CY7C1366C-225AXC [CYPRESS]

9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM; 9兆位( 256K ×36 / 512K ×18 )流水线DCD同步SRAM
CY7C1366C-225AXC
型号: CY7C1366C-225AXC
厂家: CYPRESS    CYPRESS
描述:

9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM
9兆位( 256K ×36 / 512K ×18 )流水线DCD同步SRAM

静态存储器 CD
文件: 总27页 (文件大小:457K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1366C  
CY7C1367C  
PRELIMINARY  
9-Mbit (256K x 36/512K x 18) Pipelined DCD  
Sync SRAM  
Features  
Functional Description[1]  
• Supports bus operation up to 225 MHz  
The CY7C1366C/CY7C1367C SRAM integrates 262,144 x 36  
and 524,288 x 18 SRAM cells with advanced synchronous  
peripheral circuitry and a two-bit counter for internal burst  
operation. All synchronous inputs are gated by registers  
controlled by a positive-edge-triggered Clock Input (CLK). The  
synchronous inputs include all addresses, all data inputs,  
• Available speed grades are 225, 200 and 166 MHz  
• Registered inputs and outputs for pipelined operation  
•Optimal for performance (Double-Cycle deselect)  
—Depth expansion without wait state  
•3.3V –5% and +10% core power supply (VDD  
• 2.5V / 3.3V I/O operation  
address-pipelining Chip Enable (  
), depth-expansion Chip  
CE1  
)
Enables (CE and  
[2]), Burst Control inputs (  
,
,
CE3  
2
ADSC ADSP  
), Write Enables (  
, and  
BWX  
), and Global Write  
and  
ADV  
BWE  
(
). Asynchronous inputs include the Output Enable (  
GW  
)
OE  
• Fast clock-to-output times  
and the ZZ pin.  
— 2.8 ns (for 225-MHz device)  
— 3.0 ns (for 200-MHz device)  
— 3.5 ns (for 166-MHz device)  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor ( ) or  
ADSP  
) are active. Subsequent  
Address Strobe Controller (  
ADSC  
burst addresses can be internally generated as controlled by  
the Advance pin ( ).  
• Provide high-performance 3-1-1-1 access rate  
ADV  
User-selectable burst counter supporting Intel  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to four bytes wide as  
Pentiuminterleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
• Asynchronous output enable  
controlled by the byte write control inputs.  
active  
GW  
LOW  
This device incorporates an  
causes all bytes to be written.  
additional pipelined enable register which delays turning off  
the output buffers an additional cycle when a deselect is  
executed.This feature allows depth expansion without penal-  
izing system performance.  
• AvailableinLead-Free100TQFP,119BGAand165fBGA  
packages  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• “ZZ” Sleep Mode Option  
The CY7C1366C/CY7C1367C operates from a +3.3V core  
power supply while all outputs operate with a +3.3V or a +2.5V  
supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Selection Guide  
225 MHz  
200 MHz  
3.0  
166 MHz  
3.5  
Unit  
ns  
mA  
mA  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
2.8  
250  
30  
220  
30  
180  
30  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.  
Notes:  
1. For best–practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE is for TQFP and 165 fBGA package only. 119 BGA is offered only in 2 Chip Enable.  
3
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05542 Rev. *A  
Revised October 5, 2004  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
1
Logic Block Diagram – CY7C1366C (256K x 36)  
ADDRESS  
A0,A1,A  
REGISTER  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQD,DQP  
D
DQD,DQP  
D
BYTE  
BYTE  
BW  
D
WRITE REGISTER  
WRITE DRIVER  
DQ  
BYTE  
WRITE DRIVER  
c,DQPC  
DQ  
BYTE  
WRITE REGISTER  
c,DQPC  
MEMORY  
ARRAY  
BW  
C
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
DQs  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE DRIVER  
B,DQPB  
E
DQ  
BYTE  
WRITE REGISTER  
B,DQPB  
B
C
BW  
BW  
B
A
DQP  
D
DQA,DQP  
A
DQA,DQP  
A
BYTE  
WRITE DRIVER  
BYTE  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
ZZ  
CONTROL  
2
Logic Block Diagram – CY7C1367C (512K x 18)  
ADDRESS  
REGISTER  
A0, A1, A  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQB , DQP  
BYTE  
WRITE DRIVER  
B
DQB, DQP  
BYTE  
WRITE REGISTER  
B
OUTPUT  
BUFFERS  
BW  
B
A
OUTPUT  
REGISTERS  
DQs,  
DQP  
DQP  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
DQA, DQP  
BYTE  
WRITE DRIVER  
A
B
E
DQA , DQP  
BYTE  
WRITE REGISTER  
A
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
CE  
1
PIPELINED  
ENABLE  
2
3
OE  
SLEEP  
ZZ  
CONTROL  
Document #: 38-05542 Rev. *A  
Page 2 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Pin Configurations  
100-pin TQFP Pinout (3 Chip Enables)  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
A
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
NC  
2
DQC  
3
NC  
NC  
3
VDDQ  
4
5
VDDQ  
VSSQ  
NC  
VDDQ  
VSSQ  
NC  
4
VSSQ  
5
DQC  
6
6
DQC  
7
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
7
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
8
DQC  
9
9
VSSQ  
10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
11  
DQC  
12  
DQC  
13  
NC  
14  
VDD  
15  
NC  
VDD  
NC  
CY7C1367C  
(512K x 18)  
CY7C1366C  
(256K X 36)  
NC  
16  
VDD  
ZZ  
VDD  
ZZ  
VSS  
17  
VSS  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
VDDQ  
20  
VSSQ  
21  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
NC  
VSSQ  
26  
VSSQ  
VDDQ  
NC  
VSSQ  
VDDQ  
NC  
VDDQ  
27  
DQD  
28  
DQD  
29  
NC  
NC  
DQPD  
30  
NC  
NC  
Document #: 38-05542 Rev. *A  
Page 3 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Pin Configurations (continued)  
119-ball BGA (2 Chip Enable with JTAG)  
CY7C1366C (256K x 36)  
1
2
3
4
5
6
7
VDDQ  
A
A
A
A
VDDQ  
A
B
C
ADSP  
ADSC  
VDD  
NC  
NC  
CE2  
A
A
A
A
A
A
A
NC  
NC  
DQC  
DQC  
VDDQ  
DQPC  
DQC  
DQC  
VSS  
VSS  
VSS  
NC  
CE1  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
DQB  
VDDQ  
D
E
F
OE  
DQC  
DQC  
VDDQ  
DQD  
DQD  
VDDQ  
DQD  
DQC  
DQC  
VDD  
BWC  
VSS  
NC  
BWB  
VSS  
NC  
DQB  
DQB  
VDD  
DQA  
DQA  
DQA  
DQA  
DQB  
DQB  
VDDQ  
DQA  
DQA  
VDDQ  
DQA  
G
H
J
ADV  
GW  
VDD  
CLK  
NC  
BWE  
A1  
DQD  
VSS  
VSS  
K
L
M
N
DQD  
DQD  
DQD  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
P
R
DQD  
NC  
DQPD  
A
VSS  
MODE  
A0  
VDD  
VSS  
NC  
DQPA  
A
DQA  
NC  
T
U
NC  
VDDQ  
NC  
TMS  
A
TDI  
A
TCK  
A
TDO  
NC  
NC  
ZZ  
VDDQ  
CY7C1367C (512K x 18)  
2
A
CE2  
A
NC  
DQB  
NC  
1
3
A
A
4
5
A
A
6
A
A
7
A
B
C
D
E
F
VDDQ  
NC  
NC  
DQB  
NC  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
VDDQ  
ADSP  
ADSC  
VDD  
NC  
CE1  
A
A
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQPA  
NC  
DQA  
OE  
G
H
J
NC  
DQB  
VDDQ  
DQB  
NC  
VDD  
VSS  
VSS  
NC  
NC  
DQA  
VDD  
DQA  
NC  
VDDQ  
BWB  
VSS  
NC  
ADV  
GW  
VDD  
NC  
DQB  
VSS  
CLK  
NC  
BWE  
A1  
VSS  
NC  
DQA  
NC  
DQA  
NC  
DQA  
K
L
M
N
P
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
VSS  
VSS  
VSS  
VSS  
NC  
VDDQ  
NC  
BWA  
VSS  
VSS  
VSS  
DQPB  
A0  
DQA  
R
T
NC  
NC  
A
A
MODE  
A
VDD  
NC  
NC  
A
A
A
NC  
ZZ  
U
VDDQ  
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
Document #: 38-05542 Rev. *A  
Page 4 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Pin Configurations (continued)  
165-ball fBGA (3 Chip Enable)  
CY7C1366C (256K x 36)  
1
NC / 288M  
NC  
DQPC  
DQC  
2
A
A
NC  
DQC  
DQC  
DQC  
DQC  
VSS  
3
4
5
6
7
8
9
10  
11  
NC  
NC / 144M  
DQPB  
DQB  
A
A
B
C
D
E
F
G
H
J
K
L
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
ADSC  
BWE  
GW  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
DQB  
DQB  
DQB  
DQB  
NC  
DQA  
DQA  
DQA  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DQC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQC  
DQC  
NC  
DQD  
DQD  
DQD  
DQB  
DQB  
ZZ  
DQA  
DQA  
DQA  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
DQD  
DQPD  
NC  
DQD  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
NC / 18M  
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
A0  
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1367C (512K x 18)  
1
NC / 288M  
NC  
2
3
CE1  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
4
BWB  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
5
6
7
8
9
10  
11  
A
A
NC  
A
A
CE  
BWE  
GW  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ADSC  
OE  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
3
A
NC  
DQB  
DQB  
DQB  
DQB  
VSS  
NC  
NC  
NC  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
‘VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
NC  
NC  
NC  
NC  
NC  
NC / 144M  
DQPA  
DQA  
B
C
D
E
F
G
H
J
K
L
NC  
NC  
NC  
NC  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DQA  
DQA  
DQA  
ZZ  
NC  
NC  
NC  
NC  
DQB  
DQB  
DQB  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
DQB  
DQPB  
NC  
NC  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
NC / 18M  
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
MODE NC / 36M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05542 Rev. *A  
Page 5 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Pin Definitions  
Name  
I/O  
Description  
Address Inputs used to select one of the address locations. Sampled at the rising edge of  
the CLK if or  
is active LOW, and CE , CE , and CE [2]are sampled active. A1: A0  
A0, A1, A  
Input-  
Synchronous  
ADSP ADSC  
are fed to the two-bit counter.  
1
2
3
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM.  
BWA,BWB  
BWC,BWD  
Synchronous  
Sampled on the rising edge of CLK.  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a  
GW  
Synchronous  
global write is conducted (ALL bytes are written, regardless of the values on BWX and BWE).  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must  
BWE  
CLK  
Synchronous  
be asserted LOW to conduct a byte write.  
Input-  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the  
Clock  
burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE2 and CE3[2] to select/deselect the device. ADSP is ignored if CE1 is HIGH. CE1 is  
sampled only when a new external address is loaded.  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3[2] to select/deselect the device.CE2 is sampled only when a new external  
address is loaded.  
CE1  
CE2  
Synchronous  
Input-  
Synchronous  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
[2]  
CE3  
Synchronous  
with CE and CE to select/deselect the device.  
Not connected for BGA. Where referenced,  
1
CE3[2] is assume2d active throughout this document for BGA.  
CE3 is sampled only when a new external address is loaded.  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When  
LOW, the I/O pins behave as outputs. When deasserted HIGH, DQ pins are three-stated, and  
act as input data pins. OE is masked during the first clock of a read cycle when emerging from  
a deselected state.  
OE  
Asynchronous  
Input-  
Advance Input signal, sampled on the rising edge of CLK, active LOW. When asserted, it  
ADV  
Synchronous  
automatically increments the address in a burst cycle.  
Input-  
Address Strobe from Processor, sampled on the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the device are captured in the address registers. A1:  
A0 are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP  
is recognized. ASDP is ignored when CE1 is deasserted HIGH.  
ADSP  
Synchronous  
Input-  
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the device are captured in the address registers. A1:  
A0 are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP  
is recognized.  
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a non-time-critical  
“sleep” condition with data integrity preserved. For normal operation, this pin has to be LOW or  
left floating. ZZ pin has an internal pull-down.  
ADSC  
ZZ  
Synchronous  
Input-  
Asynchronous  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
DQs,  
Synchronous  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
DQPs  
specified by the addresses presented during the previous  
clock rise of the read  
cycle. The  
direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs.  
When HIGH, DQs and DQPX are placed in a three-state condition.  
VDD  
VSS  
VSSQ  
VDDQ  
MODE  
Power Supply  
Ground  
I/O Ground  
Power supply inputs to the core of the device.  
Ground for the core of the device.  
Ground for the I/O circuitry.  
I/O Power Supply Power supply for the I/O circuitry.  
Input-  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD or  
Static  
left floating selects interleaved burst sequence. This is a strap pin and should remain static  
during device operation. Mode Pin has an internal pull-up.  
TDO  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the JTAG  
Synchronous  
feature is not being utilized, this pin should be disconnected. This pin is not available on TQFP  
packages.  
Document #: 38-05542 Rev. *A  
Page 6 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Pin Definitions (continued)  
Name  
TDI  
I/O  
Description  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is  
Synchronous  
not being utilized, this pin can be disconnected or connected to VDD. This pin is not available  
on TQFP packages.  
TMS  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is  
Synchronous  
not being utilized, this pin can be disconnected or connected to VDD. This pin is not available  
on TQFP packages.  
TCK  
NC  
JTAG-  
Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin must be  
connected to VSS. This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die.  
Single Write Accesses Initiated by ADSP  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
The CY7C1366C/CY7C1367C supports secondary cache in  
systems utilizing either a linear or interleaved burst sequence.  
The interleaved burst order supports Pentium and i486  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and (2)  
chip select is asserted active. The address presented is  
loaded into the address register and the address  
advancement logic while being delivered to the memory core.  
The write signals (GW, BWE, and  
ignored during this first cycle.  
) and ADV inputs are  
BWX  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQx inputs is written into the corre-  
sponding address location in the memory core. If GW is HIGH,  
Accesses can  
Strobe (ADSP)  
be initiated with either the Processor Address  
or the Controller Address Strobe (ADSC).  
then the write operation is controlled by BWE and  
BWX  
Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
signals. The CY7C1366C/CY7C1367C provides byte write  
capability that is described in the Write Cycle Description table.  
Asserting the Byte Write Enable input (BWE) with the selected  
Byte Write input will selectively write to only the desired bytes.  
Bytes not selected during a byte write operation will remain  
unaltered. A synchronous self-timed write mechanism has  
been provided to simplify the write operations.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
Because the CY7C1366C/CY7C1367C is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQ inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQ are  
automatically three-stated whenever a write cycle is detected,  
regardless of the state of OE.  
self-timed write circuitry.  
synchronous  
[2]  
Synchronous Chip Selects CE1, CE2, CE3  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control.  
is ignored if  
and an  
ADSP  
is HIGH.  
CE1  
Single Write Accesses Initiated by ADSC  
Single Read Accesses  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) chip select is asserted active, and (4)  
the appropriate combination of the write inputs (GW, BWE,  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
chip selects are all asserted active, and (3) the write signals  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1  
is HIGH. The address presented to the address inputs is  
stored into the address advancement logic and the Address  
Register while being presented to the memory core. The corre-  
sponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within tco if OE is active LOW. The only exception  
occurs when the SRAM is emerging from a deselected state  
to a selected state, its outputs are always three-stated during  
the first cycle of the access. After the first cycle of the access,  
the outputs are controlled by the OE signal. Consecutive  
single read cycles are supported.  
and  
) are asserted active to conduct a write to the desired  
BWX  
byte(s). ADSC triggered write accesses require a single clock  
cycle to complete. The address presented is loaded into the  
address register and the address advancement logic while  
being delivered to the memory core. The ADV input is ignored  
during this cycle. If a global write is conducted, the data  
presented to the DQX is written into the corresponding address  
location in the memory core. If a byte write is conducted, only  
the selected bytes are written. Bytes not selected during a byte  
write operation will remain unaltered.  
A synchronous  
self-timed write mechanism has been provided to simplify the  
write operations.  
Because the CY7C1366C/CY7C1367C is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQX inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQX are  
The CY7C1366C/CY7C1367C is a double-cycle deselect part.  
Once the SRAM is deselected at clock rise by the chip select  
and either ADSP or ADSC signals, its output will three-state  
immediately after the next clock rise.  
Document #: 38-05542 Rev. *A  
Page 7 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
automatically three-stated whenever a write cycle is detected,  
Interleaved Burst Address Table  
regardless of the state of OE.  
(MODE = Floating or VDD)  
Burst Sequences  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
The CY7C1366C/CY7C1367C provides a two-bit wraparound  
counter, fed by A[1:0], that implements either an interleaved or  
linear burst sequence. The interleaved burst sequence is  
designed specifically to support Intel® Pentium applications.  
The linear burst sequence is designed to support processors  
that follow a linear burst sequence. The burst sequence is user  
selectable through the MODE input. Both read and write burst  
operations are supported.  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table (MODE = GND)  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
Sleep Mode  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CEs, ADSP, and ADSC must remain  
inactive for the duration of tZZREC after the ZZ input returns  
LOW.  
Partial Truth Table for Read/Write[5, 10]  
Function (CY7C1366C)  
GW  
BWD  
X
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
X
BWC  
BWB  
BWA  
X
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
BWE  
Read  
Read  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
X
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
X
H
H
L
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
Write Byte C – (DQC and DQPC)  
Write Bytes C, A  
L
H
H
L
Write Bytes C, B  
Write Bytes C, B, A  
Write Byte D – (DQD and DQPD)  
Write Bytes D, A  
Write Bytes D, B  
Write Bytes D, B, A  
Write Bytes D, C  
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
H
H
L
L
H
H
L
L
X
L
X
Write All Bytes  
X
Truth Table for Read/Write[5, 10]  
Function (CY7C1367C)  
GW  
BWE  
BWB  
BWA  
Read  
Read  
H
H
H
H
H
L
H
L
L
L
L
X
X
H
H
L
L
X
X
H
L
H
L
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write All Bytes  
Write All Bytes  
X
Document #: 38-05542 Rev. *A  
Page 8 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1366C/CY7C1367C incorporates a serial boundary  
scan test access port (TAP)in the BGA package only. The  
TQFP package does not offer this functionality. This part  
operates in accordance with IEEE Standard 1149.1-1900, but  
doesn’t have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 3.3V or 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see Figure .  
TDI is internally pulled up and can be unconnected if the TAP  
is unused in an application. TDI is connected to the most  
significant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
The CY7C1366C/CY7C1367C contains a TAP controller,  
instruction register, boundary scan register, bypass register,  
and ID register.  
Test Data-Out (TDO)  
Disabling the JTAG Feature  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
TAP Controller Block Diagram  
0
TAP Controller State Diagram  
Bypass Register  
TEST-LOGIC  
2
1
0
0
0
1
RESET  
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
Selection  
TDI  
TDO  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
Circuitr  
y
.
.
. 2 1  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
x
.
.
.
.
. 2 1  
0
0
Boundary Scan Register  
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
TCK  
TMS  
EXIT1-DR  
EXIT1-IR  
TAP CONTROLLER  
0
0
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
Performing a TAP Reset  
EXIT2-DR  
1
EXIT2-IR  
1
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Document #: 38-05542 Rev. *A  
Page 9 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Instruction Register  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
Bypass Register  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
SAMPLE/PRELOAD  
SAMPLE / PRELOAD is a 1149.1 mandatory instruction.  
When the SAMPLE / PRELOAD instructions are loaded into  
the instruction register and the TAP controller is in the Cap-  
ture-DR state, a snapshot of data on the inputs and output pins  
is captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is possi-  
ble that during the Capture-DR state, an input or output will  
undergo a transition. The TAP may then try to capture a signal  
while in transition (metastable state). This will not harm the  
device, but there is no guarantee as to the value that will be  
captured. Repeatable results may not be possible.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE / PRELOAD instruction. If  
this is an issue, it is still possible to capture all other signals  
and simply ignore the value of the CK and CK# captured in the  
boundary scan register.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
Document #: 38-05542 Rev. *A  
Page 10 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the bound-  
ary scan register between the TDI and TDO pins.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells pri-  
or to the selection of another boundary scan test operation.  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Reserved  
These instructions are not implemented but are reserved for  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required - that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
future use. Do not use these instructions.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the operating Range[3, 4]  
Parameter  
Symbol  
Min  
Max  
Unit  
Clock  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
Output Times  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
Setup Times  
tTCYC  
tTF  
tTH  
50  
ns  
MHz  
ns  
20  
5
25  
25  
tTL  
ns  
tTDOV  
tTDOX  
ns  
ns  
0
TMS Set-Up to TCK Clock Rise  
TDI Set-Up to TCK Clock Rise  
Capture Set-Up to TCK Rise  
Hold Times  
tTMSS  
tTDIS  
tCS  
5
5
5
ns  
ns  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
Capture Hold after Clock Rise  
tTMSH  
tTDIH  
tCH  
5
5
5
ns  
ns  
ns  
Document #: 38-05542 Rev. *A  
Page 11 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
TAP AC Switching Characteristics Over the operating Range[3, 4]  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes:  
3. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
4. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05542 Rev. *A  
Page 12 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ....... ........................................VSS to 3.3V  
Input rise and fall times...................... ..............................1ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels ........................................ V to 2.5V  
SS  
Input rise and fall time ......................................................1ns  
Input timing reference levels................... ......................1.25V  
Output reference levels .................. ..............................1.25V  
Test load termination supply voltage .................... ........1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.3V ±0.165V unless otherwise noted)[5]  
Parameter  
VOH1  
Description  
Output HIGH Voltage IOH = –4.0 mA  
Conditions  
Min.  
2.4  
Max.  
Unit  
V
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
2.0  
2.9  
2.1  
V
V
IOH = –1.0 mA  
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = –100 µA  
V
0.4  
0.4  
V
Output LOW Voltage IOL = 8.0 mA  
IOL = 8.0 mA  
V
0.2  
V
Output LOW Voltage IOL = 100 µA  
0.2  
V
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.7  
V
Input HIGH Voltage  
Input LOW Voltage  
V
V
DDQ = 3.3V  
–0.5  
–0.3  
–5  
V
VIL  
VDDQ = 2.5V  
0.7  
V
5
µA  
IX  
Input Load Current  
GND < VIN < VDDQ  
Identification Register Definitions  
CY7C1366C  
CY7C1367C  
(512K x18)  
Instruction Field  
Revision Number (31:29)  
(256K x36)  
000  
Description  
Describes the version number.  
000  
Device Depth (28:24)[6]  
01011  
01011  
Reserved for Internal Use  
000110  
100110  
00000110100  
1
000110  
010110  
00000110100  
1
Device Width (23:18)  
Defines memory type and architecture  
Defines width and density  
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
Note:  
5. All voltages referenced to VSS (GND).  
6. Bit #24 is “1” in the Register Definitions for both 2.5v and 3.3v versions of this device.  
Document #: 38-05542 Rev. *A  
Page 13 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Instruction  
3
3
Bypass  
1
1
ID  
32  
71  
71  
32  
71  
71  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball fBGA package)  
Identification Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
SAMPLE/PRELOAD  
011  
100  
Do Not Use: This instruction is reserved for future use.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
119-Ball BGA Boundary Scan Order  
CY7C1366C (256K x 36)  
CY7C1367C (512K x 18)  
Signal  
BALL  
ID  
Signal  
Signal  
Name  
A0  
A1  
A
Signal  
Name  
BIT#  
Name  
BIT# BALL ID  
BIT# BALL ID  
Name  
CLK  
GW  
BIT# BALL ID  
1
2
3
4
5
6
7
8
CLK  
GW  
BWE  
OE  
ADSC  
ADSP  
ADV  
A
37  
38  
39  
40  
41  
42  
43  
44  
P4  
N4  
R6  
T5  
T3  
R2  
R3  
P2  
1
2
3
4
5
6
7
8
37  
38  
39  
40  
41  
42  
43  
44  
P4  
N4  
R6  
T5  
T3  
R2  
R3  
A0  
A1  
A
A
A
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C3  
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C3  
BWE  
OE  
ADSC  
ADSP  
ADV  
A
A
A
A
A
MODE  
DQPD  
MODE  
Internal  
Internal  
9
B3  
D6  
H7  
G6  
E6  
D7  
E7  
F6  
G7  
H6  
A
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
P1  
L2  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
Internal  
DQC  
9
B3  
T2  
A
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
Internal  
Internal  
Internal  
P2  
Internal  
Internal  
Internal  
DQPB  
DQB  
10  
11  
12  
13  
14  
15  
16  
17  
18  
DQPB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
10  
11  
12  
13  
14  
15  
16  
17  
18  
A
K1  
Internal  
Internal  
Internal  
D6  
Internal  
Internal  
Internal  
DQPA  
DQA  
N2  
N1  
N1  
M2  
M2  
DQB  
L1  
E7  
L1  
DQB  
K2  
F6  
DQA  
K2  
DQB  
Internal  
H1  
G7  
DQA  
Internal  
H1  
Internal  
DQB  
H6  
DQA  
Document #: 38-05542 Rev. *A  
Page 14 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
119-Ball BGA Boundary Scan Order (continued)  
CY7C1366C (256K x 36)  
Signal  
CY7C1367C (512K x 18)  
BALL  
ID  
Signal  
Name  
Signal  
Signal  
BIT#  
Name  
BIT# BALL ID  
BIT# BALL ID  
Name  
BIT# BALL ID  
Name  
19  
T7  
K7  
L6  
ZZ  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
G2  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQPC  
A
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
T7  
ZZ  
DQA  
DQA  
DQA  
DQA  
Internal  
Internal  
Internal  
Internal  
Internal  
A
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
G2  
DQB  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQPA  
A
E2  
K7  
E2  
DQB  
DQB  
D1  
L6  
D1  
N6  
P7  
N7  
M6  
L7  
H2  
N6  
Internal  
Internal  
Internal  
Internal  
Internal  
C2  
Internal  
Internal  
Internal  
Internal  
Internal  
A
G1  
F2  
P7  
Internal  
Internal  
Internal  
Internal  
Internal  
T6  
E1  
D2  
K6  
P6  
T4  
A3  
C5  
B5  
A5  
C6  
C2  
A2  
A
A2  
A
E4  
CE1  
E4  
CE1  
A
B2  
CE2  
A3  
A
B2  
CE2  
A
L3  
BWD  
BWC  
BWB  
BWA  
Internal  
C5  
A
Internal  
Internal  
G3  
Internal  
Internal  
BWB  
A
G3  
G5  
L5  
B5  
A
A
A5  
A
A
C6  
A
L5  
BWA  
35  
36  
A6  
B6  
A
A
Internal  
35  
36  
A6  
B6  
A
A
Internal  
Internal  
165-Ball fBGA Boundary Scan Order  
CY7C1366C (256K x 36)  
Signal  
CY7C1367C (512K x 18)  
Signal  
Signal  
Signal  
Name  
A0  
A1  
A
BIT# BALL ID Name  
BIT# BALL ID  
Name  
A0  
BIT# BALL ID  
Name  
CLK  
BIT# BALL ID  
1
B6  
CLK  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
R6  
1
B6  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
R6  
P6  
R4  
P4  
R3  
P3  
R1  
2
B7  
GW  
P6  
A1  
A
A
A
2
B7  
GW  
BWE  
OE  
ADSC  
ADSP  
ADV  
A
3
A7  
BWE  
OE  
R4  
P4  
3
A7  
4
B8  
4
B8  
A
A
A
5
A8  
ADSC  
ADSP  
ADV  
A
R3  
P3  
R1  
N1  
5
A8  
6
B9  
A
6
B9  
7
A9  
MODE  
DQPD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
Internal  
7
A9  
MODE  
Internal  
Internal  
Internal  
Internal  
DQPB  
DQB  
DQB  
DQB  
DQB  
Internal  
8
9
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
8
9
B10  
A10  
A11  
Internal  
Internal  
Internal  
C11  
D11  
E11  
F11  
Internal  
Internal  
Internal  
Internal  
N1  
A
L2  
A
A
10  
11  
12  
13  
14  
15  
16  
17  
DQPB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
K2  
J2  
M2  
M1  
L1  
K1  
J1  
Internal  
10  
11  
12  
13  
14  
15  
16  
17  
Internal  
Internal  
Internal  
DQPA  
DQA  
DQA  
DQA  
M1  
L1  
K1  
J1  
Internal  
Document #: 38-05542 Rev. *A  
Page 15 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
165-Ball fBGA Boundary Scan Order (continued)  
CY7C1366C (256K x 36)  
Signal  
CY7C1367C (512K x 18)  
Signal  
Name  
Signal  
Signal  
Name  
BIT# BALL ID Name  
BIT# BALL ID  
BIT# BALL ID  
Name  
BIT# BALL ID  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
P10  
R9  
DQB  
ZZ  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
G2  
F2  
E2  
D2  
G1  
F1  
E1  
D1  
C1  
B2  
A2  
A3  
B3  
B4  
A4  
A5  
B5  
A6  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQPC  
A
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
G11  
H11  
J10  
K10  
DQA  
ZZ  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
G2  
F2  
E2  
D2  
Internal  
Internal  
Internal  
Internal  
Internal  
B2  
A2  
A3  
B3  
Internal  
Internal  
A4  
B5  
A6  
DQB  
DQB  
DQB  
DQB  
Internal  
Internal  
Internal  
Internal  
Internal  
A
A
CE1  
CE2  
Internal  
Internal  
BWB  
BWA  
CE3  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQPA  
A
A
A
A
A
A
A
A
DQA  
DQA  
DQA  
DQA  
Internal  
Internal  
Internal  
Internal  
Internal  
A
L10  
M10  
Internal  
Internal  
Internal  
Internal  
Internal  
R11  
R10  
P10  
R9  
P9  
A
CE1  
CE2  
BWD  
BWC  
BWB  
BWA  
CE3  
A
A
A
A
A
A
A
P9  
R8  
P8  
P11  
R8  
P8  
P11  
Document #: 38-05542 Rev. *A  
Page 16 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Storage Temperature .................................65°C to +150°C  
Latch-up Current..................................................... >200 mA  
Ambient Temperature with  
Operating Range  
Power Applied.............................................55°C to +125°C  
Ambient  
Supply Voltage on VDD Relative to GND........ –0.5V to +4.6V  
Range  
Temperature  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
in three-state....................................... –0.5V to VDDQ + 0.5V  
to VDD  
Industrial  
–40°C to +85°C  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
[7, 8]  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
VDDQ  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
VDD  
Unit  
V
V
V
V
V
V
V
V
V
V
V
µA  
VDDQ = 3.3V  
DDQ = 2.5V  
VDDQ = 3.3V, VDD = Min., IOH = –4.0 mA  
DDQ = 2.5V, VDD = Min., IOH= –1.0 mA  
VDDQ = 3.3V, VDD = Min., IOL = 8.0 mA  
DDQ = 2.5V, VDD = Min., IOL = 1.0 mA  
V
2.625  
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage[7]  
Input LOW Voltage[7]  
V
2.0  
0.4  
0.4  
VDD + 0.3V  
VDD + 0.3V  
0.8  
V
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
2.0  
1.7  
–0.3  
–0.3  
–5  
VDDQ = 2.5V  
0.7  
5
Input Load Current  
GND VI VDDQ  
except ZZ and MODE  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
30  
5
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
4.4-ns cycle, 225 MHz  
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
All speeds  
250  
220  
180  
50  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
ISB2  
ISB3  
ISB4  
Automatic CE  
V
DD = Max, Device Deselected,  
Power-down  
V
IN VIH or VIN VIL  
Current—TTL Inputs  
f = fMAX = 1/tCYC  
Automatic CE  
VDD = Max, Device Deselected,  
All speeds  
30  
50  
40  
mA  
mA  
mA  
Power-down  
V
IN 0.3V or VIN > VDDQ – 0.3V,  
Current—CMOS Inputs f = 0  
Automatic CE  
VDD = Max, Device Deselected, or All speeds  
Power-down  
V
IN 0.3V or VIN > VDDQ – 0.3V  
Current—CMOS Inputs f = fMAX = 1/tCYC  
Automatic CE  
V
DD = Max, Device Deselected,  
All Speeds  
Power-down  
V
IN VIH or VIN VIL, f = 0  
Current—TTL Inputs  
Shaded areas contain advance information.  
Notes:  
7. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > -2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
< V  
DD\  
8. TPower-up: Assumes a linear ramp from 0v to V (min.) within 200ms. During this time V < V and V  
DDQ  
DD  
IH  
DD  
Document #: 38-05542 Rev. *A  
Page 17 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Thermal Resistance[9]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Package  
Unit  
ΘJA  
Thermal Resistance  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
25  
25  
27  
°C/W  
(Junction to Ambient)  
ΘJC  
Thermal Resistance  
(Junction to Case)  
9
6
6
°C/W  
impedance, per EIA / JESD51.  
Capacitance[9]  
TQFP  
BGA  
fBGA  
Parameter  
CIN  
CCLK  
Description  
Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
Test Conditions  
Package  
Package  
Package  
Unit  
pF  
pF  
TA = 25°C, f = 1 MHz,  
5
5
5
5
5
7
5
5
7
V
DD = 3.3V.  
DDQ = 2.5V  
V
CI/O  
pF  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
5 pF  
R = 351Ω  
1ns  
1ns  
V = 1.5V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
1ns  
5 pF  
R =1538Ω  
1ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
9. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05542 Rev. *A  
Page 18 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Switching Characteristics Over the Operating Range[14, 15]  
225 MHz  
200 MHz  
166 MHz  
Parameter  
tPOWER  
Clock  
tCYC  
tCH  
tCL  
Description  
Min.  
1
Max  
Min.  
1
Max  
Min.  
1
Max  
Unit  
ms  
VDD(Typical) to the first Access[10]  
Clock Cycle Time  
Clock HIGH  
4.4  
1.8  
1.8  
5.0  
2.0  
2.0  
6.0  
2.4  
2.4  
ns  
ns  
ns  
Clock LOW  
Output Times  
tCO  
tDOH  
tCLZ  
tCHZ  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[11, 12, 13]  
2.8  
3.0  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
Clock to High-Z[11, 12, 13]  
2.8  
2.8  
3.0  
3.0  
3.5  
3.5  
tOEV  
OE LOW to Output Valid  
LOW to Output Low-Z[11, 12, 13]  
OE  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
tADS  
tADVS  
tWES  
0
0
0
OE HIGH to Output High-Z[11, 12, 13]  
2.8  
3.0  
3.5  
Address Set-up Before CLK Rise  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
,
ADSC ADSP Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
Set-up Before CLK Rise  
GW, BWE, BWX  
tDS  
tCES  
Data Input Set-up Before CLK Rise  
Chip Enable Set-Up Before CLK Rise  
Hold Times  
tAH  
tADH  
tADVH  
tWEH  
tDH  
Address Hold After CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
,
Hold After CLK Rise  
ADSP ADSC  
ADV Hold After CLK Rise  
,
,
GW BWE BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
tCEH  
Chip Enable Hold After CLK Rise  
Shaded areas contain advance information.  
Notes:  
10. This part has a voltage regulator internally; t  
can be initiated.  
is the time that the power needs to be supplied above V (minimum) initially before a read or write operation  
DD  
POWER  
11. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
12. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions  
13. This parameter is sampled and not 100% tested.  
14. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
15. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05542 Rev. *A  
Page 19 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Switching Waveforms  
Read Cycle Timing[16]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,BWX  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
OEV  
CO  
t
t
CHZ  
t
t
t
OELZ  
OEHZ  
DOH  
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A3)  
Q(A1)  
Data Out (DQ)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes:  
16. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05542 Rev. *A  
Page 20 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Switching Waveforms (continued)  
Write Cycle Timing[16, 17]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
BWE,  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
Data in (D)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
DON’T CARE  
Single WRITE  
Extended BURST WRITE  
UNDEFINED  
Note:  
17.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05542 Rev. *A  
Page 21 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Switching Waveforms (continued)  
Read/Write Cycle Timing[16, 18, 19]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
t
DH  
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Back-to-Back READs  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
BURST READ  
Back-to-Back  
Single WRITE  
DON’T CARE  
WRITEs  
UNDEFINED  
Notes:  
18.  
.
The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by  
ADSP or ADSC  
19. GW is HIGH.  
Document #: 38-05542 Rev. *A  
Page 22 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Switching Waveforms (continued)  
ZZ Mode Timing [20, 21]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Ordering Information  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
Part and Package Type  
225  
CY7C1366C-225AXC  
CY7C1367C-225AXC  
CY7C1366C-225AXI  
CY7C1367C-225AXI  
CY7C1366C-225BGC  
CY7C1367C-225BGC  
CY7C1366C-225BGI  
CY7C1367C-225BGI  
CY7C1366C-225BZC  
CY7C1367C-225BZC  
CY7C1366C-225BZI  
CY7C1367C-225BZI  
CY7C1366C-200AXC  
CY7C1367C-200AXC  
CY7C1366C-200AXI  
CY7C1367C-200AXI  
CY7C1366C-200BGC  
CY7C1367C-200BGC  
CY7C1366C-200BGI  
CY7C1367C-200BGI  
CY7C1366C-200BZC  
CY7C1367C-200BZC  
CY7C1366C-200BZI  
CY7C1367C-200BZI  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
Commercial  
3 Chip Enables  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Industrial  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables with Commercial  
JTAG  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables with Industrial  
JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm) Commercial  
3 Chip Enables with JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm) Industrial  
3 Chip Enables with JTAG  
200  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Commercial  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Industrial  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables with Commercial  
JTAG  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables with Industrial  
JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm) Commercial  
3 Chip Enables with JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm) Industrial  
3 Chip Enables with JTAG  
Notes:  
20. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
21. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05542 Rev. *A  
Page 23 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Ordering Information (continued)  
Speed  
Package  
Operating  
Range  
Commercial  
(MHz)  
Ordering Code  
CY7C1366C-166AXC  
CY7C1367C-166AXC  
CY7C1366C-166AXI  
CY7C1367C-166AXI  
CY7C1366C-166BGC  
CY7C1367C-166BGC  
CY7C1366C-166BGI  
CY7C1367C-166BGI  
CY7C1366C-166BZC  
CY7C1367C-166BGC  
CY7C1366C-166BZI  
CY7C1367C-166BGI  
Name  
Part and Package Type  
166  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Industrial  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables with Commercial  
JTAG  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables with  
JTAG  
Industrial  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm) Commercial  
3 Chip Enables with JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm)  
3 Chip Enables with JTAG  
Industrial  
Shaded areas contain advance information. Please contact your local sales representative for availability of these parts.Lead-free BG and BZ packages (Ordering  
code:BGX,BZX) will be available in 2005.  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
DIMENSIONS ARE IN MILLIMETERS.  
ꢁ6.00 0.20  
ꢁ4.00 0.ꢁ0  
ꢁ.40 0.05  
ꢁ00  
ꢀꢁ  
ꢀ0  
0.30 0.0ꢀ  
0.65  
TYP.  
ꢁ2° ꢁ°  
SEE DETAIL  
A
(ꢀX)  
30  
5ꢁ  
3ꢁ  
50  
0.20 MAX.  
ꢁ.60 MAX.  
R 0.0ꢀ MIN.  
0.20 MAX.  
0° MIN.  
STAND-OFF  
0.05 MIN.  
0.ꢁ5 MAX.  
SEATING PLANE  
0.25  
GAUGE PLANE  
R 0.0ꢀ MIN.  
0.20 MAX.  
0°-7°  
0.60 0.ꢁ5  
ꢁ.00 REF.  
0.20 MIN.  
51-85050-*A  
DETAIL  
A
Document #: 38-05542 Rev. *A  
Page 24 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Document #: 38-05542 Rev. *A  
Page 25 of 27  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Package Diagrams (continued)  
165 FBGA 13 x 15 x 1.40 MM BB165D  
51-85180-**  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05542 Rev. *A  
Page 26 of 27  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1366C  
CY7C1367C  
PRELIMINARY  
Document History Page  
Document Title: CY7C1366C/CY7C1367C 9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM (Preliminary)  
Document Number: 38-05542  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
241690  
See ECN  
RKF  
New data sheet  
*A  
278969  
See ECN  
RKF  
Changed Boundary Scan order to match the B rev of these devices.  
Document #: 38-05542 Rev. *A  
Page 27 of 27  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY