  
NC  
NC  
A
A
A
NC  
ZZ  
U
VDDQ  
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
Document #: 38-05541 Rev. *A  
Page 5 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Pin Configurations (continued)  
165-ball fBGA (3 Chip Enable)  
CY7C1361C (256K x 36)  
1
NC / 288M  
NC  
DQPC  
DQC  
2
A
A
NC  
DQC  
DQC  
DQC  
DQC  
VSS  
DQD  
DQD  
DQD  
DQD  
NC  
3
4
5
6
7
8
9
10  
11  
NC  
NC / 144M  
DQPB  
DQB  
CE1  
BWC  
BWB  
CE3  
BWE  
GW  
VSS  
VSS  
VSS  
ADSC  
ADV  
A
A
B
C
D
E
F
G
H
J
K
L
M
N
P
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
BWD  
VSS  
VDD  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
A
NC  
DQB  
DQC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
A
DQB  
DQB  
DQB  
NC  
DQA  
DQA  
DQA  
DQA  
NC  
A
DQB  
DQC  
DQC  
NC  
DQD  
DQD  
DQD  
DQD  
DQPD  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
TDO  
DQB  
DQB  
ZZ  
DQA  
DQA  
DQA  
DQA  
DQPA  
A
VSS  
NC  
TDI  
VSS  
NC / 18M  
A1  
VDD  
VSS  
A
NC / 72M  
A0  
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1363C (512K x 18)  
1
NC / 288M  
NC  
2
3
4
5
6
7
8
9
10  
11  
A
A
CE1  
BWB  
NC  
CE  
BWE  
GW  
VSS  
VSS  
ADSC  
ADV  
A
A
3
A
NC  
DQB  
DQB  
DQB  
DQB  
VSS  
NC  
NC  
NC  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
NC  
NC  
NC  
NC  
NC / 144M  
DQPA  
DQA  
B
C
D
E
F
G
H
J
K
L
NC  
NC  
NC  
NC  
NC  
VSS  
DQB  
DQB  
DQB  
VSS  
DQA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQA  
DQA  
ZZ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
NC  
DQB  
DQPB  
NC  
NC  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
NC / 18M  
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
MODE NC / 36M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05541 Rev. *A  
Page 6 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Pin Definitions  
Name  
I/O  
Description  
A0, A1 , A  
Input-  
Address Inputs used to select one of the address locations. Sampled at the rising  
Synchronous edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3[2] are sampled  
active. A[1:0] feed the 2-bit counter.  
BWA,BWB  
BWC,BWD  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the  
Synchronous SRAM. Sampled on the rising edge of CLK.  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a  
GW  
Synchronous global write is conducted (ALL bytes are written, regardless of the values on BWX and BWE).  
CLK  
Input-  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment  
Clock  
the burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in  
CE1  
CE2  
Synchronous conjunction with CE2 and CE3[2] to select/deselect the device. ADSP is ignored  
if CE1 is  
CE is sampled only when a new external address is loaded.  
HIGH.  
1
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE1 and CE3[2] to select/deselect the device. CE2 is sampled only when  
a new external address is loaded.  
[2]  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in  
CE3  
Synchronous conjunction with CE1 and CE2 to select/ deselect the device.CE3 is sampled only when  
a new external address is loaded.  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins.  
OE  
Asynchronous When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are  
three-stated, and act as input data pins. OE is masked during the first clock of a read cycle  
when emerging from a deselected state.  
Input-  
Advance Input signal, sampled on the rising edge of CLK. When asserted, it automat-  
ADV  
Synchronous ically increments the address in a burst cycle.  
Input-  
Address Strobe from Processor, sampled on the rising edge of CLK, active LOW.  
ADSP  
Synchronous When asserted LOW, addresses presented to the device are captured in the address  
registers. A[1:0] are also loaded into the burst counter. When ADSP and ADSC are both  
asserted, only ADSP is recognized. ASDP is ignored when  
is deasserted HIGH.  
CE1  
Input-  
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW.  
ADSC  
Synchronous When asserted LOW, addresses presented to the device are captured in the address  
registers. A[1:0] are also loaded into the burst counter. When ADSP and ADSC are both  
asserted, only ADSP is recognized.  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal  
BWE  
ZZ  
Synchronous must be asserted LOW to conduct a byte write.  
Input-  
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a  
Asynchronous non-time-critical “sleep” condition with data integrity preserved. For normal operation, this  
pin has to be LOW or left floating. ZZ pin has an internal pull-down.  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is  
DQs  
Synchronous triggered by the rising edge of CLK. As outputs, they deliver the data contained in the  
memory location specified by the addresses presented during the previous  
clock rise of  
the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW,  
the pins behave as outputs. When HIGH, DQs and DQPX are placed in a three-state  
The outputs are automatically three-stated during the data portion of a write  
condition.  
sequence, during the first clock when emerging from a deselected state, and when the  
device is deselected, regardless of the state of OE.  
I/O-  
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQs.  
DQPX  
Synchronous During write sequences, DQPX is controlled by BWX correspondingly.  
MODE  
Input-  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD  
or left floating selects interleaved burst sequence. This is a strap pin and should remain  
static during device operation. Mode Pin has an internal pull-up.  
Static  
VDD  
VDDQ  
VSS  
Power Supply Power supply inputs to the core of the device.  
I/O Power Supply Power supply for the I/O circuitry.  
Ground  
Ground for the core of the device.  
Document #: 38-05541 Rev. *A  
Page 7 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Pin Definitions (continued)  
Name  
I/O  
Description  
VSSQ  
TDO  
I/O Ground  
Ground for the I/O circuitry.  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the  
Synchronous JTAG feature is not being utilized, this pin should be left unconnected. This pin is not  
available on TQFP packages.  
TDI  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
Synchronous feature is not being utilized, this pin can be left floating or connected to VDD through a pull  
up resistor. This pin is not available on TQFP packages.  
TMS  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
Synchronous feature is not being utilized, this pin can be disconnected or connected to VDD. This pin  
is not available on TQFP packages.  
TCK  
NC  
JTAG-  
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin must  
Clock  
be connected to VSS. This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die. 18M, 36M, 72M, 144M and 288M are  
address expansion pins are not internally connected to the die.  
VSS/DNU  
Ground/DNU  
This pin can be connected to Ground or should be left floating.  
Document #: 38-05541 Rev. *A  
Page 8 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
HIGH, and (4) the write input signals (GW, BWE, and BWX)  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
The addresses presented are loaded into the address register  
and the burst counter/control logic and delivered to the  
memory core. The information presented to DQ[A:D] will be  
written into the specified address location. Byte writes are  
allowed. All I/Os are three-stated when a write is detected,  
even a byte write. Since this is a common I/O device, the  
asynchronous OE input signal must be deasserted and the  
I/Os must be three-stated prior to the presentation of data to  
DQs. As a safety precaution, the data lines are three-stated  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. Maximum access delay from  
the clock rise (tCDV) is 6.5 ns (133-MHz device).  
The CY7C1361C/CY7C1363C supports secondary cache in  
systems utilizing either a linear or interleaved burst sequence.  
The interleaved burst order supports Pentium® and i486  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is  
user-selectable, and is determined by sampling the MODE  
input. Accesses can be initiated with either the Processor  
Address Strobe (ADSP) or the Controller Address Strobe  
(ADSC). Address advancement through the burst sequence is  
once a write cycle is detected, regardless  
of the state of OE.  
Burst Sequences  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
The CY7C1361C/CY7C1363C provides an on-chip two-bit  
wraparound burst counter inside the SRAM. The burst counter  
is fed by A[1:0], and can follow either a linear or interleaved  
burst order. The burst order is determined by the state of the  
MODE input. A LOW on MODE will select a linear burst  
sequence. A HIGH on MODE will select an interleaved burst  
order. Leaving MODE unconnected will cause the device to  
default to a interleaved burst sequence.  
Byte write operations are qualified with the Byte Write Enable  
X
(BWE) and Byte Write Select (BW ) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3[2]) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. ADSP is ignored if  
CE1 is HIGH.  
Interleaved Burst Address Table  
(MODE = Floating or VDD)  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
Single Read Accesses  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
A single read access is initiated when the following conditions  
[2]  
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all  
asserted active, and (2) ADSP or ADSC is asserted LOW (if  
the access is initiated by ADSC, the write inputs must be  
deasserted during this first cycle). The address presented to  
the address inputs is latched into the address register and the  
burst counter/control logic and presented to the memory core.  
If the OE input is asserted LOW, the requested data will be  
available at the data outputs a maximum to tCDV after clock  
rise. ADSP is ignored if CE1 is HIGH.  
Linear Burst Address Table (MODE = GND)  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Single Write Accesses Initiated by ADSP  
This access is initiated when the following conditions are  
[2]  
satisfied at clock rise: (1) CE1, CE2, CE3 are all asserted  
active, and (2) ADSP is asserted LOW. The addresses  
presented are loaded into the address register and the burst  
inputs (GW, BWE, and BWX)are ignored during this first clock  
cycle. If the write inputs are asserted active (see Write Cycle  
Descriptions table for appropriate states that indicate a write)  
on the next clock rise,the appropriate data will be latched and  
written into the device.Byte writes are allowed. All I/Os are  
three-stated during a byte write.Since this is a common I/O  
device, the asynchronous OE input signal must be deasserted  
and the I/Os must be three-stated prior to the presentation of  
data to DQs. As a safety precaution, the data lines are  
three-stated once a write cycle is detected, regardless of the  
state of OE.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
“sleep” mode. CE , CE , CE [2], ADSP, and ADSC must  
the  
1
2
3
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
Single Write Accesses Initiated by ADSC  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, and CE3[2] are all asserted  
Document #: 38-05541 Rev. *A  
Page 9 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
tZZS  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
ZZ > VDD – 0.2V  
Min.  
Max.  
35  
2tCYC  
Unit  
mA  
ns  
tZZREC  
tZZI  
tRZZI  
ZZ recovery time  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
2tCYC  
0
ns  
ns  
ns  
2tCYC  
Truth Table [ 3, 4, 5, 6, 7]  
Address  
Cycle Description  
Used CE1 CE2 CE3 ZZ ADSP  
ADSC ADV WRITE OE CLK  
DQ  
Deselected Cycle, Power-down None  
Deselected Cycle, Power-down None  
Deselected Cycle, Power-down None  
Deselected Cycle, Power-down None  
Deselected Cycle, Power-down None  
H
L
L
L
X
X
L
L
L
L
L
X
L
X
L
X
X
X
X
H
X
X
X
L
L
L
L
L
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
H
H
X
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L
X
X
L
L
X
X
X
L
L
L
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
X
X
X
X
X
X
X
X
L
H
H
H
H
H
H
L
X
X
X
X
X
X
L
H
X
L
H
L
H
L
H
X
X
L
H
L
L-H three-state  
L-H three-state  
L-H three-state  
L-H three-state  
L-H three-state  
Sleep Mode, Power-down  
None  
X
L-H  
three-state  
Q
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
External  
External  
External  
External  
External  
Next  
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L-H three-state  
L-H  
L-H  
D
Q
L-H three-state  
L-H  
L-H three-state  
L-H  
L-H three-state  
X
X
H
H
H
H
Q
Next  
Next  
Q
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Next  
Next  
Next  
Current  
Current  
Current  
Current  
Current  
Current  
H
X
H
X
X
H
H
X
H
H
H
H
H
H
H
H
H
H
L-H  
L-H  
L-H  
D
D
Q
L
H
H
H
H
H
H
H
H
H
H
L
L-H three-state  
L-H  
L-H three-state  
Q
H
X
X
L-H  
L-H  
D
D
Write Cycle, Suspend Burst  
L
Notes:  
3. X=”Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW= L. WRITE = H when all Byte write enable signals , BWE, GW = H..  
5. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.  
OE  
OE  
must be driven HIGH prior to the start of the write cycle to allow the outputs to three-state.  
6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after  
X
the  
or with the assertion of  
. As a result,  
is a don't  
OE  
ADSC  
OE  
ADSP  
care for the remainder of the write cycle.  
7.  
is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are three-state when  
OE  
is  
OE  
inactive or when the device is deselected, and all data bits behave as output when  
is active (LOW).  
OE  
Document #: 38-05541 Rev. *A  
Page 10 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Partial Truth Table for Read/Write[3, 8]  
Function (CY7C1361C)  
Read  
Read  
Write Byte (A, DQPA)  
Write Byte (B, DQPB)  
BWD  
X
BWC  
X
BWB  
BWA  
X
H
L
H
L
H
L
H
L
H
L
H
L
GW  
BWE  
H
H
X
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
H
H
H
H
H
H
H
L
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
L
X
Write Bytes (B, A, DQPA, DQPB)  
Write Byte (C, DQPC)  
Write Bytes (C, A, DQPC, DQPA)  
Write Bytes (C, B, DQPC, DQPB)  
Write Bytes (C, B, A, DQPC, DQPB, DQPA)  
Write Byte (D, DQPD)  
Write Bytes (D, A, DQPD, DQPA)  
Write Bytes (D, B, DQPD, DQPA)  
Write Bytes (D, B, A, DQPD, DQPB, DQPA)  
Write Bytes (D, B, DQPD, DQPB)  
Write Bytes (D, B, A, DQPD, DQPC, DQPA)  
Write Bytes (D, C, A, DQPD, DQPB, DQPA)  
Write All Bytes  
L
H
H
L
L
H
H
L
L
H
H
L
L
X
H
L
H
L
L
L
L
X
Write All Bytes  
X
Truth Table for Read/Write[3, 8]  
Function (CY7C1363C)  
BWB  
BWA  
BWE  
GW  
Read  
Read  
H
H
X
X
H
L
H
L
H
H
H
H
L
L
L
L
L
X
H
H
L
L
X
Write Byte A – ( DQA and DQPA)  
Write Byte B – ( DQB and DQPB)  
Write All Bytes  
Write All Bytes  
X
Note:  
8. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05541 Rev. *A  
Page 11 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1361C/CY7C1363C incorporates a serial boundary  
scan test access port (TAP) in the BGA package only. The  
TQFP package does not offer this functionality. This part  
operates in accordance with IEEE Standard 1149.1-1900, but  
doesn’t have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 3.3V or 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see Figure .  
TDI is internally pulled up and can be unconnected if the TAP  
is unused in an application. TDI is connected to the most  
significant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
The CY7C1361C/CY7C1363C contains a TAP controller,  
instruction register, boundary scan register, bypass register,  
and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
0
TAP Controller State Diagram  
Bypass Register  
TEST-LOGIC  
1
2
1
0
0
0
RESET  
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
S
election  
TDI  
TDO  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Circuitr  
y
.
.
. 2 1  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
x
.
.
.
.
. 2 1  
0
0
Boundary Scan Register  
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
0
0
TAP CONTROLLER  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Document #: 38-05541 Rev. *A  
Page 12 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Instruction Register  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
Bypass Register  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1-mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the in-  
struction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is cap-  
tured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is possi-  
ble that during the Capture-DR state, an input or output will  
undergo a transition. The TAP may then try to capture a signal  
while in transition (metastable state). This will not harm the  
device, but there is no guarantee as to the value that will be  
captured. Repeatable results may not be possible.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE / PRELOAD instruction. If  
this is an issue, it is still possible to capture all other signals  
and simply ignore the value of the CK and CK# captured in the  
boundary scan register.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
Document #: 38-05541 Rev. *A  
Page 13 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Once the data is captured, it is possible to shift out the data by  
BYPASS  
putting the TAP into the Shift-DR state. This places the bound-  
ary scan register between the TDI and TDO pins.  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells  
prior to the selection of another boundary scan test operation.  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required–that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
tTF  
Parameter  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
tTH  
tTL  
25  
25  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
5
ns  
ns  
0
Setup Times  
tTMSS  
TMS Set-Up to TCK Clock Rise  
TDI Set-Up to TCK Clock Rise  
Capture Set-Up to TCK Rise  
5
5
5
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
tTDIH  
tCH  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
Capture Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
Notes:  
9. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
10. Test conditions are specified using the load in TAP AC test conditions. t /t = 1 ns.  
R
F
Document #: 38-05541 Rev. *A  
Page 14 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ........ ........................................VSS to 3.3V  
Input rise and fall times...................... ..............................1ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels ......................................... VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels................... ......................1.25V  
Output reference levels .................. ..............................1.25V  
Test load termination supply voltage .................... ........1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions (0°C < TA < +70°C; VDD = 3.3V ±0.165V unless  
otherwise noted)[11]  
Parameter  
VOH1  
Description  
Output HIGH Voltage  
Description  
IOH = –4.0 mA  
Conditions  
VDDQ = 3.3V  
Min.  
2.4  
Max.  
Unit  
V
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
2.0  
2.9  
2.1  
V
V
IOH = –1.0 mA  
IOH = –100 µA  
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
V
0.4  
0.4  
V
IOL = 8.0 mA  
IOL = 8.0 mA  
IOL = 100 µA  
V
0.2  
V
0.2  
V
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.7  
V
V
VDDQ = 3.3V  
–0.5  
–0.3  
–5  
V
VIL  
VDDQ = 2.5V  
0.7  
V
5
µA  
IX  
GND < VIN < VDDQ  
Identification Register Definitions  
CY7C1361C  
CY7C1363C  
(512K x18)  
Instruction Field  
(256K x36)  
Description  
000  
01011  
000  
01011  
Revision Number (31:29)  
Device Depth (28:24)[12]  
Describes the version number.  
Reserved for Internal Use  
000001  
100110  
00000110100  
1
000001  
010110  
00000110100  
1
Device Width (23:18)  
Defines memory type and architecture  
Defines width and density  
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
Note:  
11. All voltages referenced to VSS (GND) .  
12. Bit #24 is “1” in the Register Definitions for both 2.5v and 3.3v versions of this device.  
Document #: 38-05541 Rev. *A  
Page 15 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Scan Register Sizes  
Register Name  
Bit Size (×36) Bit Size (×18)  
Instruction  
Bypass  
ID  
3
1
32  
71  
3
1
32  
71  
Boundary Scan Order  
(119-ball BGA package)  
Boundary Scan Order  
71  
71  
(165-ball fBGA package)  
Identification Codes  
Instruction  
Code  
Description  
000  
001  
010  
EXTEST  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
SAMPLE Z  
011  
100  
RESERVED  
SAMPLE/PRELOAD  
Do Not Use: This instruction is reserved for future use.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
101  
110  
111  
RESERVED  
RESERVED  
BYPASS  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM operations.  
Document #: 38-05541 Rev. *A  
Page 16 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
119-Ball BGA Boundary Scan Order  
CY7C1361C (256K x 36)  
CY7C1363C (512K x 18)  
BALL  
ID  
Signal  
Signal  
Signal  
Signal  
BIT#  
Name  
BIT# BALL ID  
Name  
A0  
BIT# BALL ID  
Name  
BIT# BALL ID  
Name  
1
2
3
4
5
6
7
8
CLK  
GW  
BWE  
OE  
ADSC  
ADSP  
ADV  
A
37  
38  
39  
40  
41  
42  
43  
44  
P4  
N4  
R6  
T5  
T3  
R2  
R3  
P2  
1
2
3
4
5
6
7
8
CLK  
GW  
BWE  
OE  
ADSC  
ADSP  
ADV  
A
37  
38  
39  
40  
41  
42  
43  
44  
P4  
N4  
R6  
T5  
T3  
R2  
R3  
Internal  
A0  
A1  
A
A
A
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C3  
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C3  
A1  
A
A
A
A
A
MODE  
DQPD  
MODE  
Internal  
9
B3  
D6  
H7  
G6  
E6  
D7  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
A
DQPB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
ZZ  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
P1  
L2  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
Internal  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQPC  
A
9
B3  
T2  
A
A
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
Internal  
Internal  
Internal  
P2  
Internal  
Internal  
Internal  
DQPB  
DQB  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
K1  
Internal  
Internal  
Internal  
D6  
Internal  
Internal  
Internal  
DQPA  
DQA  
DQA  
DQA  
DQA  
ZZ  
N2  
N1  
N1  
M2  
L1  
M2  
DQB  
E7  
L1  
DQB  
K2  
F6  
K2  
DQB  
Internal  
H1  
G7  
Internal  
H1  
Internal  
DQB  
H6  
G2  
E2  
T7  
G2  
DQB  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQPA  
A
K7  
DQA  
DQA  
DQA  
DQA  
Internal  
Internal  
Internal  
Internal  
Internal  
A
E2  
DQB  
D1  
L6  
D1  
DQB  
N6  
P7  
N7  
M6  
L7  
H2  
N6  
Internal  
Internal  
Internal  
Internal  
Internal  
C2  
Internal  
Internal  
Internal  
Internal  
Internal  
A
G1  
F2  
P7  
Internal  
Internal  
Internal  
Internal  
Internal  
T6  
E1  
D2  
K6  
P6  
T4  
A3  
C5  
B5  
A5  
C6  
C2  
A2  
A
A2  
A
E4  
CE1  
E4  
CE1  
A
B2  
CE2  
A3  
A
B2  
CE2  
A
L3  
BWD  
BWC  
BWB  
BWA  
Internal  
C5  
A
Internal  
Internal  
G3  
Internal  
Internal  
BWB  
A
G3  
G5  
L5  
B5  
A
A
A5  
A
A
C6  
A
L5  
BWA  
35  
36  
A6  
B6  
A
A
Internal  
35  
36  
A6  
B6  
A
A
Internal  
Internal  
Document #: 38-05541 Rev. *A  
Page 17 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
165-Ball fBGA Boundary Scan Order  
CY7C1361C (256K x 36)  
CY7C1363C (512K x 18)  
BALL  
ID  
B6  
B7  
A7  
B8  
A8  
B9  
A9  
Signal  
Signal  
Signal  
Signal  
Name  
A0  
A1  
A
BIT#  
1
2
3
4
5
6
7
8
Name  
BIT# BALL ID  
Name  
A0  
BIT# BALL ID  
Name  
BIT# BALL ID  
CLK  
GW  
BWE  
OE  
ADSC  
ADSP  
ADV  
A
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
R6  
P6  
R4  
P4  
R3  
P3  
R1  
N1  
L2  
K2  
J2  
M2  
M1  
L1  
K1  
J1  
Internal  
G2  
F2  
E2  
D2  
G1  
F1  
E1  
D1  
C1  
B2  
A2  
A3  
B3  
B4  
A4  
A5  
B5  
A6  
1
B6  
CLK  
GW  
BWE  
OE  
ADSC  
ADSP  
ADV  
A
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
R6  
P6  
R4  
P4  
R3  
P3  
R1  
Internal  
Internal  
Internal  
Internal  
N1  
M1  
L1  
K1  
J1  
Internal  
G2  
F2  
E2  
D2  
Internal  
Internal  
Internal  
Internal  
Internal  
B2  
A2  
A3  
B3  
Internal  
Internal  
A4  
B5  
A6  
A1  
A
A
A
2
B7  
3
A7  
4
B8  
A
A
A
5
A8  
A
6
B9  
MODE  
DQPD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
Internal  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQPC  
A
7
A9  
MODE  
Internal  
Internal  
Internal  
Internal  
DQPB  
DQB  
DQB  
DQB  
DQB  
Internal  
DQB  
DQB  
DQB  
DQB  
Internal  
Internal  
Internal  
Internal  
Internal  
A
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
P10  
R9  
8
B10  
9
A
9
A10  
A
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQPB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
ZZ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQPA  
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
A11  
Internal  
Internal  
Internal  
C11  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
Internal  
Internal  
Internal  
DQPA  
DQA  
DQA  
DQA  
DQA  
ZZ  
DQA  
DQA  
DQA  
DQA  
Internal  
Internal  
Internal  
Internal  
Internal  
A
L10  
M10  
Internal  
Internal  
Internal  
Internal  
Internal  
R11  
R10  
P10  
R9  
A
A
CE1  
CE2  
Internal  
Internal  
BWB  
BWA  
CE3  
CE1  
CE2  
BWD  
BWC  
BWB  
BWA  
CE3  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
P9  
R8  
P8  
P11  
P9  
R8  
P8  
P11  
Document #: 38-05541 Rev. *A  
Page 18 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
Range  
Temperature  
VDD  
VDDQ  
Supply Voltage on VDD Relative to GND........ –0.5V to +4.6V  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
DC Voltage Applied to Outputs  
to VDD  
in three-state....................................... –0.5V to VDDQ + 0.5V  
Industrial  
–40°C to +85°C  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
[13, 14]  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
VDDQ  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
VDD  
Unit  
V
V
V
V
V
V
V
V
VDDQ = 3.3V  
VDDQ = 2.5V  
2.625  
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
VDDQ = 3.3V, VDD = Min., IOH = –4.0 mA  
VDDQ = 2.5V, VDD = Min., IOH = –1.0 mA  
VDDQ = 3.3V, VDD = Min., IOL = 8.0 mA  
VDDQ = 2.5V, VDD = Min., IOL = 1.0 mA  
2.0  
0.4  
0.4  
VDD + 0.3V  
VDD + 0.3V  
0.8  
Input HIGH Voltage[13] VDDQ = 3.3V  
VDDQ = 2.5V  
2.0  
1.7  
–0.3  
–0.3  
–5  
V
V
V
Input LOW Voltage[13]  
VDDQ = 3.3V  
VDDQ = 2.5V  
GND VI VDDQ  
0.7  
5
Input Load  
Input Current of MODE Input = VSS  
Input = VDD  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
–30  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
–5  
–5  
30  
5
250  
220  
180  
40  
IOZ  
IDD  
Output Leakage Current GND VI VDD, Output Disabled  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
7.5-ns cycle, 133 MHz  
8.8-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
All speeds  
Current  
f = fMAX = 1/tCYC  
ISB1  
ISB2  
ISB3  
Automatic CE  
Max. VDD, Device Deselected,  
mA  
mA  
mA  
mA  
Power-down  
VIN VIH or VIN VIL, f = fMAX,  
Current—TTL Inputs  
inputs switching  
Automatic CE  
Max. VDD, Device Deselected,  
All speeds  
All speeds  
All Speeds  
30  
40  
40  
Power-down  
V
IN VDD – 0.3V or VIN 0.3V,  
Current—CMOS Inputs f = 0, inputs static  
Automatic CE  
Max. VDD, Device Deselected,  
Power-down  
V
IN VDDQ – 0.3V or VIN 0.3V,  
Current—CMOS Inputs f = fMAX, inputs switching  
ISB4  
Automatic CE  
Max. VDD, Device Deselected,  
IN VDD – 0.3V or VIN 0.3V,  
f = 0, inputs static  
Power-down  
V
Current—TTL Inputs  
Notes:  
13. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > -2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
14. T  
: Assumes a linear ramp from 0v to V (min.) within 200ms. During this time V < V and V  
< V  
.
DD  
Power-up  
DD  
IH  
DD  
DDQ  
Document #: 38-05541 Rev. *A  
Page 19 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Thermal Resistance[15]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Package  
Unit  
ΘJA  
Thermal Resistance  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
25  
25  
27  
°C/W  
(Junction to Ambient)  
ΘJC  
Thermal Resistance  
(Junction to Case)  
9
6
6
°C/W  
impedance, per EIA/JESD51  
Capacitance[15]  
TQFP  
BGA  
fBGA  
Parameter  
CIN  
CCLK  
CI/O  
Description  
Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
Test Conditions  
Package  
Package  
Package  
Unit  
pF  
pF  
TA = 25°C, f = 1 MHz,  
5
5
5
5
5
7
5
5
7
V
DD = 3.3V  
V
DDQ = 2.5V  
pF  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
OUTPUT  
R = 317Ω  
3.3V  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
90%  
90%  
Z = 50Ω  
0
10%  
R = 50Ω  
10%  
L
GND  
1ns  
5 pF  
R = 351Ω  
1ns  
INCLUDING  
JIG AND  
SCOPE  
V = 1.5V  
T
(a)  
(b)  
(c)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
OUTPUT  
Z = 50Ω  
0
R = 50Ω  
10%  
10%  
L
5 pF  
R =1538Ω  
1ns  
1ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
Switching Characteristics Over the Operating Range[20, 21]  
133 MHz  
117 MHz  
Min. Max.  
100 MHz  
Parameter  
tPOWER  
Clock  
tCYC  
tCH  
tCL  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
ms  
VDD(Typical) to the first Access[16]  
1
1
1
Clock Cycle Time  
Clock HIGH  
7.5  
3.0  
3.0  
8.5  
3.2  
3.2  
10  
4.0  
4.0  
ns  
ns  
ns  
Clock LOW  
Output Times  
tCDV  
tDOH  
tCLZ  
tCHZ  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[17, 18, 19]  
6.5  
7.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
2.0  
0
2.0  
0
2.0  
0
Clock to High-Z[17, 18, 19]  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
tOEV  
tOELZ  
OE LOW to Output Valid  
OE LOW to Output Low-Z[17, 18, 19]  
0
0
0
Note:  
15. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05541 Rev. *A  
Page 20 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Switching Characteristics Over the Operating Range[20, 21]  
133 MHz  
117 MHz  
100 MHz  
Parameter  
tOEHZ  
Description  
Min.  
Max.  
3.5  
Min.  
Max.  
3.5  
Min.  
Max.  
3.5  
Unit  
ns  
OE HIGH to Output High-Z[17, 18, 19]  
Set-up Times  
tAS  
tADS  
tADVS  
tWES  
Address Set-up Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ADSP, ADSC Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
Set-up Before CLK  
GW, BWE, BW[A:D]  
Rise  
tDS  
tCES  
Data Input Set-up Before CLK Rise  
Chip Enable Set-up  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
Hold Times  
tAH  
tADH  
tWEH  
tADVH  
tDH  
Address Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ADSP, ADSC Hold After CLK Rise  
,
,
GW BWE BW[A:D] Hold After CLK Rise  
ADV Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tCEH  
Notes:  
16. This part has a voltage regulator internally; t  
can be initiated.  
is the time that the power needs to be supplied above V ( minimum) initially, before a read or write operation  
DD  
POWER  
17. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
18. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions  
19. This parameter is sampled and not 100% tested.  
20. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
21. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05541 Rev. *A  
Page 21 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Timing Diagrams  
Read Cycle Timing[22]  
t
CYC  
t
CLK  
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
X
Deselect Cycle  
t
t
CES  
CEH  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
Note:  
22. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05541 Rev. *A  
Page 22 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Timing Diagrams (continued)  
Write Cycle Timing[22, 23]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW  
X
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
Notes:  
23.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05541 Rev. *A  
Page 23 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Timing Diagrams (continued)  
Read/Write Cycle Timing[22, 24, 25]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
DS  
t
OELZ  
t
High-Z  
D(A3)  
D(A5)  
D(A6)  
Data In (D)  
t
OEHZ  
CDV  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back  
Back-to-Back READs  
Single WRITE  
BURST READ  
WRITEs  
DON’T CARE  
UNDEFINED  
Notes:  
24.  
25.  
.
The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by  
GW is HIGH.  
ADSP or ADSC  
26. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
27. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05541 Rev. *A  
Page 24 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Timing Diagrams (continued)  
ZZ Mode Timing[26, 27]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Ordering Information  
Speed  
Package  
Operating  
Range  
Commercial  
(MHz)  
Ordering Code  
CY7C1361C-133AXC  
CY7C1363C-133AXC  
CY7C1361C-133AXI  
CY7C1363C-133AXI  
CY7C1361C-133AJXC  
CY7C1363C-133AJXC  
CY7C1361C-133AJXI  
CY7C1363C-133AJXI  
CY7C1361C-133BGC  
CY7C1363C-133BGC  
CY7C1361C-133BGI  
CY7C1363C-133BGI  
CY7C1361C-133BZC  
CY7C1363C-133BZC  
CY7C1361C-133BZI  
CY7C1363C-133BZI  
Name  
Part and Package Type  
133  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
3 Chip Enables  
A101  
A101  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
3 Chip Enables  
Industrial  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
2 Chip Enables  
Commercial  
Industrial  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
2 Chip Enables  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and Commercial  
JTAG  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and  
JTAG  
Industrial  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Commercial  
3 Chip Enables and JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
3 Chip Enables and JTAG  
Industrial  
Document #: 38-05541 Rev. *A  
Page 25 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Ordering Information (continued)  
Speed  
Package  
Operating  
Range  
Commercial  
(MHz)  
Ordering Code  
CY7C1361C-117AXC  
CY7C1363C-117AXC  
CY7C1361C-117AXI  
CY7C1363C-117AXI  
CY7C1361C-117AJXC  
CY7C1363C-117AJXC  
CY7C1361C-117AJXI  
CY7C1363C-117AJXI  
CY7C1361C-117BGC  
CY7C1363C-117BGC  
CY7C1361C-117BGI  
CY7C1363C-117BGI  
CY7C1361C-117BZC  
CY7C1363C-117BZC  
CY7C1361C-117BZI  
CY7C1363C-117BZI  
CY7C1361C-100AXC  
CY7C1363C-100AXC  
CY7C1361C-100AXI  
CY7C1363C-100AXI  
CY7C1361C-100AJXC  
CY7C1363C-100AJXC  
CY7C1361C-100AJXI  
CY7C1363C-100AJXI  
CY7C1361C-100BGC  
CY7C1363C-100BGC  
CY7C1361C-100BGI  
CY7C1363C-100BGI  
CY7C1361C-100BZC  
CY7C1363C-100BGC  
CY7C1361C-100BZI  
CY7C1363C-100BGI  
Name  
Part and Package Type  
117  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
A101  
A101  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Industrial  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
2 Chip Enables  
Commercial  
Industrial  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
2 Chip Enables  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and Commercial  
JTAG  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and  
JTAG  
Industrial  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm) Commercial  
3 Chip Enables and JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm)  
3 Chip Enables and JTAG  
Industrial  
Commercial  
Industrial  
100  
A101  
A101  
A101  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
2 Chip Enables  
Commercial  
Industrial  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
2 Chip Enables  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and Commercial  
JTAG  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and  
JTAG  
Industrial  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm) Commercial  
3 Chip Enables and JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm)  
3 Chip Enables and JTAG  
Industrial  
Shaded areas contain advance information. Please contact your local sales representative for availability of these parts.Lead-free BG and BZ packages (Ordering  
code:BGX,BZX) will be available in 2005.  
Document #: 38-05541 Rev. *A  
Page 26 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
DIMENSIONS ARE IN MILLIMETERS.  
ꢁ6.00 0.20  
ꢁ4.00 0.ꢁ0  
ꢁ.40 0.05  
ꢁ00  
ꢀꢁ  
ꢀ0  
0.30 0.0ꢀ  
0.65  
TYP.  
ꢁ2° ꢁ°  
SEE DETAIL  
A
(ꢀX)  
30  
5ꢁ  
3ꢁ  
50  
0.20 MAX.  
ꢁ.60 MAX.  
R 0.0ꢀ MIN.  
0.20 MAX.  
0° MIN.  
STAND-OFF  
0.05 MIN.  
0.ꢁ5 MAX.  
SEATING PLANE  
0.25  
GAUGE PLANE  
R 0.0ꢀ MIN.  
0.20 MAX.  
0°-7°  
0.60 0.ꢁ5  
0.20 MIN.  
ꢁ.00 REF.  
51-85050-*A  
DETAIL  
A
Document #: 38-05541 Rev. *A  
Page 27 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Document #: 38-05541 Rev. *A  
Page 28 of 30  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Package Diagrams (continued)  
165 FBGA 13 x 15 x 1.40 mm BB165D  
51-85180-**  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05541 Rev. *A  
Page 29 of 30  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1361C  
CY7C1363C  
PRELIMINARY  
Document History Page  
Document Title: CY7C1361C/CY7C1363C 9-Mbit (256K x 36/512K x 18) Flow-Through SRAM (Preliminary)  
Document Number: 38-05541  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
241690  
See ECN  
RKF  
New data sheet  
*A  
278969  
See ECN  
RKF  
Changed Boundary Scan order to match the B rev of these devices.  
Document #: 38-05541 Rev. *A  
Page 30 of 30  

相关型号:

CY7C1361C-133AJXC

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133AJXI

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133AXC

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133AXI

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133AXIT

Standard SRAM, 256KX36, 6.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026, TQFP-100
CYPRESS

CY7C1361C-133BGC

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133BGI

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133BGXC

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133BGXI

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133BZC

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133BZI

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133BZXC

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS