CY7C1362B-250BZC [CYPRESS]

Cache SRAM, 512KX18, 3.4ns, CMOS, PBGA165, 13 X 15 MM, 1.20 MM HEIGHT, FBGA-165;
CY7C1362B-250BZC
型号: CY7C1362B-250BZC
厂家: CYPRESS    CYPRESS
描述:

Cache SRAM, 512KX18, 3.4ns, CMOS, PBGA165, 13 X 15 MM, 1.20 MM HEIGHT, FBGA-165

静态存储器 内存集成电路
文件: 总31页 (文件大小:805K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1360B  
CY7C1362B  
PRELIMINARY  
256K x 36/512K x 18 Pipelined SRAM  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise is 2.6 ns (250 MHz  
Features  
• Supports bus operation up to 250 MHz  
— Available speed grades are 250, 200, and 166 MHz  
device).  
• Fully registered inputs and outputs for pipelined  
operation  
• Single 3.3V power supply  
• Supports 3.3V and 2.5V I/Os  
• Fast clock-to-output times  
— 2.6ns (for 250-MHz device)  
The CY7C1360B and CY7C1362B support either the inter-  
leaved burst sequence used by the Intel Pentium processor or  
a linear burst sequence used by processors such as the  
PowerPC. The burst sequence is selected through the  
MODE pin (Pin 31 and ball R3 for the TQFP and BGA  
packages, respectively.) Accesses can be initiated by  
asserting either the Processor Address Strobe (ADSP) or the  
Controller Address Strobe (ADSC) at clock rise. Address  
advancement through the burst sequence is controlled by the  
ADV input. A 2-bit on-chip wraparound burst counter captures  
the first address in a burst sequence and automatically incre-  
ments the address for the rest of the burst access.  
— 3.0ns (for 200-MHz device)  
— 3.5 ns (for 166-MHz device)  
• User-selectable burst counter supporting Intel®  
Pentium® interleaved or linear burst sequences  
Separate processor and controller address strobes  
Synchronous self-timed writes  
Asynchronous output enable  
Single Cycle Chip Deselect  
Available as a 100-pin TQFP, 119-Ball BGA, 165-Ball  
fBGA  
Byte write operations are qualified with the Byte Write Select  
(BWa,b,c,d for 1360B and BWa,b for 1362B) inputs. A Global  
Write Enable (GW) overrides all byte write inputs and writes  
data to all four bytes. All writes are conducted with on-chip  
synchronous self-timed write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. In order to provide  
proper data during depth expansion, OE is masked during the  
first clock of a read cycle when emerging from a deselected  
state.  
TQFP Available with 3-Chip Enable and 2-Chip Enable  
IEEE 1149.1 JTAG-Compatible Boundary Scan  
• “ZZSleep Mode option and Stop Clock option  
Functional Description  
The CY7C1360B and CY7C1362B are 3.3V, 256K x 36 and  
512K x 18 synchronous-pipelined cache SRAM, respectively.  
D
CLK  
Logic Block Diagram  
Data-In REG.  
CE  
Q
ADV  
A
x
GW  
CE  
CONTROL  
and WRITE  
LOGIC  
256Kx36/  
512Kx18  
1
1360B  
1362B  
CE  
CE  
2
DQ  
DQP  
A
x
x
A
A
MEMORY  
ARRAY  
[17:0]  
[18:0]  
X
3
BWE  
BW  
DQ  
DQ  
a,b  
a,b,c,d  
DQ  
X
x
DQP  
BW  
DQP  
DQP  
a,b,c,d  
a,b  
X
MODE  
ADSP  
ADSC  
BW  
BW  
a,b,c,d  
a,b  
X
ZZ  
OE  
Selection Table  
CY7C1360B-250  
CY7C1362B-250  
CY7C1360B-200  
CY7C1362B-200  
CY7C1360B-166  
CY7C1362B-166  
Unit  
ns  
Maximum Access Time  
2.6  
250  
30  
3.0  
220  
30  
3.5  
180  
30  
Maximum Operating Current  
Commercial  
mA  
mA  
Maximum CMOS Standby Current Commercial  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-05291 Rev. *A  
Revised August 15, 2002  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Pin Configurations  
100-pin TQFP Pinout (3 Chip Enables)  
DQPc  
1
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
A
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQc  
2
NC  
NC  
V
V
NC  
DQPa  
DQa  
DQa  
V
V
DQa  
DQa  
V
NC  
V
ZZ  
DQa  
DQa  
V
DQc  
3
4
5
6
7
8
9
V
DDQ  
V
V
V
DDQ  
DDQ  
DDQ  
V
SSQ  
V
SSQ  
SSQ  
NC  
NC  
DQb  
DQb  
SSQ  
DQc  
DQc  
DQc  
DQc  
DQb  
DQb  
DQb  
DQb  
9
V
SSQ  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
V
SSQ  
SSQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SSQ  
V
DDQ  
V
DDQ  
DDQ  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
DQb  
DQb  
NC  
V
SS  
SS  
V
DD  
NC  
NC  
V
DD  
CY7C1362B  
(512K x 18)  
CY7C1360B  
(256K X 36)  
V
NC  
DD  
DD  
V
SS  
ZZ  
DQa  
DQa  
V
SS  
DQd  
DQd  
DQb  
DQb  
V
V
DDQ  
V
V
DDQ  
DDQ  
DDQ  
V
DQd  
DQd  
DQd  
DQd  
SSQ  
V
SSQ  
SSQ  
DQb  
DQb  
DQPb  
NC  
V
SSQ  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
NC  
NC  
V
V
SSQ  
V
V
V
SSQ  
SSQ  
SSQ  
V
DDQ  
V
DDQ  
DDQ  
V
DDQ  
DQd  
DQd  
DQPd  
DQa  
DQa  
DQPa  
NC  
NC  
NC  
NC  
NC  
NC  
Document #: 38-05291 Rev. *A  
Page 2 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Pin Configurations (continued)  
100-pin TQFP (2 Chip Enables)  
DQPc  
1
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
A
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQc  
2
NC  
NC  
V
V
NC  
DQPa  
DQa  
DQa  
V
V
DQa  
DQa  
V
NC  
V
ZZ  
DQa  
DQa  
V
DQc  
3
4
5
6
7
8
9
V
DDQ  
V
V
V
DDQ  
DDQ  
DDQ  
V
SSQ  
V
SSQ  
SSQ  
NC  
NC  
DQb  
DQb  
SSQ  
DQc  
DQc  
DQc  
DQc  
DQb  
DQb  
DQb  
DQb  
9
V
SSQ  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
V
SSQ  
SSQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SSQ  
V
DDQ  
V
DDQ  
DDQ  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
DQb  
DQb  
NC  
V
SS  
SS  
V
DD  
NC  
NC  
V
DD  
CY7C1362B  
(512K x 18)  
CY7C1360B  
(256K X 36)  
V
NC  
DD  
DD  
V
SS  
ZZ  
DQa  
DQa  
V
SS  
DQd  
DQd  
DQb  
DQb  
V
V
DDQ  
V
V
DDQ  
DDQ  
DDQ  
V
DQd  
DQd  
DQd  
DQd  
SSQ  
V
SSQ  
SSQ  
DQb  
DQb  
DQPb  
NC  
V
SSQ  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
NC  
NC  
V
V
SSQ  
V
V
V
SSQ  
SSQ  
SSQ  
V
DDQ  
V
DDQ  
DDQ  
V
DDQ  
DQd  
DQd  
DQPd  
DQa  
DQa  
DQPa  
NC  
NC  
NC  
NC  
NC  
NC  
Document #: 38-05291 Rev. *A  
Page 3 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Pin Configurations (continued)  
119-ball BGA (2 Chip Enables with JTAG)  
CY7C1360B (256K x 36)  
1
2
3
4
5
6
7
A
VDDQ  
A
A
ADSP  
A
A
VDDQ  
B
C
D
E
F
NC  
NC  
CE2  
A
A
ADSC  
VDD  
NC  
A
A
A
NC  
NC  
A
A
DQc  
DQc  
VDDQ  
DQPc  
DQc  
DQc  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQPb  
DQb  
DQb  
DQb  
DQb  
VDDQ  
CE1  
OE  
G
H
J
DQc  
DQc  
DQc  
DQc  
VDD  
DQd  
BWc  
VSS  
NC  
ADV  
GW  
VDD  
CLK  
BWb  
VSS  
NC  
DQb  
DQb  
VDD  
DQa  
DQb  
DQb  
VDDQ  
DQa  
VDDQ  
DQd  
K
VSS  
VSS  
L
M
N
DQd  
VDDQ  
DQd  
DQd  
DQd  
DQd  
BWd  
VSS  
VSS  
NC  
BWE  
A1  
BWa  
VSS  
VSS  
DQa  
DQa  
DQa  
DQa  
VDDQ  
DQa  
P
R
DQd  
NC  
DQPd  
A
VSS  
A0  
VSS  
NC  
DQPa  
A
DQa  
NC  
MODE  
VDD  
T
NC  
NC  
A
A
A
NC  
NC  
ZZ  
U
VDDQ  
TMS  
TDI  
TCK  
TDO  
VDDQ  
CY7C1362B (512K x 18)  
2
A
1
3
A
4
5
A
6
A
7
A
B
C
D
E
F
VDDQ  
NC  
ADSP  
ADSC  
VDD  
NC  
VDDQ  
NC  
CE2  
A
A
A
A
NC  
A
A
A
NC  
DQb  
NC  
NC  
DQb  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQPa  
NC  
DQa  
NC  
CE1  
OE  
DQa  
VDDQ  
VDDQ  
G
H
J
NC  
DQb  
VDDQ  
DQb  
NC  
VDD  
BWb  
VSS  
NC  
ADV  
GW  
VDD  
VSS  
VSS  
NC  
NC  
DQd  
VDD  
DQa  
NC  
VDDQ  
K
NC  
DQb  
VSS  
CLK  
VSS  
NC  
DQa  
L
M
N
P
DQb  
VDDQ  
DQb  
NC  
NC  
DQb  
NC  
VSS  
VSS  
VSS  
VSS  
NC  
BWE  
A1  
BWa  
VSS  
VSS  
VSS  
DQa  
NC  
NC  
VDDQ  
NC  
DQa  
NC  
DQPb  
A0  
DQa  
R
T
NC  
NC  
A
A
MODE  
A
Vdd  
NC  
NC  
A
A
A
NC  
ZZ  
U
VDDQ  
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
Document #: 38-05291 Rev. *A  
Page 4 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Pin Configurations (continued)  
165-ball TQFP fBGA (3 Chip Enable with JTAG)  
CY7C1360B (256K x 36)  
1
2
A
3
CE1  
4
BWc  
5
BWb  
6
CE3  
7
8
9
ADV  
10  
A
11  
NC  
E(288)  
BWE  
GW  
VSS  
VSS  
ADSC  
A
B
C
D
NC  
A
CE2  
VDDQ  
VDDQ  
BWd  
VSS  
VDD  
BWa  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
E(144)  
DQPb  
DQb  
DQPc  
DQc  
NC  
DQc  
NC  
DQb  
DQc  
DQc  
DQc  
NC  
DQc  
DQc  
DQc  
VSS  
DQd  
DQd  
DQd  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
E
F
G
H
J
DQd  
DQd  
DQd  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
K
L
DQd  
DQPd  
NC  
DQd  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
VSS  
NC  
VSS  
E(18)  
A1  
VSS  
VSS  
VDD  
VSS  
VDDQ  
VDDQ  
A
DQa  
NC  
A
DQa  
DQPa  
A
M
N
P
E(72)  
TDI  
TDO  
A
A
A
A
A0  
MODE  
E(36)  
A
TMS  
TCK  
A
A
A
R
CY7C1362B (512K x 18)  
1
E(288)  
NC  
2
A
3
CE1  
4
BWb  
5
NC  
6
CE3  
7
8
ADSC  
OE  
9
10  
A
11  
A
BWE  
GW  
VSS  
VSS  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
NC  
BWa  
VSS  
VSS  
CLK  
VSS  
VSS  
A
E(144)  
DQPa  
DQa  
DQa  
NC  
NC  
DQb  
VSS  
VDD  
VSS  
NC  
NC  
NC  
VDD  
NC  
DQb  
DQb  
DQb  
VSS  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
E
F
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQa  
DQa  
ZZ  
NC  
G
H
J
NC  
NC  
DQb  
DQb  
DQb  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
NC  
NC  
NC  
NC  
K
L
NC  
DQb  
DQPb  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
E(18)  
A1  
VSS  
VSS  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
NC  
NC  
A
M
N
P
E(72)  
TDI  
TDO  
MODE  
E(36)  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05291 Rev. *A  
Page 5 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Pin Definitions  
Pin Name  
I/O  
Pin Description  
A0  
A1  
A
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the rising edge of  
the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A[1:0]  
feed the two-bit counter.  
BWa  
BWb  
BWc  
BWd  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM.  
Sampled on the rising edge of CLK.  
GW  
Input-  
Synchronous  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a  
global write is conducted (ALL bytes are written, regardless of the values onBWa,b,c,d andBWE).  
BWE  
CLK  
CE1  
CE2  
CE3  
Input-  
Synchronous  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must  
be asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the  
burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE2 and CE3 to select/deselect the device. ADSP is ignored if CE1 is HIGH.  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select/deselect the device.  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select/deselect the device. This pin is not available on the 2CE TQFP  
package.  
OE  
Input-  
Output Enable, asynchronous input, activeLOW. Controls the direction of the I/O pins. When  
Asynchronous LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are three-stated, and  
act as input data pins. OE is masked during the first clock of a read cycle when emerging from  
a deselected state.  
ADV  
Input-  
Synchronous  
Advance Input signal, active LOW, sampled on the rising edge of CLK. When asserted, it  
automatically increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobe from Processor, active LOW, sampled on the rising edge of CLK. When  
asserted LOW, A is captured in the address registers. A[1:0] are also loaded into the burst  
counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ADSP is ignored  
when CE1 is deasserted HIGH.  
ADSC  
MODE  
Input-  
Synchronous  
Address Strobe from Controller, active LOW, sampled on the rising edge of CLK. When  
asserted LOW, A[x:0] is captured in the address registers. A[1:0] are also loaded into the burst  
counter. When ADSP and ADSC are both asserted, only ADSP is recognized.  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD or  
left floating selects interleaved burst sequence. This is a strap pin and should remain static  
during device operation.  
DQa, DQPa  
DQb, DQPb  
DQc, DQPc  
DQd, DQPd  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by A during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQx  
and DQPx are placed in a three-state condition.  
ZZ  
Input-  
ZZ sleepInput. This active HIGH input places the device in a non-time critical sleep”  
Asynchronous condition with data integrity preserved. During normal operation, this pin can be connected to  
Vss or left floating.  
VDD  
Power Supply Power supply inputs to the core of the device. Should be connected to 3.3V power supply.  
VSS  
Ground  
Ground for the core of the device. Should be connected to ground of the system.  
VDDQ  
I/O Power  
Supply  
Power supply for the I/O circuitry. Should be connected to a 3.3V power supply. See Errata  
on page 34 for 2.5V VDDQ operation.  
VSSQ  
TDO  
I/O Ground  
Ground for the I/O circuitry. Should be connected to ground of the system.  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the JTAG  
Synchronous  
feature is not being utilized, this pin should be disconnected. This pin is not available on TQFP  
packages.  
Document #: 38-05291 Rev. *A  
Page 6 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Pin Definitions (continued)  
Pin Name  
I/O  
Pin Description  
TDI  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is  
Synchronous  
not being utilized, this pin can be disconnected or connected to VCC. This pin is not available  
on TQFP packages.  
TMS  
TCK  
NC  
Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK.  
Synchronous  
If JTAG the feature is not being utilized, this pin can be disconnected or connected to VSS. This  
pin is not available on TQFP packages.  
JTAG-Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin can be  
disconnected, connected to VSS or connected to VDD. This pin is not available on TQFP  
packages.  
No Connects.  
E(18,36,72,  
144, 288)  
These pins are not connected. They will be used for expansion to the 18M, 36M, 72M, 144M  
and 288M densities.  
from a deselected state to a selected state; its outputs are  
always three-stated during the first cycle of the access. After  
the first cycle of the access, the outputs are controlled by the  
OE signal. Consecutive single read cycles are supported.  
Once the SRAM is deselected at clock rise by the chip select  
and either ADSP or ADSC signals, its output will three-state  
immediately.  
Introduction  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise (tCO) is 2.6 ns (250  
MHz device).  
Single Write Accesses Initiated by ADSP  
The CY7C1360B and CY7C1362B support secondary cache  
in systems utilizing either a linear or interleaved burst  
sequence. The interleaved burst order supports Pentium and  
i486 processors. The linear burst sequence is suited for  
processors that utilize a linear burst sequence. The burst order  
is user selectable, and is determined by sampling the MODE  
input. Accesses can be initiated with either the Processor  
Address Strobe (ADSP) or the Controller Address Strobe  
(ADSC). Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) CE1, CE2, CE3 are all asserted active. The address  
presented is loaded into the address register and the address  
advancement logic while being delivered to the RAM core. The  
write signals (GW, BWE, and BWx) and ADV inputs are  
ignored during this first cycle.  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQx inputs is written into the corre-  
sponding address location in the RAM core. If GW is HIGH,  
then the write operation is controlled by BWE and BWx  
signals. The CY7C1360B and 1362B provide byte write  
capability that is described in the Write Cycle Description table.  
Asserting the Byte Write Enable input (BWE) with the selected  
Byte Write ( BWa,b,c,d for CY7C1360B and BWa,b for  
CY7C1362B input will selectively write to only the desired  
bytes. Bytes not selected during a byte write operation will  
remain unaltered. A synchronous self-timed write mechanism  
has been provided to simplify the write operations.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWa,b,c,d for CY7C1360B and  
BWa,b for CY7C1362B) inputs. A Global Write Enable (GW)  
overrides all byte write inputs and writes data to all four bytes.  
All writes are simplified with on-chip synchronous self-timed  
write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. ADSP is ignored if  
CE1 is HIGH.  
Because the CY7C1360B and CY7C1362B are common I/O  
devices, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQ inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQ are  
automatically three-stated whenever a write cycle is detected,  
regardless of the state of OE.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,  
(2) CE1, CE2, CE3 are all asserted active, and (3) the write  
signals (GW, BWE) are all deasserted HIGH. ADSP is ignored  
if CE1 is HIGH. The address presented to the address inputs  
is stored into the address advancement logic and the Address  
Register while being presented to the memory core. The corre-  
sponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within 2.6 ns (250-MHz device) if OE is active  
LOW. The only exception occurs when the SRAM is emerging  
Single Write Accesses Initiated by ADSC  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) CE1, CE2, CE3 are all asserted active,  
and (4) the appropriate combination of the write inputs (GW,  
BWE, and BWx) are asserted active to conduct a write to the  
desired byte(s). ADSC triggered write accesses require a  
single clock cycle to complete. The address presented to  
A[17:0] is loaded into the address register and the address  
advancement logic while being delivered to the RAM core. The  
Document #: 38-05291 Rev. *A  
Page 7 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
ADV input is ignored during this cycle. If a global write is  
conducted, the data presented to the DQ[x:0] is written into the  
corresponding address location in the RAM core. If a byte write  
is conducted, only the selected bytes are written. Bytes not  
selected during a byte write operation will remain unaltered. A  
synchronous self-timed write mechanism has been provided  
to simplify the write operations.  
clock cycles are required to enter into or exit from this sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the sleepmode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the sleepmode. CE1, CE2, CE3, ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
Because the CY7C1360B and CY7C1362B are common I/O  
devices, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQ[x:0] inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQ[x:0]  
are automatically three-stated whenever a write cycle is  
detected, regardless of the state of OE.  
Interleaved Burst Sequence  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A[1:0]]  
00  
A[1:0]  
01  
A[1:0]  
10  
A[1:0]  
11  
Burst Sequences  
01  
00  
11  
10  
The CY7C1360B and CY7C1362B provide  
a
two-bit  
10  
11  
00  
01  
wraparound counter, fed by A[1:0], that implements either an  
interleaved or linear burst sequence. The interleaved burst  
sequence is designed specifically to support Intel Pentium  
applications. The linear burst sequence is designed to support  
processors that follow a linear burst sequence. The burst  
sequence is user selectable through the MODE input.  
11  
10  
01  
00  
Linear Burst Sequence  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
A[1:0]  
00  
A[1:0]  
01  
A[1:0]  
10  
A[1:0]  
11  
01  
10  
11  
00  
Sleep Mode  
10  
11  
00  
01  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation sleepmode. Two  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Snooze mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
Min. Max. Unit  
35 mA  
IDDZZ  
tZZS  
ZZ > VDD 0.2V  
ZZ > VDD 0.2V  
ZZ < 0.2V  
2tCYC ns  
2tCYC ns  
tZZREC  
[1, 2, 3]  
Cycle Description  
Next Cycle  
Unselected  
Add. Used  
None  
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
CE3  
X
1
CE2  
X
X
0
CE1  
1
ADSP  
ADSC  
ADV  
X
OE  
X
X
X
X
X
X
X
1
DQ  
Hi-Z  
Write  
X
X
0
0
1
1
0
1
1
1
X
X
1
0
X
X
0
0
X
0
1
1
1
1
1
Unselected  
None  
0
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
X
Unselected  
None  
X
1
0
X
X
Unselected  
None  
X
0
0
X
X
Unselected  
None  
X
0
0
X
X
Begin Read  
Begin Read  
Continue Read  
Continue Read  
Continue Read  
Continue Read  
External  
External  
Next  
1
0
X
X
0
1
0
X
Read  
Read  
Read  
Read  
Read  
Read  
X
X
X
X
X
X
X
X
X
X
X
X
1
0
Next  
0
0
Next  
0
1
Hi-Z  
DQ  
Next  
1
0
0
Suspend Read  
Current  
X
1
1
Hi-Z  
Notes:  
1. X = Dont care,1 = HIGH, 0 = LOW.  
2. Write is defined by BWE, BWx, and GW. See Write Cycle Description table.  
3. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
Document #: 38-05291 Rev. *A  
Page 8 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Cycle Description (continued)[1, 2, 3]  
Next Cycle  
Suspend Read  
Suspend Read  
Suspend Read  
Begin Write  
Add. Used  
Current  
Current  
Current  
Current  
Current  
External  
Next  
ZZ  
L
CE3  
X
CE2  
X
CE1  
X
1
ADSP  
ADSC  
ADV  
1
OE  
0
DQ  
DQ  
Write  
Read  
Read  
Read  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
X
1
X
X
1
1
1
1
1
1
0
1
1
1
1
X
L
X
X
1
1
Hi-Z  
DQ  
L
X
X
1
1
0
L
X
X
X
1
1
X
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Begin Write  
L
X
X
X
1
1
Begin Write  
L
0
1
0
X
0
Continue Write  
Continue Write  
Suspend Write  
Suspend Write  
ZZ sleep”  
L
X
X
X
1
1
Next  
L
X
X
X
1
0
Current  
Current  
None  
L
X
X
X
1
1
L
X
X
X
X
1
H
X
X
X
X
Write Cycle Description[1]  
Function (1360)  
Read  
GW  
BWE  
BWd  
BWc  
X
1
BWb  
BWa  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
X
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
X
X
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
X
X
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
X
Read  
Write Byte 0 DQa  
Write Byte 1 DQb  
Write Bytes 1, 0  
Write Byte 2 DQc  
Write Bytes 2, 0  
Write Bytes 2, 1  
Write Bytes 2, 1, 0  
Write Byte 3 DQd  
Write Bytes 3, 0  
Write Bytes 3, 1  
Write Bytes 3, 1, 0  
Write Bytes 3, 2  
Write Bytes 3, 2, 0  
Write Bytes 3, 2, 1  
Write All Bytes  
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
Write All Bytes  
X
Function (1362)  
Read  
GW  
1
BWE  
BWb  
BWa  
1
0
0
0
0
X
X
1
1
0
0
X
X
1
0
1
0
X
Read  
1
Write Byte 0 DQ[7:0] and DQP0  
Write Byte 1 DQ[15:8] and DQP1  
Write All Bytes  
1
1
1
Write All Bytes  
0
Document #: 38-05291 Rev. *A  
Page 9 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
circuitry. Only one register can be selected at a time through  
the instruction registers. Data is serially loaded into the TDI pin  
on the rising edge of TCK. Data is output on the TDO pin on  
the falling edge of TCK.  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C1360B and CY7C1362B incorporate a serial  
boundary scan Test Access Port (TAP) in the FBGA package  
only. This port operates in accordance with IEEE Standard  
1149.1-1900, but does not have the set of functions required  
for full 1149.1 compliance. These functions from the IEEE  
specification are excluded because their inclusion places an  
added delay in the critical speed path of the SRAM. Note that  
the TAP controller functions in a manner that does not conflict  
with the operation of other devices using 1149.1 fully compliant  
TAPs. The TAP operates using JEDEC standard for 3.3V and  
2.5V I/O logic levels.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO pins as shown in the TAP Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
When the TAP controller is in the CaptureIR state, the two least  
significant bits are loaded with a binary "01" pattern to allow for  
fault isolation of the board level serial test path.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should  
be left unconnected. Upon power-up, the device will come up  
in a reset state which will not interfere with the operation of the  
device.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain states. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
Test Access Port Test Clock  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
output pins on the SRAM. Several no connect (NC) pins are  
also included in the scan register to reserve pins for higher  
density devices. The x36 configuration has a xx-bit-long  
register, and the x18 configuration has a yy-bit-long register.  
Test Mode Select  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this pin unconnected if the TAP is not used. The pin is  
pulled up internally, resulting in a logic HIGH level.  
The boundary scan register is loaded with the contents of the  
RAM Input and Output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO pins when the controller is moved to the Shift-DR state.  
The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instruc-  
tions can be used to capture the contents of the Input and  
Output ring.  
Test Data-In (TDI)  
The TDI pin is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see the TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the Most Significant Bit (MSB) on any register.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
Identification (ID) Register  
Test Data Out (TDO)  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
The TDO output pin is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine (see TAP Controller State  
Diagram). The output changes on the falling edge of TCK.  
TDO is connected to the Least Significant Bit (LSB) of any  
register.  
Performing a TAP Reset  
TAP Instruction Set  
A Reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of  
the SRAM and may be performed while the SRAM is  
operating. At power-up, the TAP is reset internally to ensure  
that TDO comes up in a high-Z state.  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Code table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented. The TAP controller  
cannot be used to load address, data or control signals into the  
TAP Registers  
Registers are connected between the TDI and TDO pins and  
allow data to be scanned into and out of the SRAM test  
Document #: 38-05291 Rev. *A  
Page 10 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
SRAM and cannot preload the Input or Output buffers. The  
SRAM does not implement the 1149.1 commands EXTEST or  
INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather it performs a capture of the Inputs and Output ring when  
these instructions are executed.  
When the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO pins.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in the TAP controller, and  
therefore this device is not compliant to the 1149.1 standard.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controllers capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK# captured in the  
boundary scan register.  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the SRAM responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between the two  
instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High-Z state.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO pins and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state. The IDCODE instruction  
is loaded into the instruction register upon power-up or  
whenever the TAP controller is given a test logic reset state.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP into the Update to the  
Update-DR state while performing a SAMPLE/PRELOAD  
instruction will have the same effect as the Pause-DR  
command.  
Bypass  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
SAMPLE/PRELOAD  
Reserved  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the TAP controller is not fully 1149.1-compliant.  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document #: 38-05291 Rev. *A  
Page 11 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
TAP Controller State Diagram [4]  
TEST-LOGIC  
1
RESET  
1
1
1
TEST-LOGIC/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-DR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Note:  
4. The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05291 Rev. *A  
Page 12 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
TAP Controller Block Diagram  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
0
TDO  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
1
1
0
0
TDI  
.
x
.
.
.
2
Boundary Scan Register  
TCK  
TMS  
TAP Controller  
TAP Electrical Characteristics Over the Operating Range[5, 6]  
Parameter  
Description  
Test Conditions  
IOH = 2.0 mA, VDDQ = 3.3V  
IOH = 2.0 mA, VDDQ = 2.5V  
IOH = 100 µA, VDDQ = 3.3V  
IOH = 100 µA, VDDQ = 2.5V  
IOL = 2.0 mA  
Min.  
Max.  
Unit  
V
VOH1  
Output HIGH Voltage  
2.0  
1.7  
2.0  
2.0  
V
VOH2  
Output HIGH Voltage  
V
V
VOL1  
VOL2  
VIH  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
0.7  
0.2  
V
IOL = 100 µA  
V
VDDQ = 3.3V  
2.0  
1.7  
VDD + 0.3  
V
VDDQ = 3.3V  
V
VIL  
IX  
Input LOW Voltage  
Input Load Current  
0.3  
30  
30  
0.7  
30  
30  
V
GND VI VDDQ  
GND VI VDDQ  
µA  
µA  
IX  
Input Load Current  
TMS,TCK, and TDI  
5. All Voltage referenced to Ground.  
6. Overshoot: VIH(AC) < VDD + 1.5V for t < tTCYC/2; undershoot: VIL(AC) < 0.5V for t < tTCYC/2; power-up: VIH < 3.3V and VDD < 3.3V and VDDQ < 1.7V for t < 200 ms.  
Document #: 38-05291 Rev. *A  
Page 13 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
TAP AC Switching Characteristics Over the Operating Range[7, 8]  
Parameters  
tTCYC  
Description  
Min.  
Max.  
Unit  
ns  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH  
100  
tTF  
10  
MHz  
ns  
tTH  
40  
40  
tTL  
TCK Clock LOW  
ns  
Set-up Times  
tTMSS  
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
20  
ns  
ns  
tTDOX  
0
Notes:  
7.  
tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
8. Test conditions are specified using the load in TAP AC test conditions. tR/tF= 1 ns.  
Document #: 38-05291 Rev. *A  
Page 14 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
TAP Timing and Test Conditions  
1.5V for 3.3V V  
1.25V for 2.5V V  
DDQ  
DDQ  
ALL INPUT PULSES  
V
= 3.0V/2.5V  
0V  
DDQ  
1.5V for 3.0V V  
1.25V for 2.5V V  
DDQ  
DDQ  
50Ω  
TDO  
Z = 50Ω  
0
C = 20 pF  
L
(a)  
tTL  
tTH  
GND  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOV  
tTDOX  
Identification Register Definitions  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:12)  
CY7C1360B  
0000  
CY7C1362  
Description  
000  
Reserved for version number.  
01010000000100110  
00000110100  
1
01010000000010110 Defines the type of SRAM.  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
00000110100  
1
Allows unique identification of SRAM vendor.  
Indicate the presence of an ID register.  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Instruction  
Bypass  
3
1
3
1
ID  
32  
70  
32  
51  
Boundary Scan  
Document #: 38-05291 Rev. *A  
Page 15 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
001  
010  
011  
Captures the Input/Output ring contents. Places the boundary scan register between the TDI  
and TDO. Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operation.  
SAMPLE Z  
Captures the Input/Output contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD 100  
Captures the Input/Output ring contents. Places the boundary scan register between TDI and  
TDO. Does not affect the SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operation.  
Boundary Scan Exit Order (x36)  
Boundary Scan Exit Order (x36) (continued)  
Bit #  
1
Signal Name  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
119-Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
165-Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Bit #  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
Signal Name  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
119-Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
165-Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
Document #: 38-05291 Rev. *A  
Page 16 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Boundary Scan Exit Order (x36) (continued)  
Boundary Scan Exit Order (x18) (continued)  
Bit #  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Signal Name  
TBD  
119-Ball ID  
TBD  
165-Ball ID  
TBD  
Bit #  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
Signal Name  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
119- Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
165- Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Boundary Scan Exit Order (x18)  
Bit #  
1
Signal Name  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
119- Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
165- Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
Document #: 38-05291 Rev. *A  
Page 17 of 31  
CY7C1360B  
CY7C1362B  
P R E L IM IN A R Y  
Current into Outputs (LOW)......................................... 20 mA  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
Latch-up Current..................................................... >200 mA  
Operating Range  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature .................................65°C to +150°C  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Supply Voltage on VDD Relative to GND........−0.3V to +3.6V  
DC to Outputs in High-Z State[9] ......... 0.5V to VDDQ + 0.5V  
DC Input Voltage[9].............................. 0.5V to VDDQ + 0.5V  
Ambient  
Range Temperature[10]  
VDD/VDDQ  
Coml  
0°C to +70°C  
3.135 3.6V /  
3.135 3.6V or 2.375 2.9V  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
Unit  
V
VDDQ  
VDDQ = 3.3V  
VDDQ = 2.5V (See Errata on page 34)  
VDD  
2.9  
V
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage[9]  
VDD = Min., IOH = 4.0 mA, VDDQ = 3.3V  
VDD = Min., IOH = 1.0 mA, VDDQ = 2.5V  
VDD = Min., IOH = 8.0 mA, VDDQ = 3.3V  
VDD = Min., IOH = 1.0 mA, VDDQ = 2.5V  
VDDQ = 3.3V  
V
2.0  
V
0.4  
0.4  
V
V
2.0 VDDQ + 0.3V  
1.7  
V
VDDQ = 2.5V (See Errata on page 34)  
VDDQ = 3.3V  
V
0.3  
0.3  
5  
0.8  
0.7  
5
V
VDDQ = 2.5V (See Errata on page 34)  
GND VI VDDQ  
V
Input Load Current  
µA  
except ZZ and MODE  
IOZ  
IZZ  
Output Leakage Current GND VI VDDQ, Output Disabled  
5  
5
µA  
µA  
Input Current of MODE  
and ZZ pins  
30  
30  
IDD  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
4.0-ns cycle,250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 166 MHz  
4.0-ns cycle,250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 166 MHz  
250  
220  
180  
250  
220  
180  
mA  
mA  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CS  
Power-down  
Max. VDD, Device Deselected,  
VIN VIH or VIN VIL  
CurrentTTL Inputs  
f = fMAX = 1/tCYC  
ISB2  
Automatic CS  
Power-down  
Max. VDD, Device Deselected, VIN  
0.3V or VIN > VDDQ 0.3V, f = 0  
30  
mA  
CurrentCMOS Inputs  
ISB3  
Automatic CS  
Power-down  
CurrentCMOS Inputs f = fMAX = 1/tCYC  
Max. VDD, Device Deselected, or 4.0-ns cycle,250 MHz  
250  
220  
180  
40  
mA  
mA  
mA  
mA  
VIN 0.3V or VIN > VDDQ 0.3V  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 166 MHz  
ISB4  
Automatic CS  
Power-down  
Max. VDD, Device Deselected,  
IN VIH or VIN VIL, f = 0  
V
CurrentTTL Inputs  
Notes:  
9. Minimum voltage equals 2.0V for < 1 ns or -0.5V for pulse durations of less than 20 ns.  
10. A is the temperature.  
T
Document #: 38-05291 Rev. *A  
Page 18 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Capacitance[11]  
Parameter  
Description  
Test Conditions  
Max.  
Unit  
pF  
CIN  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
DD = 3.3V,  
DDQ = 2.5V  
4
4
4
V
V
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
AC Test Loads and Waveforms (See Errata on page 34 for 2.5V VDDQ operation)[12]  
R = 1667/317Ω  
2.5/3.3V  
[11,12]  
OUTPUT  
ALL INPUT PULSES  
90%  
OUTPUT  
2.5/3.0V  
90%  
10%  
Z =50Ω  
0
R = 50Ω  
L
10%  
1.5V for 3.0V V  
DDQ  
GND  
5 pF  
1.25V for 2.5V V  
DDQ  
R = 1538/351Ω  
1.0ns  
1.0ns  
V = 1.25/1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(a)  
Thermal Characteristics[12]  
(b)  
(c)  
Parameter  
Description  
Test Conditions  
BGA Typ. fBGA Typ. TQFP Typ. Unit  
Notes  
QJA  
Thermal Resistance  
(Junction to Ambient)  
Still Air, soldered on a 4.25 x  
1.125 inch, 4-layer printed  
circuit board  
25  
27  
25  
°C/W  
14  
QJC  
Thermal Resistance  
(Junction to Case)  
6
6
9
°C/W  
14  
[14, 15, 16, 17]  
Switching Characteristics Over the Operating Range (See Errata on page 34 for 2.5V VDDQ operation)  
-250  
Max.  
-200  
Max.  
-166  
Max.  
Parameter  
Clock  
tCYC  
Description  
Min.  
Min.  
Min.  
Unit  
Clock Cycle Time  
4.0  
5
6
ns  
MHz  
ns  
FMAX  
tCH  
Maximum Operating Frequency  
Clock HIGH  
250  
200  
166  
1.7  
1.7  
2.0  
2.0  
2.4  
2.4  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
Data Output Valid After CLK Rise  
2.6  
2.6  
3.0  
3.0  
3.5  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEOV  
tDOH  
tCHZ  
tCLZ  
OE LOW to Output Valid[16]  
Data Output Hold After CLK Rise  
Clock to High-Z[16]  
Clock to Low-Z[16]  
OE HIGH to Output High-Z[16, 14]  
OE LOW to Output Low-Z[15, 14]  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
2.6  
2.6  
3.0  
3.0  
3.5  
3.5  
tEOHZ  
tEOLZ  
Set-up Times  
0
0
0
tAS  
Address Set-up Before CLK Rise  
1.2  
1.5  
1.5  
ns  
Notes:  
11. Tested initially and after any design or process changes that may affect these parameters.  
12. Input waveform should have a slew rate > 1V/ns.  
13. Tested initially and after any design or process change that may affect these parameters.  
14. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ  
.
15. Unless otherwise noted, test conditions assume signal transition time of 1 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output  
loading of the specified IOL/IOH and load capacitance. Shown in (a), (b) and (c) of AC Test Loads.  
16. tCHZ, tCLZ, tOEV, tEOLZ, and tEOHZ are specified with a load capacitance of 5 pF as in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state  
voltage.  
17. AC parameters may exceed minimums and maximums during the first 20 microseconds of operation.  
Document #: 38-05291 Rev. *A  
Page 19 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Switching Characteristics Over the Operating Range (See Errata on page 34 for 2.5V VDDQ operation) (continued)[14,  
15, 16, 17]  
-250  
Max.  
-200  
Max.  
-166  
Max.  
Parameter  
tDS  
Description  
Data Input Set-up Before CLK Rise  
ADSP, ADSC Set-up Before CLK Rise  
WE, BWSx Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
Chip Select Set-up  
Min.  
1.2  
1.2  
1.2  
1.2  
1.2  
Min.  
1.5  
1.5  
1.5  
1.5  
1.5  
Min.  
1.5  
1.5  
1.5  
1.5  
1.5  
Unit  
ns  
tADS  
ns  
tWES  
ns  
tADVS  
tCES  
ns  
ns  
Hold Times  
tAH  
Address Hold After CLK Rise  
Data Input Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
WE, BWx Hold After CLK Rise  
ADV Hold after CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tADH  
tWEH  
tADVH  
tCEH  
Chip Select Hold After CLK Rise  
Document #: 38-05291 Rev. *A  
Page 20 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Switching Waveforms  
Write Cycle Timing[18, 19]  
Single Write  
tCYC  
tADH  
Burst Write  
Pipelined Write  
tCH  
Unselected  
CLK  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
ADSC  
ADV  
tADH  
tADS  
ADSC initiated write  
tADVH  
tADVS  
tAS  
ADV Must Be Inactive for ADSP Write  
WD3  
ADD  
GW  
WE  
CE1  
WD1  
WD2  
tAH  
tWH  
tWH  
tWS  
tWS  
tCES  
tCEH  
CE1 masks ADSP  
tCEH  
tCES  
Unselected with CE2  
CE2  
CE3  
OE  
tCES  
tCEH  
tDH  
tDS  
High-Z  
High-Z  
Data-  
In  
3a  
2a  
1a  
2b  
2c  
2d  
= UNDEFINED  
= DONT CARE  
Notes:  
18. WE is the combination of BWE, BWx, and GW to define a write cycle (see Write Cycle Description table).  
19. WDx stands for Write Data to Address X.  
Document #: 38-05291 Rev. *A  
Page 21 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Switching Waveforms (continued)  
Read Cycle Timing[18, 20]  
Burst Read  
Single Read  
tCYC  
Unselected  
tCH  
Pipelined Read  
CLK  
tADH  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
tADS  
ADSC initiated read  
ADSC  
ADV  
tADVS  
tADH  
Suspend Burst  
tADVH  
tAS  
ADD  
GW  
RD1  
RD3  
RD2  
tAH  
tWS  
tWS  
tWH  
WE  
tCES  
tCEH  
tWH  
CE1 masks ADSP  
CE1  
Unselected with CE2  
CE2  
tCES  
tCEH  
CE3  
OE  
tCES  
tEOV  
tCEH  
tOEHZ  
tDOH  
tCO  
Data Out  
2c  
1a  
2d  
3a  
2a  
2b  
tCLZ  
tCHZ  
= DONT CARE  
= UNDEFINED  
Note:  
20. RDx stands for Read Data from Address X.  
Document #: 38-05291 Rev. *A  
Page 22 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Switching Waveforms (continued)  
Read/Write Cycle Timing[18, 19, 20]  
Single Read  
tCYC  
Single Write  
tCH  
Unselected  
Burst Read  
Pipelined Read  
CLK  
tADH  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
ADSC  
ADV  
tADS  
tADVS  
tADH  
tAS  
tADVH  
WD2  
ADD  
GW  
RD1  
RD3  
tAH  
tWS  
tWS  
tWH  
WE  
tCES  
tCEH  
tWH  
CE1 masks ADSP  
CE1  
CE2  
tCES  
tCEH  
CE3  
OE  
tCES  
tEOV  
tCEH  
tEOHZ  
tDS  
tDH  
tDOH  
tEOLZ  
tCO  
2a  
Out  
3b  
Out  
3c  
Out  
3a  
Out  
3d  
Out  
Data In/Out  
1a  
2a  
In  
Out  
tCHZ  
= UNDEFINED  
= DONT CARE  
Document #: 38-05291 Rev. *A  
Page 23 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Switching Waveforms (continued)  
Pipeline Timing[21, 22]  
tCYC  
tCL  
tCH  
CLK  
tAS  
WD1  
WD2  
WD3  
WD4  
RD1  
RD2  
RD3  
RD4  
ADD  
tADS  
tADH  
ADSC initiated Reads  
ADSC  
ADSP initiated Reads  
ADSP  
ADV  
tCEH  
tCES  
CE1  
CE  
tWES  
tWEH  
WE  
OE  
ADSP ignored  
with CE1 HIGH  
tCLZ  
Data In/Out  
1a  
In  
1a  
2a  
3a  
4a  
2a  
In  
3a  
In  
4a  
Out Out Out Out  
In  
tCDV  
tDOH  
Back to Back Reads  
tCHZ  
= UNDEFINED  
= DONT CARE  
Notes:  
21. Device originally deselected.  
22. CE is the combination of CE2 and CE3. All chip selects need to be active in order to select the device.  
Document #: 38-05291 Rev. *A  
Page 24 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Switching Waveforms (continued)  
E Switching Waveforms  
OE  
tEOV  
tEOHZ  
Three-state  
I/Os  
tEOLZ  
ZZ Mode Timing [23, 24]  
CLK  
ADSP  
HIGH  
ADSC  
CE1  
LOW  
HIGH  
CE2  
CE3  
ZZ  
tZZS  
IDD  
IDD(active)  
Three-state  
tZZREC  
IDDZZ  
I/Os  
Notes:  
23. Device must be deselected when entering ZZ mode. See Cycle Description Table for all possible signal conditions to deselect the device.  
24. I/Os are in three-state when exiting ZZ sleep mode.  
Document #: 38-05291 Rev. *A  
Page 25 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Ordering Information  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Part and Package Type  
250  
CY7C1360B-250AC  
CY7C1362B-250AC  
CY7C1360B-250AJC  
CY7C1362B-250AJC  
CY7C1360B-250BGC  
CY7C1362B-250BGC  
CY7C1360B-250BZC  
CY7C1362B-250BZC  
CY7C1360B-200AC  
CY7C1362B-200AC  
CY7C1360B-200AJC  
CY7C1362B-200AJC  
CY7C1360B-200BGC  
CY7C136B2-200BGC  
CY7C1360B-200BZC  
CY7C1362B-200BZC  
CY7C1360B-166AC  
CY7C1362B-166AC  
CY7C1360B-166AJC  
CY7C1362B-166AJC  
CY7C1360B-166BGC  
CY7C1362B-166BGC  
CY7C1360B-166BZC  
CY7C1362B-166BZC  
A101  
100-lead Thin Quad Flat Pack 3 Chip Enables  
Commercial  
A101  
100-lead Thin Quad Flat Pack 2 Chip Enables  
BG119  
BB165A  
A101  
119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables  
and JTAG  
165-ball Fine-Pitch Ball Grid Array 3 Chip  
Enables and JTAG  
200  
100-lead Thin Quad Flat Pack 3 Chip Enables  
A101  
100-lead Thin Quad Flat Pack 2 Chip Enables  
BG119  
BB165A  
A101  
119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables  
and JTAG  
165-ball Fine-Pitch Ball Grid Array 3 Chip  
Enables and JTAG  
166  
100-lead Thin Quad Flat Pack 3 Chip Enables  
A101  
100-lead Thin Quad Flat Pack 2 Chip Enables  
BG119  
BB165A  
119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables  
and JTAG  
165-ball Fine-Pitch Ball Grid Array 3 Chip  
Enables and JTAG  
Document #: 38-05291 Rev. *A  
Page 26 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Package Diagrams  
100-pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
Document #: 38-05291 Rev. *A  
Page 27 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Package Diagrams (continued)  
119-lead BGA (14 x 22 x 2.4) BG119  
51-85115-*A  
Document #: 38-05291 Rev. *A  
Page 28 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Package Diagrams (continued)  
165-ball FBGA (13 x 15 x 1.2 mm) BB165A  
51-85122-*B  
Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM Corporation. All product and  
company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05291 Rev. *A  
Page 29 of 31  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
We are in the process of releasing this product with full  
functionality at 2.5V Vddq.  
2.5V Vddq Errata  
These devices do not currently support the datasheet param-  
eters for 2.5V Vddq. If operated at 2.5V Vddq, we expect the  
following parameters to be affected:  
For further information, please contact your local sales office.  
Contact information is available at www.cypress.com.  
For your reference, the table below describes the anticipated  
functionality of the current devices at 2.5V Vddq. Parameters  
that do not meet standard operating conditions are printed in  
bold text.  
Output times (tCO, EOV, tCHZ, tEOHZ) will be 0.8 ns longer.  
t
The hold time for data and control lines will be 0.8 ns in  
comparison to a specification of 0.4 ns  
Switching Characteristics  
-250  
-200  
-166  
Max.  
Parameter  
Clock  
tCYC  
Description  
Clock Cycle Time  
Min.  
Max.  
Min.  
Max.  
Min.  
Unit  
4.0  
5
6
ns  
MHz  
ns  
FMAX  
tCH  
Maximum Operating Frequency  
Clock HIGH  
250  
200  
166  
1.7  
1.7  
2.0  
2.0  
2.4  
2.4  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
Data Output Valid After CLK Rise  
OE LOW to Output Valid[14]  
Data Output Hold After CLK Rise  
Clock to High-Z[14]  
Clock to Low-Z[14]  
OE HIGH to Output High-Z[16, 16]  
OE LOW to Output Low-Z[16, 16]  
3.4  
3.4  
3.8  
3.8  
4.3  
4.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEOV  
tDOH  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
tCHZ  
3.4  
3.4  
3.8  
3.8  
4.3  
4.3  
tCLZ  
tEOHZ  
tEOLZ  
Set-up Times  
tAS  
0
0
0
Address Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
CEN Set-up Before CLK Rise  
WE, BWSx Set-up Before CLK Rise  
ADV/LD Set-up Before CLK Rise  
Chip Select Set-up  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
tCENS  
tWES  
tALS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
Data Input Hold After CLK Rise  
CEN Hold After CLK Rise  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tCENH  
tWEH  
WE, BWx Hold After CLK Rise  
ADV/LD Hold after CLK Rise  
Chip Select Hold After CLK Rise  
tALH  
tCEH  
Document #: 38-05291 Rev. *A  
Page 30 of 31  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1360B  
CY7C1362B  
PRELIMINARY  
Document Title: CY7C1360B/CY7C1362B 256K x 36/512K x 18 Pipelined SRAM  
Document Number: 38-05291  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
114766  
117939  
08/08/02  
08/20/02  
RCS  
RCS  
New Data Sheet  
Added A0 and A1 to 165 fBGA pinout  
*A  
Document #: 38-05291 Rev. *A  
Page 31 of 31  

相关型号:

CY7C1362C

9-Mbit (256K x 36/512K x 18) Pipelined SRAM
CYPRESS

CY7C1362C-166AJXC

9-Mbit (256K x 36/512K x 18) Pipelined SRAM
CYPRESS

CY7C1362C-166AJXCT

Cache SRAM, 512KX18, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100
ROCHESTER

CY7C1362C-166AJXI

9-Mbit (256K x 36/512K x 18) Pipelined SRAM
CYPRESS

CY7C1362C-166AXC

9-Mbit (256K x 36/512K x 18) Pipelined SRAM
CYPRESS

CY7C1362C-166AXCT

Cache SRAM, 512KX18, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100
ROCHESTER

CY7C1362C-166AXI

9-Mbit (256K x 36/512K x 18) Pipelined SRAM
CYPRESS

CY7C1362C-166BGC

9-Mbit (256K x 36/512K x 18) Pipelined SRAM
CYPRESS

CY7C1362C-166BGCT

Cache SRAM, 512KX18, 3.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1362C-166BGCT

暂无描述
ROCHESTER

CY7C1362C-166BGI

9-Mbit (256K x 36/512K x 18) Pipelined SRAM
CYPRESS

CY7C1362C-166BGXC

9-Mbit (256K x 36/512K x 18) Pipelined SRAM
CYPRESS